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ABSTRACT

A common problem with current automatic speech recogni-
tion (ASR) systems is that the performance degrades when it is
presented with speech from a different acoustic environment than
the one used during training. An important cause is that the feature
distribution to which the ASR system is trained no longer matches
that of a new environment. Reverberant environments can be es-
pecially harmful. In this work, we test a multi-stream system in
which the constituent streams are each trained in separate acoustic
environments. When training the acoustic modeling stages of the
streams separately with clean data and heavily reverberated data,
we find that that the combined system can improve the ASR per-
formance with unseen reverberated test data.

1. INTRODUCTION

Despite many advances in ASR robustness, ASR systems can still
perform abysmally when the test data and the data used to train
the system are from different acoustic environments. The acoustic
environment can significantly alter the distributions of the speech
features. For example, room reverberation results in the time-
translated signal energy to be added to itself, resulting in modu-
lation energy that is “smeared” forward in time. When the effect
is significant, the trained acoustic models are no longer accurate.
Researchers have sometimes used model adaptation techniques or
preprocessing techniques with robust properties to alleviate the
problems due to a change in acoustic environment. As a com-
plementary alternative, we choose instead to keep multiple system
components that are independently trained to more than one acous-
tic environment. In our experiments, we employ multiple front-end
acoustic modeling streams to estimate class posteriors that are then
merged prior to decoding. One stream or set of streams are trained
using the original clean data. The remaining stream or streams
are trained in a heavily reverberated environment. In this manner,
the ASR system has examples of the what the feature distribution
looks like with data subjected to two extremes of reverberation.

2. EXPERIMENTAL SETUP

Experiments were performed using a hybrid artificial neural net-
work - hidden Markov model system [2]. A simple three layer
feed forward multi-layer perceptron (MLP) estimates the poste-
rior probabilities of mono-phone class targets given the acous-
tic features. A subset of the OGI Numbers corpus [3] was used
for recognition experiments. This corpus consisted of naturally
spoken connected numbers recorded over the telephone and has a

small vocabulary size of 32 words. The training set consisted of
approximately 3 hours of speech while the development testing set
contained about 1 hour of speech. A smaller third cross-validation
(CV) set was used as hold-out data for early-stopping during the
MLP training and was sometimes used for parameter tuning of the
decoder. The MLPs used an input context of 9 frames of speech
features. We used thechronosdecoder [9] with a bigram gram-
mar and phone models derived from phonetic transcriptions of the
corpus.

The training and testing speech utterances were used in their
original state (clean condition) and also modified with examples
of reverberation. One set of examples was estimated from record-
ings in a variable echoic chamber composed of panels that could
be placed in a highly reflective or absorbent state. Varying the per-
centage of panels that were in either state yielded room impulses
with different reverberant characteristics. One example from this
set consisted of light reverberation whose impulse response was
estimated from recordings in a variable echoic chamber [10]. It
had the quality of a small office with a reverberation time (T60)
of 0.5 seconds and a direct-to-reverberant ratio (DTR) of -2 dB. It
was used in preliminary tests on combinations while the remaining
impulses were saved for final experiments. An additional reverber-
ation example consisted of a heavy reverberation, whose impulse
was constructed from recordings in a concrete basement hallway
and has a T60 of 2.5 seconds and of DTR of -8 dB. Additional
artificial examples of reverberation were constructed by simple
modification of the heavy reverberation impulse to approximate
reverberant environments with different characteristics, i.e DTR
and T60. Reverberated data was applied artificially to the speech
via convolution with the room impulse response.

3. SIMPLE COMBINATION RESULTS

There are a number of ways to combine probability estimates from
several classifiers. These are usually based upon different indepen-
dence assumptions [1]. A common method used by researchers is
to average the logarithm of the probabilities,

P (qjx1; x2; : : : ; xN) =
exp(
PN

i=1
wi logP (qjxi))

P
q0
exp(
PN

i=1
wi logP (q0jxi))

whereP (qjxi) is the posterior probability of classq given features
x of streami, and the weightswi sum to one. When the weights
wi are equal, this equation is equivalent to the normalized geomet-
ric mean of the posteriors. This method has similar properties to
the product rule combination method [8] and has often produced
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MLP WER (%)
Combination clean test light test heavy test

clean MLP alone 6.4 27.0 68.5
heavy MLP alone 49.0 37.1 38.0
log-average 10.0 21.3 + 49.3

clean big MLP 6.0 26.2 68.9
heavy big MLP 49.2 37.2 36.3
clean+heavy big MLP 10.9 21.0 38.1 +

Table 1: WER results using RASTA-PLP features and MLPs
trained in clean or heavy reverberation.

acceptable results. The advantage over the original product rule,
as well as other related combination rules, is the ability to weight
the streams either statically or dynamically based upon additional
information.

3.1. Different MLPs with same preprocessing
Our first experiments test a multi-stream system where the individ-
ual probability streams are trained in different reverberant environ-
ments. RASTA-PLP1 [5, 6] features with�s and��s were used
as the feature extraction process for both streams. The features
were normalized on a per-utterance basis to have a fixed mean
and variance. The first two rows of table 1 show the word error
rates (WER) for two streams where an MLP with 800 hidden units
was trained in either the clean or heavy reverberation environment
and then tested in these environments and a third light reverber-
ation environment. The streams perform best in matched condi-
tions. The third row shows the results when the probabilities from
the two streams are combined using the log-average method with
equal weights. In either of the matched cases (clean and heavy),
this combination does not improve over the better of the individual
streams, though fortunately the result is closer to the better stream
than to the worse. In these cases, one stream is performing at its
best while the other is at its worst. Of interest is the light reverber-
ation test which is the unseen testing condition in this case. This
score, marked with a “+”, is significantly lower than either of the
individual streams and is 21% better relative to the best stream.
Since the combined stream implicitly has twice as many trained
parameters as the individual streams, we also performed identical
tests of the individual streams using a bigger MLPs with twice as
many parameters. WER results are shown in the 4th and 5th rows
of table 1. Increasing the number of parameters improves the word
error rate in matched testing cases, though only significantly in the
heavy reverberation case. Mismatched tests produce no significant
difference in scores in these tests.

The last row of table 1 shows results where a single bigger
MLP is trained with both clean and heavy data. The results are
consistent with the log-average combination with only a signifi-
cant difference in the heavy reverberation test case. The improved
performance in the light reverberation test indicates that the MLP
is able to do some interpolation between the two extreme train-
ing conditions. However, the matched test conditions experience
some compromised performance just as the log-average method
had. The simple posterior combination of heterogeneous streams
appears more desirable than using a larger MLP trained in two
conditions. The individual smaller MLP streams can be trained

1RelAtive SpecTrAl - Perceptual Linear Prediction

MLP WER (%)
Combination clean test light test heavy test

clean PLP alone 5.1 26.7 77.6
clean MSG alone 6.5 15.3 77.7
heavy PLP alone 39.2 31.4 35.4
heavy MSG alone 24.5 23.8 31.6

Homogeneous condition MLP tests
clean PLP� MSG 4.3 + 14.9 70.4 +
heavy PLP� MSG 21.6 + 22.1 + 28.6 +

Heterogeneous condition MLP tests
clean PLP� heavy
MSG

5.9 14.7 + 43.8

log-average of all four 6.2 13.6 + 41.5

Table 2: WER Results from a frame level combination of PLP
and MSG streams trained individually in clean and heavy rever-
beration. The “+” annotation marks where the combination is sig-
nificantly better than the single streams.� signifies log-average
combination.

more quickly and in parallel. Additional streams can be added
or removed without a complete retraining. More importantly, the
simple posterior combination allows for weighting, where a stream
can be de-selected based on additional knowledge. For example, in
the matched cases, the mismatched stream could be given a weight
of zero. Incorporating stream emphasis or de-emphasis would be
less convenient when using a single trained MLP or when using an
MLP as a stream merger.

3.2. Different MLPs with different preprocessing
Time and again it has been demonstrated that combinations of clas-
sifiers based upon features with different properties give rise to the
best combination results, e.g. [4]. In addition to performing tests
where the MLPs were trained in different environments, we con-
ducted tests using different feature extraction processes. Our tests
here use PLP cepstra [5] (without RASTA filtering) and MSG2

lowpass and bandpass features [7]. PLP cepstral features together
with �s and��s were normalized on a per-utterance basis to a
fixed mean and variance. MSG features included 13 modulation
features that were filtered with 8 Hz lowpass and 8-16 Hz band-
pass IIR filters. The MSG features were also normalized but in an
online manner. Four streams were trained individually on each set
of features and with data from either of two acoustic conditions la-
beled “clean” and “heavy”. These probability streams were tested
individually and in combination using clean, light, and heavy re-
verberation conditions. Again, the “light” condition is an unseen
test condition presented to the ASR system. Table 2 shows the
word error rate (WER) from word recognition test results. Since
different types of features sometimes require different values of
decoding parameters to perform best, some parameter tuning was
conducted using the CV set to achieve the lowest word error rate.

The first four rows of scores in table 2 give the WER of the in-
dividual streams. This row illustrates some of the performance
differences between PLP and MSG. Overall, the MSG features
perform better than PLP when the system was trained or tested
on reverberated data. PLP on the other-hand performs better when
training and testing on clean data. The next two rows of scores

2Modulation-filtered SpectroGram
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Figure 1: WER for a range of artificial reverberant conditions us-
ing a weighted log-average between PLP and MSG streams trained
on clean and heavy reverberation data respectively. Tests per-
formed on room impulses with DTR = -8 dB. “x” marks are placed
on curve minima.

combine streams trained in like acoustic conditions using the log-
average method and with tests in all three conditions. In most
cases, the combination results in lower WER than the single streams,
particularly in matched training and testing cases.

We subsequently performed tests using a heterogeneous en-
vironment combinations. First we used two streams where the
PLP stream was trained with clean data and the MSG stream was
trained with heavily reverberated data. This selection was cho-
sen since PLP performed better on clean data and MSG performed
better on reverberated data. The results shown in the second to
the last row of table 2 reveal a similar pattern as with RASTA-
PLP; specifically there is some compromise in performance in the
matched cases coupled with an improvement in the unseen light
reverberation test. The heterogeneous combination performs the
same as the clean combination in the unseen light condition test.
We note, however, that the improvement in the heterogeneous case
over the best of the individual streams for the light test is more
substantial. I.e. the best constituent stream is 23.8% for the het-
erogeneous case but 15.3% for the homogeneous case, yielding
relative improvements of 38% and 2.6% respectively. Since com-
binations of PLP and MSG features demonstrates performance
improvements in matched as well as mismatched testing condi-
tions, we also tested using streams from both feature sets trained
in both clean and heavy reverberation conditions. The last row of
table 2 shows that the unseen light condition case improves fur-
ther, though the scores are not significantly different from the two
stream heterogeneous case in this test.

4. WEIGHTED COMBINATION

The previous experiments used a simple log-average of the prob-
abilities with equal weighting. Since we use streams that were
trained in separate environments, an equal weighting will not al-
ways be optimal; the speech test data may be a closer match to one
of the streams. In the above cases, a weighting towards the clean
stream in the clean test case or towards the heavy stream in the
heavy test case would mitigate some of the compromised perfor-
mance in the heterogeneous combination tests. We repeated tests

using the two-streams heterogeneous case and a number of artifi-
cially constructed room impulse responses. The weight between
the streams varied from 0 (all weight to the MSG-heavy stream)
and 1 (all weight to the PLP-clean stream). Word recognition tests
used the smaller CV set with fixed recognition parameters to speed
up the evaluation. Figure 1 shows the WER results with the DTR
held at -8 dB and with T60 varying from approximately 250 ms to
2500 ms. The existence of extrema in these curves is encouraging
since it signifies that combinations of the streams in this fashion
can produce lower WER than either stream alone. In the case of
the smaller T60, corresponding to less reverberant quality in the
speech data, the weighting should be more equal. For larger T60s
at this DTR, the weighting should favor the heavy trained stream.
A weighting knob to the ASR system, whether manual “rules of
thumb” or automatically computed from statistical measures from
the data, could be used to keep the system at peak performance.

5. FOUR-STREAM COMBINATION WITH UNSEEN
ROOM IMPULSES

Final tests were conducted using the room impulse responses gath-
ered from four microphones in a varechoic chamber with 100%,
43%, and 0% of the panels set “open” to an absorbent state. The
streams were trained using clean data and heavy reverberation data
and are independent environments from the training room impulses
for these tests. The individual stream WER results are tabulated in
table 3 with the WER of a log-average combination of all streams
listed in the last column. The first 8 rows corresponding to the
100% and 43% open panels had lighter reverberation quality. From
figure 1, the original equal weighting is adequate and all streams
were given a 0.25 weight. The combination lowers the word er-
ror in all cases, by as much as 30% relative. The last four rows,
corresponding to all panels in a reflective state, have a heavier re-
verberation quality. An equal weighting yielded results that were
sometimes worse than the individual streams. From figure 1, a
clean-stream weight of 0.2 would be considered more appropriate.
These tests therefore assigned the 0.2 weight equally between the
clean streams (0.1 each) and the 0.8 weight equally between the
heavy streams (0.4 each). This weighting scheme lowered word
error in all of these cases.

6. DISCUSSION

By and large, the environment in which the MLP probability es-
timator is trained is the overriding factor on the performance in
different reverberant environments. Even with robust feature ex-
traction routines, the difference in the feature distributions due to
the room characteristics still varies wide enough to cause severe
degradation in word recognition. For example, it seems unlikely
that even given an arbitrarily large number of trained parameters,
that the performance in heavy reverberation of a clean-trained sys-
tem would approach the performance of the heavy-trained system.
In fact it would be in danger of over-fitting the training data. Clean-
trained systems tend to be only effective in approximately clean
environments; the effects of more severe reverberant environments
on the feature distributions is too great. Streams trained on some
type of reverberation can sometimes have better results with other
types of reverberation when compared to the performance of the
clean-trained stream. The feature distributions may not deviate as
far from it than from the clean and hence better probability esti-
mates could be obtained. A possible partial solution, therefore,
is to use a system trained with examples of what the distribution
might look like in more than one environment.
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Room impulse test WER %
Panels Mic. DTR T60 PLP stream MSG stream log-average

open(%) (dB) (s) clean heavy clean heavy combination

100 1 1 0.3 12.0 42.3 9.6 24.4 8.6 +
100 2 1 0.3 10.6 43.0 9.2 23.5 7.7 +
100 3 -1 0.3 12.1 39.9 10.8 24.1 8.9 +
100 4 -1 0.3 11.7 41.6 10.1 24.7 9.8
43 1 1 0.5 22.2 30.8 13.9 23.7 11.0 +
43 2 -3 0.5 21.4 33.3 15.3 23.3 11.7 +
43 3 -2 0.5 22.3 31.1 17.6 23.6 11.9 +
43 4 -5 0.5 24.2 31.4 18.9 23.5 13.5 +
0 1 0.3 1 55.7 33.2 42.5 26.1 21.1 +
0 2 0.3 1 55.8 31.5 45.6 25.0 21.3 +
0 3 0.3 1 60.6 33.8 52.3 26.7 24.4 +
0 4 0.3 1 59.9 35.9 53.0 26.8 25.2 +

Table 3: Final tests using four PLP and MSG streams trained in clean and heavy reverberation. The combinations for the 100% and 43%
open panels rows have equal weighting. For the 0% open panels, the clean streams were given a weight of 0.1 and the heavy, a weight of
0.4. The “+” annotations mark where the log-average combination produced WER that was significantly better than the single streams.

The most encouraging results occur when a two-stream sys-
tem has streams that are trained in different environments and then
presented with data from an unseen environment. Scores in the
unseen environment are superior in the combined system than the
singly trained systems. The unfortunate side effect is a penalty in
either of the matched conditions. In these cases, the mismatched
stream harms the combination more than helps, though the result-
ing combination still performs closer to the better stream. An extra
input or measure that can intelligently switch off the worse stream
appropriately would rectify problems in the matched cases. When
such information is not available, however, the compromised per-
formance in matched cases can still be a reasonable trade-off. Real
deployed ASR systems will almost surely be presented with speech
in an environment different from its training environment. Multi-
ple streams trained in heterogeneous environments can broaden the
range of graceful performance degradation.

7. CONCLUSION

A benefit of the multi-stream approach is that it can capitalize on
the strengths of more than one approach for maintaining robust-
ness to acoustic degradation. Advances in any of the components
of the system can be readily integrated into the multi-stream sys-
tem. The form used here employed multiple front-end acoustic
modeling stages whose acoustic probability estimates were then
merged for further processing by the word recognition decoder.
Each of the front-end stages was trained to improve phone poste-
rior estimation in a particular acoustic environment. Our results
using clean and heavily reverberated training data show that this
approach can aid ASR when presented with test data in an un-
seen reverberated environment. Addition of an appropriately set
weighting knob can further help such a system operate at a reason-
able performance level. With multiple front-end acoustic modeling
streams trained in different conditions, the range of environments
where the ASR system can maintain reasonable performance can
increase.
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