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ABSTRACT

This paper introduces a multi-rate extension of hidden Markov
models (HMMs), for joint acoustic modeling of speech at multi-
ple time scales. The approach complements the usual short-term,
phone-based representation of speech with wide-context modeling
units and long-term temporal features. We consider two alterna-
tives for coarse scale modeling units and features, representing ei-
ther phones, or syllable structure and stress, and both fixed- and
variable-rate dependencies between two time scales. Experiments
on conversational telephone speech (CTS) show that the proposed
multi-rate acoustic models significantly improve recognition accu-
racy over HMM- and alternative coupled HMM-based approaches
(e.g. feature concatenation) for combining short- and long-term
acoustic information.

1. INTRODUCTION

The current acoustic modeling paradigm in speech recognition
systems is largely based on representing words as a sequence
of phones which are characterized by hidden Markov models
(HMMs). Short-term spectral features are used, and though the use
of context-dependent phones and dynamic features implicitly in-
corporate information from longer scales, current systems focus on
acoustic variability and linguistic information over less than100
ms. This approach has led to impressive results on large vocab-
ulary speech recognition, but the state-of-the-art performance on
conversational speech still lags far beyond that of humans. Many
factors contribute to this performance gap, but the inaccuracy of
HMM-based acoustic models for characterizing variability associ-
ated with conversational speech is believed to be a large contribut-
ing factor. Our goal in this paper is to improve the accuracy of
acoustic models by incorporating acoustic and linguistic informa-
tion from time scales longer than phones, especially from sylla-
bles, into the acoustic model in a multi-scale statistical modeling
paradigm.

Phones and phone time scales are important for speech recog-
nition, but there exists ample evidence that time scales longer
than phones, especially syllables, also carry useful information for
speech recognition. Syllables and syllable time scales play a cen-
tral role in human speech perception of English. Pronunciation
and durational variability observed in conversational speech show
a high degree of dependence on syllable structure. For example,
phones occurring in a syllable onset are more likely to be preserved
than those in a coda, which are more likely to substituted by an-
other phone, or completely deleted [1]. In addition, data-driven
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corpus studies have consistently shown that useful information for
recognition lies in long time scales and wide contexts [2].

In this paper, we incorporate acoustic and linguistic informa-
tion from long-time scales into speech recognition by joint sta-
tistical modeling of speech at phone and syllable time scales via
a new multi-rate coupled HMMs architecture. In a 2-rate HMM-
based acoustic model, we model speech using both the recognition
units and the feature sequences corresponding to phone and sylla-
ble time scales. The fine scale in our models corresponds to the
traditional phonetic HMMs with cepstral features, whereas for the
coarse scale, we will explore two alternatives for characterizing ei-
ther phones broadly or syllable structure and stress, with features
extracted from500 ms windows of speech. Our multi-scale ap-
proach differs from implicit approaches, where wide-context sylla-
ble features are used in decision-tree-based acoustic model cluster-
ing [3], or pronunciation modeling [4]. The multi-scale approach
is also different from HMM-based approaches such as segment
models [5], autoregressive models [6] and other temporal models,
e.g. [2], which represent long-term dependence and higher-order
statistics in a single stream of short-term features but do not in-
volve any multi-scale modeling. Our approach is also different
from the multi-stream approaches such as [7], which incorporate
long-term features but do not reduce redundancy by downsampling
the long-term features that tend to be highly correlated. As our
experiments will demonstrate, such redundancy reduction is im-
portant for both confidence estimation and classification accuracy
when combining information from multiple sources.

Multi-scale modeling based on multi-rate HMMs is explicitly
designed to exploit long-term features, and as such, it is comple-
mentary to the research in new acoustic front-ends looking beyond
the short-term spectrum, e.g. [8, 9]. The traditional approach for
utilizing new features is to concatenate them with existing cepstral
features after oversampling and use them in standard HMM-based
models. However, HMMs have become so tuned to short-term fea-
tures that their use might obscure the gains from new features, es-
pecially those from long-time scales. As our experiments show,
statistical models and features interact and simple HMM-based
combination approaches might not fully utilize complementary in-
formation in long-term features. In particular, we find that both
the redundancy reduction and the selection of appropriate sized
modeling units are important for utilizing long-term features for
speech recognition. We also find that variable-rate sampling ap-
proaches [10] are very helpful for extracting multi-scale feature
sequences that focus more on temporally varying regions, improv-
ing performance over fixed-rate sampling approaches.

The paper proceeds with an introduction to multi-rate HMMs
and their variable-rate sampling extension, followed by discussion
of their application to acoustic modeling. Then, we present ex-



perimental results on a conversational speech recognition task and
finally summarize the key contributions.

2. MULTI-RATE HIDDEN MARKOV MODELS

An HMM characterizes a lengthT time series,{ot}, called obser-
vations, through an underlying hidden state sequence,{st},

p({ot}, {st}) ≡
T−1∏
t=0

p(st|st−1) p(ot|st)

in which it is assumed that the state sequence is first-order Markov,
s−1 is a null start state, and observations are conditionally in-
dependent of everything else given their respective states [11].
The HMM independence assumptions lead to computationally ef-
ficient algorithms for probabilistic inference (O(TN2) computa-
tional cost for state cardinalityN ), the forward-backward algo-
rithm, and parameter estimation, the Baum-Welch algorithm [11].
However, HMMs have a number of intrinsic limitations for repre-
senting multi-scale stochastic processes and long-term context in-
formation. First, representation of composite state structures by an
HMM requires assigning a unique state to each possible state con-
figuration, resulting in an exponential state space which increases
both the computational cost of inference and the number of free
parameters. Second, representation of multi-scale observation se-
quences by an HMM requires over-sampling of coarser-scale ob-
servations to make them synchronous with the finer scale, resulting
in skewed class posterior estimates and over-confident classifica-
tion decisions due to overcounting evidence from coarser scales.
Lastly, the information between the past and present observations
as represented by an HMM, for many state topologies, decays ex-
ponentially fast, as the time lag between them increases, due to the
underlying Markov chain structure [12].

2.1. Basic Multi-rate HMM

The multi-rate HMM is a generalization of the HMM to multiple
time scales. The multi-rate HMM decomposes process variability
into scale-based parts, characterizing both the intra-scale depen-
dencies and time evolution within each scale-based part as well as
inter-scale interactions. In aK-rate HMM, the process is modeled
at K time scales, and associated with each scale is a hidden state
sequence,{sk

tk
}, and an observation sequence,{ok

tk
}, k denoting

the scale level. Scales are organized in a hierarchical manner from
the coarsestk = 1 to the finestk = K, and thek-th scale isMk

times faster than the(k−1)-th scale, i.e.Tk = MkTk−1 for k > 1
whereTk denotes the length of the observation sequence in thek-
th scale. The joint distribution of state and observation sequences
is modeled as

p({o1
t1}, {s

1
t1}, . . . , {o

K
tK
}, {sK

tK
}) ≡

K∏
k=1

Tk−1∏
tk=0

p(sk
tk
|sk

tk−1, s
k−1
btk/Mkc) p(ok

tk
|sk

tk
) (1)

wheresk
−1 is a null start state for thek-th scale,bxc denotes the

greatest integer less than or equal tox, and hencebtk/Mkc is the
index of the observation in the(k − 1)-th scale covering thetk-th
observation in thek-th scale. A graphical model illustration of the
multi-rate HMM is given in Figure 1.

Fig. 1. Graphical model illustration of a multi-rate HMM with
K = 2 andM2 = 3, with the coarse scale at the top. States and
observations are depicted as circles and squares, respectively.

In the multi-rate HMM, statistical dependencies across time
characterize the temporal dynamics of the scale-based compo-
nents, whereas the hierarchical dependencies across scale char-
acterize the interaction between the components. Dependencies
across time are first-order Markov; those across scale are tree
structured. TheK-rate HMM essentially involvesK multi-length
HMMs, which are coupled via dependency of state transitions at
one scale on the overlapping state variable at the next higher scale.

The various inference problems in multi-rate HMMs such as
evaluating marginal likelihood of observations and calculating the
statea posterioriprobabilities are performed with a multi-rate ex-
tension of the HMM forward-backward algorithm. The overall
cost of the resulting algorithm isO(TKNK+1) for aK-rate HMM
(assuming that the state cardinality at each scale is equal toN ),
whereas collapsing multiple state components into a single state
variable and invoking the HMM forward-backward algorithm di-
rectly would lead to aO(TKN2K) algorithm, which is exponen-
tially worse. The parameter estimation of multi-rate HMMs is
done via the expectation-maximization (EM) algorithm [13], au-
tomatically dealing with hidden states in multi-rate HMMs. For
details, see [14].

State and observation factoring is also used in variations of
HMMs for single-rate processes, including factorial HMMs [15],
mixed memory models [16] and coupled HMMs [17], where
single-rate multiple state and observation sequences are involved,
in part to reduce the number of free parameters (for more robust
estimation) and in part to allow asynchrony between state pro-
cesses associated with different observation streams. The multi-
rate state factoring benefits from these advantages, but it is also
better suited for modeling long-term context (captured in the more
slowly changing coarse scale state) and reducing feature redun-
dancy. Two-dimensional multi-resolution HMMs [18] and hierar-
chical HMMs [19] are examples of multi-scale models involving
scale-based state and observation sequences. Like the multi-rate
HMM, these models use tree-structured coarse-to-fine dependen-
cies to characterize inter-scale dependencies, but they are more
restrictive in terms of the assumptions they make: state and obser-
vation variables at a given scale are conditionally independent of
their distant relatives given their parent or ancestor state variables,
and the state sequence at a given scale is disconnected and not a
Markov chain.

2.2. Variable-rate Extension

In the basic multi-rate HMM, we assume that each observation
and state at a scalek covers a fixed number,Mk, of observations
and states at the next finest scale, the(k − 1)-th scale. A fixed-
rate downsampling ratio in the multi-rate HMM implies that fea-
tures in each scale uniformly cover the original physical process.
However, phone durations in English range from10 − 30 ms for



stop consonants to50 − 150 ms for vowels, and a time-invariant
downsampling might not be of sufficient resolution to recognize
phones with very short duration. In addition, a variable-rate fea-
ture extraction method can tailor the signal analysis to focus more
on information-bearing regions such as phone transitions.

Hence, we extend the basic multi-rate HMM paradigm to al-
low for time-varying sampling rates between scales, so the number
of observations at one scale corresponding to an observation at the
next coarsest scale can vary. For example, the original2-rate fac-
torization assuming a fixed sampling ratio,M , is modified to

p({o1
t1}, {s

1
t1}, {o

2
t2}, {s

2
t2}|{Mt1}) ≡

∏T1−1
t1=0 p(s1

t1 |s
1
t1−1)

× p(o1
t1 |s

1
t1)

∏l(t1)+Mt1−1

t2=l(t1) p(s2
t2 |s

1
t1 , s2

t2−1) p(o2
t2 |s

2
t2) (2)

whereMt1 andl(t1) denote the number and starting index, respec-
tively, of observations at the fine scale corresponding to thet1-th
observation at the coarse scale. Notice that we necessarily have
l(t1) =

∑t1−1
τ1=0 Mτ1 andT2 =

∑T1−1
t1=0 Mτ1 . A graphical model

illustration of the variable-rate extension is given in Figure 2.

Fig. 2. Graphical model illustration for a variable-rate sampling
2-rate HMM withM0 = 3, M1 = 1, M2 = 4, andM3 = 2.

In the variable-rate factorization of Equation 2, we have as-
sumed that sampling rates{Mt1} are given (deterministic). The
variable-rate sampling framework is partially motivated to focus
on interesting regions over the signal space, where such regions
are determined during the signal processing stage. We note that
it is possible to makeMt random, as in stochastic segment mod-
els [5], but the cost is higher and it is not implemented in this work.

3. MULTI-RATE HMM ACOUSTIC MODELS

We use2-rate HMMs for joint acoustic modeling of speech at two
time scales in two alternative ways. In both applications, the goal
is to complement the usual cepstrum-based sub-phone models at
the fine scale with long-term temporal features (in particular, a
variation on TempoRAl PatternS – TRAPS [8], the so-called hid-
den activation TRAPS – HAT [9]) and wide modeling units at the
coarse scale. (TRAPS are a relatively new method for data-driven,
posterior-based feature extraction from very long time windows
using neural network classifiers trained to predict, for example,
phones, see [8, 9] for details.) The two applications differ in the
phenomenon they characterize in the coarse scale. In the first case,
the coarse scale characterizes phones broadly using HATs trained
on phone targets, whereas in the second case the coarse scale
characterizes a larger-scale phenomena, lexical stress and syllable
structure, using HATs trained on such targets.

3.1. 2-rate HMM Phone Models

The 2-rate HMM phone models characterize phones at two time
scales. The fine scale corresponds to the traditional HMM-based

phone models, where we use a three-state left-to-right state transi-
tion topology and cepstral features. The coarse scale broadly char-
acterizes phones using long-term temporal features (HATs trained
on phone targets). Each state in the coarse scale is associated with
a whole phone (not just part of it as in fine-scale states). Similar
to context-dependent modeling in phonetic HMMs, we use cross-
word, left and right context-dependent modeling units in both fine
and coarse chains of the2-rate HMM phone models.

3.2. 2-rate HMM Joint Syllable/Stress and Phone Models

In the2-rate HMM joint syllable/stress and phone models, the fine
scale again represents the usual phones using short-term cepstral
features, but the coarse scale represents lexical stress and sylla-
ble structure (namely onset, nucleus, and coda). Specifically, the
coarse scale involves: 1) acoustic units corresponding to the syl-
lable structure (onset, coda, and ambisyllabic consonants; stressed
and unstressed vowels) with two additional classes for silence and
non-speech sounds such as noise; and 2) acoustic features (HATs)
which are trained to predict to these seven classes of sounds. The
models for words are composed by gluing together2-rate HMMs
corresponding to syllable constituents in that word. For example,
the model sequence corresponding to the wordseven is con-
structed by decomposing it using a stress- and syllable-marked
dictionary:

seven [ s + eh [ v ] . ax n ]

where the phone sequence between an open bracket and a closed
one corresponds to a syllable, the “[ v ]” is ambisyllabic, and ’+’
and ’.’ are stress and no-stress markers, respectively, for vowels.
Using this pronunciation ofseven , the coarse and fine state se-
quences in the composite2-rate HMM model are obtained as:

CO | V1 | CA | V0 | CC
s(1-2-3)|eh(1-2-3)|v(1-2-3)|ax(1-2-3)|n(1-2-3)

where| denotes a2-rate HMM boundary;CO, CC, andCA de-
note onset, coda, and ambisyllabic consonants, respectively;V0
andV1 denote unstressed and stressed vowels, respectively; and
x(1-2-3) denotes the3-state sequence corresponding to the
phonex . In our implementation, we again use context-dependent
modeling units at both rates.

4. EXPERIMENTS

4.1. Task

We perform recognition experiments in a medium vocabulary CTS
task, that of recognizing speech using a vocabulary of the2, 500
most frequent words in Switchboard. It is a scaled-down version
of the 2001 NIST Hub-5 recognition task used for evaluating large
vocabulary speech recognizers, in terms of both amount of train-
ing data and vocabulary coverage during testing. The training data
consists of69 hours of speech from Switchboard and Callhome
corpora, and the testing data is an.9 hour subset of the 2001 NIST
Hub-5 evaluation data. There is a1% out-of-vocabulary (OOV)
rate on the test set with respect to the2, 500 word lexicon, which
is similar to the OOV rates in large-vocabulary speech recogni-
tion tasks. It has been shown that new techniques proven to be
useful on this task are likely to be useful on full-vocabulary CTS
tasks [20]. The language model (LM) is fixed to a bigram LM



which has been trained on Switchboard, Callhome, and Broadcast
News transcriptions.

We use12 perceptual linear prediction (PLP) coefficients and
the logarithm of energy as well as their first- and second-order
derivatives as our short-term features. For the coarse-rate features,
we use HATs which are trained on either phone targets (result-
ing in a 23-dimensional feature after principle component analy-
sis), or seven broad categories related to the syllable structure and
stress (resulting in a 21-dimensional feature after concatenating
two derivatives). Per-side mean subtraction and variance normal-
ization have been applied to both PLP and HAT feature sequences.

4.2. Training and Testing Procedures

We used the following procedure to train and test the2-rate HMM
acoustic models in Graphical Models Toolkit (GMTK) [21]. The
2-rate HMM parameters are booted from the HMM systems cor-
responding to fine and coarse scale chains in the2-rate HMM.
We first train separate HMM systems using features and sub-word
modeling units corresponding to each chain and determine tying of
context-dependent of states in Hidden Markov Toolkit (HTK) [22].
We then transfer these HMM systems into GMTK and continue in-
dependent EM training with mixture splitting until8 mixture com-
ponents per state are achieved. The state-conditional output distri-
butions in these fine- and coarse-scale HMMs are used to initial-
ize the state-conditional output distributions in the fine and coarse
chains in our2-rate HMM systems. Then, we jointly train all pa-
rameters until the desired number of mixture components per state
are achieved. All recognition experiments are performed by us-
ing GMTK in rescoring500-best lists generated by HTK (which
have an oracle word error rate (WER) of19.3% and1-best WER
of 42.5%). The reported HMM systems in GMTK are the full-
trained versions of HMM systems that were used to initialize the
fine and coarse chains in our2-rate HMM systems. The baseline
HMM system with PLPs uses32 mixture components per state,
and the total number of parameters in all systems (except HMM
system with C/V HATs, see Table 2 caption) are roughly made
equal by adjusting the number of mixture components per state in
each system.

In experiments with the basic multi-rate HMMs, we used a
fixed-rate downsampling ratio of3, whereas in experiments with
the variable-rate extension of multi-rate HMMs, we dynamically
sampled the coarse features (phone or C/V HATs) only when they
significantly differ from the ones occurring before so that on aver-
age one in three coarse feature frames is kept.

4.3. Results

The WER performance of the2-rate HMM system modeling
phones and related HMM systems are presented in Table 1. In this
table, we also report results with the2-stream coupled HMMs [7],
which are similar to2-rate coupled HMMs, but do not reduce
the redundancy of coarse features by downsampling. The2-rate
HMM system (MHMM) gives equivalent performance improve-
ments to the HMM-based feature concatenation and score combi-
nation, or the multi-stream modeling approaches, but with smaller
models, whereas the variable-rate system (VHMM) gives a further
improvement, clearly outperforming all other systems.

The WER results of the2-rate HMM system modeling syl-
lable structure and stress in its coarse scale and the related HMM
and multi-stream systems are reported in Table 2. We find that nei-
ther the HMM combination nor the multi-stream approaches are

system WER % # of states

HMM-PLP 42.3 4986
HMM-HAT 44.7 4788
HMM-PLP/HAT 40.1 7906
HMM-PLP+HAT 41.1 4986/3163
MSTREAM (1-state) 40.1 4986/3163
MSTREAM (3-state) 39.7 4986/4788
MHMM 39.9 4986/1438
VHMM 39.1 4986/1438

Table 1. WER and number of states for different models using
PLP and/or phone-based HATs, where the number of states for
the multi-stream (MSTREAM) models is per phone at the coarse
scale. The PLP/HAT and PLP+HAT indicate state-level feature
concatenation vs. utterance-level score combination. The pairs in
the number of states column denote those in the HAT and PLP
streams of the corresponding system.

system WER % # of states

HMM-PLP 42.3 4986
HMM-HAT 50.4 95
HMM-PLP/HAT 42.8 7091
HMM-PLP+HAT 42.1 4986/95
MSTREAM 42.0 4986/95
MHMM 40.9 4986/84
VHMM 40.6 4988/84

Table 2. WER and number of states for different models using
PLP and/or C/V HATs, designed to predict C/V classes. See Ta-
ble 1 caption for further details.

successful in utilizing complementary information in C/V HATs,
which is unlike the multi- and variable-rate approaches that sig-
nificantly improve over the baseline HMM system using PLPs.
The 2-rate HMM systems achieve significant gains from repre-
senting syllable structure and stress, with a very small increase in
parameters, they are not as large as those from representing phones
broadly. The low temporal complexity of syllable phenomena (as
represented in our models) seemed to be a limiting factor.

5. CONCLUSIONS

In this paper, we proposed multi-rate and variable-rate acoustic
modeling schemes for speech recognition, based on a multi-scale
extension of HMMs, multi-rate HMMs. In the proposed models,
the usual sub-phone recognition units and short-term spectral fea-
tures are complemented with coarser recognition units and long-
term temporal features. We used the coarse scale in multi-rate
acoustic models in two alternative ways to represent phones, and
syllable structure and stress. Experimental results in a challeng-
ing CTS task showed that the variable-multi-rate HMM signif-
icantly improves recognition accuracy over baseline HMM and
multi-stream systems. We have found that significant WER im-
provements are possible via representing both syllables and phones
in the multi-rate modeling framework with a very small increase in
parameters, though the gains so far are not as large as those from
representing phones at multiple scales.
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