
Evaluating Anti-Fingerprinting Privacy Enhancing Technologies
Amit Datta

∗

Snap Inc.

amit.datta@snap.com

Jianan Lu

University of California, Berkeley

amberljn@berkeley.edu

Michael Carl Tschantz

ICSI

mct@icsi.berkeley.edu

ABSTRACT
We study how to evaluate Anti-Fingerprinting Privacy Enhancing

Technologies (AFPETs). Experimental methods have the advantage

of control and precision, and can be applied to new AFPETs that

currently lack a user base. Observational methods have the advan-

tage of scale and drawing from the browsers currently in real-world

use. We propose a novel combination of these methods, offering

the best of both worlds, by applying experimentally created mod-

els of a AFPET’s behavior to an observational dataset. We apply

our evaluation methods to a collection of AFPETs to find the Tor

Browser Bundle to be the most effective among them. We further

uncover inconsistencies in some AFPETs’ behaviors.

CCS CONCEPTS
• Security and privacy→ Pseudonymity, anonymity and un-
traceability.

KEYWORDS
Privacy enhancing technologies; website fingerprinting; testing

ACM Reference Format:
Amit Datta, Jianan Lu, and Michael Carl Tschantz. 2019. Evaluating Anti-

Fingerprinting Privacy Enhancing Technologies. In Proceedings of the 2019
World Wide Web Conference (WWW ’19), May 13–17, 2019, San Francisco, CA,
USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/3308558.

3313703

1 INTRODUCTION
Online data aggregators track consumer activities on the Internet

to build behavioral profiles. In addition to using stateful methods,

such as cookies, some trackers use stateless tracking mechanisms,

also known as browser fingerprinting. A stateless tracker extracts

fingerprints from consumers as a collection of several attributes of

the browser, operating system, and hardware, typically accessed

through Javascript APIs. Fingerprints collected on websites like

panopticlick.eff.org and amiunique.org/fp demonstrate that they

are sufficiently unique and stable for tracking purposes [12, 33].

The list of attributes that can be used in fingerprints is rapidly

increasing [3, 4, 10, 15, 18, 38, 52]. Studies have also uncovered

fingerprinting code on popular webpages [3, 4, 15].

Anti-Fingerprinting Privacy Enhancing Technologies (AFPETs)

aim to protect consumers against fingerprinting by masking, or

∗
The majority of this author’s contributions were made at Carnegie Mellon University.

This paper is published under the Creative Commons Attribution 4.0 International

(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-6674-8/19/05.

https://doi.org/10.1145/3308558.3313703

spoofing, the values of attributes. Our goal is to find attributes that

AFPETs are not masking and to quantify their effects on privacy. We

develop a method that compares the trackability of AFPET-modified

fingerprints with those of the original fingerprints.

Depending on the goals, AFPET evaluation could depend on the

context in which the AFPET is used, accounting for features of

other users and non-users, or be a more theoretical assessment of

the AFPET’s potential, untied to the vagaries of today. For example,

if the goal of evaluation is to determine which AFPET to use today,

one would want to know how many other users of the AFPET there

are since they will form the anonymity set – the group of other

users one will blend in with. If instead the goal is to determine

which AFPET to fund for further development, the user numbers of

today may matter less than the technical or theoretical capabilities

of the AFPET. Given that no one AFPET evaluation can match all

goals, we will explore points in the space of possible evaluations

while focusing more on prospective evaluations.

Methods. First, we consider a more theoretical, experimental

analysis that directly looks at an AFPET’s ability to mask attributes.

This method runs browsers with and without an AFPET installed to

determine which attributes the AFPET masks. For this purpose, we

develop an experimental framework, PETInspector, which has three

components: the fingerprinting server (FPServer), which collects

fingerprints from visitors, the client simulator (ClientSim), which
simulates consumers and drives them to FPServer with and without

AFPETs, and the analysis engine (AnaEng), which compares finger-

prints across clients to produce amask model characterizing AFPET
behaviors. This tool can be applied to new AFPETs that currently

lack a user base. This experimental method does not require access

to the source code of AFPETs. However, it does not tell us which

attributes are the most important to mask.

Next, we consider a highly context-dependent, observational

method. Websites like panopticlick.eff.org and amiunique.org/fp

obtain large sets of real-world fingerprints, revealing which are

the most trackable (i.e., unique and predictable). In principle, these

datasets can be studied to evaluate an AFPET by selecting the fin-

gerprints generated by users of that AFPET and, for each such

fingerprint, checking how trackable they are compared to other

fingerprints in the dataset. We have implemented the core task

of measuring trackablity as a tool, FPInspector, which simulates a

simple tracker and computes statistics quantifying anonymity, such

as entropy. In practice, however, such observational datasets may

contain too few users of an AFPET, especially for new ones, for

FPInspector evaluate it. Furthermore, in some cases, it may be diffi-

cult to determine which fingerprints correspond to which AFPETs.

Thus, utilizing such a dataset requires a more nuanced approach.

Then, we develop a hybrid method combining observational and

experimental data to enable the evaluation of AFPETs with low or

no usage within the context of browsers used today but without

TransformAnaEng

PET p

Trackability

Trackability

Difference

Effectiveness of p

Observational dataset

Tracker
model

p mask
model

p-modified
dataset

FPInspector

FPServer

ClientSim

PETInspector
Hybrid method

Figure 1: The hybrid AFPET evaluation method takes an ob-
servational dataset and a PET, and outputs its effectiveness.

access to the AFPET source code. Our hybrid method combines

FPInspector with PETInspector as outlined in Figure 1. It contextu-

alizes the mask model produced by PETInspector by applying it to

an observational dataset of real-world fingerprints to produce a

counterfactual dataset representing what the browsers would look

like to trackers had everyone used the AFPET. By comparing the

trackabilities on the two datasets, we evaluate the effectiveness of

the AFPET. By parametrically leveraging data from ongoing, large-

scale measurement studies, our methods may be adapted for the

ever-changing landscape of browsers with little additional work.

Finally, we adjust the hybrid method to take into account the

number of users an AFPET has. This shifts the analysis even further

in the direction of examining the PET’s current abilities.

Results. Using PETInspector, we resolved with high confidence

whether 15 AFPETs explicitly claiming to protect against finger-

printing mask 20 attributes of Firefox and 18 attributes of Chrome.

We also looked at 11 other popular blacklisting PETs (BLPETs),
which operate by blacklisting domains known to engage in tracking.

While they do not make a claim of protecting against fingerprinting,

they should not make matters worse by giving browsers a more

unique fingerprint, a property we check them for.

We found that all but the Tor Browser Bundle masked 9 or fewer

of the resolved attributes, at least in their default configurations.

In particular, we found that Tor left a single attribute, platform,
unmasked while all others left at least 12 attributes unmasked.

PETInspector also uncovered undocumented behaviors and inconsis-

tencies in how some PETs modify various attributes:

• Brave Browser spoofs the User-Agent to appear like Chrome,

but modifies the Accept-Language header, language and

plugins differently than baseline Chrome. This can make

Brave users stand out from other Chrome users. We have

raised the issue with Brave developers and have received

comments from them acknowledging the issue [55, 56].

• While both Privacy Badger and Firefox send the Dnt header,

only Firefox sets the doNotTrack variable in JavaScript’s

navigator object. As a result, web-services which only use

JavaScript to detect the Do Not Track choice will not be able

to do so for Privacy Badger users. Furthermore, this inconsis-

tency may make Privacy Badger’s users stand out, making

them easier to track.We raised this issue with Privacy Badger

developers who have since fixed the issue [57].

F
P
S
e
r
v
e
r
a
t
t
r
i
b
u
t
e
s

29

A
m
i
u
n
i
q
u
e
a
t
t
r
i
b
u
t
e
s

8

Resolved on Firefox

Resolved on Chrome

2

6

0

8

1

10

1

Figure 2: FPServer collects 49 attributes, of which 29 remain
unexercised by ClientSim. Amiunique dataset has 28 unique
attributes, of which 8 aren’t collected by FPServer and 8 are
collected but remain unexercised by ClientSim. The red dot-
ted rectangle represents the intersection of attributes ex-
ercised by ClientSim and those present in the amiunique
dataset, which are used for our hybrid evaluation.

• HideMyFootprint randomizes the User-Agent header, while

not modifying the platform. This leads to inconsistencies
like the User-Agent containingWindows NT 10.0 on a Linux
x86_64 platform. Moreover, it sends an additional Pragma
header, which can make users distinguishable.

• While the Tor Browser Bundle hides the OS by spoofing

attributes like User-Agent and cpu class, onemay still infer

that information from the javascript fonts revealed.

We found 6 AFPETs which masked 4 attributes, but they did not

all mask the same set of attributes. To break such ties, we used

the hybrid method. We used a pre-existing dataset of over 25,000

real-world fingerprints collected on and provided by the website

amiunique.org.
1
Of the 18–20 attributes resolved for each AFPET,

only 12 appear in the amiunique.org dataset. Figure 2 provides an
overview of how we selected attributes for our hybrid evaluation.

For these 12 attributes, the hybrid method generates a set of PET-

modified fingerprints from the original fingerprints and measures

the effectiveness of the 15 AFPETs with FPInspector.
Our hybrid method finds that even with just 12 attributes, 13

AFPETs do not provide much protection over using no PET, de-

creasing the entropy revealed from about 13 bits without any PET

to 11 bits with the AFPET. It finds Tor Browser Bundle (Tor BB)

to be most effective, revealing under 3 bits of entropy. Given that

some AFPETs only claim to protect a single attribute, these findings

do not necessarily show any of them to be broken, but it does pro-

vide useful information for users and privacy advocates about their

limitations. Furthermore, we found that the AFPET Trace did not

mask two attributes that its documentation claimed it did (Table 3).

Recognizing that automation has its limitations, we manually

analyzed some of the more interesting findings. We found that

some AFPETs performed better when switched out of their default

configuration. While we find that some do mask attributes labeled

as inconclusive by PETInspector, we did not find any falsely labeled

as masked or as unmasked.

1
Graciously provided by Pierre Laperdrix, one of the creators of amiunique.org.

A source of entropy for Tor BB fingerprints is the revealed screen

resolution, which is only partly masked. Tor BB reveals partial

information about the screen resolution of its users using a spoofing

strategy which depends on the true resolution for usability reasons.

We explore a space of alternate spoofing strategies and find some

to be just as effective according to our metrics despite being more

usable, by utilizing more pixels on average for browsing than Tor.

Interpretation. AFPETs do not claim to protect against all forms

of fingerprinting, and, thus, our results should not necessarily be

interpreted as finding flaws. Nevertheless, our tool can be useful for

AFPET developers. It can test whether they masked the attributes

they intended to do so and help ensure that their documentation is

correct. Indeed, we found that AFPETs Trace and Tor did not mask

all the attributes that their documentation claimed they did.

BLPETs do not claim to protect against fingerprinting, but even

they should avoid making browsers more fingerprintable than they

already are. For example, we found that Privacy Badger made fin-

gerprinting easier by modifying an attribute in a particular and

undocumented way. Despite not making any anti-fingerprinting

claims, its developers updated Privacy Badger.

For consumers and their advocates, our results are useful beyond

the pre-existing, and sometimes flawed, documentation. In addition

to double checking documentation, such consumers may be less

concerned with whether PETs meet their specifications than their

overall effectiveness, which our tools measure.

Our results are best understood as providing a lower bound on

how much room for improvement remains for AFPETs. Our lower

bound is sound in that when PETInspector claims that an AFPET

leaves an attribute unmasked, it really is not masking it, is not

varying the attribute often enough to be effective, or is not masking

enough values of the attribute to protect our test browser platforms.

Our bound is only a lower bound since, by resolving only the status

of 18–20 attributes of each browsing platform, we might label some

attributes in need of masking as inconclusive. More attributes can

be added to our tools, but the set of possible attributes is open ended

and finding platforms that differ in all attributes can be difficult.

Contributions. We make the following main contributions:

• Wedevelop PETInspector to find how 15AFPETs (and 11 BLPETs)

mask 18–20 different attributes. By obtaining a more com-

plete picture of PETs’ behaviors, we uncover some inconsis-

tencies and peculiarities (Section 4).

• We develop a hybrid method for evaluating AFPETs from an

observational dataset of real-world fingerprints and apply

it to evaluate 15 AFPETs. We find Tor BB to be the most

effective AFPET among the ones we evaluate (Section 5).

• We adjust the hybrid method to also consider the current

number of users each AFPET has (Section 6).

• We explore a space of alternate spoofing strategies for screen

resolution by Tor BB and find somewhich have higher screen

utilization than Tor BB, but are just as effective (Section 7).

2 PRIORWORK
Prior work finds that various attributes are trackable by measuring

the uniqueness and predictability of fingerprints collected from

real-world browsing platforms [12, 33, 63]. However, few studies

evaluate the effectiveness of AFPETs against fingerprinting.

Many prior studies have focused on BLPETs, which use blacklists

to block known tracking domains and scripts. Since BLPETs try

to prevent the consumer’s browser from interacting with track-

ers, metrics suggestive of successful interactions (e.g., third-party

requests sent, cookies placed, etc.) are good indicators of BLPET

effectiveness. Studies have evaluated BLPETs by comparing these

metrics between browsers with and without the BLPET when visit-

ing popular websites [15, 23, 25, 28, 29, 35, 37, 47]. FPGuard takes

a blacklisting strategy to protect against fingerprinting: it uses

heuristics to identify fingerprinting domains and blocks them [17].

Gulyás et al. study the tradeoff between a BLPET suppressing some

trackers but also leading to the browser having a more unique

fingerprint by being a rare browser extension [22].

Most AFPETs protect against fingerprinting by spoofing browser,

operating system and hardware characteristics, without blocking

specific domains and scripts. AFPETs like the Tor Browser stan-

dardize various attribute values [45], whereas others like PriVarica-

tor [42], FP-Block [59], Blink [32], and FPRandom [31] vary them.

Metrics for evaluating BLPETs are not able to meaningfully evaluate

AFPETs. Some studies have evaluated attribute-varying AFPETs by

observing variations in fingerprints when using these AFPETs (e.g.,

[31, 42]). Vastel et al. look at how AFPETs can introduce inconsis-

tencies between attributes leading to a more unique fingerprint [61].

Our work differs from these and uses a combination of experimental

and observational data to more thoroughly evaluate AFPETs.

3 TRACKERS AND PETS
When a user visits a webpage, trackers can have the user’s browser

execute code that requests information about the user’s brows-

ing platform, including their hardware, operating system, and the

browser itself. Table 3 provides a list of 49 attributes known to

be good candidates for fingerprinting. The tracker can combine

multiple attributes a1, . . . ,an to compute a fingerprint id(b) =
⟨a1(b), . . . ,an (b)⟩ of the browsing platform b where ai (b) repre-
sents the value of attribute ai for the platform b. A tracker can use

fingerprints to identify browsing platforms visiting two websites

as being the same one. The more unique the fingerprint is for each

user, the fewer false matches the tracker will produce in linking

two different users. The more predictable, or stable (ideally, un-

changing), the fingerprint is as a user goes from website to website,

the fewer matches the tracker will miss.

To protect themselves from fingerprinting, consumers can install

AFPETs on their browsing platform to reduce the uniqueness or

stability of the platform’s fingerprints. Upon installing a PET p, the
consumer’s browsing platform b is modified to p(b). As a result, the
tracker interacts with p(b) and extracts fingerprint id(p(b)).

In this study, we look at three types of PETs:

(I) Attribute standardizing (AS). These AFPETs reveal one
(full standardization) or one of a small set of possible values

(partial standardization) for an attribute. Full standardiza-

tion makes all AFPET users appear identical, whereas partial

standardization makes them appear from a few groups, with

respect to that attribute. An AFPET may choose partial over

full standardization if spoofing the attribute value has us-

ability implications.

(II) Attribute varying (AV). These AFPETs vary the value of an
attribute so that the values of each user varies across brows-

ing activities. Such variations may affect both the predictabil-

ity and the uniqueness of the revealed attribute. Laperdrix

et al. [31] show that variation AFPETs can vary attributes in

a manner that reduces their usability impact.

(III) Interaction blocking (IB). These BLPETs block some or

all interactions between the browsing platform and trackers.

They rely on a blacklist (e.g., EasyPrivacy) to block inter-

actions matching known tracking patterns. Trackers inter-

acting with browsing platforms with these PETs receive an

error message instead of the true fingerprints.

We are primarily interested in evaluating AFPETs that modify

the attribute values either by standardizing (I) or varying (II) their

values. In some places, we comment on BLPETs that block inter-

actions with known trackers (III). We do so even for BLPETs not

claiming to be AFPETs since they are popular, have been the subject

of past evaluation studies, have the potential to unintentionally

make fingerprints more unique (as we find with Privacy Badger),

and can be used as AFPETs. However, we do not directly compare

them to the AFPETs since they do not purport to modify any at-

tributes explicitly, and their quality depends upon the quality of

their blacklists, necessitating a different form of evaluation.

We leave out of scope PETs that protect against fingerprinting by

blocking scripts (e.g., NoScript [26] and ScriptSafe [6]) since they

have considerable impact on usability [25]. We also leave out PETs

like AdNauseum (adnauseam.io) that do not attempt to prevent

tracking but rather to make it pointless by injecting noise into the

user’s history with fake clicks and website visits.

In this paper, we consider a total of 26 PETs. We assign each PET

a unique abbreviation, which we use in some tables. We present

the full list of PETs and their abbreviations in Table 1. 23 of the 26

PETs are extensions for Chrome and Firefox, two are full browsers,

and one is a browser configuration. 15 of the 26 PETs are AFPETs

and purport to either standardize or vary attribute values, while 11

others are popular BLPETs. Some PETs assume mixed strategies.

We went over the documentation of the PETs to uncover how

they purport to modify attributes. For all PETs that explicitly doc-

ument masking an attribute, we place a □ in the corresponding

cell in Table 3. Next, we demonstrate how we use our experimental

method can check whether the documentation is accurate.

4 EXPERIMENTAL EVALUATION OF AFPETS
Wenow consider an experimental, or test-based, approach to AFPET

evaluation conducted with artificial users. These artificial users

browse on platforms differing in whether they have an AFPET

installed. By comparing fingerprints generated by these artificial

users, we infer which attributes the AFPET is masking. We use the

degree of masking by each AFPET as an evaluation metric.

4.1 Method
Our experimental framework, PETInspector, is composed of three

parts. The client simulator, ClientSim, creates and drives experimen-

tal browsing platforms, with and without various AFPETs installed,

Table 1: List of PETs we study, their abbreviation, and strat-
egy to protection. Most PETs are browser extensions, * indi-
cates full browsers, and ** indicates browser configurations.
For AFPETs, we list its number of users.

PET Abbr. Strategy AFPET Users

Chrome PETs

CanvasFingerprintBlock [8] cfb AS ✓ 7.6K

Privacy Extension [51] pe AS ✓ 915

Brave [9] br* AS+IB ✓ N/A

Canvas Defender [40] cdC AV ✓ 20K

Glove [41] gl AV ✓ 342

HideMyFootprint [1] hmf AV+IB ✓ 177

Trace [2] tr AV+IB ✓ N/A

Adblock Plus [16] apC IB

Disconnect [11] dC IB

Ghostery [20] ghC IB

Privacy Badger [14] pbC IB

uBlock Origin [24] uoC IB

Firefox PETs

Blend In [46] bi AS ✓ 858

Blender [36] bl AS ✓ 1.8K

No Enum. Extensions [48] ne AS ✓ N/A

Stop Fingerprinting [43] sf AS ✓ 1.8K

Tor Browser Bundle [45] Tor* AS ✓ ≈4M

TotalSpoof [19] to AS ✓ 265

Canvas Defender [40] cdF AV ✓ 5.3K

CanvasBlocker [27] cb AV ✓ 27K

Adblock Plus [16] apF IB

Disconnect [11] dF IB

Ghostery [20] ghF IB

Privacy Badger [14] pbF IB

Tracking Protection [54] tp** IB

uBlock Origin [24] uoF IB

to visit a server. The fingerprinting server, FPServer, plays the role
of an online tracker and collects fingerprints when the browsing

platforms, driven by ClientSim, visit it. The analysis engine, AnaEng,
compares fingerprints across clients to detect whether an AFPET

varies, standardizes, or does not mask the value of an attribute. To

observe these behaviors, AnaEng compares the value of the attribute

on the browsing platform without any AFPET (i.e., on the baseline

browser) with the value when an AFPET is installed.

Client Simulator. ClientSim drives simulated clients using brows-

ing platforms with different configurations to visit FPServer. For
each base configuration and AFPET, ClientSim simulates a pair of

clients only differing on whether the AFPET is installed, to allow

the isolation of the AFPET’s effects.

We choose the base configurations to exercise a wide range of

attribute values in hopes of triggering an AFPET’s masking be-

havior even when the masking is partial. To exercise more plat-

forms than we have access to, ClientSim simulates browsing plat-

forms either locally on a computer or on pre-configured VirtualBox

virtual machines [62]. ClientSim configures different fonts, time-

zones, languages, and screen properties using OS and browser func-

tionalities. Some attributes directly depend upon hardware (e.g.,

max touch points) or fixed OS libraries (e.g., math attributes) pre-

venting their simulation. Avoid altering others due them possibly in-

terfering the operation of PETs (DNT enabled, openDB, indexedDB,
two storage attributes, and six header attributes), being antiqued

(plugins), or being a function of lower-level attributes (such as

adBlock installed and has lied with).
After setting up a simulated browsing platform, ClientSim drives

browser instances on them using the Selenium Webdriver [49] to

FPServer. The browser instances interact with FPServer in a specified

pattern of reloads and idling to provide insights about the mod-

ification behavior of PETs. In hopes of triggering a PET’s ability

to mask by varying attribute values, ClientSim drives its browsers

across various boundaries that may cause the PET to refresh its

spoofed value: reloads of a single domain, visits to different domains
(we give FPServer two domain names), and browsing across sessions.
We define a session to browsing separated by 45 minutes of down

time, following Mozilla’s definition of a session as a continuous

period of user activity in the browser, where successive events are

separated by no more than 30 minutes [60].

Fingerprinting Server. FPServer collects attributes collected by

the open-source fingerprinting projects FPCentral [30] and Panop-

ticlick [13], often by reusing their code. We list these attributes in

the first column of Table 3. Similar to websites like panopticlick.eff.

org and amiunique.org/fp, any browser visiting FPServer’s domain

can view their fingerprint, while FPServer retains a copy.

Analysis Engine. To check for masking by a PET, AnaEng uses
both the fingerprints collected by FPServer from the browsers driven

by ClientSim and information directly from ClientSim stating which

browser used which PETs and in which configurations. Figure 3

provides an overview of AnaEng. In short, the analysis looks for

both masking by standardization and by variation. If it detects

standardization or variation for an attribute, it models the attribute

as masked in the mask model of the PET that it produces. It models

an attribute as unmasked if it is able to thoroughly test it and find

neither type of masking. The possible results of the analysis are

(1) Inconclusive: cannot test variation due the baseline browser

varying the attribute

(2) Masked: detect AFPET-induced variation by seeing variation

with the AFPET but not without the AFPET

(3) Masked: detect AFPET-induced standardization by seeing

value change in a stable manner from baseline browser to

browser with AFPET

(4) Inconclusive: cannot rule out partial standardization due to

lack of browsing platforms that differ enough in the attribute

(5) Unmasked: rule out impactful standardization as unlikely

By impactful partial standardization, we mean standardization

that affects at least a fraction f of the values. In general, ruling out

partial standardization with experiments requires testing for all pos-

sible attribute values, a prohibitively expensive, if not impossible,

task for many attributes. However, AnaEng can, in reasonable time

and with reasonable confidence, rule out impactful partial standard-

ization. To do so, AnaEng estimates the probability of seeing at least

a varies
without p ?

Masked

Experimental data for PET p

a varies
with p ?

a stably
differs
with p ?

Standardization
detection likely
for a ?

yes

no no

yes

no

yes no

Unmasked

yes

(1) (2) (3) (4)

(5)

Masked Inconclusive Inconclusive

AnaEng

Label for attribute a and PET p

For each attribute a

Mask model for PET p

Figure 3: The Analysis Engine (AnaEng) of PETInspector con-
sumes experimental data for a PET and outputs the corre-
sponding mask model.

one changed value given that at least a fraction of them f are being

standardized. If this probability is below some threshold α , AnaEng
rejects the idea that tool is impactfully standardizing and labels the

attribute as unmasked with confidence α . Otherwise, the result is
inconclusive since not enough values of the attribute were tested.

We use the geometric distribution to estimate likelihood of finding

masking given that a fraction f is happening.

4.2 Experiment
Using PETInspector, we performed an initial experiment finding no

additional spoofing from AFPETs crossing sessions. Thus, to save

time, our main experiment uses only a single session and does not

check for the masking of attributes by variation across sessions.

We use ClientSim to simulate six browsing platforms. Three of

these are virtual machines running various versions of Linux. We

introduce additional changes into these virtual machines to sim-

ulate differences in system configurations. Specifically, we install

different fonts and browser versions, set up different timezones,

and simulate different screen resolutions and languages, The re-

maining platforms run natively on a Linux desktop, Macbook Pro,

and a PC laptop. We perform measurements on Firefox and Chrome

browsers. More details on these configurations are in Table 2.

ClientSim drives these experimental browsing platforms to reach

FPServer for five reloads of each of the two domain names of FPServer.
On each platform, it performs these reloads a total of 28 times: one

time each for 26 PETs and one time each for the two baseline

browsers. All PETs are left in their default configurations.

4.3 Results
Before commenting on PETs, we make some observations about

the baseline browsers. While we did not think of the choice of

browsers as affecting the trackability of fingerprints, it turns out

that the two browsers have small differences in the attributes

shared by them. Aside from the expected difference in the browser

name in User-Agent, Chrome sets the cpu class to unknown, the
screen.Depth to 24, and the buildID to Undefined, unlike Firefox
which reveals different values across browsing platforms. Firefox

does not reveal any plugins, while Chrome does, and Chrome’s

plugins differ across Ubuntu, Debian, and macOS. PETInspector does

Table 2: Configurations of simulated browsing platforms in our main experiment. The last three were regularly used.

Type OS

Addl.

Resolution

Locale

Timezone

Browser versions Notes

Fonts & LANG Firefox Chrome

1 VM Ubuntu 16.04 Mordred 450×721×24 ru_RU.UTF-8 GMT+6 56.0 63.0

2 VM Debian 8.10 OldLondon 2000×2000×16 de_DE.UTF-8 GMT-3 56.0 63.0

3 VM Ubuntu 14.04 (none added) 6000×3000×24+64 ar_SA.UTF-8 GMT-11 56.0 63.0

4 Local Ubuntu 16.04 > 40 1920×1080×24 en_EN.UTF-8 GMT-8 56.0 70.0

5 Local macOS 10.13 > 145 1440×900×24 en_EN.UTF-8 GMT-8 56.0 70.0

6 Local Windows NT 10.0 > 145 1280×720×24 en_EN.UTF-8 GMT-8 56.0 beta 69.0 Touch screen

not find any baseline browser to vary any attributes itself (outcome

(1) in Fig. 3).

Turning to PETs, PETInspector produces Table 3, which displays

attributes masked or not by AFPETs. We comment on the BLPETs

in text. Among the 15 AFPETs, three (Trace, Privacy Extension,

and No Enum. Extensions) do not lead to any detectable masking

in their default configurations. The remaining 12 AFPETs mask at

least one of the collected attributes.

Our experiment also detects undocumentedmasking of attributes.

For example, while Canvas DefenderC, Canvas DefenderF, Canvas-

FingerprintBlock, Glove, and CanvasBlocker claim to spoof only

the canvas fingerprint, we also find them spoofing webGL at-

tributes. Similarly, we find undocumented modifications by Brave,

Stop Fingerprinting, and TotalSpoof. We also find inconsistencies

in the behavior of Brave, Privacy Badger
C
, Privacy Badger

F
, Hide-

MyFootprint, and Tor BB, which we discussed in Section 1.

Among the 11 BLPETs, 4 (DisconnectF, DisconnectC, GhosteryC
,

and Ghostery
F
) do not lead to any detectable modifications of

attributes, 4 (Adblock PlusC, Adblock PlusF, uBlock Origin
C
, and

uBlock Origin
F
) modify the attribute adBlock installed, and 3

(Privacy Badger
C
, Privacy Badger

F
, and Tracking Protection) mod-

ify Do Not Track attributes. As discussed in the introduction, these

BLPETs are not presented as AFPETs, but their modifications can

actually make their users more identifiable. Indeed, Privacy Badger

was updated in response to our finding.

4.4 Discussion and Limitations
The ranking above may not be suitable for some evaluation goals.

For example, some AFPETs were designed to mask a single attribute

and does in fact mask it (e.g., Canvas DefenderC). Our findings that

such AFPETs (or BLPETs) do not mask all attributes should not be

interpreted as the PET having a bug. Nevertheless, consumers and

advocates seeking effective PETs may find our results useful.

As mentioned above, wemaymiss somemasking of attributes for

not testing values that an AFPET standardizes away. Furthermore,

we may not detect an AFPET varying an attribute across a boundary

that we do not test. Thus, while we can be sure of masking when

we find it, we cannot be sure we have found all masking.

Since FPServer extracts fingerprints using first-party scripts, we

do not detect masking that is triggered only for third-party scripts.

To an extent, these limitations can be mitigated with more com-

prehensive experiments using PETInspector. For example, one can

modify FPServer to collect additional attributes in both first-party

and third-party contexts. Moreover, one can modify ClientSim to

detect variations across other boundaries and use more diverse

browsing platforms to be more confident about not missing stan-

dardization modifications. We will make PETInspector freely avail-

able for more extensive experimentation and further development.

Our current evaluations demonstrate the benefits of an experimen-

tal evaluation method for AFPETs within the current boundaries.

Our experiments may dispute claimed masking (⊠ in Table 3)

due to the above limitations rather than documentation making

spurious claims. AFPETs may mask more attributes when appropri-

ately configured, but users find it difficult to change defaults [34],

suggesting our experiments may capture typical use. Next, we per-

form a manual analysis to understand the effects of configuration

and why our results conflict with some AFPETs’ documentation.

4.5 Additional Manual Analysis
To address some of the limitations mentioned above, we manually

analyze some AFPETs. Specifically, we analyze AFPETs for which

we found no evidence of any masking (Trace, Privacy Extension,

No Enum. Extensions) and those which made a claim rejected by

PETInspector (Trace, Privacy Extension, Stop Fingerprinting, Tor).

PETInspector rejects two claims of masking by Trace.We could not

find the source code for Trace, but we installed the extension and

manually examined it. Both the documentation and settings panel

show canvas fingerprinting being masked by default, despite our

studies concluding the opposite. As far as we can tell, Trace really

does not mask this attribute despite claiming to. Since running our

tests, Trace has been updated from version 1.0.2 to 1.8.6 and it now

randomizes the canvas fingerprinting.

As for masking the user-agent, the settings panel of Trace shows

that user-agent randomization is off by default, explaining our

finding. Turning it on does randomize the user agent.

All of Privacy Extension’s masking abilities are off by default.

Turning them on does result in standardizing the two attributes in

question: the canvas fingerprint and the user-agent.

To analyze No Enum. Extensions, we examined both its source

code and documentation. The documentation of No Enum. Exten-

sions only claims to mask plugins, and we found evidence of plugin

masking in No Enum. Extensions’s source code. PETInspector was
inconclusive for this attribute since it was unable to exercise the

plugin list for Firefox due to Firefox making the loading of any

plugins a manual process. Thus, this instance does not represent a

false negative, and instead represents a failure to find a positive.

Table 3: AFPET masks as purported and observed by PETInspector. □ indicates AFPET’s documentation purports that the
attribute is masked. The remaining symbols represent the possible outputs of PETInspector: + indicates observed mask-
ing, × indicates no masking found even when it is likely to detect it, and · indicates inconclusive results. For the results
that we manually double checked, we include the outcome of that check as a superscript. Here, × denotes that the PET
really does not mask the attribute, + that it does, ×/+ that it is not masked by default but can be with configuration,
and ? that the manual analysis was inconclusive. Not shown are attributes that had all inconclusive results and not pur-
ported masking (nothing but ·): DNT enabled, IE addBehavior, adBlock installed, h.Connection, h.Dnt, h.Up.-Ins.-Req., indexedDB,
math.acosh(1e300), math.asinh(1), math.atanh(05), math.cbrt(100), math.cosh(10), math.expm1(1), math.log1p(10), math.sinh(1),
math.tanh(1), and openDB.

Chrome Firefox

Attribute br cdC cfb gl hmf pe tr bi bl cdF cb ne sf Tor to

buildID · · · · · · · ⊞ ⊞ × × × × ⊞ +

canvas fingerprint ⊞ ⊞ ⊞ ⊞ ⊞ ⊠×/+ ⊠× × × ⊞ ⊞ × × ⊞ ×

cookies enabled · · · · · � · · · · · · · · ·

cpu class · · · · · · · ⊞ ⊞ × × × + ⊞ +

h.Accept · · · · · � · · · · · · · � ·

h.Accept-Encoding · · · · · · · · · · · · · � ·

h.Accept-Language + × × × × × × × ⊞ × × × × ⊞ ×

h.Pragma · · · · + · · · · · · · · · ·

h.User-Agent ⊞ × × × ⊞ ⊠×/+ ⊠× ⊞ ⊞ × × × × ⊞ ⊞
javascript fonts × × × × × × × × × × × × ⊠? ⊞ ×

language + × × × × × × × ⊞ × × × × ⊞ ×

local storage · · · · · � · · · · · · · · ·

platform × × × × × × × ⊞ ⊞ × × × × ⊠× +

plugins ⊞ × × × × × × · · · · �+ �+ � ·

screen.AvailHeight × × × × × × × × × × × × ⊞ ⊞ ×

screen.AvailLeft × × × × × × × × × × × × ⊞ ⊞ ×

screen.AvailTop × × × × × × × × × × × × ⊞ ⊞ ×

screen.AvailWidth × × × × × × × × × × × × ⊞ ⊞ ×

screen.Depth · · · · · · · × × × × × ⊞ ⊞ ×

screen.Height × × × × × × × × × × × × ⊞ ⊞ ×

screen.Left · · · · · · · · · · · · � � ·

screen.Pixel Ratio × × × × × × × × × × × × ⊞ ⊞ ×

screen.Top · · · · · · · · · · · · � � ·

screen.Width × × × × × × × × × × × × ⊞ ⊞ ×

session storage · · · · · � · · · · · · · · ·

timezone × × × × × × × × × × × × × ⊞ ×

touch.event · · · · · · · × × × × × × ⊞ ×

touch.max points × × × × × × × · · · · · · · ·

touch.start · · · · · · · × × × × × × + ×

webGL.Data Hash ⊞ + + + + × × × × + + × × ⊞ ×

webGL.Renderer ⊞ + + + + × × × × + × × × ⊞ ×

webGL.Vendor ⊞ + + + + × × × × + × × × ⊞ ×

We manually tested Stop Fingerprinting and found that, like No

Enum. Extensions, it masks plugins despite PETInspector’s inconclu-
sive finding. As for the rejected claim of masking javascript fonts,

Stop Fingerprinting may be doing something with the fonts, but

not enough to defeat the way FPServer fingerprints them.

Examining Tor BB leads us to believe that a recent update (after

Version 7.0.11) accidentally affected its masking of the platform at-
tribute. We also find that during the same time frame, cpuclass and

h.User-Agent went from being fully masked to partially masked.

We found user complaints about this change in version 8.0a10 [7].

We also confirmed that Privacy Badger did not set the doNot-
Track field of the navigator object to match the Dnt header. The
code was fixed after we notified the developers of the issue [5].

During our manual examinations, we also looked for artifacts

introduced by VMs simulating platforms and found none.

5 HYBRID EVALUATION OF AFPETS
Our experimental method provides a model of how various AFPETs

mask fingerprints as well a ranking of AFPETs based on the number

of attributes they mask. However, it does not consider how impor-

tant masking each attribute is. We develop a hybrid method that

combines the benefits of the experimental method with an observa-

tional method. We start by considering a completely observational

method and then discuss how combining it with our experimental

method allows us to overcome each of their limitations.

5.1 Sampling
We cannot, in practice, see all the world’s browsing platforms and

instead must work with a sample. The quality of the metrics com-

puted from the sample depends upon both the nature of the metric

and the sample. For example, a random sample will provide a rea-

sonable estimation of the entropy (e.g., [44]). However, estimating

the proportion of users in small anonymity sets from even a random

sample proves difficult since the length of the tail of the distribution

may be unclear from a random sample.

Furthermore, in practice, we must approximate truly random

samples of browser platforms from available datasets since we can-

not force all users to participate. We do so by using a convenience

sample provided to us by the amiunique website This sample com-

prises 25,984 real-world fingerprints collected over a period of 30

days (10/02/2017 to 11/02/2017). Each fingerprint has 32 attributes.

Determining the representativeness of this sample is difficult

since it can only be compared to other possibly unrepresentative

samples. We compare our sample’s distributions to GlobalStat’s for

desktop users [53]. We find that our sample has a higher proportion

of Firefox users (42% vs. 12%) and of Linux users (19% vs. 1%).

5.2 Metrics of Trackability
To measure trackability of fingerprints, we build FPInspector, which
consumes a dataset and characterizes how trackable its members

are. One such characterization is the anonymity set. An anonymity
set comprises browsing platforms with identical fingerprints that

are, thus, indistinguishable from each other. Thus, the smaller and

numerous the anonymity sets, the higher the uniqueness. FPInspec-
tor implements various proposed functions (in [12, 63]) over the

distribution of anonymity sets for measuring uniqueness.

The first metric which we use to measure uniqueness is entropy.

For a set of browser platforms D = {bi }i , such as those using a

particular AFPET, let D[id(·)] denote the multiset of fingerprints

{id(bi)}i where id(·) is the fingerprinting mechanism. The entropy

of these fingerprints is given by

ent(D[id(·)]) = −
∑

idk ∈D[id (·)]

Pr[idk] log
2
(Pr[idk])

where Pr[idk] is the probability of observing the fingerprint idk ,
whichwe estimate from the frequency of idk inD[id(·)]. The higher
the entropy, the higher the uniqueness of the fingerprints.

FPInspector also measures the proportion of users in anonymity

sets of size less than or equal to 1 (p_≤1) and 10 (p_≤10). These
metrics measure the proportion of browsing platforms hiding in

anonymity sets of sizes at most 1 and 10. Higher values of these

metrics indicate higher uniqueness of the fingerprints.

FPInspectormeasures effectiveness of a PET p against fingerprint-

ing mechanism id(·) from the dataset of fingerprints D[id(·)] in
terms of a metric f in {ent, p_≤1, p_≤10} as

efff(p, id,Dp ,Dp̄) := f(Dp̄ [id(·)]) − f(Dp [id(·)]) (1)

where Dp is a subset of D using the PET and Dp̄ is the rest of D.

5.3 Limitations of Observations Alone
In principle, a highly-context dependent, completely observational

method could function by comparing the fingerprints produced by

users of each AFPET to determine which are the least trackable. In

practice, we face difficulties with obtaining a representative sample

of AFPET users and determining which users run which AFPETs.

PET determination. Determining PET use from fingerprints not

explicitly containing the information is difficult. This limitation can

be overcome by a fingerprinting server designed to collect informa-

tion about PET use. One approach is to ask visitors about their PETs,

but users can be unaware of their own browser’s configurations.

In some cases, PETs have a distinctive fingerprint that gives away

their use, but this would only help us with a subset of PETs. Alterna-

tively, fingerprint collection websites can use automated methods

to detect browser extension PETs (e.g., [50, 52]). Unfortunately, our

observational data lacks this information.

PET sampling. Even with a fingerprinting server collecting PET

information, getting a representative sample of real users with AF-

PETs to visit the website may be difficult, since there are few AFPET

users. This is especially true for new and not yet popular AFPETs.

Furthermore, users of AFPETs may be systematically different from

users without AFPETs, thereby introducing confounding factors

influencing the trackability metrics.

Due to these limitations, we cannot apply FPInspector directly to

our dataset. Moreover, the PET sampling limitation may prevent

application of this method directly to data collected on even finger-

printing servers designed for PET determination. Thus, we instead

use FPInspector in a hybrid evaluation method that avoids the PET

determination and sampling problems altogether.

5.4 Overcoming Limitations of Observations
To overcome the difficulty of getting a sample Dp of browser plat-

forms using a PET p, we construct our own from a sample Dp̄ of

browser platforms not using p. We then provide both to FPInspector,
to evaluate the PET p, as show in Figure 1.

This approach requires that we first get a sample of platforms

not using p. We start with the amiunique dataset. To convert that

dataset of fingerprints into one of platforms, we need a mapping

of fingerprints to unique browsing platforms. We approximate this

mapping using cookie IDs associated with each fingerprint, sim-

ilarly to Eckersley [12]. In the dataset, 21,395 fingerprints have a

cookie associated with them, of which, 18,295 are unique.

To obtain Dp̄ [id(·)], we sanitize the dataset by removing fin-

gerprints with obvious signs of PET use, specifically those with

JavaScript disabled and illegitimate screen resolutions. Additionally,

we only retain fingerprints from desktop browsers (with Windows,

Mac, or Linux OSes) since we only study PETs for desktops. These

sanitizations leave 9,493 Chrome and 6,516 Firefox browser finger-

prints. We find that these fingerprints reveal 13.002 and 12.359 bits

Table 4:Metrics of trackability (fromSection 5.2) forAFPETs

PET ent p_≤1 p_≤10

Chrome PETs

no mask 13.002 0.892 0.983

base mask, Privacy Extension, Trace 12.914 0.829 0.982

Canvas DefenderC, cfb, Glove 12.306 0.641 0.893

HideMyFootprint 11.77 0.497 0.825

Brave 8.108 0.072 0.262

Firefox PETs

no mask 12.359 0.875 0.96

base mask, No Enum. Extensions 12.177 0.797 0.949

Blend In, TotalSpoof 12.049 0.747 0.936

CanvasBlocker 12.002 0.7 0.941

Blender 11.875 0.678 0.924

Stop Fingerprinting 11.778 0.726 0.919

Canvas DefenderF 11.263 0.483 0.833

Tor BB 4.766 0.01 0.038

of entropy for Chrome and Firefox respectively. These and other

metrics are presented in Table 4 in the ‘no mask’ row.

The mask model from the experimental method provides a way

to transform these original fingerprints. We apply the mask model p̂
of an PET p produced by PETInspector to the sampleDp̄ of platforms

without a PET to generate a sample of fingerprints Dp̂ [id(·)]. This
generated sample estimates what the original fingerprints would

had looked like had the platforms used the PETp. We use FPInspector
to calculate the trackability metrics of the modified fingerprints and

unmodified fingerprints. By comparing the metrics of the original

and p̂-modified fingerprints, we estimate the effectiveness of p.
Of the 49 original attributes, PETInspector provides conclusive

characterization for 18 attributes on Chrome and 20 attributes on

Firefox. Of these, 12 appear in the amiunique.org dataset. For a

given PET, we mask these 12 attributes according to the model gen-

erated by PETInspector and fully mask the remaining 16 attributes

for which the experiment is inconclusive. By fully masking incon-

clusive attributes, we overestimate the effectiveness of PETs. Thus,

we generate PET-modified fingerprints (i.e., Dp̂ [id(·)]) from the

original fingerprints to measure the effectiveness of 15 AFPETs.

5.5 Results
We present the trackability metrics from Section 5.2 in Table 4.

The original fingerprints reveal 13.002 and 12.359 bits of entropy

for Chrome and Firefox respectively. Applying a base mask of all

inconclusive attributes reduces them to 12.914 and 12.177 bits.

Our evaluations reveal that all AFPETs but Brave and Tor BB

reveal over 11 bits of entropy and hence are marginally better than

not using any AFPET at all. For these AFPETs, fewer than 20% of

the fingerprints are in anonymity sets of size greater than 10. Brave

does better, leaking just over 8 bits of entropy and having over 70%

of fingerprints in anonymity sets of size greater than 10. Tor BB

performs best since it modifies all the 12 attributes we consider.

5.6 Remaining Limitations
While the hybrid method helps us perform a fine-grained evalua-

tion of AFPETs with few users, it inherits some limitations of the

methods on which it builds. From the observational method come

the limitations that samples may be biased and that no one met-

ric fully captures the quality of an AFPET. From the experimental

method, it inherits the approximate nature of mask models.

In particular, our analysis overestimates the effectiveness of all

AFPETs, since we assume any modifications of an attribute by

an AFPET renders that attribute useless to a tracker. This may

not be the case. For example, Brave spoofs the User-Agent and

the Accept-Language headers to different values than Chrome.

Similarly, Tor BB also reveals spoofed values of screen resolution.

We can carry out a tighter evaluation by considering a tracker

which can take advantage of the spoofed values. This evaluation

requires knowledge of how an AFPET spoofs the attribute. For

Tor BB, we perform a manual code analysis to determine how

exactly Tor BB deals with screen resolution attributes.
2
We rerun

the hybrid analysis on a hand crafted mask model capturing this

behavior instead of using the roughmodel produced by PETInspector.
This provides a tighter evaluation for Tor BB that will serve as the

basis for our analysis in Section 7.

Finally, the above evaluations are performed on the same set

of fingerprints and applies the mask to every fingerprint in the

dataset, simulating total adoption of the AFPET. This approach

is appropriate evaluations with a long-term prospective, such as

selecting an AFPET to fund, since a properly promoted AFPET

could become nearly universal in the future. However, those looking

to select a AFPET for usage today should be concerned with the

number of users each AFPET has since it will affect the size of the

anonymity set the AFPET produces. In the next section, we consider

a modification of the above method for dealing with this issue.

6 ADJUSTING FOR NUMBER OF USERS
To observe the consequences of having user bases of different sizes,

we also evaluate the AFPETs taking into account their popularity.

Ideally, we would do this by analyzing fingerprints of all the users

of an AFPET. However, not having access to this set of fingerprints,

we simulate them by drawing random samples of fingerprints from

the amiunique.org dataset of size equal to the number of AFPET

users and estimate uniqueness metrics on the samples.

Table 1 displays the number of users of each AFPET in our

list as of Dec. 2017. The popularity of extensions were obtained

from the Firefox add-on library [39] and the Chrome extensions

webstore [21]. Tor’s popularity was obtained from Tor Metrics [58].

For AFPETs with an undisclosed number of users, such as Brave

and Tracking Protection, we are unable to perform this evaluation.

We also do not perform these evaluations for AFPETs with a

user base greater than 17,109 (like Tor BB, Canvas DefenderC and

CanvasBlocker), since we cannot draw a sample from our dataset

of sufficient size. Attempting to draw such a sample by allowing

the same fingerprint to be sampled multiple times will overestimate

the effectiveness of the PET since such repeats will surely be in the

same anonymity set even for PETs that do nothing.

2
https://gitweb.torproject.org/tor-browser.git/commit/?h=tor-browser-45.8.0esr-6.

5-2&id=7b3e68bd7172d4f3feac11e74c65b06729a502b2.

Table 5:Metrics of trackability (fromSection 5.2) forAFPETs
on samples scaled according to their popularity

PET #users ent p_≤1 p_≤10

Chrome PETs

HideMyFootprint 177.0 7.343 0.901 1.000

Glove 342.0 8.277 0.886 1.000

CanvasFingerprintBlock 7630.0 11.559 0.313 0.899

Firefox PETs

TotalSpoof 265.0 7.904 0.889 1.000

Blend In 858.0 9.401 0.777 0.983

Stop Fingerprinting 1754.0 9.994 0.641 0.939

Blender 1816.0 10.200 0.614 0.960

Canvas DefenderF 5274.0 10.656 0.252 0.845

For all other AFPETs, we compute the mean of the trackability

metrics from 100 random samples. Table 5 displays the effectiveness

metrics for these AFPETs, sorted according to the entropy. We can

see that CanvasFingerprintBlock scores better than HideMyFoot-

print due to its high popularity, contrary to the original evaluations

in Table 4. We also see that the effectiveness of tools with identi-

cal effects increases with popularity. For example, TotalSpoof and

Blend In both identically modify 12 attributes, but Blend In is more

effective than TotalSpoof due to its popularity.

7 APPLICATION: INFORMING AFPET DESIGN
With the ability to accept handcrafted mask models, our hybrid

method can help AFPET developers make an informed choice while

designing AFPETs. By measuring the effectiveness of hypothetical

AFPET designs, developers can compare masking strategies to bal-

ance utility with trackability. We carry out such an exploration of

alternate designs of Tor BB that mask attributes differently.

Tor BB leaks some information about the screen resolution by

only partially standardizing it. Specifically, it resizes new browser

windows in quanta (step/bucket sizes) of 200×100 pixels, while

capping the window size at 1000×1000 pixels, and uses the client

content window size as screen dimensions [45]. As a result all Tor

BB users get placed into one of 50 anonymity sets based on the

revealed screen dimensions, as long as they do not change the

window dimensions manually. We explore the impact of the cap

and quanta parameters on the effectiveness of Tor BB.

We use the number of unutilized screen pixels due to a spoofing

strategy as a measure of utility loss. We measure two variants:

the total number of unutilized pixels (average absolute loss), and

the number of unutilized pixels as a percentage of the available

pixels (average percentage loss). Increasing the cap parameters and

decreasing the quanta parameters reduces this loss.

With the Firefox fingerprints in the amiunique.org dataset, we

explore parameter settings with the goal of finding a strategy that

reduces the utility loss while increasing the effectiveness. We con-

sider alternative cap widths of 1000, 1350, 1550, and 1600 since a

higher percentage of fingerprints (25%, 47%, and 51% respectively)

have screen widths less than these caps. We retain the cap height

of 1000 pixels as more than 50% of the fingerprints remain below

Table 6: Comparison of effectiveness and utility-loss of Tor
BB’s original spoofing strategies with alternate strategies

Cap Quanta ent p_≤1 p_≤10 Abs. Loss % Loss

1000×1000 200×100 2.902 0.001 0.010 870k 50.3%

1350×1000 200×193 2.715 0.001 0.009 729k 42.6%

1350×1000 269×160 2.901 0.000 0.009 728k 42.3%

1550×1000 222×197 2.899 0.000 0.009 666k 40.3%

1550×1000 295×160 2.882 0.000 0.010 636k 37.2%

that cap. We exhaustively search for all 10,201 quanta in the range

200×100 to 300×200 for all three cap parameters. We set an upper

bound of 300×200 as the loss may be too high for low-resolution

displays for very high quanta parameters. We find 786 and 291

quanta parameters for cap widths of 1350 and 1550 respectively for

which the losses are lower than Tor BB’s, but the effectiveness is

higher. We display strategies with the least quanta parameters in

Table 6. As we increase the cap width to 1600, none of the quanta

parameters lead to a higher measure of effectiveness than Tor BB.

8 CONCLUSION
We end with some suggestions for AFPET developers and evalu-

ators. We recommend that developers address any attribute that

PETInspector flags as unmasked. The entropy results from our hy-

brid method can aid in determining the order in which to address

various unmasked attributes. Given our experimental results, we

expect this task will keep the developers of most AFPETs busy.

Next, they might want to consider any attributes that PETInspector
labeled as inconclusive. After addressing these attributes, they can

consider improving how an AFPET spoofs an attribute. As shown

in Section 7, not all spoofing is equal. Developers should consider

using Tor BB as a starting point for their development and carefully

consider the default settings of their AFPET.

The set of fingerprintable attributes are open-ended and will

never be fully enumerated, but new attributes can be added to our

tools. AFPET evaluators should keep in mind that any one-time

evaluation of PETs will quickly become out of date, necessitating

the use of automated tools like ours. We encourage developers and

advocates (e.g., the EFF) to use automated tools to regularly test

the trackability of PETs. Our tool can fill this need, and to this end

we open-source the tool here:

https://github.com/tadatitam/pet-inspector

ACKNOWLEDGEMENTS
We thank Pierre Laperdrix for providing us a dataset of real-world

fingerprints from amiunique.org, and Milan Ganai for investigating

how to automate the use of PETs on Windows. We thank Lay Kuan

Loh and Zheng Zong for assistance in exploring the application of

information flow experiments to evaluate PETs. We thank Anupam

Datta for discussions about this work. We gratefully acknowledge

funding support from the National Science Foundation (Grants

1514509 and 1704985). The opinions in this paper are those of the

authors and do not necessarily reflect the opinions of any funding

sponsor or the United States Government.

REFERENCES
[1] Absolute Double. 2017. HideMyFootprint: Protect your privacy. https://hmfp.abs

olutedouble.co.uk. Accessed Dec. 25, 2017.

[2] Absolute Double. 2018. Trace: Browse online without leaving a Trace. https:

//absolutedouble.co.uk/trace/. Accessed Jan. 12, 2018.

[3] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking

mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 674–689.

[4] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank

Piessens, and Bart Preneel. 2013. FPDetective: dusting the web for fingerprinters.

In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. ACM, 1129–1140.

[5] Alexei “ghostwords”. 2018. Support navigator.doNotTrack. Pull request #1861

for the EFForg/privacybadger project on GitHub: https://github.com/EFForg/priv

acybadger/pull/1861.

[6] Andrew. 2017. Scriptsafe: andryou. https://www.andryou.com/scriptsafe/. Ac-

cessed Dec. 25, 2017.

[7] Anonymous. 2018. Comment 276687 on “New Release: Tor Browser 8.0a10”.

Tor Blog: https://blog.torproject.org/comment/276424#comment-276424. See

responses as well.

[8] appodrome.net. 2017. CanvasFingerprintBlock: Chrome Web Store.

https://chrome.google.com/webstore/detail/canvasfingerprintblock/ipmj

ngkmngdcdpmgmiebdmfbkcecdndc?hl=en. Accessed Dec. 25, 2017.

[9] Brave Browser. 2017. Fingerprint Protection Mode. https://github.com/brave/bro

wser-laptop/wiki/Fingerprinting-Protection-Mode. Accessed Dec. 19, 2017.

[10] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting via

OS and Hardware Level Features. In 24th Annual Network and Distributed System
Security SymposiumNDSS. http://www.yinzhicao.org/TrackingFree/crossbrowse

rtracking_NDSS17.pdf

[11] Disconnect. 2017. Disconnect. https://disconnect.me. Accessed Jan. 12, 2017.

[12] Peter Eckersley. 2010. How unique is your web browser?. In Privacy Enhancing
Technologies, Vol. 6205. Springer, 1–18.

[13] Electronic Frontier Foundation. 2017. Panopticlick. https://panopticlick.eff.org.

Accessed Dec 12, 2017.

[14] Electronic Frontier Foundation. 2017. Privacy Badger. https://www.eff.org/priv

acybadger. Accessed Jan. 13, 2017.

[15] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site

measurement and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1388–1401.

[16] eyeo GmbH. 2017. Adblock Plus: Surf the web without annoying ads! https:

//adblockplus.org. Accessed Dec. 27, 2017.

[17] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam. 2015.

FPGuard: Detection and prevention of browser fingerprinting. In IFIP Annual
Conference on Data and Applications Security and Privacy. Springer, 293–308.

[18] David Fifield and Serge Egelman. 2015. Fingerprinting web users through font

metrics. In International Conference on Financial Cryptography and Data Security.
Springer, 107–124.

[19] fonk. 2017. TotalSpoof Add-onHomepage. http://fonk.wz.cz/totalspoof. Accessed

Dec. 25, 2017.

[20] Cliqz International GmbH. 2017. Ghostery Makes the Web Cleaner, Faster and

Safer! https://www.ghostery.com. Accessed Dec. 27, 2017.

[21] Google. 2017. Chrome web store. https://chrome.google.com/webstore/category/

extensions.

[22] Gábor György Gulyás, Dolière Francis Somé, Nataliia Bielova, and Claude Castel-

luccia. 2018. To Extend or Not to Extend: On the Uniqueness of Browser Ex-

tensions and Web Logins. In Proceedings of the 2018 Workshop on Privacy in
the Electronic Society (WPES’18). ACM, New York, NY, USA, 14–27. https:

//doi.org/10.1145/3267323.3268959

[23] Raymond Hill. 2015. uBlock and others: Blocking ads, trackers, mal-

wares. https://github.com/gorhill/uBlock/wiki/uBlock-and-others%3A-Block

ing-ads%2C-trackers%2C-malwares. Accessed July 5, 2017.

[24] Raymond Hill. 2017. uBlock Origin: An efficient blocker for Chromium and

Firefox. https://github.com/gorhill/uBlock. Accessed Dec. 27, 2017.

[25] Muhammad Ikram, Hassan Jameel Asghar, Mohamed Ali Kaafar, Anirban Ma-

hanti, and Balachandar Krishnamurthy. 2017. Towards seamless tracking-free

web: Improved detection of trackers via one-class learning. Proceedings on Privacy
Enhancing Technologies 2017, 1 (2017), 79–99.

[26] InformAction. 2017. NoScript: JavaScript/Java/Flash blocker for a safer Firefox

experience! https://noscript.net. Accessed Dec. 27, 2017.

[27] kkapsner. 2017. CanvasBlocker: A Firefox Plugin to block the canvas-API. https:

//github.com/kkapsner/CanvasBlocker/. Accessed Dec. 25, 2017.

[28] Georgios Kontaxis and Monica Chew. 2015. Tracking protection in Firefox for

privacy and performance. arXiv preprint arXiv:1506.04104 (2015).
[29] Balachander Krishnamurthy and Craig E Wills. 2006. Generating a privacy

footprint on the internet. In Proceedings of the 6th ACM SIGCOMM conference on
Internet measurement. ACM, 65–70.

[30] Pierre Laperdrix. 2017. Fingerprint Central. https://fpcentral.irisa.fr/. Accessed

Oct 31, 2017.

[31] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. 2017. FPRandom: Randomiz-

ing core browser objects to break advanced device fingerprinting techniques. In

9th International Symposium on Engineering Secure Software and Systems (ESSoS
2017).

[32] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2015. Mitigating

browser fingerprint tracking: multi-level reconfiguration and diversification.

In Proceedings of the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. IEEE Press, 98–108.

[33] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the

beast: Diverting modern web browsers to build unique browser fingerprints. In

Security and Privacy (SP), 2016 IEEE Symposium on. IEEE, 878–894.
[34] Pedro Leon, Blase Ur, Richard Shay, Yang Wang, Rebecca Balebako, and Lorrie

Cranor. 2012. Why Johnny can’t opt out: a usability evaluation of tools to limit

online behavioral advertising. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 589–598.

[35] Jonathan R Mayer and John C Mitchell. 2012. Third-party web tracking: Policy

and technology. In Security and Privacy (SP), 2012 IEEE Symposium on. IEEE,
413–427.

[36] meh. 2017. Blender: Blend in the crowd by faking to be the most common Firefox

browser version, operating system and other stuff. https://github.com/meh/ble

nder. Accessed Dec. 25, 2017.

[37] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian

Neuner, Martin Schmiedecker, and Edgar Weippl. 2017. Block me if you can:

A large-scale study of tracker-blocking tools. In Proceedings of the 2nd IEEE
European Symposium on Security and Privacy (IEEE EuroS&P).

[38] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas

in HTML5. Proceedings of W2SP (2012), 1–12.

[39] Mozilla. 2017. Firefox Add-ons. https://addons.mozilla.org/en-US/firefox/.

[40] Multiloginapp. 2017. How Canvas Fingerprint Blockers Make You Easily Track-

able. https://multiloginapp.com/how-canvas-fingerprint-blockers-make-you-e

asily-trackable/. Accessed Dec 19, 2017.

[41] Net-Comet. 2017. Glove: Chrome Web Store. https://chrome.google.com/websto

re/detail/glove/abdgoalibdacpnmknnpkgnfllphboefb?hl=en. Accessed Dec. 25,

2017.

[42] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. 2015. Privaricator:

Deceiving fingerprinters with little white lies. In Proceedings of the 24th Interna-
tional Conference onWorldWideWeb. International WorldWideWeb Conferences

Steering Committee, 820–830.

[43] NiklasG. 2017. Stop Fingerprinting: Add-ons for Firefox. https://addons.mozilla

.org/en-US/firefox/addon/stop-fingerprinting/. Accessed Dec. 25, 2017.

[44] Liam Paninski. 2003. Estimation of entropy and mutual information. Neural
computation 15, 6 (2003), 1191–1253.

[45] Mike Perry, Erinn Clark, Steven Murdoch, and Georg Koppen. 2017. The Design

and Implementation of the Tor Browser. https://www.torproject.org/projects/to

rbrowser/design/#privacy. Accessed Jul 21, 2017.

[46] Reşat. 2017. Blend In: Add-ons for Firefox. https://addons.mozilla.org/en-US/fir

efox/addon/blend-in/. Accessed Dec. 25, 2017.

[47] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. 2012. Detecting and

Defending Against Third-party Tracking on the Web. In Proceedings of the 9th
USENIX Conference on Networked Systems Design and Implementation (NSDI’12).
USENIX Association, Berkeley, CA, USA, 12–12. http://dl.acm.org/citation.cfm?

id=2228298.2228315

[48] Samy Sadi. 2017. No Enumerable Extensions: Firefox addon that lets you hide

installed extensions and avoid being fingerprinted based on them. https://github

.com/samysadi/no-enumerable-extensions. Accessed Jan. 13, 2017.

[49] Sagar Shivaji Salunke. 2014. Selenium Webdriver in Python: Learn with Examples
(1st ed.). CreateSpace Independent Publishing Platform, USA.

[50] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension

Breakdown: Security Analysis of Browsers Extension Resources Control Policies.

In 26th USENIX Security Symposium (USENIX Security 17). USENIX Association,

Vancouver, BC, 679–694. https://www.usenix.org/conference/usenixsecurity17/

technical-sessions/presentation/sanchez-rola

[51] Martin Springwald. 2017. Privacy-Extension-Chrome: Provides Privacy for

Chrome. https://github.com/marspr/privacy-extension-chrome. Accessed

Dec. 25, 2017.

[52] Oleksii Starov and Nick Nikiforakis. 2017. Xhound: Quantifying the fingerprint-

ability of browser extensions. In Security and Privacy (SP), 2017 IEEE Symposium
on. IEEE, 941–956.

[53] StatCounter. 2018. StatCounter Global Stats. http://gs.statcounter.com/. Accessed

Feb. 12, 2018.

[54] Mozilla Support. 2017. Tracking Protection. https://support.mozilla.org/en-US/

kb/tracking-protection. Accessed Dec. 27, 2017.

[55] tadatitam. 2018. Accept-Language header has only default locale, not list of

languages. Issue #429 of the Brave/Muon bug tracker on GitHub: https://github

.com/brave/muon/issues/429.

[56] tadatitam. 2018. Fingerprinting: Brave’s headers, plugins different from Chrome.

Issue #12479 of the Brave/Browser-laptop bug tracker on GitHub: https://github

.com/brave/browser-laptop/issues/12479.

[57] tadatitam. 2018. Privacy Badger does not set the doNotTrack variable in

JavaScript’s navigator object. Issue #1835 of the EFForg/PrivacyBadger bug

tracker on GitHub: https://github.com/EFForg/privacybadger/issues/1835.

[58] The Tor Project. 2017. Users. Tor Metrics page: https://metrics.torproject.org/u

serstats-relay-country.html.

[59] Christof Ferreira Torres, Hugo Jonker, and Sjouke Mauw. 2015. FP-Block: usable

web privacy by controlling browser fingerprinting. In European Symposium on
Research in Computer Security. Springer, 3–19.

[60] Hamilton Ulmer. 2010. Browsing Sessions. Mozilla’s Blog of Metrics: https:

//blog.mozilla.org/metrics/2010/12/22/browsing-sessions/.

[61] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.

Fp-Scanner: The Privacy Implications of Browser Fingerprint Inconsistencies.

In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,

Baltimore, MD, 135–150. https://www.usenix.org/conference/usenixsecurity18/

presentation/vastel

[62] Jon Watson. 2008. VirtualBox: Bits and Bytes Masquerading As Machines. Linux
J. 2008, 166, Article 1 (Feb. 2008). http://dl.acm.org/citation.cfm?id=1344209.

1344210

[63] Ting-Fang Yen, Yinglian Xie, Fang Yu, Roger Peng Yu, and Martin Abadi. 2012.

Host Fingerprinting and Tracking on the Web: Privacy and Security Implications..

In NDSS.

