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Abstract

We present and evaluate a large-scale malware detection system integrating ma-
chine learning with expert reviewers, treating reviewers as a limited labeling
resource. We demonstrate that even in small numbers, reviewers can vastly im-
prove the system’s ability to keep pace with evolving threats. We conduct our
evaluation on a sample of VirusTotal submissions spanning 2.5 years and con-
taining 1.1 million binaries with 778GB of raw feature data. Without reviewer
assistance, we achieve 72% detection at a 0.5% false positive rate, performing
comparable to the best vendors on VirusTotal. Given a budget of 80 accurate
reviews daily, we improve detection to 89% and are able to detect 42% of mali-
cious binaries undetected upon initial submission to VirusTotal. Additionally,
we identify a previously unnoticed temporal inconsistency in the labeling of
training datasets. We compare the impact of training labels obtained at the
same time training data is first seen with training labels obtained months later.
We find that using training labels obtained well after samples appear, and thus
unavailable in practice for current training data, inflates measured detection by
almost 20 percentage points. We release our cluster-based implementation, as
well as a list of all hashes in our evaluation and 3% of our entire dataset.

1 Introduction

Malware constitutes an enormous arms race in which attackers evolve to evade
detection and detection mechanisms react. A recent study found that only 66%
of malware was detected within 24 hours, 72% within one week, and 93% within
one month [9]. To evade detection, attackers produce a large number of di↵erent
malware binaries, with McAfee receiving over 300,000 binaries daily [14].

†Primary contribution while at UC Berkeley. ‡Primary contribution while at Intel.
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Machine learning o↵ers hope for timely detection at scale, but the setting of
malware detection di↵ers from common applications of machine learning. Unlike
applications such as speech and text recognition where pronunciations and char-
acter shapes remain relatively constant over time, malware evolves as adversaries
attempt to fool detectors. In e↵ect, malware detection becomes an online process
in which vendors must continually update detectors in response to new threats,
requiring accurate labels for new data. Unfortunately, malware labeling poses
unique challenges. Whereas reading is su�cient to label text, the deceptive and
technical nature of malware requires expert analysis.

We present an approach to detection integrating machine learning and expert
reviews to keep pace with new threats at scale. As expert labeling is expensive,
we model the expert as capable of supplying labels for a limited selection of
samples. We then combine the limited supply of expert reviewer labels with
the broader supply of noisy labels produced by anti-virus scanners to train a
detection model. We evaluate our approach using a sample of submissions to
VirusTotal, a malware analysis and detection website [27]. The dataset includes
a timestamp and anti-virus labels for each submission, capturing the emergence
and prevalence of binaries, as well as label knowledge, over a 2.5 year period.
We train new models weekly with a customized approach combining accurate
reviewer labels and noisy anti-virus labels and evaluate each model over the
coming week. To evaluate at scale, we simulate reviewer labels by revealing the
results of automated scans taken at least 8 months after a sample first appears,
providing opportunity for automated detectors to update and detect new threats.

We recognize that accurate training labels are not instantaneously available
for all data, and therefore examine the impact of training label practices on per-
formance measurement. Prior work has introduced temporal sample consistency,
requiring that training binaries predate evaluation binaries [13]. We introduce
temporal label consistency, imposing the requirement that training labels also
predate evaluation binaries. Temporal label consistency restricts label quality
relative to common practice, which collects labels well after binaries first appear
and uses the same mature labels for both training and evaluation, leading to
artificially inflated performance measurements.

Our work o↵ers the following contributions:

– We present a detection system that integrates reviewers to increase detection
from 72% at 0.5% false positive rate, comparable to the best vendors on
VirusTotal, to 77% and 89% detection with a budget of 10 and 80 reviews
daily on average. Additionally, our system detects 42% of malicious binaries
initially undetected by vendors in our evaluation.

– We demonstrate impact of temporally inconsistent labels on performance
measurement, artificially inflating measured detection from 72% to 91% at
a 0.5% false positive rate.

– We publicly release1 our implementation, 3% of all data, and list of all 1.1
million unique binaries appearing over 2.5 years included in our evaluation.

1 http://secml.cs.berkeley.edu/detection_platform/
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Our evaluation also includes several additional experiments o↵ering a more
complete understanding of detection performance. Although our design includes
both static and dynamic features, since VirusTotal detectors must operate stat-
ically we also compare our performance against VirusTotal using static features
alone. Note that the restriction to static features actually disadvantages our
approach, as VirusTotal detectors may operate against the arbitrary file and
we restrict ourselves to static attributes available through VirusTotal. Our per-
formance is slightly impacted, producing 84% detection at 0.5% false positive
rate with 80 queries daily and still surpassing detectors on VirusTotal. We also
explore the impact of inaccurate human labelers on the system’s detection per-
formance by adding random noise to the simulated expert labels. We find that
our design is robust in the presence of imperfect labelers. Given reviewers with
a 90% true positive rate and a 5% false positive rate our system still achieves
82% detection at a 0.5% false positive rate, as compared to 89% detection using
accurate reviewers.

We evaluate our contributions using VirusTotal data because each submis-
sion represents a request for analysis from a user, researcher or member of the
security community. VirusTotal responds to requests by running dozens of anti-
virus products from the security industry, including large firms such as McAfee,
Symantec and Kaspersky. As we evaluate our contributions on a dataset in-
cluding submissions from researchers and the security industry, not a random
sampling of files from end user machines, we envision our approach as improving
the detection workflows within security firms which ultimately produce products
for end users. We demonstrate that by investing a fraction of the engineering
expertise of large security firms, we can vastly improves the ability to determine
whether a binary is malicious.

In Section 2, we review prior work. Section 3 presents the design of our
system, including feature extraction, machine learning and integration of the
labeling expert, and Section 4 examines our dataset. Section 5 discusses our
system implementation and then examines the impact of di↵erent performance
measurement techniques and evaluates the performance of our detection system.
Lastly, Section 6 concludes.

2 Prior Work

In this section we present the prior work most directly related to our own areas
of contribution: reviewer integration to improve automated detection and perfor-
mance measurement. Consistent with the focus of our work, we primarily discuss
systems for malware detection rather than family classification or clustering. An
extensive discussion of related work is available online [15].

Since minimal prior work has explored reviewer integration, we begin by dis-
cussing systems that moderate access to any expensive labeling resource. Several
works employ a weak detector design, which cheaply labels some instances as
benign but requires an expensive confirmation to label any instance as malicious.
Provos et al. and Canali et al. present weak detector systems for malicious URLs
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which moderate access to expensive analysis in a virtual machine [5, 19]. Sim-
ilarly, Chakradeo et al. present MAST, a system capable of detecting 95% of
Android malware at the cost of analyzing 13% of non-malicious applications [6].
Karanth et al. prioritize JavaScript for manual review with the end goal of iden-
tifying new vulnerabilities [12]. In contrast with weak detectors, we view the
expensive resource as an integrated component in a periodically retrained sys-
tem, rather than the final step in a detection pipeline. Instead of attempting to
pass the entire and exact set of malicious instances to the expensive resource
for verification, we identify a smaller set of instances that improve automated
detection and use scalable components to determine final instance labels.

In contrast to weak detector approaches, Nissim et al. present a system that
integrates reviewers during retraining but focuses on increasing the raw number
of malicious instances submitted to the reviewer rather than improving auto-
mated detection. Nissim et al. introduce two reviewer integration strategies and
compare both to uncertainty sampling, a reviewer integration technique from
machine learning [24]. Although each new strategy reviews more malicious sam-
ples, neither improves automated detection, instead producing lower true posi-
tive and higher false positive rates [16] or true positive rates within 1% [17] of
uncertainty sampling. The evaluation also lacks timestamped data and randomly
divides samples into 10 artificial “days”. Since there are no temporal e↵ects in
the sample ordering, it is not possible to accurately assess detector performance
or reviewer workload when confronted with new attacks. In contrast, we demon-
strate novel reviewer integration improving detection 17 percentage points over
uncertainty sampling and conduct an evaluation with timestamped samples and
labels spanning 2.5 years.

Sculley et al. present Google’s approach to detecting adversarial advertise-
ments, integrating human reviewers and automated detection [23]. Unfortu-
nately, the presentation omits key details and the sensitive nature of the system
prevents any code or data release. For example, the evaluation does not specify
how many human reviewers are necessary, the added benefit from additional
reviewers or the total number of queries to each reviewer. Likewise, the impact
of reviewers errors and di↵erent integration strategies is also unspecified. We
contribute an analysis of the marginal benefit from additional reviews, as well
as the impacts of reviewer errors and di↵erent reviewer integration strategies.
Additionally, we release all source code and sample data to facilitate future work.

We also examine prior work related to performance measurement. The most
common performance measurement technique in malware detection is cross-

validation (e.g., [4, 8, 21, 26]). Cross-validation tends to inflate measured perfor-
mance by partitioning training and evaluation data randomly, e↵ectively guaran-
teeing that any attack seen in evaluation is also seen in training [11]. Kolter et al.
improve on cross-validation by using a separate training dataset which entirely
predates any evaluation data [13]. Furthering this approach, Perdisci et al. and
Srndic et al. conduct evaluations which use a single timestamped dataset divided
chronologically into periods, using the first n � 1 periods to detect content in
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Fig. 1: The detection pipeline employs the current model to detect malware, and
the training pipeline produces the next model for use in the detection pipeline.
During each retraining period, the training pipeline reviews all available training
data and selects binaries for submission to the integrated reviewer. Binaries
labeled by the reviewer are combined with binaries labeled using the current
model and anti-virus scan results to train the next model.

period n [18,25]. While these works maintain temporal sample consistency, none
present or systematically evaluate the impact of temporal label consistency.

Prior work approaching temporal label consistency has either evaluated a
system in production, which would have no way to be temporally inconsistent,
or a system that retrains on its own output. Rajab et al. evaluate a deployed
PDF malware detector, which trains using presently available knowledge and is
evaluated in retrospect after anti-virus labels have matured [20]. Schwenk et al.
demonstrate the infeasibility of a JavaScript malware system which is iteratively
retrained over time using its own output labels, but do not compare temporally
consistent labels from an external source with labels from the future [22].

3 Detector Design

In this section we present our detector design, including feature extraction, ma-
chine learning and reviewer integration. Figure 1 presents an overview of our
approach. When a binary arrives, the detection pipeline extracts the features,
applies the current model to classify the binary as malicious or benign, and the
training pipeline stores the binary in a database along with all other binaries
seen to-date. During each retraining period, binaries not detected by scanners
on VirusTotal are considered for submission to the integrated reviewer. Binaries
confidently detected by the current model are included in training data with a
malicious label, and the remaining purportedly benign binaries are submitted to
the integrated reviewer as the review budget allows. The remaining un-submitted
binaries are included in the training data as benign. At the end of the retraining
period, the next model produced in the training pipeline replaces the current
model and the process repeats.
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We begin by examining the general techniques used for feature vectorization
in Section 3.1, and then present the application of feature vectorization tech-
niques to static and dynamic attributes of binaries in Sections 3.2. Section 3.3
presents our approach to labeling training data, and Section 3.4 describes our
approach to reviewer integration.

3.1 Approaches to Feature Vectorization

Many machine learning algorithms work best with numeric features, but not all
attributes of binaries come in that format. We discuss four general techniques to
convert static and dynamic attributes of binaries into numerical feature vectors.
Which of the four techniques we can apply varies across attributes. For each
technique, we discuss how we apply the technique to maximize robustness against
evasion.

Categorical. The categorical mapping associates one dimension with each pos-
sible attribute value. For example, the DeviceIoControl API call may corre-
spond to index i in feature vector x, where xi = 1 if and only if the binary issues
the DeviceIOControl API call. Since the absence of an attribute reveals infor-
mation about a binary, we include a special null index to indicate that the value
of the attribute is missing. For example, the file may not generate any network
tra�c, or may not be signed. Where possible, we structure our application of
categorical feature extraction to constrain the attacker to remain within a lim-
ited set of values. For example, we apply subnet masks to IP addresses accessed
by binaries to e↵ectively shrink the IP space and associate access to similar IP
addresses with the same feature index.

Ordinal. Ordinal attributes assume a specific value in an ordered range of pos-
sibilities, such as the size of a binary. To remain robust to moderate fluctuations
as adversaries attempt to evade detection, we vectorize ordinal values using a
binning scheme rather than associating each distinct quantity with a unique in-
dex. The binning scheme works as follows: for a given attribute value, we return
the index of the bin which the value falls into, and set the corresponding dimen-
sion to 1. For attributes that vary widely, we use a non-linear scheme to prevent
large values from overwhelming small values during training. For example, the
number of written files v is discretized to a value i such that 3i  v < 3i+1, where
the exponential bins accommodate the large dynamic range of this quantity.

Free-form String. Many important attributes appear as unbounded strings,
such as the comments field of the signature check. Representing these attributes
as categorical features could allow an attacker to evade detection by altering a
single character in the attribute, causing the attribute to map into a di↵erent di-
mension. To increase robustness, we capture 3-grams of these strings, where each
contiguous sequence of 3 characters represents a distinct 3-gram, and consider
each of the 3-grams as a separate dimension. Since this approach is still sensitive
to variations that alter 3-grams, we introduce an additional string simplification.

To reduce sensitivity to 3-gram variations, we define classes of equivalence
between characters and replace each character by its canonical representative.
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Feature Name Description Example

S
t
a
t
i
c

Binary Metadata* Metadata from MAGIC and EXIFTOOL PECompact2 compressed

Digital Signing* Certificate chain identity attributes Google Inc; Somoto Ltd

Heuristic Tools trid; Tools from ClamAV, Symantec InstallShield setup; DirectShow filter

Packer Detection Packer or crypter used on binary UPX; NSIS; Armadillo
PE Properties*† Section hashes, entropies; Resource list, types image/x-png; hash:eb0c7c289436...
Static Imports Referenced library names and functions msvcrt.dll/ldiv; certcli.dll

D
y
n
a
m
i
c

Dynamic Imports Dynamically loaded libraries shell32.dll; dnsapi.dll
File Operations† Number of operations; File paths accessed C:\WINDOWS\system32\mshtml.tlb
Mutex Operations* Each created or opened mutex ShimCacheMutex; RasPbFile
Network Operations† IPs accessed; HTTP requests; DNS requests 66.150.14.*; b.liteflames.com
Processes Created, injected or terminated process names python.exe; cmd.exe
Registry Operations Registry key set or delete operations SET: ...\WindowsUpdate\AU\NoAutoUpdate
Windows API Calls‡ n-grams of Windows API calls DeviceIoControl | IsDebuggerPresent

Table 1: Feature vectors reflect static and dynamic attributes of binaries. We
apply categorical vectorization to all attributes, as well as *string, †ordinal and
‡sequential vectorization for selected attributes.

For instance, the string 3PUe5f would be canonicalized to 0BAa0b, where upper
and lowercase vowels are mapped to ‘A’ and ‘a’ respectively, upper and lowercase
consonants are mapped to ‘B’ and ‘b’, and numerical characters to ‘0’. Likewise,
the string 7SEi2d would also canonicalize to 0BAa0b. Occasionally, we sort the
characters of the trigrams to further control for variation and better capture the
morphology of the string. Mapping portable executable resource names, which
sometimes exhibit long random-looking bytes sequences, is one application of
this string simplification technique.

Sequential. The value of some attributes is a sequence of tokens where each
token assumes a finite range of values. These sequential attributes are strongly
related to free-form string attributes, although the individual tokens are not re-
stricted to being individual characters. We use sequential feature extraction to
capture API call information since there is a finite set of API calls and the calls
occur in a specific order. As with free-form string features, we use an n-gram
approach where each sequence of n adjacent tokens comprises an individual fea-
ture. Sequential vectorization can be vulnerable to evasion in situations where
adversaries are able to introduce tokens which have no e↵ect and separate mean-
ingful tokens. To increase robustness, we apply n-gram vectorization with n = 1
and n = 2 as well as n = 3, decreasing the number of unique n-grams which the
adversary is able to generate.

3.2 Attributes of Binaries

VirusTotal provides static and dynamic attributes for each binary. Whereas
static attributes are obtained though analysis of the binary itself, dynamic at-
tributes are obtained through execution in the Cuckoo sandbox [3]. Table 1
provides an overview of static attributes, dynamic attributes and associated
vectorization techniques.
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The static attributes available from VirusTotal consist of direct properties
of the executable code itself, metadata associated with or derived from the exe-
cutable and the results of heuristic tools applied to the executable. The attributes
extracted directly from the code include any statically imported library functions
and aspects of the portable executable format, such as resource language, section
attributes (e.g. entropy) and resource attributes (e.g. type). The metadata asso-
ciated with the code includes the output of the magic and exiftool utilities,
which infer properties such as the file type, and any digital signatures associated
with the file. We collect the status of the verification, the identities of every entity
in the certificate chain, comments, product name, description, copyright, inter-
nal name, and publisher from each digital signature. The heuristic tools applied
to the executable include peid [2] and utilities from ClamAV [1], and check for
packing, network utilities or administrative utilities commonly associated with
malware or potentially unwanted applications.

The dynamic attributes available from the Cuckoo sandbox capture interac-
tions with the host operating system, disk and network resources. Interactions
with the operating system include dynamic library imports, mutex activity and
manipulation of other processes running on the system. Additionally, the Cuckoo
sandbox provides an execution trace of all Windows API calls accessed by the bi-
nary, including the arguments, argument values and return values of any system
call. The summary of disk activity includes file system and registry operations,
capturing any persistent e↵ects of the binary. We utilize both full and partial
paths of file system operations as well as the types and number of operations
to the file system during feature extraction; we also utilize the specific registry
keys accessed or modified by the binary. Lastly, we extract features from the net-
work activity of the binary, including HTTP and DNS tra�c and IP addresses
accessed via TCP and UDP.

3.3 Training Label Harmonization and Reviewer Query Strategy

During each retraining period, the training process must assign labels to all
available training binaries. The process of assigning training labels harmonizes
four distinct sources of information: scan results from anti-virus software, the
current learned model, any prior reviews, and additional fresh reviews for a
small number of binaries selected by the query strategy for review.

The labeling process begins with the anti-virus scan results and application
of the current model, both of which prune the set of binaries which the query
strategy will consider for submission to the integrated reviewer. Our application
of anti-virus scan results leverages the intuition, which we confirm in Section 4,
that anti-virus vendors bias detections towards false negatives rather than false
positives. Correspondingly, we view consensus among anti-virus detectors that
a binary is malicious as su�cient to label the binary malicious during training,
but we do not label undetected binaries as benign without further analysis. We
call this heuristic the undetected filter since only binaries which are not detected
by the vendors remain as candidates for review.
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Next, we apply our current detection model to all undetected binaries and
assign a malicious label to any binaries which score above a threshold M . We
refer to this heuristic as auto-relabeling since some undetected binaries are au-
tomatically relabeled, similar to the self-training concept from semi-supervised
learning [7]. If the binary is both undetected by anti-virus vendors and cannot
be auto-relabeled using our detector, we submit the binary to the query strategy.

From the binaries that could not be confidently labeled as malicious, the
query strategy selects a subset for review to improve their training labels. The
uncertainty sampling query strategy selects binaries that are closest to the de-
cision boundary, intuiting that the model will benefit from knowing the labels
of those binaries about which it is unsure [24]. Uncertainty sampling has ex-
perienced success in other application domains, such as text classification, and
served as a baseline for comparison in prior work involving integrated manual re-
view [16,17]. Designed for a case where the reviewer is the only source of labeling
information, uncertainty sampling is unaware of how our two heuristics used the
noisy labels from anti-virus scanners to filter the binaries for its consideration.

Consequently, we propose a new query strategy aware of our heuristics to
increase the e↵ectiveness of the integrated reviewer. Since the heuristics identify
binaries likely to be malicious, we will label any binary not identified by them or
selected for review as benign. Consequently, only reviews which label a binary
malicious will impact the final training data labels. Accordingly, we develop
the maliciousness query strategy, which selects binaries for review that received
high scores from our detection model, but not high enough to be subject to auto-
relabeling. More formally, the query strategy has a submission budget B, where
B is determined as a fixed percentage of the total number of new training binaries
during the retraining period. The maliciousness query strategy then submits the
B remaining binaries with the greatest maliciousness scores less than the auto-
relabeling threshold M to the integrated reviewer. The binaries in excess of
B which are not submitted to the integrated reviewer are labeled benign. By
selecting binaries likely to be malicious but would otherwise be labeled benign,
maliciousness achieves a higher likelihood than uncertainty sampling that the
review will e↵ect a change in training labels.

3.4 Model Training and Integration of Reviewer Labels

After considering several forms of learning, including decision tree and nearest
neighbor based approaches, we selected logistic regression as the basis for our
malware detector. As a linear classifier, logistic regression assigns a weight to each
feature and issues predictions as a linear function of the feature vector, resulting
in a real valued quantity [10]. Scoring each binary as a real valued quantity
enables us to create a tradeo↵ between true and false positive rates by adjusting
the threshold at which binaries are labeled malicious. Linear classification scales
well in prediction as the size of the model is a function of the dimensionality of
the data and not the size of the training data, as happens with nearest neighbor
techniques. Additionally, the clear relationship between weights and features
allows analysts to easily understand what the detector is doing and why, which
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can be di�cult with complex tree ensembles. Lastly, logistic regression scales well
in training with many available implementations capable of accommodating high
dimensional feature spaces and large amounts of training data.

We now discuss our training process integrating labels from the reviewer with
noisy labels from anti-virus scanners and our own detector. Since the reviewer
only labels a small minority of binaries, noisy labels from anti-virus vendors will
overwhelm reviewer labels during training unless reviewer labels receive special
treatment. We present the standard logistic regression training process below,
and then describe the special treatment which we provide for reviewer labels. The
logistic regression training process finds the weight vector w which minimizes
the following loss function for labeled training set

�
(x1

, y

1), . . . , (xn
, y

n)
 
where

y

i 2 {�1,+1} represents the label:

C� ⇤
X

i:yi=�1

`(�w|xi) + C+ ⇤
X

i:yi=1

`(w|xi) +
1
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kwk2

C� > 0 and C+ > 0 are distinct hyper-parameters controlling for both regu-
larization and class importance weighting and `(x) = log(1 + exp(�x)) is the
logistic loss function. The first and second terms correspond to the misclassifica-
tion losses for negative and positive instances, respectively, and the final term is
a regularization term that discourages models with many large non-zero weights.
To amplify the e↵ect of reviewer labels, we assign a higher weightW during train-
ing to any binary labeled benign by the reviewer. We obtain superior results only
weighting binaries that the reviewer labels benign since the maliciousness query
strategy tends to select binaries for review which fall on the malicious side of
the decision boundary. When a benign instance is classified as malicious during
training, a particularly high weight is necessary to have a corrective e↵ect on
the model and force the instance to receive a benign classification.

4 Dataset and Evaluation Labeling Overview

We maintain that an evaluation dataset should include diverse binaries, re-
flect the emergence and prevalence of binaries over time, and record changes
in best available labeling knowledge for binaries as time progresses. Our evalua-
tion dataset, consisting of 1.1 million distinct binaries submitted to VirusTotal
between January 2012 and June 2014, achieves these criteria. VirusTotal accepts
submissions from end users, researchers and corporations, leading to a diverse
sampling of binaries containing thousands of malware families and benign in-
stances. To randomize interaction with daily and hourly batch submission jobs,
VirusTotal supplied us with the hashes of binaries submitted during a random-
ized segment during each hour of our collection period, reflecting approximately
1% of the total binaries during the collection period. We include each submission
of each binary to accurately represent the prevalence and labeling knowledge of
binaries over time. A more complete discussion of the dataset, including changes
in vendor labels over time and analysis of our labeling methodology is available
online [15].

Something seems missing in "record changes in best available labeling knowledge".  Maybe the word "the" before "changes" and before "best".
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Due to the regular distribution of the evaluation data over an extended period
of time and the broad use of VirusTotal, the dataset includes a diverse sampling
from many families of malware. Symantec, TrendMicro, Kaspersky and McAfee
report 3,135, 46,374, 112,114 and 408,646 unique families for the dataset, re-
spectively. The number of families reported varies due to di↵erences in naming
conventions between vendors. Although the exact number of families reported
varies by vendor, each vendor agrees that the malware represents a broad sam-
pling, with each vendor reporting less than 50% of malware occurring in the
most common 10% of families.

As the dataset contains scan results form 80 di↵erent vendors, we employ a
harmonization approach to create the gold labels which we use to characterize
the dataset and evaluate detector performance. Since some vendors are only spo-
radically present in the data, we restrict our work to the 32 vendors present in
at least 97% of scan results to increase consistency in the set of vendors applied
to each binary.2 We observe that among binaries that receive multiple scans in
our dataset, 29.6% of binaries increase in number of detections as malware by at
least 5 vendors from their first to last scan, and only 0.25% of binaries decrease
by 5 or more detections. This shift from benign to malicious labels confirms
the intuition that vendors behave conservatively, preferring false negatives over
false positives. Given vendors’ demonstrated aversion to false positives, we set
a detection threshold of four vendor detections as su�cient to label a binary
as malicious, and request a rescan of any binary which received fewer than 10
detections at the most recent scan. We conduct rescans in February and March
2015, 8 months after the end of our data collection period, to allow time for ven-
dor signature updates. We avoid rescanning binaries with 10 or more detections
since decreases large enough to cross the four vendor detection threshold are
unlikely. After rescanning, we assign a gold label to each binary in our dataset
representing the best available understanding of whether the binary is malicious.

We reserve January 2012 - December 2012, the first year of our data set,
for obtaining an initial model and use the data from January 2013 to June
2014 to perform a complete rolling window evaluation of our detector. Figure 2a
presents the occurrence of scans over time, indicating that scans consistently
occur throughout the period during which we measure performance. Notice that
scans do not occur evenly during the training period, with the first approximately
200 days containing fewer scans. The di↵erence in available data occurs because
fewer binaries have dynamic attributes available; the di↵erence does not reflect
an underlying phenomenon in submissions.

In addition to being well distributed over time, scans are also well distributed
across the di↵erent binaries in our dataset. Figure 2b depicts the impact of

2 In particular, we include the following vendors: AVG, Antiy-AVL, Avast, Bit-
Defender, CAT-QuickHeal, ClamAV, Comodo, ESET-NOD32, Emsisoft, F-Prot,
Fortinet, GData, Ikarus, Jiangmin, K7AntiVirus, Kaspersky, McAfee, McAfee-GW-
Edition, Microsoft, Norman, Panda, SUPERAntiSpyware, Sophos, Symantec, The-
Hacker, TotalDefense, TrendMicro, TrendMicro-HouseCall, VBA32, VIPRE, Vi-
Robot and nProtect.

I would change "-" to be "to" to match how it is done later in this paragraph.
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(a) (b)

Fig. 2: Data Overview. Figures 2a and 2b demonstrate that scans are well dis-
tributed across our evaluation period and distinct binaries, respectively. Note
that relative scarcity of scans in the first 200 days reflects availability of neces-
sary attributes in VirusTotal data, not underlying submission behavior.

resubmissions on the dataset, with the horizontal axis ordering binaries from
most commonly to least commonly submitted. We include re-submissions to
ensure that the distribution of our evaluation data mirrors the distribution of
actual data submitted to VirusTotal by incorporating the prevalence of each
individual file, e↵ectively balancing any e↵ects of polymorphism in the dataset.
Additionally, inclusion of rescan events in our analysis provides more timely
labeling during evaluation.

5 Experimental Results and System Evaluation

In this section we briefly discuss our implementation, present experimental re-
sults and evaluate our detection system. Our presentation of experimental re-
sults demonstrates the impact of di↵erent performance measurement techniques
on detection results. Our detection system evaluation demonstrates the potential
for integrated review techniques to improve performance over current anti-virus
vendors, as well as the impact of reviewer errors, marginal benefit of additional
reviews and e↵ects of di↵erent of reviewer integration strategies.

5.1 System Implementation

Since anti-virus vendors can receive in excess of 300,000 binaries daily [14], we
design our detector with a focus on scalability. We implement our detection plat-
form in five thousand lines of Python, which o↵ers bindings for the numerical and
infrastructure packages we require. We use Scikit Learn and Numpy for machine
learning, and Apache Spark for distributed computation. Using a 40 core cluster
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with 600GB of RAM, we were able to conduct feature vectorization, learning
and prediction on our 778GB dataset including 1.1 million unique binaries in 10
hours.

To allow experimentation at scale, we simulate an integrated reviewer rather
than employing an actual labeling expert. We model the analysis of the inte-
grated reviewer by revealing the gold label associated with a binary. For exper-
iments that consider an imperfect reviewer, we assign the simulated reviewer a
true positive rate and a false positive rate, allowing the likelihood of the reviewer
supplying the correct label to depend on the gold label for the sample. By condi-
tioning the likelihood of a correct response on the gold label of a sample, we are
able to more closely model the errors of an actual reviewer who may be highly
likely to correctly identify a benign binary as benign, but less likely to correctly
identify a malicious binary as malicious. We leave the comparison of this model
to actual reviewer performance as future work.

Lastly, we describe our management of the system parameters discussed in
Section 3, including a reviewer submission budget B, auto-relabeling confidence
threshold M and learning parameters C�, C+ and W . Section 5.3 presents the
e↵ects of varying the submission budget B, with experiments conducted at 80
queries daily on average unless otherwise specified. The remaining parameters
are tuned to maximize detection at false positive rates between .01 and .001
on a set of binaries obtained from an industry partner and excluded from our
evaluation. We use the following values: M = 1.25, C� = 0.16, C+ = .0048 and
W = 10.

5.2 Impact of Performance Measurement Techniques

The primary motivation for measuring the performance of a detection system in
a research or development setting is to understand how the system would per-
form in a production setting. Accordingly, measurement techniques should seek
to minimize the di↵erences from production settings. In practice, knowledge of
both binaries and labels changes over time as new binaries appear and malware
detectors respond appropriately with updated labels. Performance measurement
techniques that fail to recognize the emergence of binaries and label knowledge
over time e↵ectively utilize knowledge from the future, inflating the measured
accuracy of the approach. For example, consider malware that evades detec-
tion but can be easily detected once the first instance is identified. Performance
inflation occurs because inserting correctly labeled binaries into training data
circumvents the di�cult task of identifying the first instance of the malware.

We analyze three approaches to measuring the performance of malware detec-
tors, each recognizing the emergence of binaries and labels over time to varying
degrees. Cross-validation is a common approach for machine learning evalua-
tions in situations where binaries are independent and identically distributed
(i.i.d.). In the malware detection context the i.i.d. assumption does not hold
since malware changes over time to evade detection. Cross-validation evaluations
completely disregard time, dividing binaries randomly and applying evaluation
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Fig. 3: Accurate performance measurement requires temporally consistent labels.
Figure 3a illustrates three techniques. The upper left shows the evolution of
labels over time for a series of binaries, with B’ and E’ denoting variants of
previously submitted binaries B and E. Each remaining subfigure depicts the
experiments a performance measurement technique would conduct given the
example dataset. Rows correspond to successive retraining periods with specified
training and evaluation data, binaries appear chronologically from left to right,
and + and - denote malicious and benign labels, respectively. Figure 3b presents
the e↵ects of performance measurement technique on experimental results.

quality labels to all binaries. Evaluations maintaining temporally consistent sam-
ples recognize the ordering of binaries in time but not the emergence of labels
over time, instead applying gold labels from future scan results to all binaries.
Use of gold quality labels during training e↵ectively assumes that accurate detec-
tion occurs instantly. Evaluations maintaining temporally consistent labels fully
respect the progression of knowledge, ordering binaries in time and restricting
the training process to binaries and labels available at the time of training. For
measurements with both temporally consistent samples and labels, we divide
data into periods and use the first n � 1 periods to detect content in period n.
Unless otherwise specified we use a period length of one week. Figure 3a presents
the specifics of each approach.

Our experiments demonstrate that measurement technique powerfully im-
pacts performance results. Figure 3b presents the results of our analysis. Notice
that cross-validation and temporally consistent samples perform similarly, inflat-
ing detection results 20 and 19 percentage points respectively over temporally
consistent labeling at a 0.5% false positive rate. Since reviewer integration ef-
fectively reduces the impact of temporally consistent labels by revealing future
labels, we conduct these experiments without any reviewer queries. Note that
our conclusions apply only to the setting of malware detection and not family
classification, which presents a fundamentally di↵erent challenge as the set of
known family labels may change over time.

Temporally consistent labeling requires that training labels predate evalua-
tion binaries. Since VirusTotal scans each binary upon first submission our ex-
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Fig. 4: Without reviewer integration our detector is competitive with VirusTo-
tal detectors. With reviewer integration, detection improves beyond vendors on
VirusTotal. We tune our system to maximize detection in the (0.1%, 1%) false
positive region, consequently decreasing detection at lower false positive rates.

periments are able to satisfy temporally consistent labeling requirements. How-
ever, since binaries are not necessarily rescanned at regular intervals, we are not
able to guarantee that our labels are up to date. For example, consider a binary
which receives benign scan results in week 1 and malicious scan results in week
10: the up-to-date training label in week 5 is unclear. To simulate the e↵ects of
more frequent rescanning, we conduct a second experiment in which we reveal
the gold label for each binary once a fixed interval has passed since the binary’s
first submission. We find that without releasing gold labels temporally consis-
tent evaluation results in 76% detection at a 1% false positive rate; releasing
gold labels 4 weeks and 1 week after a binary appears increases detection to
80% and 84% respectively. Note that these figures represent an upper bound on
the impact of frequent rescanning since malware may remain undetected much
longer than 1 or 4 weeks. Considering that cross-validation and temporal sam-
ple consistency each achieve 92% detection at a 1% false positive rate, we see
that even with regular rescanning, temporal label consistency impacts detection
results.

5.3 Detection System Evaluation

In this section we evaluate our malware detection system and the impact of
reviewer integration. We begin with the impact of the reviewer and performance
relative to VirusTotal. Then, we examine parameters such as reviewer accuracy
and retraining frequency. Lastly, we analyze impact of di↵erent types of features.
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Impact of Integrated Reviewer. Given the breadth of our data and unique
structure of our evaluation, the vendor detection results on VirusTotal provide
the best performance comparison for our work. Based on the false positive rates
of vendors, we tune our detector to maximize detection for false positive rates
greater than 0.1% and less than 1%. Figure 4 compares our performance to
vendor detectors provided on VirusTotal. Without involvement from the inte-
grated reviewer our detector achieves 72% detection at a 0.5% false positive
rate, performing comparably to the best vendor detectors. With support from
the reviewer, we increase detection to 89% at a 0.5% false positive rate using
80 queries daily on average. Since we train a separate model during each weekly
retraining period, the performance curve results from varying the same detection
threshold across the results of each individual model.

VirusTotal invokes vendor detectors from the command line rather than in
an execution environment, allowing detectors to arbitrarily examine the file but
preventing observation of dynamic behavior. Since our analysis includes dynamic
attributes, we also observe our performance when restricted to static attributes
provided by VirusTotal. Note that this restriction places our detector at a strict
disadvantage to vendors, who may access the binary itself and apply signatures
derived from dynamic analysis. Figure 4 demonstrates that our performance
decreases when restricted to static features but, with support from the integrated
reviewer, surpasses vendors to achieve 84% detection at a 0.5% false positive rate.

Performance comparison must also consider the process of deriving gold la-
bels, which introduces a circularity that artificially inflates vendor performance.
Consider the case of a false positive: once a vendor has marked a binary as
positive, the binary is more likely to receive a positive gold label, e↵ectively de-
creasing the false positive rate of the vendor. An alternate approach would be
to withhold a vendor’s labels when evaluating that vendor, e↵ectively creating
a separate ground truth for each vendor. Although this approach more closely
mirrors the evaluation of our own detector (which does not contribute to gold
labels), in the interest of consistency we elect to use the same ground truth
throughout the entire evaluation since e↵orts to correct any labeling bias only
increase our performance di↵erential.

In addition to o↵ering superior detection performance aggregated across all
data relative to vendor labels, our approach also experiences greater success
detecting novel malware that is missed by detectors on VirusTotal. Of the 1.1
million samples included in our analysis, there are 6,873 samples which have a
malicious gold label but are undetected by all vendors the first time the sample
appears. Using 80 reviewer queries daily, our approach is able to detect 44% and
32% of these novel samples at 1% and .1% false positive rates, respectively. The
ability of our approach to detect novel malware illustrates the value of machine
learning for detecting successively evolving generations of malware.

To provide a corresponding analysis of false positives, we measure our per-
formance on the 61,213 samples which have a benign gold label and are not
detected as malware by any vendor the first time the sample appears. Of these
61,213 benign samples, our detector labels 2.0% and 0.2% as malicious when
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(a) (b)

Fig. 5: Figure 5a presents the impact of each component in our customized query
strategy. We improve detection over the uncertainty sampling approach from
prior work. Figure 5b presents the performance of our detector for imperfect
reviewers with the specified true and false positive rates. For example, given a
reviewer with a 5% false positive rate and 80% true positive rate, our detector’s
true positive rate only decreases by 5% at a 1% false positive rate.

operating at 1% and .1% false positive rates over all data, respectively. The in-
creased false positive rate on initial scans of benign samples is expected since
the sample has not yet been included as training data.

Reviewer Query Strategies. Our reviewer query strategy represents numer-
ous advances over prior work. Figure 5a presents the impact of each of the three
improvements we introduce and discussed in Section 3.3. For a fixed labeling
budget B = 80, uncertainty sampling results in a detection rate 17 percentage
points lower than the combination of our techniques at 0.1% false positive rate.

Reviewer Accuracy. Our system also demonstrates strong results in the pres-
ence of an imperfect reviewer. Since malware creators may explicitly design mal-
ware to appear benign but benign software is less likely to appear malicious, we
model the false positive and true positive rates of reviewers separately, reflecting
a reviewer who is more likely to mistake malware for benign software than be-
nign software for malware. Figure 5b presents detection rates for reviewers with
a 5% false positive rates and a range of true positive rates. For example, given a
reviewer with a 5% false positive rate and 80% true positive rate, our detector’s
true positive rate only decreases by 5% at a 1% false positive rate.

Resource Parameterization. Beyond classifier parameters, detection perfor-
mance is also influenced by operator resources including reviewer query budget
and retraining frequency. We explore each of these parameters below.

As the allowed budget for queries to the reviewer increases, the detection
performance increases since higher quality training labels are available. Figure 6a
presents the detection increase from increased reviewer queries, with the benefit
of 80 queries per day on average approaching the upper bound of having gold
labels for all training data. The benefit of reviewer queries is non-linear, with
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(a) (b)

Fig. 6: Figure 6a presents performance for di↵erent reviewer query budgets, with
significant return on minimal e↵orts and diminishing returns occurring around
80 queries/day. Figure 6b demonstrates that retraining more quickly improves
detector performance.

the initial queries providing the greatest benefit, allowing operators to experience
disproportionate benefit from a limited review budget.

Although our evaluation is large relative to academic work, an actual de-
ployment would o↵er an even larger pool of possible training data. Since the
utility of reviewer queries will vary with the size of the training data, increas-
ing the amount of training data may increase reviewer queries required to reach
full benefit. Fortunately, the training process may elect to use only a subset of
the available training data. We demonstrate that 1.1 million binaries selected
randomly from VirusTotal submissions is su�cient training data to outperform
vendor labels for our evaluation data.

Lastly, we examine variations in the length of the re-training period gov-
erning how often models are updated. We conduct these experiments with 80
reviewer queries on average per day. Figure 6b presents the e↵ect of variations
in the retraining period. Notice that the benefit of frequent retraining begins to
diminish around 2 weeks.

Detection Mechanics. Having analyzed detection accuracy and evaluation
methodology, we now examine the features that our detector uses for classi-
fication. In the interest of understanding the dataset as a whole, we train a
model over all data from all dates. Although we learn a linear model and can
easily observe the weight of each feature, inspecting the weight vector alone is
not enough to understand feature importance. A feature can be associated with
a large weight but be essentially constant across the dataset, as may happen
with strongly malicious features that are relatively rare in practice. Intuitively,
such features have low discrimination power. Furthermore, we are interested in
grouping low-level features together into high level concepts.

Thus, we use the following ranking method for sets of features. For a given
weight vector w and a given set of instances {xi}i, we can compute the impor-
tance of a group S ⇢ {1, . . . , d} of features by quantifying the amount of score
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Fig. 7: Feature categories ranked by importance.

variation IS they induce. Specifically, we use the following formula for ranking:
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Using this ranking method, Figure 7 shows the global ranking of the features
when grouped by their original measurements. The most important measure-
ments are thus the file system operations, static imports, API call sequence
and digital signature, while the least useful measurement is the heuristic tools.
Further analysis including highly weighted features is available online [15].

6 Conclusion

In this paper, we explore the power of putting humans in the loop by integrat-
ing a simulated human labeling expert into a scalable malware detection system.
We show it capable of handling over 1 million samples using a small cluster in
hours while substantially outperforming commercial anti-virus providers both in
terms of malware detection and false positive rates (as measured using Virus-
Total). We explain why machine learning systems appear to perform very well
in research settings and yet fail to perform reasonably in production settings by
demonstrating the critical temporal factors of labeling, training, and evaluation
that a↵ect accuracy in real-world settings. In future work, we plan to expand
our detection system to perform malware family labeling and detection of new
malware families. Additionally, we may implement clustering or density based
sampling techniques to further reduce the reviewer burden by eliminating any
duplicate reviews.
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