Recent advances in local graph clustering and the transition to global analysis

Kimon Fountoulakis @CS UWaterloo
02/07/2020
Workshop: From Local to Global Information
Motivation: detection of small clusters in large and noisy graphs

- Real large-scale graphs have rich local structure.
- We often have to detect small clusters in large and noisy graphs:

 protein-protein interaction graph, color denotes similar functionality

 Rather than partitioning graphs with nice structure

 US-Senate graph, nice bi-partition in year 1865 around the end of the American civil war
Our goals

Large scale data with multiple noisy small-scale and meso-scale clusters determine the need for

- new methods that are able probe graphs with billions of nodes and edges,

- the running time of the new methods should depend on the size of the output instead of the size of the whole graph,

- the new methods should be supported by worst- and average-case theoretical guarantees.
Existing and new local graph clustering methods

The vast majority of methods perform some sort of linear diffusion, i.e., PageRank. We need models that are better than simply averaging of probabilities.

- As a warm-up: non-linear PageRank.
- Non-linear combinatorial diffusions.
- Non-linear diffusions which balance between spectral and combinatorial diffusions.
Current local and global developments for local graph clustering methods
About this talk

-I will mostly discuss methods, I will demonstrate theoretical results and I will present experiments that promote understanding of the methods within the available time.

-For extensive experiments on real-data please check the cited papers. We literally have performed hundreds of experiments for measuring performance of local graph clustering methods.
Local Graph Clustering
The local graph clustering problem?

- Definition: find set of nodes A given a seed node in set B
 - Set A has good precision/recall w.r.t set B
 - The running time depends on A instead of the whole graph
Facebook Johns Hopkins social network: color denotes class year

Local graph clustering: example

Protein structure similarity: color denotes similar function

Local graph clustering finds 2% of the graph

Local graph clustering finds 1% of the graph

Or we might want to detect galaxies
Warm-up: non-linear PageRank
Some definitions

Graph: $G = (V, E)$, $|V| = n$, $|E| = m$

- $n \times n$ adjacency matrix: A

- An element of A is equal to 1 if two nodes are connected
Some definitions

- Degree matrix: $D = \text{diag}(A1_n)$, 1_n is a vector of all ones.

- Each element of D shows the number of neighbors of a node.

- Random walk matrix: AD^{-1}

- Lazy random walk matrix: $W = \frac{1}{2} (I + AD^{-1})$

- Graph Laplacian: $L = D - A$
Linear diffusion: personalized PageRank

- Let $\alpha \in (0,1)$ be the teleportation parameter.

- Consider a diffusion process where we perform lazy random walk with probability $1 - \alpha$, and jump to a given seed node with probability α:

 $$\alpha s^T_n + (1 - \alpha)W$$

- where s is an indicator vector of the seed node and alpha is the teleportation parameter.

- **Simple idea:** use a random walk from a seed node. The nodes with the highest probability after k steps consist a cluster.
Let’s get rid off the tail

- For the stationary personalized PageRank vector most of the probability mass is concentrated around the seed node.

- This means that the ordered personalized PageRank vector has long tail for nodes far away from the seed node.

- We can efficiently cut the tale using l1-regularized PageRank without even having to compute the long tail.
Non-linear PageRank diffusion

Instead of using power method to compute the PageRank vector, we can perform a non-linear power method where we do a random walk step first and then threshold small values to zero.

\[p_{k+1} = \text{prox}_{\rho \alpha d \| \cdot \|_1} \left((1 - \alpha)Wp_k + \alpha s \right) \]

where \(\text{prox} \) operator reduces components smaller than \(\rho \alpha d \) to zero.
Far stretched relation to graph neural networks

Non-linear PageRank

\[
p_{k+1} = \text{prox}_{\rho d \| \cdot \|_1} \left((1 - \alpha)Wp_k + \alpha s \right)_{\text{random walk step}}
\]

Graph Neural Network Layer

\[
p_{k+1} = ReLU(\text{Random Walk Matrix} \times \text{Parameters} \times p_k)
\]
L1-regularized PageRank

- The stationary vector of the non-linear PageRank diffusion corresponds to the optimal solution of the l1-regularized PageRank problem:

\[
\text{minimize } \frac{1}{2} x^T Q x - \alpha x^T s + \rho \alpha \| Dx \|_1
\]

where \(Q = \alpha D + \frac{1 - \alpha}{2} L \)

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017
Properties of the l1-regularized optimal solution

- **Theorem**

- If the graph is unweighted then the number of nonzero nodes in the optimal solution is bounded by $1/\rho$.

- If the graph is weighted then the volume of nonzero nodes in the optimal solution is bounded by $1/\rho$.

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017
The solution path is monotonic

- **Theorem**

- Let $\hat{x}(\rho)$ be the solution of the l1-regularized problem as a function of ρ.

- Then $\hat{x}(\rho)$ is a component-wise monotone function

 $$\hat{x}(\rho_0) \leq \hat{x}(\rho_1) \text{ for } \rho_0 > \rho_1$$

- The inequality becomes strict when a component is positive.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020
Stage-wise for recovering the whole path

- **Stage-wise algorithm**

 1) Choose i such that $|d_i^{-1} \nabla_i f(x_k)|$ is the largest among $[n]$

 2) Update $[x_{k+1}]_i = [x_k]_i + \frac{\eta}{d_i}$

- **Corollary**

 - The stage-wise algorithm converges to the l1-regularized solution path if we drag the step-size η of the algorithm to zero.

 - The running time of stage-wise depends on the nonzero nodes and its neighbors and not on the size of the whole graph.
Stage-wise for recovering the whole path - example

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020
What if we do not want to recover the whole path?

\[
\minimize \frac{1}{2}x^T Q x - \alpha x^T s + \rho \alpha \|Dx\|_1
\]

Proximal gradient descent

\[
x_{k+1} := \arg\min_g g(x) + f(x_k) + \langle \nabla f(x_k), x - x_k \rangle + \frac{1}{2} \|x - x_k\|^2_2
\]

Requires careful implementation to avoid excessive running time

- Need to maintain a set of non-zero nodes
- Update x and gradient only for non-zero nodes and their neighbors at each iteration

Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017
Theorem: non-decreasing non-zero nodes
Open problem: is accelerated prox. grad. a local algorithm?

Gradient descent running time
\[\tilde{O}\left(\frac{\text{vol}(\hat{S})}{\mu} \right) \]

Accel. gradient descent
\[\tilde{O}\left(\frac{\text{vol}(G)}{\sqrt{\mu}} \right) \]

- \(\hat{S} \): support of optimal solution, i.e., non-zero nodes.
- \(\mu \): strong convexity parameter of the problem.
Two ways to measure performance of the l1-regularized PageRank model

Average-case

- Performance under stochastic block model - recover a cluster using the output of l1-regularized PageRank.

 W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020

Worst-case

- Use conductance to measure quality of the output. Show that the output has conductance value similar to a target cluster around the seed node.

 Fountoulakis et al. Variational Perspective of Local Graph Clustering, Mathematical Programming, 2017
 Zhu et al. A local algorithm for finding well-connected clusters, ICML, 2013
Average-case guarantees
Average-case performance

Local random model

- Given a graph G with n nodes, let K be a target cluster inside G.
- Two nodes in K are connected with probability p.
- Nodes in K are connected K^c with probability q.
- The rest of edges can be drawn using any other model.
Expected l1-regularized PageRank

- The optimal solution of the expected problem identifies the target cluster.

Theorem

- Suppose that the seed node is selected from target cluster K. The optimal solution of

\[
x^* := \arg\min x^T \mathbb{E}[Q] x - \alpha x^T s + \rho \alpha \|\mathbb{E}[D] x\|_1
\]

- satisfies

\[
\text{supp}(x^*) = K
\]

- as long as \(\rho = O\left(\frac{p}{\bar{d}^2}\right) \)

- where \(\bar{d} \) is the expected degree of nodes in the target cluster.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020
Results for l1-regularized PageRank for noisy data

-In practice, we do not have access to the expected graph. We are given a realization of the local random model that includes “noise”, i.e., edges from the target cluster to the rest of the graph.

-We have two results for the noisy case.

-First result.
-Zero false negatives.
-Bounded false positives.

-Second result.
-With additional assumptions on the seed nodes we can show exact recovery.
Theorem (bounded false positives)

Suppose \(p^2 k \geq \mathcal{O}(\log k) \), where \(k \) is the size of the target cluster.

\[
p = \mathcal{O}\left(\frac{\gamma p}{d^2}\right)\]

where \(\gamma = \frac{pk}{d} \), i.e., the probability of staying inside the target cluster in one step.

Then with probability \(1 - 6\exp(-\mathcal{O}(p^2k)) \) the optimal solution of the realized problem has zero false negatives and the false positives are bounded

\[
\text{vol}(FP) \leq \text{vol}(K) \left(\mathcal{O}\left(\frac{1}{\gamma^2}\right) - 1 \right)
\]

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020
Definitions

\[\Phi(B) := \left(\frac{\text{number of edges leaving } B}{\text{sum of edges of vertices in } B} \right) \]

Assuming \(B \) is the smaller part of the graph.

where \(\gamma = \frac{pk}{d} \), i.e., the probability of staying inside the target cluster in one step.
Results for l1-regularized PageRank for noisy data

- **Theorem (exact recovery)**

- Let \(q = \mathcal{O}(1/n) \)

- Then with probability at least \(1 - \mathcal{O}(e^{-k}) \) there exists a good seed node such that if we use that seed node we get

\[
\text{supp}(\hat{x}) = K
\]

- As long as

\[
d_j \geq \mathcal{O} \left(\frac{1}{\gamma p} \right) \quad \forall j \in K^c
\]

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020
The assumption that $q = \mathcal{O}(1/n)$ but it is not, because it also covers the case were the size of the target cluster is $k = \mathcal{O}(1)$

This is a realistic local graph clustering setting where we attempt to recover a very small target cluster of constant size with constant number of edges leaving the cluster.
Worst-case guarantees
Some definitions

- Conductance of target cluster B:

$$\Phi(B) := \left(\frac{\text{number of edges leaving } B}{\text{sum of edges of vertices in } B} \right)$$

Assuming B is the smaller part of the graph

- Internal connectivity of target cluster B

$$IC(B) := \text{the minimum conductance of the subgraph induced by } B$$
Worst-case performance

Theorem (by Zhu et al.)

Assume that the internal connectivity of the target cluster K is larger than its conductance

$$\frac{IC^2(K)}{\Phi(K) \log \text{vol}(K)} \geq \Omega(1)$$

False positives are bounded by

$$\text{vol}(FP) \leq O \left(\frac{\Phi(K)}{IC(K)} \right) \text{vol}(K)$$

True positives are bounded by

$$\text{vol}(FN) \leq O \left(\frac{\Phi(K)}{IC(K)} \right) \text{vol}(K)$$

Zhu et al. A local algorithm for finding well-connected clusters, ICML, 2013
Compare average- and worst-case

<table>
<thead>
<tr>
<th></th>
<th>False Positives</th>
<th>False Negatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average-case</td>
<td>[\text{vol}(FP) \leq \text{vol}(K) \left(\mathcal{O} \left(\frac{1}{\gamma^2} \right) - 1 \right)]</td>
<td>zero</td>
</tr>
<tr>
<td>Worst-case</td>
<td>[\text{vol}(FP) \leq \text{vol}(K) \mathcal{O}((1 - \gamma)\log k)]</td>
<td>[\text{vol}(FN) \leq \text{vol}(K) \mathcal{O}((1 - \gamma)\log k)]</td>
</tr>
</tbody>
</table>

-The average-case result on FP is stronger for large values of γ.

-Also for the average-case we can also prove exact recovery.

W. Ha, K. Fountoulakis, M. Mahoney. Statistical Guarantees of Local Graph Clustering. AISTATS-2020
Comparison to planted cluster model

- Example, $p = 1$ and $q = \mathcal{O}(\log n/n)$

- Using semidefinite programming one can achieve exact recovery as long as $k \geq \mathcal{O}(\log n)$,

- while our results guarantee zero false negative and a constant proportion of false positives.

- However, our model is not allowed to touch the whole graph.
Combinatorial Diffusion: Capacity Releasing Diffusion
Problem: spectral diffusions might leak mass

Target cluster:
Students of Year 2008

Red nodes: output of the algorithm

ℓ_1-regularized PageRank (best tuning)
Precision=0.73, Recall=0.91

Solving the problem of spreading mass indiscriminately by gradual release of edge capacity

Spectral diffusions
- Even distribution of the residual probability mass to neighbors

Capacity Releasing Diffusion
- Controls the amount of mass to be send over an edge by using the height “h” of a node
- In theory this results in bounded mass leaked outside of the target cluster
- In practice this results in much better precision and recall

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Maintain mass “m” and height “h” for each node

- **degree(v):** #edges of node v
- **Saturated nodes:** $m(v) \geq \text{deg}(v)$
- **Excess mass:** $= \max(m(v) - \text{deg}(v), 0)$

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Overflow the seed: $m(A) = 2\text{deg}(A)$

Saturated nodes: $m(v) \geq \text{deg}(v)$

Excess mass = $\max(m(v) - \text{deg}(v), 0)$

Algorithm

Iterate

$m(v) \leq 2\text{deg}(v)$ for all nodes v

Push excess mass to unsaturated nodes with lower height

$m(v) \leq \text{deg}(v)$ for all nodes v

Overflow: $m(v) = 2m(v)$

$m=4$, $h=1$

Degree(v): #edges of node v

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Degree of node v: \#edges of node v

Saturated nodes: $m(v) \geq \deg(v)$

Excess mass: $\max(m(v) - \deg(v), 0)$

Algorithm

1. Overflow the seed: $m(A) = 2\deg(A)$
2. Iterate
 - Push excess mass to unsaturated nodes with lower height
 - $m(v) \leq \deg(v)$ for all nodes v
 - Overflow: $m(v) = 2m(v)$

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v),0)

Algorithm

Overflow the seed: m(A) = 2deg(A)
Iterate

Pick node A (has excess mass)
and a neighbor of A with lower height “h”

m(v) <= deg(v) for all nodes v
Overflow: m(v) = 2m(v)

m=4, h=1

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v), 0)

Algorithm

Overflow the seed: m(A) = 2deg(A)
Iterate

Pick node C

m(v) <= deg(v) for all nodes v
Overflow: m(v) = 2m(v)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Degree(v): #edges of node v
Saturated nodes: $m(v) \geq \deg(v)$
Excess mass = $\max(m(v) - \deg(v), 0)$

Algorithm

Overflow the seed: $m(A) = 2\deg(A)$
Iterate
Pick node A (has excess mass)

Push at most "h" flow to a chosen neighbor

$m(v) \leq \deg(v)$ for all nodes v
Overflow: $m(v) = 2m(v)$

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: m(v) \geq \text{deg}(v)
Excess mass = \max(m(v) - \text{deg}(v), 0)

Algorithm

Overflow the seed: m(A) = 2\text{deg}(A)
Iterate

Push excess mass to unsaturated nodes with lower height

m(v) \leq \text{deg}(v) \text{ for all nodes } v
Overflow: m(v) = 2m(v)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Algorithm

- **Push 1 unit**
- **Overflow** the seed: $m(A) = 2\deg(A)$
- **Iterate**
 - Pick node A (has excess mass)
 - and a new edge of node A of residual flow less than “h”
- **Overflow**: $m(v) = 2m(v)$

degree(v): #edges of node v
Saturated nodes: $m(v) \geq \deg(v)$
Excess mass = $\max(m(v) - \deg(v), 0)$

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Overflow the seed: $m(A) = 2\deg(A)$

Saturated nodes: $m(v) >= \deg(v)$
Excess mass = $\max(m(v) - \deg(v), 0)$

degree(v): #edges of node v

Algorithm

Iterate

1. $m(v) \leq 2\deg(v)$ for all nodes v
2. Push excess mass to unsaturated nodes with lower height
3. $m(v) \leq \deg(v)$ for all nodes v
4. Overflow: $m(v) = 2m(v)$

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): \#edges of node v
Saturated nodes: \(m(v) \geq \text{deg}(v) \)
Excess mass = \(\max(m(v) - \text{deg}(v), 0) \)

Algorithm

Overflow the seed: \(m(A) = 2\text{deg}(A) \)

Iterate

\(m(v) \leq 2\text{deg}(v) \) for all nodes v

Push excess mass to unsaturated nodes with lower height

\(m(v) \leq \text{deg}(v) \) for all nodes v

Overflow: \(m(v) = 2m(v) \)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v), 0)

Algorithm

Overflow the seed: m(A) = 2deg(A)

Iterate

Pick node A (has excess mass)
and a neighbor of A with lower height “h”

m(v) <= deg(v) for all nodes v
Overlap: m(v) = 2m(v)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

Degree
\[\text{degree}(v): \text{#edges of node } v \]

Saturated nodes
\[m(v) \geq \text{deg}(v) \]

Excess mass
\[\text{Excess mass} = \max(m(v) - \text{deg}(v), 0) \]

Algorithm

1. **Overflow the seed:**
 \[m(A) = 2 \text{deg}(A) \]

2. **Iterate**
 - Pick node A (has excess mass)
 - **Push at most "h" flow to a chosen neighbor**
 \[m(v) \leq \text{deg}(v) \text{ for all nodes } v \]

3. **Overflow:**
 \[m(v) = 2m(v) \]

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: \(m(v) \geq \text{deg}(v) \)
Excess mass = \(\max(m(v) - \text{deg}(v), 0) \)

Algorithm

Overflow the seed: \(m(A) = 2\text{deg}(A) \)

Iterate

Note C has excess it has to be added to the candidate nodes

\[m(v) \leq \text{deg}(v) \text{ for all nodes } v \]
Overflow: \(m(v) = 2m(v) \)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: m(v) \geq deg(v)
Excess mass = max(m(v) - deg(v),0)

Algorithm

Overflow the seed: m(A) = 2\cdot deg(A)
Iterate

Pick node C (has excess mass)
and a neighbor of C with lower height “h”

m(v) \leq deg(v) for all nodes v
Overflow: m(v) = 2m(v)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: m(v) >= deg(v)
Excess mass = max(m(v) - deg(v), 0)

Algorithm

Overflow the seed: m(A) = 2deg(A)
Iterate

There is no neighbor of C with lower height so increase the height of C by 1

m(v) <= deg(v) for all nodes v
Overflow: m(v) = 2m(v)

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Capacity Releasing Diffusion algorithm

degree(v): #edges of node v
Saturated nodes: $m(v) \geq \text{deg}(v)$
Excess mass = max($m(v) - \text{deg}(v), 0$)

Algorithm

Overflow the seed: $m(A) = 2\text{deg}(A)$
Iterate

Repeat until there is no node with excess mass

Overflow: $m(v) = 2m(v)$

$m(v) \leq \text{deg}(v)$ for all nodes v

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Theoretical comparison to spectral diffusions

- Conductance of target B (“noise”): $\Phi(B) := \left(\frac{\text{number of edges leaving } B}{\text{sum of edges of vertices in } B} \right)$
 Assuming B is the smaller part of the graph

- Internal connectivity (“signal”) of target B

 $IC(B) :=$ the minimum conductance of the subgraph induced by B

Weaker assumptions
- Theoretical bound on FP/FN needs: “signal” polylog stronger than “noise”, as opposed to: *quadratically* stronger for spectral methods

Better worst-case guarantees
- Output A satisfies $\Phi(A) \leq \mathcal{O}(\Phi(B))$, as opposed to $\Phi(A) \leq \mathcal{O}(\Phi(B)/IC(B))$

Better running time
- The running time is $1/IC(B)$ times faster than spectral

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Example on Facebook Colgate University social network

\[\ell_1 \text{-regularized PageRank (best tuning)} \]
Precision=0.73, Recall=0.94

Year 2008

\[\text{Capacity Releasing Diffusion} \]
Precision=0.93, Recall=0.94

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
Example on Facebook Johns Hopkins social network

ℓ_1-regularized PageRank (best tuning)
Precision=0.71, Recall=0.91

Capacity Releasing Diffusion
Precision=0.87, Recall=0.94

D. Wang, K. Fountoulakis, M. Mahoney, S. Rao. Capacity Releasing Diffusion for Speed and Locality. ICML 2017
p-norm Flow Diffusions
Spectrum of methods

Spectral Diffusions
- e.g., PageRank
- easy to understand
- fast in practice

Combinatorial Diffusions
- e.g., capacity releasing diffusion
- robust to noise

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Spectrum of methods

Spectral Diffusions

\[p \]-norm flow diffusion

Combinatorial Diffusions

\(p \)-norm flow diffusion is a family of convex optimization problems that characterizes the trade-off between spectral and combinatorial diffusions.

- This allows us to define methods that are the best of both worlds.

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Some definitions - incidence matrix

Ordering of edges and direction is arbitrary

- S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Some definitions - flow variables

Let f be a vector and each component of f corresponds to an edge, for example:

- The magnitude of f is the amount of flow that passes through an edge
- The sign of f is the direction of flow

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Some definitions - net flow

- Let Δ be a non-negative vector, each component of Δ indicates the initial mass at a node.

- B^Tf is a vector that captures the net flow on a node.

- $B^Tf + \Delta$ indicates the net mass on every node.
Node capacities

- We will require that each node has capacity equal to its degree d_i.

- We will say that the initial mass Δ has been diffused, when the net mass on each node is less than its capacity:

\[
\underbrace{B^T f + \Delta}_{\text{net mass per node}} \leq \underbrace{d}_{\text{capacity per node}}
\]
Out of all possible flows f that satisfy the capacities we are interested in the one with minimum L_p norm, where $p \in [2, \infty)$.

\[
\text{minimize } \| f \|_p \\
\text{subject to: } B^T f + \Delta \leq d
\]
Relation to other methods

- For $p = 2$ the dual of the 2-norm flow diffusion problem is

$$\text{minimize } \frac{1}{2} \|Bx\|_2^2 - x^T \Delta + \|Dx\|_1$$

- which is a regularized spectral problem, very similar ℓ_1-regularized PageRank.

- For $p \to \infty$ the dual of the ∞-norm flow diffusion problem is

$$\text{minimize } \|Bx\|_1 - x^T \Delta + \|Dx\|_1$$

- which is a regularized min-cut problem, very similar to the so-called flow-improve methods

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Rounding

- Sort the dual variables in descending order
- Output the prefix set with smallest conductance.

- In practice we solve the dual of the p-norm flow problem

\[
\begin{align*}
\text{minimize} \quad & -x^T \Delta + \|Dx\|_1 \\
\text{subject to:} \quad & \|Bx\|_q \leq 1 \\
& x \geq 0
\end{align*}
\]

- So we have direct access to the dual variables

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Theorem - Let C be the target cluster with conductance $\Phi(C)$, if Δ is initialized inside C, and the input seed set sufficiently overlaps with C, then the output A satisfies

$$\Phi(A) \leq \mathcal{O}\left(\Phi(B)^{1-1/p}\right)$$

Cheeger-type result for $p = 2$.

Constant factor approximation when $p \to \infty$, similar to combinatorial diffusions.

Smooth transition for general p values in between

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
p-norm network flow diffusions - algorithm

- Simple randomized coordinate descent

- Running time

$$\tilde{O}\left(\frac{|\Delta|}{\gamma} \left(\frac{|\Delta|}{\epsilon}\right)^{1-2/p} \log \frac{1}{\epsilon}\right)$$

- $|\Delta|$ represents the magnitude of the initial mass.
- γ is the strong convexity parameter of the dual problem.
- ϵ is the required accuracy.

- $p = 2$ gives the usual running time for spectral methods $\tilde{O}(|\Delta|)$.
- $p \to \infty$ gives the usual running time for combinatorial methods $\tilde{O}(|\Delta|^2/\epsilon)$.

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
There is a trade-off between quality of output and running time.
The larger p is the better the output with respect to conductance.
However, the larger p is the more the running time for solving problem.
In practice, small values of $p \in [2, 8]$ gives the best of both worlds.
- LFR synthetics model, basically a stochastic block model
- \(\mu \) is a parameter that controls noise, the higher the more noise.

S. Yang, D. Wang, K. Fountoulakis. p-Norm Flow Diffusion for Local Graph Clustering.
Local to Global Applications: Network Community Profiles, Node embeddings, Graph Visualization, Semi-Supervised Learning

(no theory 😞, preliminary work)
Network Community Profiles

Clusters with smallest conductance correspond to galaxies.
Node embeddings

- **Goal:** Represent a node with a low dimensional vector.

- We use node embeddings for graph visualization, semi-supervised learning and graph partitioning.

Types of node embeddings

- Global embeddings

- Local embeddings, i.e., spectral and combinatorial
Global embeddings

- Compute the Laplacian matrix $L = D - A$
- Compute k non-trivial eigenvectors of L
- Stuck the eigenvectors as columns of a $n \times k$ matrix U.
- Each row of U is a vector representation (node embedding) of a node.
Local spectral embeddings

- Choose randomly N seed sets
- For each seed set run a local *spectral* algorithm.
- Stuck eigenvectors as columns of a $n \times N$ matrix X.
- Compute k principal left singular vectors of X.
- Stuck the singular vectors as columns of a $n \times k$ matrix U.
- Each row of U is a vector representation (node embedding) of a node.
Local flow embeddings

- Choose randomly N seed sets
- For each seed set run a local *flow* algorithm
- Stuck eigenvectors as columns of a $n \times N$ matrix X.
- Compute k principal left singular vectors of X
- Stuck the singular vectors as columns of a $n \times k$ matrix U.
- Each row of U is a vector representation (node embedding) of a node.
Graph visualization - US highway network

- Edges represent naturally funded highways, and nodes represent intersections.
- Mostly toy-graph for demonstration purposes
Graph visualization - global embeddings

- Color shows true longitude
- Global embeddings seem to correlate with longitude
- But, **compresses major regions** of the northeastern US (Washington, New York, Boston) as well as the Western US (Los Angeles, San Diego, Phoenix).
- With global embeddings Western US (Los Angeles, San Diego, Phoenix) was quite compressed.
- Local embeddings help in de-compressing the region.
- Local spectral and flow embeddings seem to be qualitatively different.
Main Galaxy Sample data

- Each node is a galaxy
- Edges represent distance among galaxies
- The distance is determined by measuring the distance of the emission spectra of two galaxies
- There are 517182 galaxies (nodes) and each galaxy has 4 neighbor galaxies (edges)

Local spectral and flow embeddings - Main Galaxy Sample data

Zoom-in this dense region

Global embedding
Local spectral
Local flow
Local spectral and flow embeddings - Main Galaxy Sample data

- Structural differences in visualization also translate to clusters with smaller conductance.
Semi-supervised learning

Problem
- Infer unknown labels for all nodes, when given a few nodes with known labels.
- We assume that the graph edges represent a high likelihood of sharing a label.

Algorithm
- For each class, we randomly select a small subset of nodes, and we fix the labels of these nodes as known.
- We then run a spectral or a flow method where this set of nodes is the reference. This gives one spectral or flow vector per class.
- For each unlabelled node we look at the corresponding coordinate in the vectors and we give it the label that corresponds to the class with the highest value.
Semi-supervised learning

PubMed

- PubMed is a citation network. 19717 scientific publications about diabetes with 44338 citation links.
- By construction of the graph, articles about one type of diabetes cite others about the same type more often.

Info about the data

- SPR (Seeded PageRank)
- LFI (LocalFlowImprove)
- FI (FlowImprove)

True labels included in seeds
Software

LocalGraphClustering on GitHub
Thank you!