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Standard examples in optimization
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Problem formulation

minimize F(x) := V(x) + f(x)
- xRN f(x): RV =R, U(x): RN - R

Assumptions
- f is smooth (possibly) convex function

- W is a (possibly) nonsmooth convex function

Plenty of data
- N is very large. i.e. of order millions or billions



Numerical methods in convex optimization

Build a convex function @ that locally approximates F at a point x:
- Q(y; x) =~ F(y) for y close to x
- Q(xix) = F(x)

General framework

[y

. Given xp (an initial guess)
: For k=0,1,2,...
Approximately solve the subproblem

w N

y* =~ argmin Q(y; xx)
y

4: Set Xk4+1 = y*



Examples of local convex approximations
L1 Least Squares (L1 LS): minimize ~||x||1 +1/2||Ax — b||3
~—— —

v f
- Simple quadratic (majority of modern algorithms)

Q(y: xk) = Iyl + FOk) + (VFOK)sy — xe) + 507 — Xy — xe)
- General quad.
QUy: xk) = llylls + F(xk) +(VF(xk),y — xx) +

1
2
®Lis ‘
/ @ Simple quad.
200f . x, 20

L = Amax(ATA) Hy = diag(ATA)




Trade-off between simple and general quadratic approximations

Type ‘ Inexpensive step Good approximation
Simple quad.: 4
Gen. quad.: v

Aim: control the trade off

Simple quad. General quad.

+——+

Three ways in Robust Block Coordinate Descent (RCD)

- Inexpensively choose Hy such that it approximates the structure of f
- Dimensionality reduction: update only a block of coordinates

- Solve approximately the subproblem over the chosen block of coordinates



Trade offs in RCD: construction of quadratic

1) Construct any Hi = 0 such that Hyx =~ V2f(xx). No need to store Hj, we only
need a process to perform matrix-vector products with it.

2) Construct a local convex model

QUy; xk) :=yW(y) + f(x) + (VF(xx),y — x) + %(y — Xk, Hi(y — xk))



Dimensionality reduction
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Dimensionality reduction




Dimensionality reduction: block notation
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Dimensionality reduction: a smaller subproblem
Assumption: V is block separable

Uy (2V)) + Ua(@®) + U3(a®) + Ty (a®) + W5(20))
Reformulation of local approximation and subproblem
QHx? + 10 x4 1= Wil 4+ D) 4 £ + (T (), £0) + (0, D)
t7) ~ arg min Q;(x\) + 0 x,)

()
The subproblem has smaller dimensions than N!
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Trade offs in RCD: inexact solution of subproblem

Interpretation: solve subproblem until

- direction t() reduces Q; compared to zero direction, and

- direction t,(() is closer to optimality than zero direction.

First condition: decrease of local model
Qi + £ 34) < Qi )
Second condition: decrease distance from optimality of the local model

&< + £ x0) 2 < i@ ), i € [0,1)

Think g,-(x,Ei) + t(i);xk) as the gradient of Q; at t(/) (if W is nonsmooth g; is not a
gradient, but it is a measure for the distance from optimality).



RCD

1: Input: Choose x° and 0 € (0,1/2)

2: Loop: For k =1,2,..., until termination criteria are met
3 Sample block of coordinates / with probability p; > 0
4: Calculate direction t,((i) by approximately solving

t,((i) A arg min Q,’(Xl((i) +t0); xi)
(1)

5: Backtracking line search along direction t,((i) starting from o« = 1. That is, find
a € (0, 1] such that a sufficient decrease condition is satisfied
(explained in next slide).

6: Set x,((g)_l = X,Ei) + at,Ei)



Global convergence of RCD

Theory: RCD converges to first order stationary points! Convexity of f is not
necessary.

Line search: Find a step size a € (0, 1] such that:

- the decrease of F (objective function) is proportional to the decrease of its block
first order approximation.

Let E,-(x,((") + t,((i); Xk) be the block first order approximation of F:
GO+ £D:50) = Wi (D D) 4 £ () + (Vi (), £D)
For 6 € (0,1/2), find a step size a € (0, 1] such that

F(xx) — F(xk + ozU,'t,((i)) >0 (f;(x,&i); Xk) — E;(X,((i) + at,Ei); xk)) :



Local convergence of RCD: unit step sizes

Theory: There exists a neighbourhood of the optimal solution in which line search will
accept unit step sizes for any chosen /.

Assumptions
- f is strongly convex
- Block Lipschitz continuity of V2f(x)

IVZF(x + UitD) = VEF(x)[l2 < Mi[[eD]2 i, x

Stronger inexactness condition for the subproblem
- QI(X;((l);Xk) - QI(X;EI) + t,E’);Xk) > ¢ (fi(X,E');Xk) - €i(X,E') + at,((');Xk))



Local rate of convergence

Theory: block quadratic convergence rate

-1 = min{1/2, g (7 x) 2} in g + £ )12 < il (Y xi) 2

Then, ||g,-(x,((');xk)||2 has a quadratic rate of convergence in expectation.

Theory: block superlinear convergence rate

- ifn;'(—>0fork—>oo

(1)

Then ||gi(x,”; x«)||2 has a superlinear rate of convergence in expectation.



Numerical experiments: synthetic L1 least squares
Solvers
- UCDC v.1: Single coordinate descent with simple quadratic
- UCDC v.2: Block coordinate descent with simple quadratic
- RCD v.1: H,((i) := diag(V?f(xx)). RCD v.2: Hy := V2f(x)
, m= N/4, nnz(A) = 10~*mN and Blocks ~ 1072N.

o

Instance info: N = 221
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Numerical experiments: real world binary classification
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Info
Name: kdd2010 (algebra)
N =~ 20 million, m ~ 0.4N



Thank you!

Paper: K. Fountoulakis and R. Tappenden. Robust block coordinate descent.
Technical Report ERGO-14-010, 2014

Software: http://www.maths.ed.ac.uk/~kfount/ (only for reproduction of the
presented experiments)
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