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Standard examples in optimization

Data fitting

minimize γ‖x‖1 + 1
2‖Ax − b‖2

2

Binary classification

minimize γ‖x‖1 +
∑m

i=1 log(1 + e−bix
ᵀai )
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Problem formulation

minimize F (x) := Ψ(x) + f (x)

- x ∈ RN , f (x) : RN → R, Ψ(x) : RN → R

Assumptions

- f is smooth (possibly) convex function

- Ψ is a (possibly) nonsmooth convex function

Plenty of data

- N is very large. i.e. of order millions or billions



Numerical methods in convex optimization

Build a convex function Q that locally approximates F at a point x :

- Q(y ; x) ≈ F (y) for y close to x

- Q(x ; x) = F (x)

General framework

1: Given x0 (an initial guess)
2: For k = 0, 1, 2, . . .
3: Approximately solve the subproblem

y∗ ≈ arg min
y

Q(y ; xk)

4: Set xk+1 := y∗



Examples of local convex approximations

L1 Least Squares (L1 LS): minimize γ‖x‖1︸ ︷︷ ︸
Ψ

+ 1/2‖Ax − b‖2
2︸ ︷︷ ︸

f

- Simple quadratic (majority of modern algorithms)
Q(y ; xk) := γ‖y‖1 + f (xk) + 〈∇f (xk), y − xk〉+ L

2 〈y − xk , y − xk〉
- General quad.
Q(y ; xk) := γ‖y‖1 + f (xk) + 〈∇f (xk), y − xk〉+ 1

2〈y − xk ,Hk(y − xk)〉

 

 

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

L1 LS
Simple quad.
x

k

L = λmax(AᵀA)

 

 

−300 −200 −100 0 100 200 300

−300

−200

−100

0

100

200

300

L1 LS
Gen. quad.
x

k

Hk = diag(AᵀA)



Trade-off between simple and general quadratic approximations

Type Inexpensive step Good approximation

Simple quad.: "

Gen. quad.: "

Aim: control the trade off

Simple quad. General quad.

Three ways in Robust Block Coordinate Descent (RCD)

- Inexpensively choose Hk such that it approximates the structure of f

- Dimensionality reduction: update only a block of coordinates

- Solve approximately the subproblem over the chosen block of coordinates



Trade offs in RCD: construction of quadratic

1) Construct any Hk � 0 such that Hk ≈ ∇2f (xk). No need to store Hk , we only
need a process to perform matrix-vector products with it.

2) Construct a local convex model

Q(y ; xk) := γΨ(y) + f (xk) + 〈∇f (xk), y − xk〉+
1

2
〈y − xk ,Hk(y − xk)〉



Dimensionality reduction



Dimensionality reduction



Dimensionality reduction: block notation

x(i) ∇if (x)

H(i) Uix
(i)

x(i) Uix
(i)Uix
(i)

zeros



Dimensionality reduction: a smaller subproblem
Assumption: Ψ is block separable

x
Ψ(x) =

Ψ1(x
(1)) + Ψ2(x

(2)) + Ψ3(x
(3)) + Ψ4(x

(4)) + Ψ5(x
(5))Ψ1(x

(1)) + Ψ2(x
(2)) + Ψ3(x

(3)) + Ψ4(x
(4)) + Ψ5(x

(5))Ψ1(x
(1)) + Ψ2(x

(2)) + Ψ3(x
(3)) + Ψ4(x

(4)) + Ψ5(x
(5))

xT

Reformulation of local approximation and subproblem

Qi (x
(i)
k + t(i); xk) := γΨi (x

(i)
k + t(i)) + f (xk) + 〈∇i f (xk), t(i)〉+

1

2
〈t(i),H

(i)
k t(i)〉

t
(i)
k ≈ arg min

t(i)

Qi (x
(i)
k + t(i); xk)

The subproblem has smaller dimensions than N!
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Trade offs in RCD: inexact solution of subproblem

Interpretation: solve subproblem until

- direction t
(i)
k reduces Qi compared to zero direction, and

- direction t
(i)
k is closer to optimality than zero direction.

First condition: decrease of local model

Qi (x
(i)
k + t

(i)
k ; xk) < Qi (x

(i)
k ; xk)

Second condition: decrease distance from optimality of the local model

‖gi (x (i)
k + t

(i)
k ; xk)‖2 ≤ ηik‖gi (x

(i)
k ; xk)‖2, ηik ∈ [0, 1)

Think gi (x
(i)
k + t(i); xk) as the gradient of Qi at t(i) (if Ψ is nonsmooth gi is not a

gradient, but it is a measure for the distance from optimality).



RCD

1: Input: Choose x0 and θ ∈ (0, 1/2)

2: Loop: For k = 1, 2, ..., until termination criteria are met

3: Sample block of coordinates i with probability pi > 0

4: Calculate direction t
(i)
k by approximately solving

t
(i)
k ≈ arg min

t(i)

Qi (x
(i)
k + t(i); xk)

5: Backtracking line search along direction t
(i)
k starting from α = 1. That is, find

α ∈ (0, 1] such that a sufficient decrease condition is satisfied
(explained in next slide).

6: Set x
(i)
k+1 := x

(i)
k + αt

(i)
k



Global convergence of RCD

Theory: RCD converges to first order stationary points! Convexity of f is not
necessary.

Line search: Find a step size α ∈ (0, 1] such that:

- the decrease of F (objective function) is proportional to the decrease of its block
first order approximation.

Let `i (x
(i)
k + t

(i)
k ; xk) be the block first order approximation of F :

`i (x
(i)
k + t(i); xk) := Ψi (x

(i)
k + t(i)) + f (xk) + 〈∇i f (xk), t(i)〉

For θ ∈ (0, 1/2), find a step size α ∈ (0, 1] such that

F (xk)− F (xk + αUi t
(i)
k ) ≥ θ

(
`i (x

(i)
k ; xk)− `i (x (i)

k + αt
(i)
k ; xk)

)
.



Local convergence of RCD: unit step sizes

Theory: There exists a neighbourhood of the optimal solution in which line search will
accept unit step sizes for any chosen i .

Assumptions

- f is strongly convex

- Block Lipschitz continuity of ∇2f (x)

‖∇2
i f (x + Ui t

(i))−∇2
i f (x)‖2 ≤ Mi‖t(i)‖2 ∀i , x

Stronger inexactness condition for the subproblem

- Qi (x
(i)
k ; xk)− Qi (x

(i)
k + t

(i)
k ; xk) > ξ

(
`i (x

(i)
k ; xk)− `i (x (i)

k + αt
(i)
k ; xk)

)



Local rate of convergence

Theory: block quadratic convergence rate

- If ηik = min{1/2, ‖gi (x (i)
k ; xk)‖2} in ‖gi (x (i)

k + t
(i)
k ; xk)‖2 ≤ ηik‖gi (x

(i)
k ; xk)‖2

Then, ‖gi (x (i)
k ; xk)‖2 has a quadratic rate of convergence in expectation.

Theory: block superlinear convergence rate

- if ηik → 0 for k →∞

Then ‖gi (x (i)
k ; xk)‖2 has a superlinear rate of convergence in expectation.



Numerical experiments: synthetic L1 least squares
Solvers

- UCDC v.1: Single coordinate descent with simple quadratic
- UCDC v.2: Block coordinate descent with simple quadratic

- RCD v.1: H
(i)
k := diag(∇2

i f (xk)). RCD v.2: Hk := ∇2
i f (xk)

Instance info: N = 221, m = N/4, nnz(A) = 10−4mN and Blocks ≈ 10−2N.
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Numerical experiments: real world binary classification
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Info
Name: webspam
N ≈ 16 million, m ≈ 0.02N
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Thank you!

Paper: K. Fountoulakis and R. Tappenden. Robust block coordinate descent.
Technical Report ERGO-14-010, 2014

Software: http://www.maths.ed.ac.uk/~kfount/ (only for reproduction of the
presented experiments)

http://www.maths.ed.ac.uk/~kfount/

