Second-Order Methods for ℓ_1-Regularized Problems in Machine Learning and Sparse Signal Reconstruction

Ioannis Dassios Kimon Fountoulakis Jacek Gondzio

University of Edinburgh

Computational Linear Algebra and Optimization
for the Digital Economy
Outline

Non-smooth optimization problems
 - Machine Learning (Big-Data)
 - Sparse Signal Reconstruction (work in progress)

Methods and Techniques
 - Newton-type methods
 - Continuation Framework
 - Preconditioning

Numerical Results
 - Parallel Coordinate Descent Methods
 - First-Order Methods
 - Interior Point Methods
Non-smooth optimization problems
Formulation (Generalized Lasso)

$$\text{minimize } f_c(x) := c\|W^*x\|_1 + \frac{1}{2}\|Ax - b\|_2^2$$

- $x \in \mathbb{R}^m$
- $c \in \mathbb{R}_+$
- $W : E^l \rightarrow \mathbb{R}^m$, where $E = \mathbb{R}$ or \mathbb{C}
- $A \in \mathbb{R}^{n \times m}$, $b \in \mathbb{R}^n$
- The image of optimal x through W^* is sparse

Difficulties

- Non-smoothness
- Large scale problems
Assumptions

Assumption (A.1)
- \(\text{Ker}(W^*) \cap \text{Ker}(A) = \{0\} \iff \) set of minimizers is non-empty and compact

What about assumptions that guarantee a unique minimizer?

\[J := \{ i \in \{1, \ldots, l\} \mid W_i^* \tilde{x} = 0 \} \]

and

\[\tilde{x} := \arg\min_x \|W^* x\|_1, \quad \text{subject to: } Ax = \tilde{b} \]

where \(b = \tilde{b} + e \) and \(e \) is a vector of noise

Assumptions (A.2) (sufficient)
- \(\text{Ker}(W_{J^*}) \cap \text{Ker}(A) = \{0\} \)

- level of the error is bounded, i.e. \(\|e\|_2 \) is sufficiently small

S. Vaiter, G. Peyre, C. Dossal & J. Fadili,

Smoothing Options

- Huber: First-order differentiable
- **Pseudo-Huber**: Second-order differentiable

\[\psi_{\mu}(W^*x) = \sum_{i=1}^{I} \left(\sqrt{\mu^2 + (W_i^*x)(W_i^*x) - \mu} \right) \]
Perturbation Analysis

Original solution (unique from A.2): \(x(c) := \arg\min_x f_c(x) \)

Perturbed solution (unique from A.1): \(x(c, \mu) := \arg\min_x f^\mu_c(x) \)

where \(f^\mu_c(x) = c\psi_\mu(W^*x) + \frac{1}{2}\|Ax - b\|^2_2 \)

Theorem
There exists a \(\tilde{\mu} \) such that \(\forall \mu \leq \tilde{\mu} \) the difference of the two solutions is

\[\|x(c, \mu) - x(c)\|_2 = O(\mu) \quad \forall c, \mu. \]

I. Dassios, K. Fountoulakis & J. Gondzio,
A second-order method for sparse signal reconstruction problems (work in progress)
Methods and Techniques
Newton-type Methods & Continuation

Methods
- Newton Conjugate Gradients (N-CG)
 - Preconditioners for N-CG: Problem dependent, to be discussed.
- Quasi-Newton, i.e. LBFGS

Continuation Framework

1: Outer loop: For $k = 0, 1, 2, \ldots, \vartheta$, produce $(c^k, \mu^k)_{k=0}^\vartheta$.
2: Inner loop: Approximately solve the subproblem

\[\minimize_{x} f_{c^k}^{\mu^k}(x) \]

using a Newton-type method by initializing it with the solution of the previous subproblem.
Why continuation? Control of Spectrum

Spectrum (in practise): \(\gamma I_m \preceq \nabla^2 f_c^\mu(x) + \gamma I \preceq (\mathcal{O}(\frac{c}{\mu}) + \lambda_{\text{max}}(A^T A))I_m \)

Example without continuation: \(c = 10^{-2}, \mu = 10^{-10} \)

What happens in practise?

- During all stages of Newton-type method \(\kappa(\nabla^2 f_c^\mu(x)) = \mathcal{O}(\frac{c}{\gamma \mu}) \)

Example with continuation: \(c^0 = \mu^0 = \|A^T b\|_\infty \) and \(c = 10^{-2}, \mu = 10^{-10} \)

What happens in practise?

- early stages \(\kappa(\nabla^2 f_c^\mu(x)) = \mathcal{O}(\frac{1}{\gamma}) \)
- late stages \(\kappa(\nabla^2 f_c^\mu(x)) = \mathcal{O}(\frac{c}{\gamma \mu}) \)

Enable inexpensive preconditioning for small \(\frac{c_k}{\mu_k} \geq 10 \) (efficient only close to \(x(c, \mu) \))
Warm-starting

By setting $c^0 = \mu^0$, then

$$\lim_{{c^0 \to \infty}} c^0 \psi_{c^0}(W^*x) = \frac{1}{2} \|W^*x\|_2^2,$$

where $c\psi_c(W^*x) = \sum_{i=1}^I \left(c \sqrt{c^2 + (W_i^*x)(W_i^*x)} - c^2 \right)$.

Thus, for $c^0 \to \infty$ and $c^0 = \mu^0$, continuation is warm-started by approximately solving

$$\minimize_{x \in \mathbb{R}^m} \frac{1}{2} \|W^*x\|_2^2 + \frac{1}{2} \|Ax - b\|_2^2,$$

which has a unique solution (remember $\text{Ker}(W^*) \cap \text{Ker}(A) = \{0\}$!) with closed form

$$x = (A^TA + \text{Re}(WW^*))^{-1}A^Tb.$$
Machine Learning (Big-Data)
Sparse Least-Squares

\[
\text{minimize } c \|x\|_1 + \frac{1}{2} \|Ax - b\|_2^2
\]

where \(x \in \mathbb{R}^m\), \(b \in \mathbb{R}^n\), \(A \in \mathbb{R}^{n \times m}\) with \(n \geq m\).

Properties
- \(m, n\) can be \textbf{very} large, millions or billions
- \(A\) is \textbf{very} sparse, i.e. 20 non-zeros per column

\[
A^T A = \begin{bmatrix}
\text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x} \\
\text{x} & \text{x} & \text{x}
\end{bmatrix}
= \begin{bmatrix}
d & 0 \\
0 & d
\end{bmatrix}
\]
Observation

\[
\min_x \tau \|x\|_1 + \frac{1}{2} \|Ax - b\|_2^2,
\]

Quadratic Opt. with \(Q = A^T A \). For overdetermined systems \((n > m)\), \(Q \) is likely to be very well conditioned.

Small exercise: Regularized Steepest-descent vs Newton

Ignore \(\ell_1 \) term and compute:

\[
\nabla \phi(x) = A^T(Ax - b) \quad \text{and} \quad \nabla^2 \phi(x) = A^T A
\]

\[
d_{SD} = -\text{diag}(\nabla^2 \phi(x))^{-1} \nabla \phi(x) \quad \text{and} \quad d_N = -(\nabla^2 \phi(x))^{-1} \nabla \phi(x)
\]

If \(\nabla^2 \phi(x) \approx \text{diag}(\nabla^2 \phi(x)) \) then \(d_{SD} \approx d_N \).
Compared Solvers & Setting

- **RCDC: parallel Randomized Coordinate Descent**
 by P. Richtárik and M. Takáč
 - Exploits sparsity/separability of problem through multicore systems

- **dcNCG: doubly-continuation Newton Conjugate Gradients**
 - Continuation on both c and μ
 - PCG with $P = c\nabla^2 \psi_\mu(x) + \text{diag}(A^T A)$
 - Implements Ax and $A^T y$ in parallel

- Experiments are run on a 24 core system

- The problem generator has been first used by **Y. Nesterov**, in *Gradient Methods for Minimizing Composite Objective Function*
Sparse Least-Squares: increasing m

Info

- $\frac{\text{mass of } \text{diag}(A^\top A)}{\text{mass of } A^\top A} \approx 99.9\%$
- 20 non-zero elements per column of A
- $\mu = 10^{-12}$
- $f(x) - f(x^*) = O(10^{-6})$

Why is RCDC so fast? Coordinate directions biased with second-order information
Sparse Least-Squares: increasing density

Info

\[- \frac{\text{mass of } \text{diag}(A^\top A)}{\text{mass of } A^\top A} \geq 40\% \]

\[- \text{cond}(\text{diag}(A^\top A)^{-1} A^\top A) \leq 10^7 \]

- sparsity ratio: \# of non-zero elements per column of A

dcNCG is not affected by the sparsity ratio of A
Sparse Least-Squares: difficult cases

- The singular values of A are uniformly distributed in $(10^{-1}, 10^6)$.

- Two clusters of singular values, 100 are 10^6 and the rest are 10^{-1}.

PCDM was terminated after 10 million iterations $\approx 10k$ seconds and 1 billion iterations ≈ 31 hours.
Sparse Signal Reconstruction
(work in progress)
Sparse Signal Reconstruction Formulation

\[
\text{minimize } c \|W^*x\|_1 + \frac{1}{2} \|Ax - b\|_2^2
\]

where \(x \in \mathbb{R}^m\), \(b \in \mathbb{R}^n\), \(A \in \mathbb{R}^{n \times m}\) with \(m \geq n\).

Problems

- **Least Squares**: \(W\) is the identity
- **\(\ell_1\)-analysis**: \(W : \mathbb{R}^l \to \mathbb{R}^m\) is arbitrary
- **isotropic TV (iTV)**: \(W : \mathbb{R}^{m-1} \to \mathbb{C}^m\) is tridiagonal
- **iTV & \(\ell_1\)-analysis**: combination of the last two (not well studied yet)

\[
\text{minimize } \sum_{i=1}^{2} c_i \|W_i^*x\|_1 + \frac{1}{2} \|Ax - b\|_2^2
\]
Properties of A and W

- **rows** of A are nearly orthogonal to each other

\[\|AA^T - I_n\|_2 \leq \delta \]

- linear combinations of any small subsets of **columns** of W satisfy the: **Restricted Isometry Property (W-RIP)**

\[\|W_B^* A^T A W_B - \rho W_B^* W_B\|_2 \leq \delta_k \in (0, 1). \]

where W_B is a subset of columns of matrix W

Candès, Eldar, Needell & Randall,
Matrix $\tilde{A} \in \mathbb{R}^{n \times k}$ ($k \ll m$) is built of a subset of columns of $A \in \mathbb{R}^{n \times m}$.

\[
A = \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix} \quad \rightarrow \quad \tilde{A} = \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix}
\]

\[
\tilde{A}^T \tilde{A} = \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix} = \begin{pmatrix}
\vdots \\
\vdots \\
\vdots \\
\vdots \\
\end{pmatrix} \approx \rho I_k.
\]
Preconditioner for N-CG

Approximate: \(H = c \nabla^2 \psi_\mu(W^*x) + A^T A + \gamma I_m, \quad \gamma > 0 \)

with:
\[
P = c \nabla^2 \psi_\mu(W^*x) + \left(\frac{n}{m} + \gamma \right) I_m,
\]

(\(A \) is usually built of a subset of \(n \) rows of an orthonormal matrix \(U \in \mathbb{R}^{m \times m} \))

\[\frac{n}{m} := \arg \min_\xi \| A^T A - \xi I_m \|_F \]

Based on three facts:

- For small \(\mu \leq 10^{-4} \) and close to \(x(c, \mu) := \arg \min_x f^\mu_c(x) \)
 \[\| \nabla^2 f^\mu_c(W^*x) \|_2 \approx \| c \nabla^2 \psi_\mu(W^*x) \|_2 \]
- \(\| A A^T - I_n \|_2 \leq \delta \implies \lambda_{\text{max}}(A^T A) \leq 1 + \delta \)
- W-RIP
Preconditioner (Example $W=\text{identity}$)

Prior information for $x(c)$
- $k \ll m$ components are non-zero
- the majority $m - k$ components are zero

Information for $x(c, \mu)$
For sufficiently small μ & $\|x(c, \mu) - x(c)\| = O(\mu)$, we expect that
- k components of $x(c, \mu)$ are non-zero
- the majority $m - k$ are $O(\mu)$

Information for $\nabla^2 \psi_{\mu}(x(c, \mu))$ (diagonal matrix)
- k components are very small
- the majority $m - k$ are $O\left(\frac{1}{\mu}\right)$ (large!!)

Given that $\lambda_{\max}(A^T A) \leq 1 + \delta$, for moderate c we expect that at optimality

$$\|\nabla^2 f_c^\mu(W^* x(c, \mu))\|_2 = \|c \nabla^2 \psi_{\mu}(W^* x(c, \mu)) + A^T A\|_2 \approx \|c \nabla^2 \psi_{\mu}(W^* x(c, \mu))\|_2$$
Spectral properties

Preconditioner performance for LS \((W \text{ is the identity})\)

Theorem (Brief description)

Close to the solution \(x(c, \mu) := \arg\min_x f^\mu_c(x)\) *the following holds*
- \(|\lambda(P^{-1}H) - 1| \leq \delta_k + \mathcal{O}(\frac{\mu}{c})|

Preconditioner performance for iTV

![Convex, Unprec. CPU time: 19.1, Prec. CPU time: 13.1](image1)

![Strongly Convex, Unprec. CPU time: 2.6, Prec. CPU time: 13.5](image2)
Solving systems with P

- **For Least Squares**: P is diagonal (inexpensive)

- **For isotropic Total-Variation**:
 P is a 5-diagonal matrix (inexpensive)

- **For ℓ_1-analysis where the matrix W is arbitrary**:
 P does not have a structure (expensive)

 Solution: control of spectrum through continuation on both c and μ
Compared Solvers & Setting

Least Squares

- **SPGL1**: Spectral Projection Gradient method
 by E. van den Berg and M. P. Friedlander

- $\ell_1-\ell_s$: interior point method
 by S. Boyd et. al.

l_1-analysis and isotropic Total Variation

- **TFOCS**: *Templates for First-Order Conic Solvers*
 by S. R. Becker, E. J. Candés and M. C. Grant
 – Auslender and Teboulle’s single-projection method

- **TwIST**: *Two-step Iterative Shrinkage/Thresholding*
 by J. Bioucas-Dias, M. A. T. Figueiredo

- We reproduce experiments as given by papers/demos in existing state-of-the-art solver packages.
Comparison on 18 out of 26 classes of problems (all but 6 complex and 2 installation-dependent ones).

Results
On 36 runs (noisy and noiseless problems), dcNCG:
- is the fastest on 6,
- is the second best on 21 (with large gap from the first), and
- overall is robust.
ℓ_1-Analysis (recovery of radar pulses)

Info

- W is a Gabor frame
- A is a block diagonal matrix, with ± 1 for entries
- Subsampling: $m = 12n$
- Noise is added so that the small pulse has SNR 0.1 dB
- **dcNCG** ($\mu = 10^{-5}$): time=0.3 min., rel. err.=1.56e-3
- **TFOCS**: time=1.0 min., rel. err.=1.82e-3
Isotropic Total-Variation

Info

- A is a partial Fourier matrix
- Sub-sampling is: \(m = 4n \)
- SNR 10 dB
- \textbf{dcNCG} (\(\mu = 10^{-4} \)): time=13.1 sec., PSNR=17.9 dB
- \textbf{TFOCS}: time=63.2 sec., PSNR=17.8 dB

\[
PSNR = 20 \log_{10} \left(\frac{\sqrt{m_1 n_2}}{\|x - \bar{x}\|_F} \right)
\]
Isotropic Total-Variation and ℓ_1-Analysis (denoising)

Info

- Reg.: $c_1 \| W_1^* x \|_1 + c_2 \| W_2^T x \|_1$
- W is 9/7 bi-orthogonal wavelet transform
- A is the identity
- SNR 10 dB
- **dcNCG ($\mu = 10^{-4}$):** time=6.6 sec., PSNR=27.6 dB
- **TFOCS:** time=12.7 sec., PSNR=27.5 dB
Isotropic Total-Variation, deconvolution problem

Info

- A is a deconvolution operator

- blur uniform 9*9, SNR 40 dB,

- **dcNCG** failed!

- **dcQN** ($\mu = 10^{-15}$): time=10.91 sec., ISNR.=17.4 dB

- **TwIST**: time=9.48 sec., ISNR=17.3 dB

$ISNR = 10 \log_{10} \left(\frac{\| \text{vec}(x-x_n) \|_2}{\| \text{vec}(x-\bar{x}) \|_2} \right)$
Conclusion: First-order methods have dominated the field of ℓ_1-regularized problems, but second-order information should not be ignored!

Thank you!

I. Dassios, K. Fountoulakis, and J. Gondzio.
A second-order method for sparse signal reconstruction problems. *In preparation.*

K. Fountoulakis and J. Gondzio.
Why $\rho = \frac{n}{m}$?

A is usually built of a subset of n rows of an orthonormal matrix $U \in \mathbb{R}^{m \times m}$. Thus,

$$\text{diag}(U_B^T U_B) \approx \frac{n}{m} I$$

where B is the set of indices of the chosen n rows from U. Hence,

$$\rho := \arg \min_{\xi} \| A^T A - \xi I_m \|_F = \| U_B^T U_B - \xi I_m \|_F$$

and $\rho = \frac{n}{m}$.
Figures 1 and 2
- Problem size: reconstruction of 256×256 images
- Tolerance of PCG: 10^{-2}
- Both versions required same number of iterations
- $\mu = 10^{-4}$ (Figure 1), $\mu = 10^{-3}$ (Figure 2)
Derivatives of Pseudo-Huber

For $W : \mathbb{C}^l \to \mathbb{R}^m$

Gradient at x: $\frac{1}{\mu} \text{Re}(WG(x)W^*x)$, where $G_{ii}(x) = \frac{1}{\sqrt{1 + \frac{[Wx]_i[Wx]_i}{\mu^2}}} \quad \forall i$

Hessian at x: $\frac{1}{2\mu}(\text{Re}(WY(x)W^*) - \text{Re}(W\tilde{Y}(x)W^T))$,

where $Y_{ii}(x) = G_{ii}(x) + G_{ii}^3(x)$ and $\tilde{Y}_{ii}(x) = \frac{1}{\mu^2}[Wx]_i^2 G_{ii}^3(x) \quad \forall i$
iTV Tridiagonal Matrix

\[\|x\|_{iTV} = \sum_{i,j} \sqrt{|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2} \]

where \(x \) is an \(m \times m \) image.

Notice, that this norm calculates for all pixels the horizontal and vertical differences of a given pixel. We can rewrite it as

\[\|x\|_{iTV} = \|W^*y\|_1 \]

where \(y = x(:) \in \mathbb{R}^{m^2} \), and

\[
[W^*y]_{(i-1)m+j} = (y_{im+j} - y_{(i-1)m+j}) + \sqrt{-1}(y_{(i-1)m+j+1} - y_{(i-1)m+j}), \quad 1 \leq i, j \leq m
\]

The matrix \(W^* \) places horizontal and vertical differences around a given pixel at position \(i, j \) of an image into the real and imaginary elements of the output.
What close to the path $x(c, \mu)$ means?

For sufficiently small μ the optimal solution $x(c, \mu) \ \forall c$ satisfies:

- $k \ll m$ components of $W^*x(c, \mu)$ tend to non-zero values,
- the rest $m - k$ components are of $O(\mu)$.

In words, the term $W^*x(c, \mu)$ exhibits a separability behaviour. All points near $x(c, \mu)$ with similar separable behaviour as $x(c, \mu)$, we consider them as points close to $x(c, \mu)$. This result is quantified in the theorem, but for presentation purposes the details have been omitted.