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The average of a color distribution has special significance for color coding (e.g., to estimate the illuminant)
but how it depends on the visual representation (e.g., perceptual versus cone-opponent) or nonlinearities
(e.g., categorical coding) is unknown.Wemeasured the perceived average of two colors shown alternated in spatial
arrays. Observers adjusted the components until the average equaled a specified reference hue. Matches for red,
blue–red, or yellow–green were consistent with the arithmetic mean chromaticity, while blue–green settings
deviated toward blue. The settings show little evidence for categorical coding, and cannot be predicted from
the scaled appearances of the individual components. © 2014 Optical Society of America
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1. INTRODUCTION
Recently, a wide array of studies have explored the perception
of “ensemblestatistics”ofscenes, suchas theability to judge the
average value of stimuli composed of distributed features [1].
Early reports showed that observers can accurately estimate
the average direction of motion of a field of randomly moving
dots [2,3], the average orientation of a set of lines [4,5], or the
average size of a set of circles [6]. Moreover, these judgments
can be made without attention [7] or when elements in the
display are rendered invisible, for example, by crowding [8].
The average of a stimulus set can also be represented more
accurately than the individual members, and observers may
be sensitive to changes in the average even when they are
unaware of a change in the individual elements [9]. This has
led to the suggestion that the visual system might directly en-
codesummarystatistics, suchas theaveragefeatureproperties,
in order to allow efficient representations of scenes. Similar
summary representations have been found for higher-level
properties of images, including the perceived gender, identity,
or expressionof faces [10–12], or the averagedirectionof point-
light walkers simulating biological motion [13]. They have also
been shown for other modalities, such the perception of sound
ensembles [14,15]. This suggests that ensemble coding is a
common and consistent property of sensory representations,
and have illustrated the importance of perceiving the average
of stimulus distributions in visual coding.

In this study we explored average judgments for color.
Despite the recent spate of interest in summary statistics in
perception, there has been little corresponding work within
the context of color perception. As a first step, we examined
how well observers could estimate the average of a pair of col-
ors, and what processes might influence their judgments. The
approach we used is different from standard procedures used
for testing ensemble coding, which is focused on addressing
whether the mean value can be extracted automatically or
whether it might be represented with higher fidelity than

individual members [1]. In this study we had the more limited
aim of asking simply what mean observers select when the
component hues are fully available for inspection, in order
to explore what this average might be based on.

For color, the mean may play a special role. For example,
the average color in a scene is a clue to the illuminant and,
thus, an important potential cue for color constancy, allowing
the visual system to discount spectral variations in order to
assign stable colors to objects [16]. Moreover, mechanisms
sensitive to the mean color occur very early in the visual path-
way. The receptors themselves adapt to the average color
sampled over time by successively scanning the scene, a proc-
ess that is again fundamental to color constancy [17,18]. Indi-
viduals are also very sensitive to a common versus
nonuniform shift in the chromaticities of a set of colors
and, thus, can readily detect sudden changes in the mean
[19]. Yet, how and how well they can actually judge the mean
remains unknown.

How colorsmight be perceptually averaged can, potentially,
reveal the stages and representations on which this averaging
depends. Color coding is known to undergo a series of transfor-
mations at different levels of the visual system [20]. Within the
retina and LGN, the initial signals from the long, medium, and
short wavelength-sensitive cones (L, M, and S) are reorganized
in terms of three cardinal cone-opponent axes, two that carry
chromaticcontrastbasedoncomparingeithertheLandMcones
(LvsM)ortheSsignalsopposedbythecombinedLandMsignals
(SvsLM), and a third nonopponent dimension conveying light-
ness or luminance [21]. At cortical levels these are elaborated
into “higher-order” mechanisms that include color channels
tuned to a variety of different hue and lightness directions,
and these may not retain the separable contrasts along the car-
dinal dimensions [22,23]. For example, cortical responses and
visual performance on some tasksmay beweaker for the blue–
yellow dimension of color space than for a purplish-greenish
direction that has the same LvsM and SvsLM component
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contrasts, but paired in opposite phase [24–26]. The number of
further potential transformations remains unclear. However, it
is well known that the red versus green and blue versus yellow
perceptual opponencies that are thought to define the principal
dimensions of our phenomenal experience of color are not
aligned with the cardinal axes [27–30]. For example, as sug-
gested above, stimulus variations along a perceptually pure
blue–yellow axis do not isolate either of the cardinal chromatic
axes and are instead roughlymidway between them (i.e., these
colors lie along a diagonal in the plane defined by the cardinal
chromatic axes). Moreover, opposing unique hues, such as red
andgreen, arenot complementary (onopposite sidesof gray) in
termsof thecardinalaxes.Suchdifferencesraise thequestionof
which, if any, “space” an observer might operate within to
estimate the relationships or average of a set of colors.

Finally, the representationof color also includes anumberof
potential nonlinearities that could influence averaging judg-
ments. For example, cone signals andopponent-cone contrasts
may reflect compressive nonlinearities in the neural responses
thatcouldbias thelinearmeanofasetofcontrasts(e.g., [31,32]),
though, in practice, responses to moderate contrasts appear
roughly linear [33]. At higher levels, color coding may also be
impactedbynonlinearities, suchascategoricalcoding, inwhich
the stimulus is represented discretely (e.g., as simply green or
blue) rather than as a continuously varying hue. Categorical
effects have been reported for color in a number of studies
(e.g., [34–37], though they remain controversial and it is unclear
underwhichconditionsortaskstheymightbemanifest, [38–40].
A tendency to categorize when averaging colors could again
lead to different, nonlinear weightings of the component hues
in thestimulus,whichshouldagainbiasestimatesof theaverage
in predictable ways.

Summary judgments of color distributions thus provide a
potentially rich context for exploring not only ensemble per-
ception but also many of the properties of color perception
itself. In the current work, we examine these summary esti-
mates using pairs of perceptually similar colors (e.g., blue
and green), where the task of the observer is to judge the
relative balance of the pair. A companion paper explores
our ability to judge the metrical relationships between more
disparate color categories. Here, we focus on how well
observers can actually judge the mean of colors, whether
these means reflect nonlinearities in color coding, and which
level of representation (e.g., cone-opponent or perceptual)
might underlie the judgments.

2. METHODS
A. Display
Stimuli were presented on a Sony 500PS CRT monitor con-
trolled by a Cambridge Research Systems VSG 2∕5 graphics
card, which allows colors to be displayed with high resolution.
The monitor was calibrated and gamma-corrected using a
Photo Research PR650 spectroradiometer.

B. Participants
Observers included one of the authors (JW) and 16 additional
participants who were University of Nevada, Reno students
andwereunawareof the theoretical aimsof the study.Different
observers participated in different subsets of experiments,
with all observers tested in multiple conditions. Because blue–
green judgments have been a focus of recent studies on color

appearance and categorical coding, we tested larger numbers
of observers for this target color (a total of 13 for the yokedcon-
dition and 7 for the fixed hue condition, as defined below). This
was in order to fully evaluate the pattern of the settings for this
color.Fortheremainingtargetcolors,smallersubsetsofobserv-
ers were tested, typically with 4 observers assessed for a given
condition. All participants had normal color vision as assessed
bytheCambridgeColorTestandnormalorcorrected-to-normal
acuity. Participation was with informed consent following pro-
tocols approved by the university’s Institutional ReviewBoard.

C. Stimuli
For all experiments, the stimulus consisted of an 11 by 11
square array of 0.75 deg uniform circles with a center-to-
center spacing of 1.35 deg (Fig. 1). The array was shown
on a uniform 15 by 20 deg gray background with the chroma-
ticity of (CIE 1931 x; y:0.31; 0.316) and the same luminance as
the array (30 cd∕m2). Each circle included a narrow black
outline to help demarcate it from the background. The array
could be composed of a single color common to all elements,
or alternated between two different colors. The colors were
specified within a scaled version of cardinal axis space, in
which the two axes correspond to the LvsM and SvsLM car-
dinal chromatic directions and chromaticities are given by
their angle and distance from the gray neutral point. Signals
along the LvsM and SvsLM axes were scaled based on pre-
vious studies to roughly equate contrast sensitivity with units
corresponding very roughly to multiples of threshold. The re-
lationship between coordinates in our scaled space and the
rmb, bmb coordinates of the MacLeod–Boynton chromaticity
diagram [41] is given by

LvsMcontrast � �rmb − 0.6568� � 2754; (1)

SvsLMcontrast � �bmb − 0.01825� � 4099: (2)

Within this space, the cardinal axes corresponded to angles
of 0 and 180 deg (�LvsM and −LvsM) and 90 and 270 deg

Fig. 1. Stimulus array (color online). An example of the stimulus ar-
ray with the elements alternating between the two colors. In one task
(yoked hue pairs) the hue angle between the two components
remained constant and the pair was varied together to make the set-
ting. In the second task (fixed single component), the color corre-
sponding to the corner elements remained fixed while observers
varied the hue of the second component.
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(�S and −S). A common scaling was used for all observers,
with luminance defined photometrically. Contrast matches
across the different axes (not reported) showed that this
nominal scaling roughly equated the perceived suprathreshold
contrasts for our observers. In uniform hue conditions con-
trast was varied at values of 20, 40, 60, or 80, while the hue
angle of the components remained the same (in other words,
there was no hue difference between the components). The
range of contrasts for the uniform condition was measured,
in part, to test whether any shifts in the average hue of a pair
could be due to a change in perceived hue with contrast (since
the physical mixture of a pair of hues with the same contrast
has a lower physical contrast than the components). For the
two-component experiments, the contrast was fixed at a value
of 80, and the component colors were instead varied only in
their hue angle.

D. Procedure
Observers freely viewed the display binocularly from a
distance of 114 cm in an otherwise dark room. In some trials
(yoked hue pairs) the angular difference between the pair of
colors remained fixed while observers adjusted the absolute
angles of the pair. The two components were separated by an-
gles of 10, 20, 40 or 80 deg for these yoked conditions. In a
second set of conditions (fixed single component) one of
the component colors was fixed and the observer instead var-
ied the angle of the remaining color. In this case for the differ-
ent settings the fixed angle was varied in 10 deg increments
over a wide range of angles spanning either side of the chosen
target color. In both cases the task of the observer was to
adjust the pair until the average matched a specified criterion.
A specified criterion color was never shown to the observer
(and indeed corresponds to different physical stimuli for dif-
ferent observers). Thus, the setting was based on an internal
reference for the color judgment, which is a standard pro-
cedure for measurements of color appearance. Specified cri-
teria included balanced binary hues of blue–green (i.e., an
equal perceived mixture of blue and green), red–blue,
green–yellow, or a unique red (i.e., a red that appeared neither
bluish nor yellowish). These four hues were selected because,
for single colors, they lie roughly along the 4 poles of the cone-
opponent space and, thus, allowed us to sample how colors
were averaged in terms of the signals along the cardinal axes.

The instructions to the observer were, for example in the
blue–green trials, to adjust the pair of colors until the average
appears “to have an equal amount of blue and green present,”
though the nature of the staircase task required that they sim-
ply report whether the average was “too blue” or “too green.”
The initial hue angles of the test stimuli were set at random
values varied around the 4 poles of the cardinal axes (so that
they were in the rough vicinity of the relevant quadrants
of color space for each target color). Hue angles of the test
stimuli were then varied with a staircase procedure based
on the response to the pair (again “too blue” or “too green”
for the blue–green judgment). On each trial, the array was
displayed for 250 msec, and then returned to a gray screen
for 1500msec, during which the observer made their response.
This sequence continued until the staircase reversed direc-
tions 13 times, with the chosen angle based on the mean of
the last 8 reversals. Four repeated settings were made for
each hue combination, with the stimulus condition (hue sep-
aration or which hue was fixed) counterbalanced across runs.

The results reported are based on the means and standard
deviations of these 4 repeated settings per observer and
condition.

3. RESULTS
A. Yoked Hue Pairs
In the first set of experiments we explored the average hue in
color pairs that differed by a fixed hue angle and, thus, were
covaried to set the average. Figure 2 illustrates the resulting

Fig. 2. Results for yoked hue pairs. Examples of the individual
settings made by two observers for each of the 4 reference hues
(BG, blue–green; RB, blue–red; R, red; YG, yellow–green). The filled
symbols plot the settings when both components had the same hue
(i.e., a hue-angle difference of 0) and were presented at four levels
of contrast (20, 40, 60, or 80, corresponding to the increasing concen-
tric circles). The unfilled symbols plot the settings when the pair had a
constant fixed contrast of 80 and, thus, lay along the outermost circle,
but differed in hue angle by 10, 20, 40, or 80 deg, with the average for
larger differences plotted closer to the origin consistent with the ac-
tual chromaticity of the mixture (as indicated for the four blue–green
hue pairs in the top panel).
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settings for two representative observers by plotting the
coordinates of the settings in the LvsM and SvsLM plane.
The filled symbols show the settings when the array was
composed of a single color, with the contrast fixed at a value
between 20 and 80. These replicate the basic features found
previously for the loci of unique and binary hues in the cone-
opponent plane [27,28]. Unique red is close to the �L pole of
the LvsM axis, while the remaining three poles instead corre-
spond to balanced mixtures of blue–green (−L), red–blue
(�S), or yellow–green (−S). The two figures also illustrate
the large individual differences in hue loci among color-
normal observers [27,42].

The unfilled symbols plot the settings when the array was
composed of two different hues, with the difference varying
between 10 and 80 deg, with the contrast of the two compo-
nents fixed at 80. To aid visualization, the contrast of the aver-
age is arbitrarily given by the actual mean of the two
chromaticities in the pair, which obviously plots within the
circle on which the two components lie, and closer to the ori-
gin the greater their separation. For example, for a hue differ-
ence of 80, the mixture has a contrast of 61. (Importantly,
however, this is not intended to imply that, for the observers,
the average for the pair necessarily appeared to have a lower
average contrast than either component.)

For both observers there are conspicuous biases in the blue–
green settings as the average difference between the two com-
ponenthues increases, and thiswasaconsistent trendacrossall
observers.Forexample,Fig.3(a)showsthemeansettings for12
individuals.As theangulardifferencewithin thepairs increases,
the average rotates toward progressively shorter angles. This
corresponds to assigning less weight to blue (or more weight
togreen).Note that thiseffect cannot reflect changes in thecon-
trast of the physicalmean, since the hue angles chosenwith the
uniform arrays remain roughly independent of contrast. In-
stead, thereisastrongandconsistentnonlinearity inblue–green
average judgments, at least when representedwithin the linear
cone-opponent space.

The mean shifts with increasing separation were accompa-
nied by more variable judgments of the average. This is shown
in Fig. 3(b), which plots the average standard deviation of the
12 observers’ settings. Variance was significantly greater even
when the two components differed only by 20 deg (t � 2.91,
df � 22, p � .008). If sensitivity to the average were limited by
the uncertainty in judging the hue of the individual compo-
nents, then the variance should be twice as large for the pairs
[Fig. 3(b), dashed line). However, by a separation of 80, the
estimates exceed this value (t � 3.50, df � 11, p � :005].
Thus, the ability to estimate the average of the two colors
shows both systematic biases and increasing error as the dif-
ference between the colors increases.

While individual differences were large, we did not find
similar consistent biases for the other 3 reference hues exam-
ined. This can be seen in Fig. 4, which plots the average of the
settings for all observers for each of the 4 measured hue loci.
Average settings for red remained aligned with the uniform
color judgments along the �L axis. The averages for blue–
red and yellow–green are instead shifted slightly though again
there were large individual differences and, thus, these overall
shifts are not significant.

Weconsidered fourpossiblebases for theobservedmatches.
The first was optical, and assumed that the matches are

linear with cone excitations but appear biased in the
blue–green region because of chromatic aberration. Wave-
length-dependent blurring produces large losses in chromatic
contrast in the retinal image and is a major factor contributing
to the fall in chromatic contrast sensitivity with increasing spa-
tial frequency [43]. These aberrations may also be responsible
for large size-dependent changes in the relative salience of dif-
ferent chromatic signals in arrays similar to thosewe used [44].
Obviously, simplyblurring the twocolors togetherwouldnotbe
expected to alter the average. Yet, chromatic aberration could
impact the balance if it blurred one component more than the
other, and the predicted differences in blur are, in fact, largest
for the blue and green pair [45]. Thus, we cannot exclude some
contribution of this factor. However, it is unlikely to be the only
cause of the biases. First, the fundamental spatial frequency of

Fig. 3. Yoked hue pairs. (a) The mean blue–green settings for 13
observers as a function of the contrast of a uniform-hue array (left-
most points) or the hue-angle difference of pairs with a fixed contrast
of 80 (rightmost points); error bars � �1 SEM. (b) The average stan-
dard deviation of the individuals’ settings for the same stimuli, based
on 4 repeated settings per condition. Error bars � �1 SEM. The
dashed lines show the predicted difference in the standard deviation
of the settings for the uniform versus 2-component arrays if the errors
in judging the two components are independent and additive.
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thearraywas, infact, low(0.5 c∕deg).Second, if thematchesare
based on simply the average chromaticity, then the required
contrastdifferencesbetweentheblueandgreenarefartoolarge
[e.g.,assumingtheblue–greenbalanceisat180deg, thematchat
160 deg when the blue and green are 80 deg apart requires
that the blue contrast is only 40% of the green contrast:
sin�200°� � 0.4 sin�120°� � sin�180°�]. Instead, direct contrast
matches between stimuli at different hue angles suggested that
perceived contrastwas similar along the different axes. Finally,
it cannot be due to blur-induced changes in the perceived hue
angle of the stimuli, since the perceived hue of the spots re-
mainedstablewhenwedoubledorhalved theviewingdistance.

The foregoing suggests that at least part of the blue–green
bias reflects nonlinearities in the cone-opponent responses.
For example, suppose that observers’ judgments are based
on a compressive nonlinearity such as the log of the cone re-
sponses [Fig. 4(a)]. This would predict that S cone increments
(hue angles > 0 deg and<180 deg and, thus, above the LvsM
axis) would have weaker effective contrast than S cone dec-
rements (angles > 180 deg and <360 deg). Predictions based
on this assumption [gray squares in Fig. 4(a)] provide a rough
approximation to the shifts toward (weaker) blues in the
blue–green settings. It also predicts the absence of biases
along the S axis itself, where the average instead depends
on balancing the L and M responses. This is because along
this axis the L and M signals are opposed and, thus, the mod-
eled nonlinearities within each largely cancel. This asymmetry
is seen in how light adaptation alters the effective color con-
trast along the LvsM and SvsLM axes [46,47]. However, this
account fails for the red settings since, like the blue–green
axis, these again depend primarily on balancing the S cone
signals and, thus, should show the same biases as blue–green.
Moreover, nonlinearities in the cone-opponent contrasts are
more generally an unlikely explanation because, as we noted
above, under a constant state of adaptation the cone-
opponent contrasts appear fairly linear [21,33,48].

In the third case, we asked whether the average hues could
be predicted from the average appearance of the component
colors. That is, observers might first judge the proportion of
blue and green in the individual elements, and then adjust
these so that these perceived proportions are balanced. This
could potentially imply a very late neural locus for the judg-
ments, at a level where the stimuli are coded in terms of their
perceptual dimensions. To examine this, we used previous
measures of hue scaling functions in which observers rate
the proportion of red versus green or blue versus yellow
present in the hue. Malkoc et al. [49] sampled these at
15 deg intervals in the LvsM and SvsLM plane, at a contrast
similar to the one we used in the current study. We used their
average reported function (Fig. 3 of their paper) and then used
a spline interpolation to estimate the values for intermediate
angles. We then calculated the cone-opponent angles that
would be required so that the average of the perceived hues
of a pair equaled the chosen reference hue. For example, if
one spot appeared 30% blue and 70% green, then the second
spot would need to appear 70% blue and 30% green to
form a balanced blue–green. These predictions are shown
in Fig. 4(b). Note that the hue angles based on the hue scaling
are in good agreement with the average hue loci for the uni-
form arrays measured in the current study. However, these
again fail to predict the mixtures and, in particular, in this

case predict large biases in the red averages while very little
bias for blue–green, the opposite of the pattern we actually
observed. Intuitively, these predictions reflect the fact that,
as noted on the figure, unique yellow and blue are very differ-
ent angular distances from unique red (∼60 versus 135 deg,
respectively). Thus, a pair of hues symmetric about the red
locus will have a stronger yellow than blue component, and
the pair must be biased toward blue to compensate for this.
Conversely, the loci of blue and green are at more similar dis-
tances from the blue–green boundary (∼40 versus 35 deg
away from a blue–green boundary at 180 deg), so that pairs

Fig. 4. Yoked hue pairs. The average settings for the R, RB, BG, or
YG hues, based on 4 or more observers tested for each hue. As in
Fig. 2, filled circles plot the settings for uniform arrays presented
at four levels of contrast. The unfilled circles plot the settings for
2-component arrays where the contrast was fixed at a value of 80
while hue angle differences between the two components were 10,
20, 40, or 80 deg. The gray squares show the settings predicted if
observers are basing their responses: (a) on the mean of the log
cone-opponent responses or; (b) on the average of the perceived
red–green and blue–yellow proportions in each component based
on hue scaling. The italic characters in the bottom figure show the
loci of the unique and binary hues given by the hue-scaling function.
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straddling the blue–green locus should remain perceptually
balanced.

Finally, because the stimulus is composed of spatially inter-
leaved elements, as a fourth possibility we considered
whether the biases in the mean for BG could result from chro-
matic induction between the components. To account for the
BG shifts this would need to be asymmetric and stronger from
the blue (i.e., so that blue components caused larger hue shifts
in the green elements than vice versa). However, this should
again predict that the biases should systematically vary with
the spatial frequency of the stimuli and would again be ex-
pected to show similar shifts for the unique red settings if
the induction is controlled by separable signals along the
cone-opponent axes [50]. Moreover, this account is again
based on the assumption that observers base their mean per-
cepts on the phenomenal appearance of the component col-
ors. Induced changes in appearance would, therefore, need to
effectively cancel the biases predicted by the perceived color
of the isolated components in the red settings, requiring that
the induced bias produce shifts in opposite directions for the
BG and R averages [Fig. 4(b)]. For these reasons, induction
also fails to account for the observed pattern. In summary,
whatever the basis for the averaging, these analyses surpris-
ingly suggest that it is not based on simply averaging either the

perceived hue of the individual components or on the mean
of separable signals along the LvsM and SvsLM cone-
opponent axes.

B. Hue Pairs With a Fixed Component
In the second set of experiments, we modified the procedure
so that the hue angle of one of the two components remained
fixed, while the observer varied the angle of the second com-
ponent to set a specified average color. Representative results
for 4 observers are again shown in Fig. 5, which, this time,
plots the chosen variable hue as a function of the fixed hue
angle. For the blue–green settings, the fixed component
was set to angles ranging from 120 to 210 in 10 deg incre-
ments. If the average depended on the linear mean of the
cone-opponent signals, then the settings should lie along a
straight line passing through the blue–green locus (i.e., if
the fixed hue were 20 deg off in the green direction then
the variable should be set to be 20 deg in the blue direction,
etc.) Instead, the matches are clearly curved, again consistent
with a weaker response to blue components than the green. In
fact, as the figure shows, the blue–green settings are again rea-
sonably approximated by assuming the average is based on
the log of the S cone signals. However, as we found before,
the settings for the remaining three target hues were instead

Fig. 5. Fixed single component. The blue–green settings for 4 individual observers when one of the two color components remained fixed. The
filled symbols plot the original measured settings. The unfilled symbols plot the mirror settings by exchanging the abscissa and ordinate. The gray
lines plot the settings predicted by averaging the linear or log cone-opponent responses.
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roughly linear. Thus, the pattern of results remained similar
across the two paradigms.

We chose the fixed-hue conditions because they allowed us
to test for possible categorical biases in the matches. These
are predicted to occur if the subject represents the colors dis-
cretely in terms of their dominant hue (e.g., treating all hues
composed of more than 50% blue as simply “blue”). In the ex-
treme this would mean that, whenever the fixed hue lay on the
green side of the blue–green boundary, balancing it would
only require setting the variable hue to be just on the blue side
of the boundary. In particular, the staircase should converge
at the category boundary, where the percept of the average
shifts from “too green” to “blue–green.” This extreme is clearly
unrealistic because it also predicts that we would not be able
to discriminate between different shades within either cat-
egory. However, it remains possible that there are categorical
biases that might lead the observer to give extra weight to the
dominant hue in the stimulus. To test for these, we followed
Webster and Kay [39] in assuming that the response to the
stimulus was composed of two decisions: an analog response
that varied continuously with hue angle and a discrete re-
sponse that represented the color category. The response
for each color in the pair could then be modeled as a weighted
average of these two components, with the balance matched
by equating the total responses,

�1 − α�ΘF � αΘF � �1 − α�ΘV � αΘCB; (3)

where ΘF and ΘV are the fixed (F) and variable (V) hue angles
at which the analog responses match, ΘCB is the angle of the
category boundary at which the categorical responses be-
come matched, and α is the weight given to the categorical
response. As α increases, the categorical bias increasingly
pulls the setting of the variable hue angle toward the category
boundary, leading to an asymmetry where smaller offsets of
the variable hue angle from the boundary are required to bal-
ance the color of the component with a fixed hue angle.

Figure 6 illustrates the matches for different degrees of cat-
egorical bias, assuming the matches follow the linear average
of the hue angles. These lie along the negative diagonal if
there is no categorical bias, and along the fixed blue–green
boundary as the limit of complete categorical coding is
approached. As we have seen, the blue–green settings them-
selves are not linear. Yet, regardless of their form, an analog
representation of the hues predicts that the same matches will
occur whether the green or blue component is fixed. In con-
trast, any categorical bias should instead lead to an asymme-
try in the settings, since the variable angle will be pulled
toward the category boundary. That is, a weak blue will be
sufficient to match a strong fixed green, yet a weak green will
suffice when a strong blue is fixed. In the settings, this asym-
metry can be revealed by reflecting the matches about the
blue–green boundary; exchanging the x and y values in the
plots. Without a categorical effect the two curves should
superimpose, while a categorical bias should instead result
in a steeper slope for the reflected settings. For the first 3
observers in Fig. 5 there is little evidence of a systematic
asymmetry between their original and reflected settings.
Intriguingly, however, the fourth plot shows one observer
who shows what appears to be a substantial categorical
bias—her reflected settings are consistently steeper. In fact,
her settings are reasonably fit by assuming a log compressive

S cone response combined with an equally weighted (α � 0.5)
categorical response.

To formally test for categorical effects, for each fixed hue
(e.g., 120 deg) we compared the chosen setting for that hue
(e.g. 200 deg), to the setting predicted when the variable
hue was instead assumed to be fixed (i.e., start instead with
a fixed hue of 200 deg and see if the variable hue was set to
120 deg). Again, this should reproduce the original fixed hue if
the settings are symmetrical, whereas categorical effects
should bias the reciprocal setting toward the reference boun-
dary. To estimate the reciprocal matches, the curves shown in
Fig. 5 were again interpolated with a cubic spline. Fig. 7 plots
the settings for each of the fixed hue angles versus their com-
plements. The 4 panels show the results pooled across observ-
ers for each reference hue. These settings are variable for, as
seen above, the judgments of the average color of the pair is
itself noisy. However, for each color, the settings do not
deviate from the trend predicted by a pure analog response
to the colors. Thus, at least for the average settings across
all observers, the results argue against a strong presence of
a categorical bias in the judgments.

4. DISCUSSION
In this study, we explored the ability of observers to judge the
average of a pair of colors, and a first notable result is that
they could, in fact, reliably perform the task (though perfor-
mance significantly worsened as the color differences in-
creased). A related result was also reported by Fuchida
et al. [51] in a similarity judgment where subjects were instead
shown a pair of colors and then asked to adjust a variable
color until it appeared to bisect the pair while minimizing
the perceived difference. In our study we instead used an ar-
ray of alternating colors and asked observers to judge the
average according to an internal reference. The array was

Fig. 6. Fixed single component. The predicted settings for different
levels of categorical bias, assuming the unbiased settings are based on
the arithmetic mean of the hue angles (analog response), and the bias
is to instead simply select the matching color at the categorical boun-
dary (categorical response). The settings range from a slope of -1 for
no categorical bias to constant settings at the blue–green boundary for
a complete bias.
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chosen, in part, to highlight the appearance of the stimulus as
a texture. We did not test whether different settings might
have been found if only two colors were presented or if
observers were shown an external reference to match. How-
ever, our results and those of Fuchida et al. suggest that
observers can, in general, make such judgments.

While observers were asked to set the pair of colors to a
specified “average” hue, our results also do not demonstrate
or require that they directly experienced this hue in the stimu-
lus. For an attribute like color the mean could, in principle, be
directly encoded simply by including mechanisms with large
receptive fields. In fact, something like this happens in color
assimilation, in which colors within patterns tend to fuse to-
gether. These can lead to percepts in which the blended mean
and individual components are simultaneously perceived, and
one account for this is that the patterns is encoded by mech-
anisms operating in parallel at multiple spatial scales [52].
However, the periodicity in our stimuli was again a very
low spatial frequency with clear separation between the
clearly distinct elements, and assimilation effects were not
visible in the arrays. Thus, a physiological basis for the aver-
aging is less certain, and perhaps not necessary. An alternative
account of the settings is that observers were comparing the

“amounts” of different hues and adjusting the hue angles so
that these amounts appeared equal. The “average” for our tar-
get hues should occur when the amounts of the two compo-
nents were equal, and judging this would not require explicitly
representing the mixture. Importantly, in the present condi-
tions these comparisons were, in principle, sufficient for ac-
complishing the task. That is, to judge whether the mixture
was a balanced blue–green, observers could compare the rel-
ative quantities of “blueness” versus “greenness” in the two
chromaticities (though, as we note below, these need not cor-
respond to the labeled “blueness” or “greenness” in the
stimuli). In further studies we are exploring larger color
differences or judgments in which the target hue cannot be
indirectly inferred from the constituent hues. Observers are
very poor at these tasks and this supports an account in which
observers are simply comparing the relative magnitude of the
two colors rather than directly computing an average.

Whatever its basis, the balance of angles chosen for the
hues revealed strong and consistent biases in the blue–green
region. As noted, these may in part be due to chromatic aber-
ration, but also point to neural nonlinearities. These in turn
cannot be accounted for by the independent responses along
the cardinal cone-opponent axes, since the biases are not

Fig. 7. Fixed single component. The comparisons between the actual settings of the variable hue angle chosen when one component was fixed
(fixed hue angle), and the predicted settings when these match angles were instead taken as the fixed angles and the corresponding matching hue
was selected from the reflected function (reflected hue angle). The positive diagonal corresponds to equal symmetric matches in the two cases.
Symbols plot the settings for individual observers. Each panel shows the settings for the labeled average hue.
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separable along these axes. Moreover, they were not predict-
able from the color appearance of the individual components.
We do not currently have an explanation for the pronounced
shifts in the blue–green settings compared to the more linear
matches along the other axes we examined.

Another aim of our work was to test whether the judgments
were susceptible to categorical biases. Categorical effects in
color perception remain controversial. A number of studies
have found that visual search or color discrimination is faster
for pairs of stimuli that fall within different rather than the
same linguistic categories [34,36,37,40,53]. However, others
have failed to replicate these effects [38,39,54]. Moreover,
several authors have noted the possibility that these tasks
may reflect linguistic effects on the response rather than
the perception of the stimuli [34,39,53,55,56]. In a recent study
we explored categorical effects on color appearance using a
perceptual grouping task, specifically to limit the influence of
a speeded response on the task [39]. The tendency to group
shades of blue and green based on similarity showed very little
influence of their relationship to the blue–green boundary. In
the present study we similarly used a task in which the
emphasis was on the accuracy rather than the speed of the
response to again try to place less weight on factors that might
influence the response rather than the percept. Like the per-
ceptual grouping task, for the present averaging task we found
that judging the balance between two colors is not strongly
affected by their category and, specifically, that observers
showed little evidence of over-weighting a hue simply because
it fell within a linguistic category. Thus, these results again
suggest that the actual appearance of color may be impervious
to the verbal labels used to classify it. Notably, both the group-
ing and averaging tasks made no reference to the hues of the
individual components (though we did, of course, ask observ-
ers to adjust the balance in terms of a given color label). In a
hue scaling task, where color labels are explicitly used to
describe the colors, categorical effects do emerge [39]. As also
noted, at least one observer [Fig. 4(d)] did show evidence
of a fairly strong categorical bias. Our results do not reveal
the basis for these possible individual differences. However,
it is tempting to speculate that this observer was, to some
extent, simply labeling the stimuli by their dominant hue,
and basing their average on these labels (i.e., without actually
“seeing” the stimuli differently). Our paradigm also did not
manipulate attention in ways that might more clearly isolate
pre-attentive processes in ensemble coding [1]. Yet, even
when the potential for any type of strategy was available to
them, it is notable that most observers showed no evidence
that color labeling influenced their judgments.

Categorical effects on color appearance are generally
weak. For example, even when they have been found they
represent only minor biases in performance. Thus, the debate
is over whether they show up at all and not whether they
dominate the judgment. Given this, it is not surprising that
these effects were largely absent in the present task, espe-
cially since the variability in the averaging judgment means
that it can only provide a fairly insensitive test for categorical
coding. What is much more surprising is that the phenomenal
color appearance of the individual stimuli did not even seem
relevant to the judgment of the average color. That is, the
amount of red versus green or blue versus yellow, as reported
in tasks such as hue scaling, did not predict how red–green or

blue–yellow the ensemble appeared. This dissociation
between color appearance and performance has also been
reported in a recent study of visual search [57]. The present
results suggest that whatever the processes or judgments
observers were using to balance the hues, they are largely
impervious to how the colors are described and, thus, reflect
perceptual computations that not only are not mediated
by language but, more importantly, may not be mediated
by phenomenal color appearance.
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