A hardware-independent fast logarithm approximation with adjustable accuracy

Oriol Vinyals, Gerald Friedland
International Computer Science Institute
1947 Center Street, Suite 600
Berkeley, CA 94707
[vinyals,fractor]@icsi.berkeley.edu

Abstract

Many multimedia applications rely on the computation of logarithms, for example, when estimating log-likelihoods for Gaussian Mixture Models. Knowing of the demand to compute logarithms and other basic math functions rapidly, many hardware manufacturers provide libraries to perform calculations in hardware. Of course, these libraries are especially popular for the use in computer vision or audio analysis algorithms where a large amounts of data have to be processed. A downside of using specialized hardware though is that it increases the investment cost and the user is forced to use the same hardware, which is especially cumbersome when algorithms optimized for different specialized hardware are to be combined. This article presents the realization of a novel platform-independent, fast C-language implementation of the logarithm function. The idea behind the approach is to take advantage of the large amount of cache available in current processors. The logarithm implementation is compared to the current state of the art and we demonstrate the practical use of the algorithm in an actual speech analysis application.

1 Motivation

During our research on speeding up a machine learning algorithm, namely the ICSI speaker diarization engine [7], we found that a major bottleneck was the computation of the natural logarithm. This comes to no surprise because many machine learning systems, for example when using Gaussian Mixture Models combined with Hidden Markov Models, rely heavily on the computation of logarithms because they use log-likelihoods as a basic similarity measure. Profiling the ICSI speaker diarization engine, we found that computing the log-likelihood took about 80% of the total runtime.

Of course, two strategies can be followed to improve the speed of such a bottleneck: One can either change the structure of the algorithm and reduce the number of log-likelihood calculations [4] or/and one can reduce the execution time of the logarithm function itself. Usually the second option seems rarely a good choice because one relies on compilers and standard libraries to already have a very optimized version of these basic functions. We found, however, that many implementations of the logarithm function are either too slow, too inaccurate, or require special hardware.

This article presents the realization of a platform independent, fast C-language implementation of the logarithm function. The proposed C-language function is a fast single precision approximation of the natural logarithm with adjustable accuracy. The core idea is to use a quantized version of the mantissa of the input floating point number as a pointer into a lookup table. The amount of quantization of the mantissa determines the table size and therefore the accuracy. Current processors are able to store relatively large lookup tables in cache memory. Therefore an acceptable accuracy can be reached without too many main memory accesses. We measured a speedup of about factor 6 with respect to the standard C-library implementation while keeping the absolute error as low as 10^{-6}. This article presents and discusses our proposed implementation with respect to other logarithm realizations on different platforms. Measurements are performed using a dedicated benchmark and by testing the performance of the function as part of a real application.

Section 2 introduces the currently most common logarithm implementations before Section 2 describes the idea of our approach. Section 4 presents speed and accuracy measurements on different platforms. We conclude with Section 5 followed by the references. An Appendix contains the source code of the current version of the ICSIlog.

2 Related Work

Apart from the dependency on the IEEE 754 [6] floating point standard we did not want to accept any hardware
Figure 1. Concept of ICSILog algorithm. An IEEE 754 floating point number is decomposed into mantissa and exponent. The mantissa is quantized and used as a pointer into a lookup table that should fit into CPU cache. The result of the look up can be easily composed with the downscaled exponent using one addition.

requirements, so our resulting code would be portable. A search for different fast logarithm implementations results in mostly special purpose solutions. Many of them require additional hardware.

Many compilers offer an option to trade off floating point accuracy for speed. The GNU Compiler Collection (GCC) [3] for example offers a flag called -ffast-math. When this compiler flag is on, the compiler uses speed optimizations that can result in incorrect output for programs which depend on an exact implementation of IEEE or ISO specifications for math functions. When applying this flag to compile the algorithm described in Section 1, we achieve only a little speed up but the performance of the overall system noticeable decrease.

The default math.h logarithm function computes a high-order Taylor approximation to achieve floating point precision. This involves a large number of multiplications and sums of floating point numbers. Throughout the article we will refer to the standard GCC 3.4.6 implementation of the logarithm as our baseline. A look at the GCC standard library’s source code reveals a modification date in 1992. In other words, the function has been optimized for a processor architecture from 16 years ago.

Laurent de Soras published an algorithm called FastLog [2] in 2001. His algorithm basically only computes an order-3 Taylor approximation of any given IEEE 754 floating point number. The algorithm is fast but also too inaccurate (compare Table 1). We found that our approach using a lookup table was as fast as his implementation with better accuracy.

Advanced Micro Devices, Inc (AMD) offers the AMD Core Math Library (ACML) [1]. ACML is a performance-tuned math library relying on the current processors series produced by AMD. These include AMD Opteron and AMD Athlon 64. AMD claims that computing a natural logarithm with floating point precision takes only 94 CPU cycles. Although this library is dependent on the use of processors by AMD we included it in our comparison. The results are described in Section 4.2.

State-of-the-art 3D graphics cards are equipped with so-called Graphic Processor Units (GPUs). They offer a significant amount of processing power also for floating point math operations. NVIDIA, Inc for example offers the so-called Compute Unified Device Architecture (CUDA) [5] on their recent models GeForce 8800 GTX and GTS. The idea is to give computationally intensive applications access to highly-parallelized processing through an easy-to-use programming interface. NVIDIA claims the log function can be computed in only 4 GPU cycles. However, this does not take into account that GPUs are usually clocked at lower frequencies than current CPUs. Most importantly, there is a rather large communication overhead when using CUDA only for some basic computations. Therefore using CUDA requires a complete re-design of any given algorithm and in the end one relies on a proprietary hardware solution.

3 Idea of ICSILog

The core idea of the approach described here is to increase the performance of the logarithm computation by relying on a lookup table that can easily reside in CPU cache. A pre-calculation of all logarithms for the entire floating point number domain would take prohibitive amounts of
memory (about 8 GB). Of course, a table of this size would neither fit into the cache memory of current CPUs.

Fortunately, the size of the look up table can be reduced by exploiting the way floating point numbers are represented in memory. Conceptually, a 32-bit IEEE 754 floating point number is stored as follows. A value val of a number is the product of a 23-bit mantissa man and an 8-bit exponent exp. One bit is reserved for the sign s. If $s = 0$ the sign is positive, otherwise it is negative. Since the real-valued logarithm is only defined for positive numbers, the sign bit can be ignored. We get:

$$\text{val} = 2^{\text{exp}} \cdot \text{man}$$

We can use the multiplicative property of the logarithm function to decompose the logarithm computation as:

$$\log_2(\text{val}) = \log_2(2^{\text{exp}} \cdot \text{man}) = \text{exp} + \log_2(\text{man})$$

In order to calculate the natural logarithm, we can take advantage of the property that all logarithms are proportional to each other. This results in the following equation:

$$\log_e(\text{val}) = (\text{exp} + \log_2(\text{man})) \cdot \log_e(2) = \text{exp} \cdot \log_e(2) + \log_2(\text{man}) \cdot \log_e(2)$$

Of course, $\log_e(2) \approx 0.6931471805...$ is a constant. Calculating the logarithm with respect to any other base only requires multiplying with a different constant. Extracting the exponent and the mantissa of a floating point number can be performed quickly using bit shift operations. Therefore, in order to calculate the left part of the sum, only one multiplication is required. To calculate the right part of the sum, we store the results of the computation

$$\log_2(\text{man}) \cdot \log_e(2)$$

in a lookup table. Unfortunately, this still requires a table with 2^{23} entries with each entry needing 4 bytes, thus 32 MB. In our experiments (see Section 3), we found that using a table of this size increases the performance of the logarithm computation only very slightly since memory accesses take about the same time than the computation of the Taylor approximation. In order for the look up table to fit into cache, we quantize the mantissa, i.e. we ignore q least significant bits of the mantissa.

The table is then indexed using the $23-q$ most significant bits of the mantissa. The result is calculated by adding the value looked up in the table and the downscaled exponent. Figure 1 shows a diagram illustrating the steps explained in this section.

Of course, accuracy is lost because of the quantization of the mantissa, as will be discussed in the next section.

4 Performance of ICSILOG

This section discusses the accuracy-performance trade-off for ICSILOG and compares our proposed implementation with different state-of-the-art logarithm realizations, both
using a simple benchmark application and in a real application.

4.1 Speed-Accuracy Trade-Off

In order to find the best trade-off between quantization of the mantissa (accuracy) and speed, we measured the time it takes to calculate the logarithm of 10,000,000 random numbers on different CPUs and operating systems. The speed is compared to the execution time of the standard implementation of the logarithm.

Figure 2 shows the speed of the ICSIlog relative to the standard log on different CPUs and platform for different table sizes. It can be observed that the execution speed starts to decrease when we use about 16 bits from the mantissa (i.e. $q = 7$). This is the point where the look up table is too big to be constantly held in cache memory.

Using no quantization of the mantissa, which results in no loss of accuracy, the speed up on current Intel systems is about 1.0 and still 2.0 on AMD systems. There are many factors that could cause this behavior. A possible explanation is that main memory access is more optimized on AMD architecture mainboards.

4.2 Benchmark Results

Table 1 shows the performance of ICSIlog compared to other logarithm implementations. We measured the time it takes to calculate the log using different implementations for 10,000,000 random numbers. All the experiments were performed on an AMD Opteron 875 (64 bits) 2.2 GHz dual core with 1024 KB cache. This made possible to compare the performance of the ICSIlog against the logarithm implementation of the ACML library (see Section 2). The operating system is Red Hat Enterprise 4 and the benchmark application was compiled using GCC 3.4.6. With $q = 7$, ICSIlog is faster than any other tested logarithm implementations while maintaining an accuracy of 6.55×10^{-6}.

<table>
<thead>
<tr>
<th>Method</th>
<th>Speed up</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Log</td>
<td>1.0</td>
<td>0.00</td>
</tr>
<tr>
<td>AMD ACML Log</td>
<td>1.7</td>
<td>1.10×10^{-2}</td>
</tr>
<tr>
<td>-fast-math Log</td>
<td>2.0</td>
<td>1.42×10^{-7}</td>
</tr>
<tr>
<td>FastLog</td>
<td>6.0 − 7.0</td>
<td>4.26×10^{-5}</td>
</tr>
<tr>
<td>ICSIlog (q=0)</td>
<td>2.0</td>
<td>0.00</td>
</tr>
<tr>
<td>ICSIlog (q=7)</td>
<td>6.0</td>
<td>3.27×10^{-6}</td>
</tr>
<tr>
<td>ICSIlog (q=8)</td>
<td>6.0 − 8.0</td>
<td>6.55×10^{-6}</td>
</tr>
</tbody>
</table>

Table 1. Speed up table and error of several logarithm implementations. q is the number of least significant bits ignored from the mantissa.

4.3 ICSIlog in a Multimedia Application

Since ICSIlog is based on cache utilization, it is important to measure the performance of the algorithm in a real application where the CPU’s cache memory is also used for other purposes. The objective of this experiment is to speed up the ICSI speaker diarization engine [7]. The task of a speaker diarization is to segment an audio recording into speaker-homogeneous regions. That means, given a single-source recording, the engine is to determine “who spoke when”. For a five-minute audio file, the logarithm function is called several million times because a core of the engine is the calculation of log-likelihoods against Gaussian Mixture Models. Table 2 shows the results of using different logarithm implementations inside this engine. In a real application, there are many factors to be taken into account that influence speed and/or accuracy. However, the example shows that our proposed ICSIlog is able to increase the performance of a real application significantly while maintaining a better accuracy than FastLog.

<table>
<thead>
<tr>
<th>Method</th>
<th>Standard Log</th>
<th>FastLog</th>
<th>ICSIlog</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time needed</td>
<td>100%</td>
<td>49%</td>
<td>45%</td>
</tr>
<tr>
<td>Error Rate</td>
<td>11.74</td>
<td>12.14</td>
<td>11.74</td>
</tr>
</tbody>
</table>

Table 2. Speed up and error of ICSIlog in a real application: The ICSI Speaker Diarization Engine. ICSIlog is tested with quantization parameter $q = 11$. For more details refer to the text.

5 Conclusion

We propose a new implementation of the logarithm function, called ICSIlog. This platform and hardware independent realization of the logarithm function achieves a better speed-accuracy trade-off than any other current implementation. The goal is achieved by taking advantage of the large and fast cache memories of current CPUs. With cache memories growing, ICSIlog can be used with increased table sizes. Then the function will become even more accurate without a loss in performance. The implementation was benchmarked and compared against state-of-the-art approaches and also tested using a real-world multimedia application. ICSIlog also shows that it is worthwhile to revisit how basic functionality is implemented in standard compilers and libraries. Often, it is assumed that these functions are already optimized perfectly. Over time, however, they become obsolete. Instead of revising old implementations, a first reaction is often to introduce new specialized hardware. In the hope that ICSIlog would be useful to the multimedia community, our implementation of the logarithm and
the benchmarking programs as described here have been released open source. The package can be accessed at:
http://freshmeat.net/projects/icsilog/.

Acknowledgements

We would like to thank Chuck Wooters and Marijn Huijbregts for their advise on the Diarization Engine. Nikki Mirghafori inspired the development of faster Speaker Diarization algorithms and gave helpful advise on many aspects of the project. We would like to thank Adam Janin, Yan Huang, David Johnson, and Benoit Favre for their participation in discussions around the ICSIlog. This work was (partly) funded by IARPA VACE program. Gerald Friedland was supported by a fellowship within the postdoc program of the German Academic Exchange Service (DAAD). Oriol Vinyals was supported by the European Union 6th FWP IST Integrated Project AMIDA (Augmented Multi-party Interaction with Distant Access).

References