Experimental Design for Machine Learning on Multimedia Data
Lecture 8

Prof. Gerald Friedland,
fractor@eecs.berkeley.edu

Website: http://www.icsi.berkeley.edu/~fractor/fall2019/
Today

• Time plan: Remaining Semester
• Reproducibility vs Repeatability
• Sound
 • What is it?
 • How is it recorded and stored?
 • What are it’s most important properties (to us)?
Timeplan

- November 8 (today): Audio 1
- November 15th: Audio 2 & Vision
- November 22nd: Project Presentations 1
- November 29th: Project Presentations 2
- December 6th: Project Presentations 3
- (December 13th: Project Presentations 4)
- December 20th: Final
- December 20th: Project deadline (TBD)
Today

• Reproducibility vs Repeatability

• Sound
 • What is it?
 • How is it recorded and stored?
 • What are it’s most important properties (to us)?
Thought Framework: Reproducibility

An experimental result is not fully established unless it can be independently reproduced. https://project.inria.fr/acmmmreproducibility/

- Repetition of experiment: Predict outcome X, observe outcome X.

- Reproduction of an experiment: Independent party recreates the experimental setup of an experiment and repeats it.

- Reproduction requires a complete description of all factors that make the experiment repeatable.

- Understanding: What are the minimum amount of factors that make the experiment repeatable and how do they influence each other?
Repetition, Reproduction, Understanding?

- Downloading the docker instance and re-running on your campus.
- Downloading the trained model and re-running it on the same data.
- Using the exact software versions and exact configuration of hyper parameters and retraining the same model to obtain similar results.
- Taking the description from a paper, rebuilding the setup as described and obtaining the same accuracy and adversarial examples.
- Taking the description from a paper, rebuilding the setup as described, obtaining the same accuracy and adversarial examples and explaining why a different setup yields other limits.
What factors make Machine Learning Repeatable, Reproducible, Understandable?

• Repeatable:
 Set of all hyper parameters, seed, architecture, exact software versions of all libraries, exact order of training sample presentation, etc (??)

• Reproducible:
 Capacity, perfect training (i.e. training that guarantees to reach a global minimum error).

• Understandable:
 Minimum capacity, perfect training.
Current Situation

Multimedia Computing

Computer Vision

Natural Language Processing

Speech Processing

Computer Listening

Music Processing

CASA

Area being worked on

Area not being worked on
What is this lecture about?
Introduction to Sound

• What is sound?
• How is it recorded and stored?
• What are its most important properties (to us)?
• Introduction to features
• Some frameworks and tools to work with sound
What is Sound?

Video from ViHart (Youtube):

http://www.youtube.com/watch?v=i_0DXxNeaQ0
What is Sound?

“a traveling wave which is an oscillation of pressure transmitted through a solid, liquid, or gas, composed of frequencies within the range of hearing and of a level sufficiently strong to be heard, or the sensation stimulated in organs of hearing by such vibrations.” (AHD)
Visualizations of Sound

Time Domain aka Amplitude Space aka Waveform
Visualizations of Sound

Frequency Domain aka Fourier Space aka Spectrum
Visualizations of Sound

Spectrogram

frequency

energy

time
Hearing Spectrum

Source: http://sound.westhost.com/articles/fadb.htm
dB SPL?

- decibel Sound Pressure Level
- NOT a physical unit, only a scale

\[
L_p = 10 \log_{10} \left(\frac{p_{\text{rms}}^2}{p_{\text{ref}}^2} \right) = 20 \log_{10} \left(\frac{p_{\text{rms}}}{p_{\text{ref}}} \right) \text{ dB,}
\]

where \(p_{\text{ref}}\) is the reference sound pressure and \(p_{\text{rms}}\) is the rms sound pressure being measured.
bits -> db Range
(Cheat sheet)

- 8 bits -> 48 dB SPL
- 11 bits -> 66 dB SPL
- 16 bits -> 96 dB SPL
- 24 bits -> 144 dB SPL
Figure 1. Sound pressure A-weighting scheme according to IEC 61672:2003.

Observed Properties of Sound

As explained in the previous paragraph, sound is a pressure wave traveling through a medium. In practice, sounds are not exclusively traveling in a homogenous medium from a source to exhaustion. The environment is filled with objects, sometimes sounds are produced in a closed room, and sounds pressure waves may collide with other sounds. The resulting effects of these conditions play a large role when designing multimedia systems. Also, the effects on sound are more significant than on light waves. The three most important ones are echo, reverberation, and interference.

An echo is a reflection of sound, arriving at the listener some time after the original sound. Typical examples are the echo produced by the bottom of a well, by a building, or by the walls of an enclosed room. Sounds is very easily reflected by most materials so echos are always present in every environment. A true echo is a single reflection of the sound source. Mostly, however, many echoes form reverberation. The time delay is the extra distance divided by the speed of sound. When dealing with audible frequencies, the human ear cannot distinguish an echo from the original...
How is Sound Recorded?

Not surprisingly today's sound recording still obeys the same principles with two main exceptions: First, the sound waves are converted to electrical waves by a microphone and second, most of today's storage media is digital, i.e. sound waves are converted into binary numbers before they are imprinted on the medium. The media themselves, such as CDROM or DAT are a bit more sophisticated than Edison's cylinders. Having said that, we are currently observing the replacement of all of these specialized media with generic media, such as harddisks and flash memory. We therefore decided not to explain the technical details of these, the reader is referred to the bibliography for further information. The next paragraphs, however, will explain the governing principles of modern sound processing.

Microphones

A microphone is an acoustic sensor that converts sound into an electrical signal. The general principle is that sound pressure is inflicted on a membrane which varies its electrical resistance according to the movement. Most microphones in use today for audio use electromagnetic induction (dynamic microphone) by letting the membrane swing a magnetic field produced by a coil, capacitance change (condenser microphone) by letting the membrane be part of a capacitor which varies capacity with movement, or piezoelectric generation (piezo crystals emit electricity when under pressure). Some modern microphones use light modulation to produce the electric signal by "watching" the mechanical vibration (laser microphones). A single dynamic membrane will not respond linearly to all audio frequencies. Some microphones for this reason utilize multiple membranes for the different parts of the audio spectrum and then combine the resulting signals. The different microphone types have different electrical properties. A complete
Modern Microphone

Cross-Section of Dynamic Microphone

Source: http://www.mediacollege.com/audio/microphones/dynamic.html
Types of Microphones

• Nearfield: Close to sound source e.g., headset, boom microphone (movies, TV productions), singer microphones

• Farfield: Further away from sound source e.g., lapel microphone, stationary microphone, webcams, handheld cams.
Difference
Farfield/Nearfield

• Nearfield: More energy, less distortion, captures sound source well.

• Farfield: Captures environment with sound source, “better for forensics”, processing often slower.

Demo: http://www.icsi.berkeley.edu/Speech/mr/nearfar.html
Microphone Directionality

A microphone's directionality indicates how sensitive it is to sounds arriving at different angles about its central axis. The directionality of a microphone is usually visualized using a polar pattern. Polar patterns represent the location of points that produce the same signal level output in the microphone if a constant sound pressure level is generated from that point. Figure 4 shows some idealized example patterns. The patterns are considered idealized because in the real world, polar patterns are a function of frequency. Manufacturer's diagrams therefore usually include multiple plots at different frequencies. Also, while an omnidirectional microphone's response is generally considered to be a perfect sphere in three dimensions. In the real world, this is not the case.
Digitization of Sound

Digitizing is the representation of a signal by a discrete set of its samples. Instead of representing the sound signal by an electrical current proportional to its sound pressure, the signal is represented by on-off patterns that represent sample values of the analog signal at certain fixed points. The on-off patterns are much less susceptible to the distortions outlined above, especially copying is usually lossless. Conceptually, digitization works in two parts, illustrated in Figure 6.

- **Discretization**: The analog signal is read at regular time intervals (sampling rate), sampling the value of the signal at that point in time. One such reading is called a sample.
- **Quantization**: Samples are rounded to a fixed set of numbers (such as integers), a process known as quantization.

A series of quantized samples can be transformed back into an analog output that approximates the original analog representation by generating the signal represented by each sample. The sampling rate and the number of bits used to represent the sample values determine how close such an approximation to the analog signal a digitization will be.

The error introduced by the quantization is called quantization noise and affects how accurately the amplitude can be represented. Very few bits for the samples will result in the signal only being represented coarsely and will affect the perceived dynamic of the sound as well as introduce high-frequency artifacts. Typical bit representations for audio are 8, 16, and 24 bits.

The error introduced by the sampling rate is called discretization error and determines the maximum frequency that can be represented in the signal. This upper frequency limit is determined by the so-called Nyquist frequency. The Nyquist frequency, named after the Swedish-American engineer Harry Nyquist or the Nyquist–Shannon sampling theorem, is half the sampling rate.
Remember: Nyquist Limit!

Math: See Draft Chapter 3 of Friedland & Jain on mm-creole.org
Common Recording Resolutions

- 8000Hz, 8-bit log. companded ~ 11 bit uncompanded (a/μ-law): telephone
- 16000Hz, 16-bit linear: speech (Skype)
- 44100Hz, 16-bit linear, stereo: Compact Disk, many camcorders
- 48000Hz, 32-bit linear, stereo: Digital Audio Tape, Hard Disk Recorders
\(\mu \)-law Companding
Next Week

• Intro to Audio Analysis