

Experimental Design for Machine Learning on Multimedia Data Lecture 7

Dr. Gerald Friedland, fractor@eecs.berkeley.edu

Website: http://www.icsi.berkeley.edu/~fractor/fall2019/

Projects

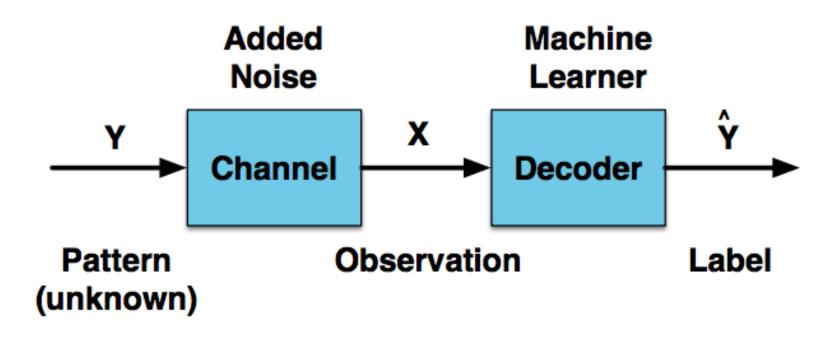
- Thank you for your submissions
- Everybody should have received feedback
- No more homework: Please work on your project. Come to office hours for advice!

Training I

- Everything we did so far assumes perfect training. This is, training that guarantees to reach the global minimum error.
- Perfect training requires exponential time.
- Imperfect training means Memory Equivalent Capacity is effectively reduced.
- How to measure that: ?

- With perfect training and perfect capacity adjustment, machine learning is reproducible.
- This is, hyper parameters, initialization, and architecture do not matter!
- TODO: Improve training!

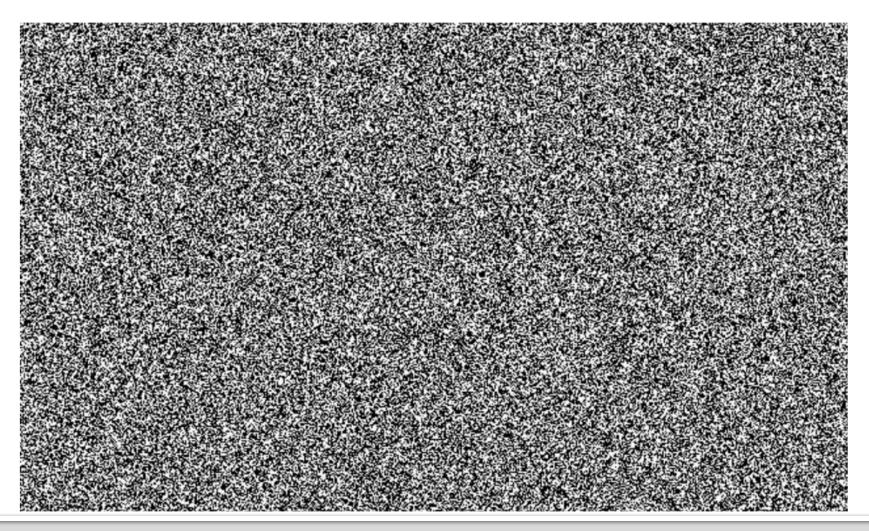
A Thermodynamic/Information Model for ML



- Machine Learning resets bits introduced by noise.
- Machine Learning denoises an unknown pattern.

So: Let's Deal with Noise...

A Video Featuring Nothing But White Noise Has Received Five Content ID Claims Since 2015



Helmholtz free Energy

$A \equiv U - TS,$

- A= Free Energy
- U = Internal Energy
- T = Temperature
- S = Uncertainty

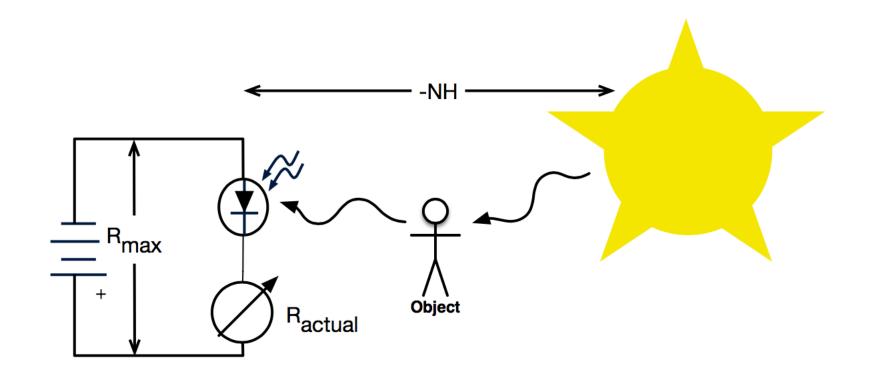
Shannon Entropy and Thermodynamic Entropy

H = -*S*

Information is Reduction of Uncertainty

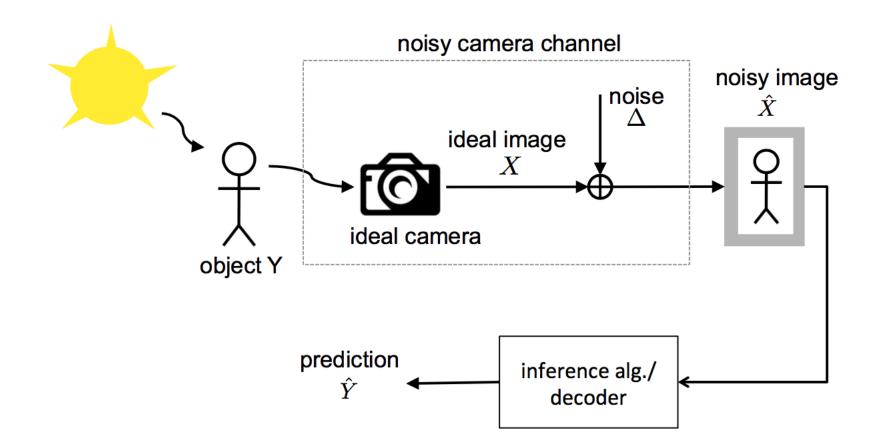
See also: Computation, Data and Science <u>https://www.youtube.com/playlist?</u> <u>list=PL17CtGMLr0Xz3vNK31TG7mJIzmF78vsF0</u>

Reinterpretation



$$R_{actual} = R_{max} - NH$$

Reinterpretation with Information Theory



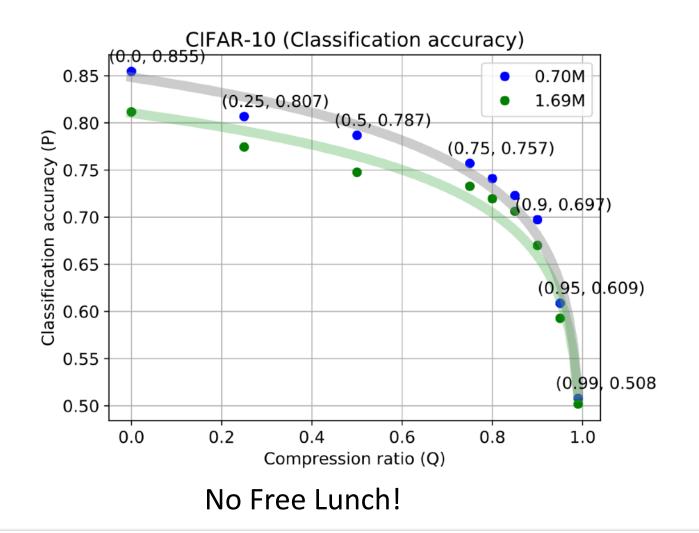
How does lossy compression work?



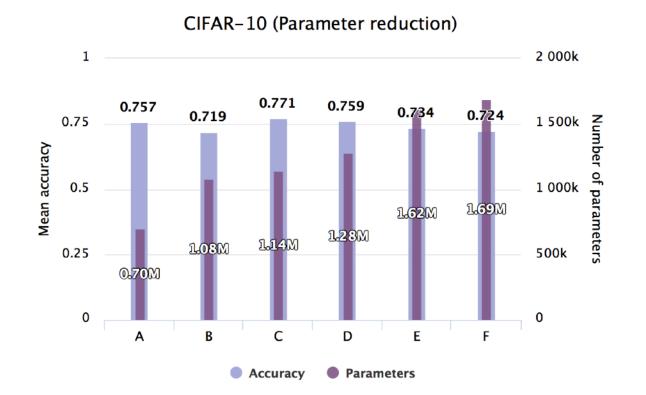
Experiments: Images (overall)

Α	С	F			
Conv([32, 64], 3, 3) + ReLU	Conv([32, 64], 3, 3) + ReLU	Conv([32, 64], 3, 3) + ReLU			
Conv(128, 3, 3) + Dropout(0.5)	Conv(128, 3, 3) + Dropout(0.5)	Conv(128, 3, 3) + Dropout(0.5)			
Conv([128, 128], 3, 3) + ReLU	Conv([128, 128], 3, 3) + ReLU	Conv([128, 128], 3, 3) + ReLU			
Conv(128, 3, 3) + Dropout(0.5)	Conv(128, 3, 3) + Dropout(0.5)	Conv(128, 3, 3) + Dropout(0.5)			
Conv([128, 128], 3, 3) + ReLU	Conv([128, 128], 3, 3) + ReLU	Flatten			
Conv(10, 3, 3)	Conv(128, 3, 3) + Dropout(0.5)	FC(128) + Dropout(0.5)			
Global_avg_pooling	Conv([128, 128], 3, 3) + ReLU	FC(256) + Dropout(0.5)			
Softmax	Conv(10, 3, 3)	FC(256) + Dropout(0.5)			
	Global_avg_pooling	FC(10)			
	Softmax	Softmax			
701,386 (0.70M)	1,144,138 (1.14M)	1,686,090 (1.69M)			

Experiments: Images (overall)

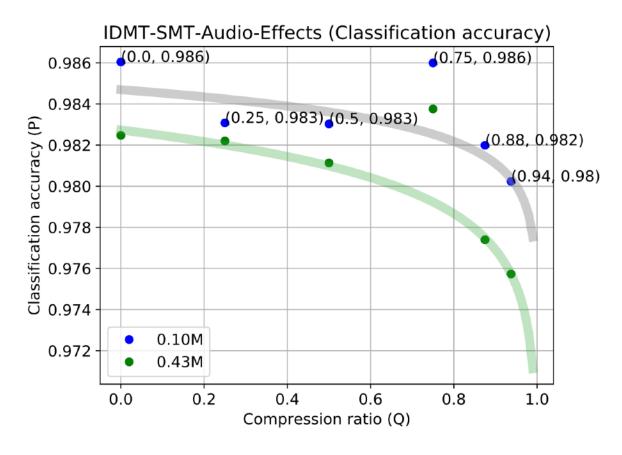


Experiments: Images concrete



Less Parameters = Higher Accuracy!

Experiments: Audio



Experiments generalize to audio

Analysis: Images

JPEG quantization matrizes:

16	11	10	16	24	40	51	61	17	18	24	47	99	99	99	
12	12	14	19	26	58	60	55	18	21	26	66	99	99	99	(
14	13	16	24	40	57	69	56	24	26	56	99	99	99	99	(
14	17	22	29	51	87	80	62	47	66	99	99	99	99	99	(
18	22	37	56	68	109	103	77	99	99	99	99	99	99	99	(
24	36	55	64	81	104	113	92	99	99	99	99	99	99	99	(
49	64	78	87	103	121	120	101	99	99	99	99	99	99	99	(
72	92	95	98	112	100	103	99	99	99	99	99	99	99	99	

Best quality/accuracy trade-off (N_{approx}) around q=20. This is at 1 bit/pixel!

Jingkang Wang, Ruoxi Jia, Gerald Friedland, Bo Li, Costas Spanos: One Bit Matters: Understanding Adversarial Examples as the Abuse of Redundancy, https:// arxiv.org/abs/1810.09650

Gerald Friedland, Jingkang Wang, Ruoxi Jia, Bo Li: *The Helmholtz Method: Using Perceptual Compression to Reduce Machine Learning Complexity,* https://arxiv.org/abs/1807.10569

That's it for today.

Questions?