

Experimental Design for Machine Learning on Multimedia Data Lecture 6

Dr. Gerald Friedland, fractor@eecs.berkeley.edu

Website: http://www.icsi.berkeley.edu/~fractor/spring2019/

- Thank you for your submissions
- Feedback individually...

Recap: Generic Project Workflow for Accuracy

Generic Project Workflow for Explainability (DARPA)

Generic Project Workflow for Generalization

1) What is generalization (intuitively)?

2) Formal definition

3) Why is it important

Detail removal "The act of leaving (

"The act of leaving out of consideration one or more properties of a complex object so as to attend to others."

Generalization

Abstraction

"The process of formulating general concepts by abstracting common properties of instances"

 Technical terms: Compression, Quantization, Clustering, Unsupervized Learning

Experiment

UCB CS88 Sp19 L1

8

Where are you from?

Possible Answers:

- China
- California
- The Bay Area
- San Mateo
- 1947 Center Street, Berkeley, CA
- 37.8693° N, 122.2696° W

All correct but different levels of abstraction!

Abstraction gone wrong!

8	Raising	I Can Stalk U Raising awareness about inadvertent information sharing							
	Home	How	Why	About Us	Contact Us				
hat ar	e people r	eally say	ying in t	heir tweets?	Links				
der /?q 1 mi nik /?q 5 mi /?q 5 mi /?q 1 mi /?q 1 mi /?q 1 mi	nisluque: I am c I=-23.61933333 inute ago - <u>Map Local</u> osofficiel: I am I=48.869983333 inutes ago - <u>Map Local</u> manarede: I am I=-15.787833333 inutes ago - <u>Map Local</u>	currently nea 33,-46.55066 tion - <u>View Tweet</u> currently ne 3,2.3282833 tion - <u>View Tweet</u> currently ne 33,-47.82916 tion - <u>View Tweet</u>	earby http://r earby http:// 3333 t - <u>View Picture</u> earby http:// 66667 t - <u>View Picture</u>	naps.google.com Reply to denisluque /maps.google.com Reply to nikosofficiel /maps.google.com Reply to dilmanarede	 Mayhemic Labs PaulDotCom SANS ISC Electronic Frontier Foundation Center for Democracy & Technology How did you find me? 				
dov /?q 10 m	wntownvan: 1 ai =49.283333333 ninutes ago · <u>Map Loc</u> mmaGooseBC: 1	m currently i 3,-123.1198 ation · View Twe am current	nearby http: 33333 <u>et · View Picture</u> ly nearby 15	//maps.google.com • <u>Reply to downtownvan</u> 745 Weaver Lake Ro	Did you know that a lot of smart phones encode the location of where pictures are taken? Anyone who has a copy can access this				

UCB CS88 Sp19 L1

Detail Removal (in Data Science)

- You'll want to look at only the interesting data, leave out the details, zoom in/out...
- Abstraction is the idea that you focus on the essence, the cleanest way to map the messy real world to one you can build
- Experts are often brought in to know what to remove and what to keep!

The London Underground 1928 Map & the 1933 map by Harry Beck.

The Power of Abstraction, Everywhere!

- Examples:
 - Functions (e.g., sin x)
 - Hiring contractors
 - Application Programming Interfaces (APIs)
 - Technology (e.g., cars)
- Amazing things are built when these layer
 - And the abstraction layers are getting deeper by the day!

We only need to worry about the interface, or specification, or contract NOT how (or by whom) it's built

Above the abstraction line

Abstraction Barrier (Interface) (the interface, or specification, or contract)

Below the abstraction line

This is where / how / when / by whom it is actually built, which is done according to the interface, specification, or contract.

01/28/19

Abstraction: Pitfalls

- Abstraction is not universal without loss of information (mathematically provable). This means, in the end, the complexity can only be "moved around"
- Abstraction makes us forget how things actually work and can therefore hide bias. Example: Al and hiring decisions.

 Abstraction makes things special and that creates dependencies. Dependencies grow longer and longer over time and can become unmanageable.

Formal Definition: Generalization

Definition 0 (generalization in ML):

 $\forall x, x' \exists \delta \text{ such that } |x - x'| < \delta \implies f(x) = f(x')$ $x \in \text{Training data}$

x' ∈Test data

| o | semi-metric

f machine learner

Adversarial Example

Definition 1 (Adversarial example (Wang et al., 2016)). Given an ML model $f(\cdot)$ and a small perturbation δ , we call x' an adversarial example if there exists x, an example drawn from the benign data distribution, such that $f(x) \neq f(x')$ and $||x - x'|| \leq \delta$.

A Thermodynamic/Information Model for deterministic ML

Machine Learning resets bits introduced by noise.

Machine Learning denoises an unknown pattern.

Adversarial Examples are caused by Redundancies: Logic View

Boolean Equality Network with a redundant variable.

Adversarial Examples are caused by Redundancies: Logic View

Exhaustive experimentation on NXOR network:

#Adv. Examples	#Allowing Edges	Potential
0	0	0
4	1	1
4	1	1
4	2	0
4	1	1
4	1	1
6	2	0
6	2	2
6	2	2

Adversarial Examples are caused by Redundancies: Experiments

Adversarial Examples always have more noise!

Dataset	Examples	H (MLE)	H (JVHW)	Original Size	Compressed Size
	Benign	1.741	1.887	988.89 B	431.40 B
MINIST [27]	FGSM [16]	2.488	2.601	1690.36 B	503.54 B
MINIST [27]	DeepFool [36]	4.844	5.088	1654.99 B	510.41 B
	$CW(L_2)$ [4]	4.094	4.301	1159.01 B	437.27 B
	Benign	9.595	7.104	1845.98 B	741.36 B
CIEA D 10 [25]	FGSM [16]	9.937	7.710	2717.01 B	872.40 B
CIFAK-10 [23]	DeepFool [36]	9.675	7.147	1880.41 B	743.02 B
	$CW(L_2)$ [4]	9.621	7.113	1850.54 B	741.56 B

Table 1: Comparison of complexity for benign and adversarial examples on MNIST and CIFAR-10.

Adversarial Examples are caused by Redundancies: Experiments

Adversarial Examples always require more capacity to train!

Adversarial avoidance: Reduce Redundancies!

Perceptual compression reduces noise without impacting accuracy!

This will be discussed a lot deeper in the next lecture.

Solution: Kill redundant edges!

1) Redundancies cause adversarial examples.

- 2) We cannot change the data (other than converting it into "features").
- 3) The only thing we can do is set irrelevant portions of data to 0. This, is set connections to 0 that are irrelevant which is the same as not having the connection.

Remember: Occam's Razor is a necessity to restrict number of ways of being able to be contradicted (prevent giving 'weight' to irrelevant information influencing the decision)!

Reduce capacity while training for accuracy!

Memorization preserves redundancies.

For binary classifiers:

$$G = \frac{\#correctly \ classified \ instances}{Memory \ Equivalent \ Capacity} \quad [\frac{bits}{bit}]$$

 $G<1 \Rightarrow M$ needs more training/data (not even memorizing) $G=1 \Rightarrow M$ is memorizing = overfitting $1<G<G_{MEM} \Rightarrow M$ could be implementing a lossless compression (and still overfit) $G>G_{MEM} \Rightarrow M$ is generalizing (no chance for overfitting)

That's it for today.

Questions?