Experimental Design for Machine Learning on Multimedia Data
Lecture 5

Dr. Gerald Friedland,
fractor@eecs.berkeley.edu

Website: http://www.icsi.berkeley.edu/~fractor/fall2019/
Discuss Homework

Project proposal deadline: October 11th, 2019.

Email project proposals to me and Rishi.
Project Questions 1-4 (Data & Problem Inspection)

1) What is the variable the machine learner should predict? What is the required accuracy for success? What impact will adversarial examples have?

2) How much data do we have to train the prediction of the variable? Are the classes balanced? How many modalities could be exploited in the data? Is there temporal information? How much noise are we expecting? Do you expect bias?

3) How well is the data annotated (anecdotally)? What is the annotator agreement (measured)?

4) Given questions 1-3: Are we reducing information (pattern matching) or do we need to infer information (statistical machine learner)? As a consequence, what seems the best choice for the type of machine learner per modality?
Project Questions 5-8 (Training for Generalization)

1) Estimate the memory equivalent capacity needed for the machine learner of your choice. What is the expected generalization? How does the progression look like: Is there enough data?

2) Train your machine learner for accuracy at memory equivalent capacity. Can you reach near 100% memorization? If not, why (diagnose)?

3) Train your machine learner for generalization: Plot the accuracy/capacity curve. What is the expected accuracy and generalization ratio at the point you decided to stop? Do you need to try a different machine learner (if so, redo from 5)? Should you extract features (if so, redo from 5)?

4) How well did your generalization prediction hold on the independent test data? Explain results. How confident are you in the results?
1) How do you combine the models of the modalities? Explain your choice. How confident are you in the combination results (i.e., does it make sense to combine)?

2) What are the final combined results of the system? Are the experiments documented and repeatable (if not, please make sure they are, even for bad results)? Are the experiments reproducible (speculate)?
Generic Project Workflow for Accuracy

- **Training**
 - Development Data
 - Machine Learning
 - Statistical Models

- **Ground Truth**

- **Testing**
 - Test Data
 - Apply Models
 - Results

- **Evaluation**
 - Error Metric
 - Accuracy Scores
Supervised Machine Learning Engineering Process
Maximizing the Chance for Generalization/Minimizing Adversarial Examples

- **Labelled Data**
 - Check Annotator Agreement
 - Annotate Redundantly
 - Annotate Again
- **Classes Balanced?**
 - Yes
 - Committed to a Specific ML Approach?
 - No
 - Start Debugging
 - Yes
 - Estimate Best Approach using Capacity Estimators
 - No
 - Subsample to Balance Classes
 - Yes
 - Annotate Again
 - No
 - Too low
 - Undetermined
 - No
 - Training Machine Learner
 - Train with Training Data at Memory Capacity
 - Run Capacity Estimator on Training Data
 - High Accuracy?
 - Yes
 - Start Debugging
 - No
 - Reduce Machine Learner Capacity
 - High Accuracy?
 - Yes
 - Use Model from Previous Iteration
 - No
 - Acquire More Labelled Data
 - Low Accuracy even with Large Capacity
 - High Accuracy, Small Capacity?
 - Yes
 - Congratulate...
 - No
 - Start Debugging
Conclusions so far

- The lower limit of generalization is memorization. This is, the upper limit for the size of a machine learner is it’s memory capacity.
- The memory capacity is measurable in bits.
- Using a machine learner that is over capacity is a waste of resources and increases the risk of failure!
- Alchemy converted into chemistry by measuring: It’s time to convert guessing and checking in Machine Learning into science! Let’s call it data science?

Todi=o:
- Non-Binary classifiers, regression
- Convolutional networks, other machine learners
- Re-thinking training
- Explainable adversarial examples
Predicting Capacity Requirements

Given data and labels: How much actual capacity do I need to memorize the function?

Theoretical answer: What is the minimum description length of the table representing the function f (this is, Shannon Entropy).

Practical Answer:
1) Worst case: Let’s build a neural network where only the biases are trained
2) Expected case: How much parameter reduction can (exponential) training buy us?
Predicting Maximum Memory Capacity

data: array of length \(i \) containing vectors \(x \) with dimensionality \(d \)
labels: a column containing 0 or 1

\[\text{MaxCapReq}(\text{data}, \text{labels}) \]

\[\text{thresholds} \leftarrow 0 \]

\[\text{loop over } i: \text{table}[i] \leftarrow (\sum x[i][d], \text{label}[i]) \]

\[\text{sortedtable} \leftarrow \text{sort(table, key = column 0)} \]

\[\text{class} \leftarrow 0 \]

\[\text{loop over } i: \text{if not sortedtable}[i][1] == \text{class} \text{ then} \]

\[\quad \text{class} \leftarrow \text{sortedtable}[i][1] \]

\[\quad \text{thresholds} \leftarrow \text{thresholds} + 1 \]

end

\[\text{maxcapreq} \leftarrow \text{thresholds} \times d + \text{thresholds} + 1 \]

\[\text{expcapreq} \leftarrow \log_2(\text{thresholds} + 1) \times d \]

print ”Max: “+\text{maxcapreq}+” bits”

print ”Exp: “+\text{expcapreq}+” bits”

“Dumb” Network

Runtime: \(O(n \log n) \)
Predicting Memory Capacity

Dumb Network:

- Highly inefficient.
- Potentially not 100% accurate (hash collisions).
- We can assume training weights (and biases) gets 100% accuracy while reducing parameters.

Expected Reduction: Exponential!

n thresholds should be able to be represented with $\log_2 n$ weights and biases (search tree!).
Empirical Results

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Max Capacity Requirement</th>
<th>Expected Capacity Requirement</th>
<th>Validation (% accuracy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND, 2 variables</td>
<td>4 bits</td>
<td>2 bits</td>
<td>2 bits (100%)</td>
</tr>
<tr>
<td>XOR, 2 variables</td>
<td>8 bits</td>
<td>4 bits</td>
<td>7 bits (100%)</td>
</tr>
<tr>
<td>Separated Gaussians (100 samples)</td>
<td>4 bits</td>
<td>2 bits</td>
<td>3 bits (100%)</td>
</tr>
<tr>
<td>2 Circles (100 samples)</td>
<td>224 bits</td>
<td>12 bits</td>
<td>12 bits (100%)</td>
</tr>
<tr>
<td>Checker pattern (100 samples)</td>
<td>144 bits</td>
<td>12 bits</td>
<td>12 bits (100%)</td>
</tr>
<tr>
<td>Spiral pattern (100 samples)</td>
<td>324 bits</td>
<td>14 bits</td>
<td>24 bits (98%)</td>
</tr>
<tr>
<td>ImageNet: 2000 images in 2 classes</td>
<td>906984 bits</td>
<td>10240 bits</td>
<td>10253 bits (98.2 %)</td>
</tr>
</tbody>
</table>

All results repeatable at: https://github.com/fractor/nntailoring
Memorization is worst-case generalization.

Good news:
- Real-world data is not random.
- The information capacity of a perceptron is usually >1bit per parameter (Cover, MacKay).

This means, we should be able to use less parameters than predicted by memory capacity calculations.
Suggested Engineering Process for Generalization

- Start at approximate expected capacity.
- Train to >98% accuracy. If impossible, increase parameters.
- Retrain iteratively with decreased capacity while testing against validation set.
 Should see: decrease in training accuracy with increase in validation set accuracy
- Stop at minimum capacity for best held-out set accuracy.

Best case scenario: As parameters are reduced, neural network fails to memorize only the insignificant (noise) bits.
Generalization Process: Expected Curve

Accuracy

Quantization

N_{approx}
Overcapacity Machine Learning: Issues

- Waste of money, energy, and time. Bad for environment.

Reminder: Occam’s Razor

Among competing hypotheses, the one with the fewest assumptions should be selected.

For each accepted explanation of a phenomenon, there may be an extremely large, perhaps even incomprehensible, number of possible and more complex alternatives, because one can always burden failing explanations with ad hoc hypotheses to prevent them from being falsified; therefore, simpler theories are preferable to more complex ones because they are more testable.

(Wikipedia, Sep. 2017)
Demo time!

- Intro to tools on github
 - $T(n,k)$ calculation
 - Capacity estimation given table
 - Capacity progression