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Discuss	Homework

▪ Homework	1:	Any	questions	
▪ Homework	2:	Let’s	do	it.	
▪ Homework	3:	online	today	and	also	in	paper	here	

Please	start	forming	teams.		

Rishi	is	now	official	and	has	office	hours	to	discuss	homework	&	
project.
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Reminder:	The	New	Scientific	Method

E = mc2
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▪ Intelligence:	The	ability	to	adapt	(Binet	and	Simon,	1904)	

▪ Machine	learning	adapts	a	finite	state	machine	M	to	an	
unknown	function	based	on	observations.	

▪ Input:	n	rows	of	observations	(instances)	in	a	table	with	
header: 
 
 
where															is	a	column	with	labels	we	call	target	function.			

▪ Output:	State	machine	M	that	maps	a	point	

Reminder:	Thought	Framework	Machine	Learning

(x1, x2, . . . , xm, f( ⃗x ))

f( ⃗x )

(x1, x2, . . . , xm) ⟹ f( ⃗x )
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▪ Assume	 
 
 
 
(binary	classifier)  
 
 
 
 
 

▪ Question:	 
 
How	many	state	transitions	does	M	need	to	model	
the	training	data?

Thought	Framework:	Machine	Learning

xi ∈ ℝ, f( ⃗x ) ∈ {0,1}

http://www.gerald-friedland.org


Gerald Friedland, http://www.gerald-friedland.org6

Refresh:	Memory	Arithmetic

• Information	is	reduction	of	uncertainty:		 
H=-log2	P=	-log2											=	log2	#states  
measured	in	bits.	

• Information:	log2	#states	(positive	bits)  
Uncertainty:	log2	P=log2										(negative	bits)		

• If	states	are	not	equiprobable,	Shannon	Entropy	
provides	tighter	bound.	  
 
Important	for	homework!

1
#states

1
#states
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▪ Assume	 
 
 
 
 
(binary	classifier)  
 
Question:	 
 
How	many	state	transitions	does	M	need	to	
model	the	training	data?  
 
Maximally:	#rows	(lookup	table)  
Minimally:	?

Thought	Framework:	Machine	Learning

xi ∈ ℝ, f( ⃗x ) ∈ {0,1}
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▪ Intellectual	Capacity:	The	number	of	unique	target	functions	a	
machine	learner	is	able	to	represent	(as	a	function	of	the	number	
of	model	parameters).	

▪ Memory	Equivalent	Capacity	(MEC):	A	machine	learner’s	
intellectual	capacity	is	memory-equivalent	to	N	bits	when	the	
machine	learner	is	able	to	represent	all	2N	binary	labeling	functions	
of	N	uniformly	random	inputs.	

▪ At	MEC	or	higher,	M	is	able	to	memorize	all	possible	state	
transitions	from	the	input	to	the	output.

Thought	Framework:	Machine	Learning

http://www.gerald-friedland.org
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Project	Question	2

▪ What	is	the	estimated	memory-equivalent	capacity	of	the	data	
you	have	for	the	machine	learner	you	are	using?	

▪ Is	there	bias?	If	so:	Normalize	it.	
▪ Test	at	least	3	different	machine	learners.		
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This	Talk:	Main	trick

• Using	more	parameters	than	needed	for	memorization	is	a	
waste	of	resources	(CPU,	memory,	I/O,	engineer	tuning	time).		

• Using	as	many	parameters	as	needed	for	memorization	will	
most	likely	not	generalize	to	a	held-out	data	set.	This,	the	
machine	learner	overfits.	

• Reducing	parameters	below	memorization	capacity	will,	in	
the	best	case,	make	the	machine	learner	forget	what’s	not	
relevant:	generalization.

Memorization	is	worst-case	generalization		
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Machine	Learning	as	Engineering	Discipline

• Supervised	Machine	Learners	have	a	memory	capacity	in	bits	that	is	
computable	and	measurable.	

• Artificial	Neural	Networks	with	gating	functions	(Sigmoid,	ReLU,	etc.)	have		

• a	capacity	upper	limit	that	can	be	determined	analytically	using	4	
principles	

• an	effective	capacity	that	can	be	measured	on	actual	implementations.	

• Predicting	and	measuring	capacity	allows	for	task-independent	optimization	of	a	
concrete	network	architecture,	learning	algorithm,	convergence	tricks,	etc…	

• Capacity	requirement	can	be	approximately	predicted	given	the	input	data	and	
ground	truth.	

• Generalization	can	fail	as	a	result	of	input	redundancies.	Occam’s	Razor	helps	to	
minimize	the	risk.
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Repeat:	The	Perceptron

Source:	Wikipedia
Physical	interpretation:	Energy	threshold
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Repeat:	Activation	Functions	(too	many)	

Source:	Wikipedia
Activation	functions	approximate	the	sharp	decision	boundary.



14

How	many	functions	can	be	modeled	using	a	
Perceptron?

Source:	R.	Rojas,	Intro	to	Neural	Networks



Vapnik-Chervonenkis	Dimension



Formula	by	Schlaefli	(1852):

How	many	points	can	we	label	in	general?
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Example:	Boolean	Functions

Source:	R.	Rojas,	Intro	to	Neural	Networks

• 22v	functions	 
of	v	boolean	  
variables	

• 2v	labelings	of	  
2v	points.	

• For	v=2,	all	but	2	  
functions	work:	 
XOR,	NXOR
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Machine	Learning	as	an	Encoder/Decoder

Information	loss

Learning 
Method

Neural 
Network

Sender

Identity

Encoder Channel Decoder Receiver

labels weights weights labels'

data

Source:	D.	MacKay:	Information	Theory,	Inference	and	Learning

Main	trick:	Let	the	Machine	Learner	learn	uniform	random	points!
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Critical	Points:	Perceptron	(Cover,	MacKay)

N=K:	VC	Dimension	(for	points	in	random	position)	
N=2K:	Cover/MacKay	Capacity

Source:	D.	MacKay:	Information	Theory,	Inference	and	Learning
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Generalizing	from	Perceptron	to	Perceptron	
Networks

Source:	Wikipedia
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Careful:	Other	Architectures

Typical	MLP																																											Shortcut	Network

Source:	R.	Rojas,	Intro	to	Neural	Networks

Example	Solutions	to	XOR	
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Best	Case	Scenario?

Just	measure	in	bits!	
 
The	memory	capacity	of	any	binary	classifier	cannot	be	
better	than	the	number	of	relevant	bits	in	the	model	
(pigeon	hole	principle,	no	universal	lossless	compression).  
	  
This	is:	n	bits	in	the	model	can	maximally	model	n	bits	of	
data.
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Next	Lecture

▪ Capacity	for	Neural	Networks	explained:	See	also	cheat	sheet.	
▪ Practical	applications	
▪ Demo


