<table>
<thead>
<tr>
<th>Authors</th>
<th>Presenters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wei Jiang</td>
<td>Armin Samii</td>
</tr>
<tr>
<td>Courtenay Cotton</td>
<td></td>
</tr>
<tr>
<td>Shih-Fu Chang</td>
<td>Images from the interwebs, 2009 paper, and 2010 slides from Dan Ellis</td>
</tr>
<tr>
<td>Dan Ellis</td>
<td></td>
</tr>
<tr>
<td>Alexander C. Loui</td>
<td></td>
</tr>
</tbody>
</table>
Goal of the Work

- Categorize generic videos
 ('Semantic Concept Detection')
- Uses Kodak's consumer benchmark video set
Method Overview

1) Extract features
 - Video contents
 - Motion tracking
 - Audio

2) Create codebook
 - Prototypical features in a concept

3) Predict
 - Match new examples to items in codebook
Label is penguin, but most of the image has nothing to do with a penguin.
Quality, perspective, and lighting varies across videos.
Motivating Problems (3)

Need a way to relate sound and video
Motivating Problems (4)

Sounds can come from objects out of the frame.
Downsides to Related Work

- Treat audio and video separately
 → Important to relate them (e.g. the cat)
 Solution: combine audio+video into one unit

- Look at static regions in the image
 → No movement data
 Solution: track movement of regions over time

(details to come)
Main Contribution: S-AVAs

- 'Short-term Audio-Visual Atoms'
 - A 1-second slice of video:
 - 137 video features
 - 4 motion features
 - 152 audio features

- Purpose:
 Relate a small segment of the video to a concept
Framework

Short-term Video Slice

Shot-term Region Tracks by STR-PTRS

Visual Features from Short-term Region Tracks (color, texture, edge, motion)

visual atom visual atom

visual atom

Short-term Window

MP Bases

dictionary

Psychoacoustic Pruning

Audio Representation

Joint Audio-Visual Codebook by Multiple Instance Learning
Goal:
- Detect and track objects

What doesn't work (previous attempts):
- Blob-based tracking (subtracts out the background) → Fails with shaky cameras
- Model-based tracking (manual user initialization) → Too many videos
- Tracking raw pixels → Fails if lighting or perspective change
Tracking

- Alternative: Image segmentation
 - Frame-by-frame
 - Link similar segments ('regions')
 - Track each region independently
Tracking

- Each video slice is 1 second
- 10 frames extracted per slice
- Track all regions over the 10 frames
- Similar regions have similarly-moving points
Short-Term Point Track

- Image features found
 - "Corners, etc."
 - Things that can be easily locked on
- Kanade-Lucas-Tomasi (KLT) Tracker
 - Tracks based on image gradient
 - Robust against changes in lighting
 - Allows affine image changes
- Results in a set of feature tracks
Short-Term Region Track

- Segmentation by color and texture
 - Jseg tool
 - Each frame segmented independently
- Robust against mistakes
 - Errors are averaged across all 10 frames
Short-Term Region Tracks

- Common mistakes
 - One segment split into two
 - Two segments combine into one
- Solution: replication
 - Keep all potential tracks
Short-Term Region Tracks

- To find matching regions across frames:
 - For each region in frame T>1,
 - Calculate KLT distance to all regions in time T-1
 - Choose shortest distance
 - If distance is within some threshold:
 - Mark the two as the same region
 - Else
 - Create a new region track starting at time T
 - Remove all short region tracks
Negligible failures:

- Objects entering in middle of video slice
 → The object will be there in next slice
 → If not, the object probably wasn't important

- Scene changes
 → Most of the data will be discarded by remove
Short-Term Region Tracks

- Choosing length of a video slice

Trade-off:
- Longer → more audio/video information
- Shorter → more accurate motion tracking
Recap

- What we have so far:
 - A set of regions for every frame
 - Links between regions marked as a match (and an *implicit* motion vector)

- Still nothing for a machine learning algorithm
Visual Features

- Color moments in HSV space
 - Mean, standard deviation, skewness
 - 9 dimensions
- Gabor texture
 - 48 dimensions
- Edge direction histogram
 - 73 dimensions
Where We Are

- For each video slice:
 - For each frame in each slice:
 - For each region in each frame:
 - Extract visual features

- Total: 130 features per region

- For each region:
 - Average across frames to obtain feature vector (for the region track)
Trajectory Features

- Calculate optical flow for each pixel
 - Lucase Kanade method
- Divide optical flow direction into four quadrants
- Use 4-bin histogram as a 4D feature

Bins: \{4, 1, 0, 0\}
Audio Representation

- Need to be:
 - Compact
 - Robust against noise
 - Able to match similar audio in different environments

- Algorithm:
 - Matching Pursuit decomposition
Matching Pursuit Decomposition

- Have a dictionary of basis functions
- Try to describe signal with a set of them

Algorithm:
- Find function that best matches current signal
- Subtract that signal
- Repeat 500 times

Properties:
- Focuses on energy peaks
- Relatively invariant to background noise
Matching Pursuit Dictionary

- Use Gabor function:

\[g_\gamma(t) = K(\gamma)e^{-\pi\left(\frac{t-u}{s}\right)^2}\cos(\omega(t-u)+\phi) \]

- By modifying \(u, s, w \):

Some generated Gabor functions
Updated parameters:

\[g_\gamma(t) = K(\gamma)e^{-\pi \left(\frac{t-u}{s}\right)^2} \cos(\omega(t-u) + \phi) \]

Updated parameters:
- \(\phi \): Translate in time
- \(\omega \): Scale in length

updated by eight powers of two
at 16kHz, 2ms to 256ms
Finding the "best match" function

- For each function in dictionary:
 - Subtract from the current signal
 - Calculate the new energy
- Pick the function that minimizes the new energy
- Save it, subtract, and repeat
Psychoacoustic Masking

- **Principle**
 - Humans cannot perceive a low-energy signal if a high-energy signal of similar frequency is present.

- Remove 30% of the functions that are less noticeable (from the original 500)
Turning MP into features

- Each of the eight length scales gets a histogram
- Each histogram has 19 bins
- Bin sizes are one-third of an octave wide

- 8 histograms * 19 bins = 152 features
- Every region segmentation gets the same audio feature vector
Summary: S-AVA

Short-term Audio-Visual Atom (S-AVA)

<table>
<thead>
<tr>
<th>Short-term region track $r = {r^t}, t = 1, \ldots, T$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{vis} : d_{vis} dimensions (visual color/texture/edge)</td>
</tr>
<tr>
<td>f_{mt} : d_{mt} dimensions (visual motion)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Short-term audio window</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_{audio} : d_{audio} dimensions (audio MP hist. & energy)</td>
</tr>
</tbody>
</table>

Figure 6 in the paper
Recap: Framework
Recap: Framework

Short-term Video Slice \rightarrow \text{Shot-term Region Tracks by STR-PTRS} \rightarrow \text{Visual Features from Short-term Region Tracks (color, texture, edge, motion)} \rightarrow \text{visual atom} \rightarrow \text{Joint Audio-Visual Codebook by Multiple Instance Learning}

Short-term Window \rightarrow \text{MP Bases} \rightarrow \text{Psychoacoustic Pruning} \rightarrow \text{Audio Representation}

?
Available Data

- **Labels**
 - One or more per video
 - In general, only applies to a region

(Not the same concepts in the paper)
What We Want From ML

- For each concept, we want:
 - Several examples of "prototypical" S-AVAs
 - A way of mapping each video (many S-AVAs) to a single binary decision
 - Ideally, if any S-AVA votes "aye," the entire video should be labeled "aye."

One sheep said "aye"
Multiple Instance Learning

- Put 10 video slices into one "bag"
 - 10 seconds of video
 - 100 frames
 - Varying number of regions per 1-second slice
 - For a single concept, bag has a binary label
- Treat each concept separately
- For each concept, will have many "yes" bags, and many more "no" bags
Intuition

- Each S-AVA in a bag is a **marble**
- For each concept, want to find **marbles** which best represent the concept

Want a magic marble that is:

- Similar to at least one **marble** in every "yes" bag
- Dissimilar from every **marble** in every "no" bag
Multiple Instance Learning

- Formula to do that:

\[Q_l = \frac{1+y_l}{2} - y_l \prod_{j=1}^{N_l} (1-e^{-||f_{lj}-f^*||^2_{w^*}}) \]

- \(f^* \) is the magic marble from the previous slide
- Optimize \(f^* \) with Expectation-Maximization
- With optimal \(f^* \), formula will:
 - For a negative bag: Be larger if \(f^* \) is far away from ALL instances
 - For a positive bag: Be larger if \(f^* \) is close to ANY instance
Multiple Instance Learning

- We now have an f^* which describes each concept
- Need to learn boundary:

Key: Positive labels Negative labels f^*
Support Vector Machines:
- Find the hyperplane around the point that separates positive and negative instances

Key:
- Positive labels
- Negative labels
- f^*
- Separating hyperplane
Multiple Instance Learning

- But, not always so easy:

 - Need more hyperplanes to describe this (and thus more f^*s)

Key:
- Positive labels
- Negative labels
- f^*
- Separating hyperplane
Multiple Instance Learning

- Can create by weighting each feature differently
- Boosting:
 - If an algorithm is better than random, can "boost" it
 - Initialize all weights to be equal
 - Run algorithm
 - Reweight all mistakes to be more important
 - Repeat until satisfaction

Convergence of AdaBoost
Call each f^* a **codeword**, and each set of them a **codebook**. (Each concept has a codebook.)

Key:
- Positive labels
- Negative labels
- f^*
- Separating hyperplane
Recap: MIL

- We look at every 10 second segment of video
- Each has many S-AVAs
- If an S-AVA is close enough to a prototype, label it "yes" for that concept.
Results

- Ran trials on Kodak Consumer Benchmark Video Set

- AP: Average Precision
 - How well they performed on one concept

- MAP: Mean Average Precision
 - How well they performed across all concepts
Results

- Over 120% MAP increase
 (compared to static region segmentation without temporal tracking)

- 8.5% MAP increase when combining audio and video
 (compared to self)

- Many concepts achieve more than 20% correctness
Results: against others
Results: against self
Some Magic Marbles
Some Magic Marbles
Ideas for Future Work

Their ideas
- Sounding regions
- Multiple-region tracks
- Smart segmentation of video slices to avoid hitting scene transitions

My ideas
- Overlapping S-AVA segments
- Use multiple lengths of S-AVAs to get both temporal data and A/V details
Questions?