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ABSTRACT 
In this paper we present an algorithm for audio scene  
segmentation. An audio scene is a semantically consistent sound 
segment that is characterized by a few dominant sources of 
sound. A scene change occurs when a majority of the sources 
present in the data change. Our segmentation framework has 
three parts: (a) A definition of an audio scene (b) multiple 
feature models that characterize the dominant sources and (c) a 
simple, causal listener model, which mimics human audition 
using multiple time-scales. We define a correlation function that 
determines correlation with past data to determine segmentation 
boundaries. The algorithm was tested on a difficult data set, a 1 
hour audio segment of a film, with impressive results. It achieves 
an audio scene change detection accuracy of 97%. 

1. INTRODUCTION 

This paper deals with the problem of segmenting audio into 
semantically consistent chunks of data. This is an important 
problem for several reasons: (a) Segmenting the audio data into 
coherent chunks is the first step towards generating semantics of 
the sound. (b) Many algorithms for summarizing video [3,10] 
rely exclusively on video data. Organizing video data into 
semantically coherent units is made difficult due to the presence 
of multiple camera angles and abrupt scene changes. We believe 
that the associated audio track possess long term temporal 
coherence that will be of immense help in generating meaningful 
video summaries.  

There has been prior work done dealing with the problem of 
sound segmentation [7,8,9,11]. Broadly, in each of these papers 
the authors use a few features (e.g. energy, cepstra) to classify the 
audio data into several predefined classes such as speech, music 
environmental sounds etc. However, we believe that the 
following issues still need to be addressed:  

1. Fixed time scale: In prior work [9,11] the authors 
determine the features of interest at fixed time-scale. The 
features are extracted at the granularity of a frame. The  
frame length differs with implementation (e.g 100ms in 
[9,11], 2.4 sec. in [7]). 

2. Short term memory: The existing algorithms examine the 
difference between the existing and the next frame. This is 
really the idea of very shot-term memory span.  

3. Restricted Consistency: In [9,11] a change is detected 
when there is a significant change in the values of any of the 
features in the current frame. This is simply the idea that : A 

section of audio is considered to be a segment if all the 
feature values are held constant. We refine this idea as: A 
section of audio is considered a segment if it is consistent 
with respect to a certain property.  

Our paper seeks to address these issues. We define an audio 
scene in terms of a few dominant sources of sound. Then we 
develop a causal algorithm by defining a simple model of a 
listener. A listener has two variable parameters: (a) An analysis 
window that examines the most recent data (the attention span) 
and (b) the total amount of data stored (memory). We then 
extract a number of features for the data in the current attention 
span. For each feature, we propose to represent each feature in 
terms of three models: extract three attributes: periodicity, 
randomness and envelope characteristics. Then we compute 
correlations with past data and hence determine the optimal 
threshold for scene segmentation. In this paper, we focus on 
envelope behavior for audio segmentation with good results.  

The rest of the paper is structured as follows: In the next 
section we discuss the scene and the listener models. In section 3 
we discuss features and the models that we develop to represent 
them. In section 4 we present our scene change detection 
algorithm. In section 5 we discuss the our experiments and 
finally in section 6, we present our conclusions. 

2. WHAT IS A SCENE? 
In this section we define characteristics of a sound scene 

and also the models that we assume in order to segment the data. 
We model the scene as a collection of sound sources. We further 
assume that the scene is dominated by a few of these sources. 
These dominant sources are assumed to possess stationary 
properties that can be characterized using a few features. For 
example, if we are walking away from a tolling of a bell, the 
envelope of the energy of the sound of the bell will decay 
quadratically. A scene change is said to occur when the majority 
of the dominant sources in the sound change.  

2.1 The Listener model 

In order to segment sound into scenes, we need to use a 
simple causal model of a listener. The causality assumption stems 
from a desire to mimic the process of human audition [1]. In our 
model of a listener, two parameters are of  interest:  

(a) Memory: This is the net amount of information (Tm) used by 
the listener to come to a decision about a scene change. 

(b) Attention span: The attention span (Tas) is the most recent 
data in with the memory of the listener. This is the data that 



time 

to 

attention span 

memory Tm 

Tas 

Figure 1: The attention span (Tas) is the most 
recent data in the buffer. The memory (Tm) is the 
size of the entire buffer. Clearly, Tm ≥ Tas. 

is used by the listener to compare against the contents of the 
memory in order to decide if a scene change has occurred. 
In contrast to our model, the leaky memory buffer algorithm 
described in [3] does not have a notion of an attention-span. 

This idea is illustrated in figure 1. to is the current instant.  

In summary, the memory is a first-in-first-out buffer holding 
data of duration Tm sec.; the attention-span contains the most 
recent Tas sec. of data.  In our framework, the data in memory is 
broken up into overlapping chunks (each chunk is Tas long). Each 
chunk of data is further broken down to frames (100 ms. 
duration) and a value is determined for each feature at each frame 
instant.  

3. FEATURES AND MODELS 
In this section we shall describe the features that were used 

in the segmentation algorithm. We also describe the models used 
for each feature. 

3.1 Features 

We use ten different features in our algorithm Features are 
extracted per frame for the duration of the analysis window.  

1. Cepstral Flux: The norm of the difference between cepstra 
[6] of successive frames:
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2. Multi-channel cochlear decomposition: A 10 dimensional 
vector is derived from the output of a Patterson model [4] of 
the cochlea. 

3.  Cepstral vectors: Liftered, 18 dimensional cepstra from 
each frame for the duration of the analysis window. 

We also use [7,8,9,11] (a) low energy fraction (b) zero 
crossing rate (c) spectral flux (d) energy (e) spectral roll off 
point. In addition, we also use the variance of the zero crossing 
rate and the variance of the energy as additional features.  

3.2 Models 

Given a particular feature f  and a finite time-sequence of 
values, we wish to determine three attributes: (a) periodicity (b) 
envelope behavior (c) randomness For the sake of definiteness, 
let us assume that the feature is the zero-crossing rate.  

Periodicity: A simple method to determine the periodic 
components is to use the FFT. A direct spectral analysis will 
reveal multiple frequencies simultaneously. However, the FFT 
generates a lot of spurious maxima. We can eliminate the 

spurious maxima by using a simple threshold on the ratio of the 
spectral peak to the median spectral energy.  

Envelope: We wish to determine gross properties of the 
envelope of the feature. We force fit the envelope into signals of  
the following types: Constant. linear, quadratic, exponential, 
hyperbolic and sum of exponentials. Each model is force-fit into 
being monotonic (increasing/decreasing). This is not done for the 
sum of exponentials. 

Two additional types are also used: (a) A “cup” quadratic (b) A 
“hat” quadratic. All the quadratic fits are obtained using a 
constrained least square minimization. All the other envelope fits 
are obtained using a robust curve fitting procedure using the 
Tukey bi-square influence function [2]. We pick the fit that 
minimizes the least median error. Our simple envelope models 
have the advantage that they allow us to assign semantic labels 
(increasing/decreasing/monotonic/linear etc.) to the envelope. 

 

Figure 2: The different envelope fits for the zero crossing 
rate feature for the duration of one window. 

Randomness: Given a time series we wish to test the hypothesis 
that this sequence was generated by a Gaussian noise source 
N(µ,σ). Using the mean and standard deviation of the data we 
can use the chi-square test [2] to decide if the data corresponds to 
the hypothesized distribution. We reject the hypothesis at the 1% 
confidence level.  

It is immediately apparent that this kind of model analysis is 
easily extended to all the scalar variables. However, the vector 
variables (cepstra and the cochlear output) and the aggregate 
variables (variance of the zero-crossing rate and the spectral roll 
off point) are retained in the raw form. 

4. DETECTING A SCENE CHANGE 

Let us examine the case where a scene change occurs just to 
the left of the listeners attention span (figure 3). First, for each 
feature, we do the following:  

1. Place an analysis window of length Tas (the attention-span 
length) at to and compute a sequence of feature values for 
each frame (100 ms duration) in the window. 

2. Determine the optimal envelope fit for these feature values. 



3. Shift the analysis window back by ∆t and repeat steps 1. and 
2. till we have covered all data in the memory.  

We now have a sequence of envelope fits for each feature. 
In order to detect the scene change, we need to define a local 
correlation function. This correlation function determines the 
correlation between the data in the attention span and the past 
data in memory.  The correlation function Cf  for each feature f is 
then defined as follows: 
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where, f(t1, t2) represents the envelope fit for feature f for the 
duration [t1,t2]. Clearly, m ∈  [0..-N], where N ≡ (Tm - Tas)/∆t. ∆t is 
the duration by which the analysis window is shifted. and d  is the 
Euclidean metric on the envelopes. We do acknowledge that 
more sophisticated predictor models could be used to compute 
the distance between the envelope models rather than the simple 
Euclidean metric that we use at the moment. 

For the vector and the aggregate data, we do not compute 
the distance between the windows using envelope fits but use a 
L2 metric on the raw data. In our experiments we use ∆t = 1 sec.  

We expect that when the scene change is just to the left of 
the attention span, the correlation function will decay rapidly as a 
function of t. However, in the absence of any scene change, the 
correlation function ought to be flat (this depends on the metric 
on the envelopes). This must be so since within a scene we 
expect the dominant source properties to be stationary. Hence we 
model the correlation decay as a decaying exponential: 
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 where Ci is the correlation model for 

feature i, and bi is the exponential decay parameter  

The scene decision function D(to) at any instant to is defined as 
follows:  
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 where bi is the exponential decay rate from the correlation 
function and where T is the optimal threshold. Note, we do not at 
present, incorporate the periodicity and the randomness estimates 
in the decision.  

5. EXPERIMENTS 

In this section we present experimental results using our 
listener model and the feature set. We shall first describe the 
hand-labeled data and then discuss the experimental results. The 
experiments were carried on the first one hour of a classic 
science fiction  film: Blade Runner.  The data is complex with 

non-trivial scene changes. For example, a typical scene change 
sequence is: ambient music → street sounds → conversation → 
sounds in a bar.  

5.1 Understanding the hand-labeled data 

The first hour of the film was hand labeled into coherent, 
semantically consistent scenes in two ways: by looking at the 
video along with the sound (video scenes) and by listening to the 
audio alone (audio scene).  Note that a video scene is a complex 
semantic unit, comprising many shots. For example, in a scene 
involving two characters who are engaged in a conversation, we 
will have the camera switching from one person to the other. 

The table below shows the strong agreement between two 
kinds of labeled data. A video and an audio scene are said to 
agree if they can be cross validated. There seem to be 10 “extra” 
sound scenes. These scenes are actually correct; they reflect a 
change of mood (or theme) within the same video scene.  

 

Type No. 

Video Scenes 28 

Audio Scenes 33 

Scene Agreement 23 

Table 1 The audio scene breaks were labeled without 
watching the video while the video scene breaks were 
obtained by watching the film with the audio. Note the 
strong scene agreement.  

A comparison of the audio scene labels with video scene 
labels (on scenes that agree) revels a consistent location 
ambiguity. This ambiguity is positive (µ = +2.87 sec., σ=5.26 
sec.) . There were two reasons for this: 

• During a video scene transition, the sound from the previous 
video scene continues over into the next video scene for a 
few seconds.  

• There is genuine ambiguity when listening to the audio data; 
the listener needs to wait for a few seconds before 
concluding that there has been a scene change.  

This implies that a long latency period (in the order of 
seconds rather than milliseconds as in [7,8,9,11]) is to be 
expected while  identifying scenes when only using audio 
data. 

5.2 The Scene change detector results 

The scene change detector was evaluated against the hand-
labeled audio data rather than using the hand-labeled video data. 
The reason for this is as follows: the positive location ambiguity 
observed in identifying the scene change is modeled in the 
attention-span parameter in our listener model. Also, the extra 
scenes in the audio are important: they often convey a significant 
change in the mood (or the theme) of the film. 
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Figure 3: The thick vertical line represents a scene 
change. Here the scene change occurs just left of the 
listeners attention span. 

scene change 



 The different attention spans will clearly cause the detectors 
to have different time resolutions. We label  claim a scene to be 
correctly detected if it is identified with a location error 
proportional to the attention span. 

 

 

Figure 4: (a) The probability of detection against prob. of 
false alarms for fixed attention span but different memory 
lengths {Tas: 16 sec. Tm: 17, 19, 23, 31, 47 sec.}. (b) The 
Prob. of detection against different Tas/Tm ratios, for a 
fixed probability of false alarm (Pfa=0.1). The plot is 
grouped using constant attention span lengths. Starting 
from the top, Tas: {16,8,4,2,1 sec.}. 

The results are shown in figure 4. Figure 4a shows the prob. 
of detection against prob. of false alarms for fixed attention span 
but different memory lengths {Tas: 16 sec. Tm: 17, 19, 23, 31, 47 
sec.}. Figure  4b shows a plot of prob. detection against different 
Tas/Tm ratios with a fixed probability of false alarm (0.1). The 
highest scene detection rate of 97% was achieved with Tas = 16 
sec. and Tm=17 sec. The results clearly indicate three trends:  

• For longer attention spans {Tas:8,16 sec.} the probability of 
detection increases with increase in the Tas/Tm ratio (figure 
4b). 

• Shorter attention spans {Tas:1, 2, 4 sec.} perform poorly, 
with performance only improving marginally with increase 
in the memory Tm (i.e. the buffer size) (figure 4b). 

• For a fixed attention span (Tas = 16 sec.) the detector 
performance decreases with increasing the memory (Tm) 
(figure 4a).  

The observation of increase in probability of detection with 
increase in the Tas/Tm ratio seems surprising since this indicates 
that a longer memory is a deterrent to scene change detection. 
Note, however, that the attention-span parameter is long (16 sec. 
in the best result). There are two possible explanations for this 
phenomena: (a) The correlation function depends on ∆t, the 
duration by which we shift back our analysis window when 
computing the correlation. In our experiment ∆t= 1 sec. which is 
perhaps too large. (b) It is also possible that the exponential 
model for the correlation is too simple to adequately capture the 
observed correlation behavior. 

6. CONCLUSIONS 

We have described a framework for segmentation of audio 
scenes. We define an audio scene as a collection of sound 
sources. This is used in conjunction with a listener model that 
has two parameters: (a) attention-span and (b) memory. The 

detection algorithm works as follows: We extract different 
features for each chunk of data. Then we determine the optimal 
envelope fits for each feature. Then, by determining the 
correlation amongst the envelopes, we determine segmentation 
boundaries. We observe that the detector performance increases 
in two cases: (a)  with increase in the attention span (b) with an 
increase in the ratio of the attention span length to the memory. 

The algorithm achieves a segmentation detection accuracy 
of 97% at a false alarm probability of 10%. Our results are 
preliminary and we believe that more sophisticated models (e.g. a 
more sophisticated memory/attention-span model.) will improve 
the performance of the scene change detector.  

The strong agreement between the audio scene and the 
video scene boundaries is an important observation. Since exiting 
techniques [3,10] to summarize video data at the semantic level 
only use image data, we believe that the use of the audio scene 
change detection algorithm offers an excellent avenue of 
improving existing video summarization algorithms. 
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