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ABSTRACT

A multivariate-state HMM — an HMM with a vector s-
tate variable — can be used to find jointly optimal phonetic
and formant transcriptions of an utterance. The complexi-
ty of searching a multivariate state space using the Baum-
Welch algorithm is substantial, but may be significantly
reduced if the formant frequencies are assumed to be condi-
tionally independent given knowledge of the phone. Operat-
ing with a known phonetic transcription, the multivariate-
state model can provide a maximum a postertor: formant
trajectory, complete with confidence limits on each of the
formant frequency measurements. The model can also be
used as a phonetic classifier by adding the probabilities of
all possible formant trajectories. A test system is described
which requires only nine trainable parameters per formant
per phonetic state: five parameters to model formant tran-
sitions, and four to model spectral observations. Further
simplifications were achieved through parameter tying.

1. INTRODUCTION

This article proposes an algorithm which simultaneously
transcribes the phonetic content and the formant frequen-
cies of an utterance. Previous attempts to use formant fre-
quencies in speech recognition require the formant tracker
to make a hard decision about the frequency of each for-
mant before the commencement of phonetic classification.
In contrast, the algorithm proposed in this article seeks pho-
netic and formant transcriptions which describe the spectral
content of the utterance in a jointly optimal manner. In ef-
fect, the algorithm proposed in this article is a soft-decision
formant tracker.

The structure of the formant tracker is based loosely
on the HMM formant tracker proposed by Kopec [3]. In
Kopec’s HMM formant tracker, the state of the hidden
Markov model is a vector of formant frequencies (;_5} =
[¢1,t,---,Pp,:], where P is the number of formants to be
tracked. Kopec reduced the complexity of his formant
tracker by vector quantizing 4_5;, and performing a Viterbi
search in the space of vector quantization indices, in order
to determine the maximum likely formant frequency track
P = [(,/_;f, ceey q;:}] Once calculated using Kopec’s formant
tracker, the matrix ®* was then appended to the observa-
tion vector of an HMM digit recognizer [1]. The observation
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vector also included the LPC spectrum from which the for-
mants were originally calculated, so Bush and Kopec note
that the formant frequencies were effectively a repetition
of information already available to the recognizer. Even
so, the second formant slope d¢s ;/dt was found to increase
digit recognition scores; information about other formants
had no significant effect on recognition performance.

In this article, Kopec’s formant frequency state vector is
augmented with the scalar state variable ¢; of a traditional
HMM:

q’tE[qh(ﬁl,ta"'a(ﬁP,t] (]‘)

Section 2 describes an efficient Viterbi search, and an ap-
proximate Baum-Welch algorithm, in which the cost of
searching the state space given in equation 1 is significantly
reduced using appropriate independence assumptions. Sec-
tion 3 describes a simple test system which can be used
to track formant frequencies at the release of a voiced stop
consonant, or to identify the consonant. Section 4 describes
parameter tying and estimation, and section 5 gives results.

2. SEARCH IN A MULTIVARIATE
STATE SPACE

The formant frequencies may be modeled as a vector of hid-
den state variables which influence but do not determine the
acoustic spectrum. In the notation of speech recognition,
the scalar state variable ¢ in traditional HMM formulation-
s [4] is replaced by the vector state variable ¢; in equation 1.
Assume that the scalar phonetic variable ¢; takes on N, d-
ifferent values, while each of the formant frequencies ¢;
takes on N, different values; then the vector state variable
d: takes on a total of Nqu different values.

Maximum a posteriori transcription of formant frequen-
cies and phonetic information given a spectrogram can
be accomplished using either the Viterbi algorithm or the
Baum-Welch algorithm. This article will derive a computa-
tionally efficient multivariate approximation of the Baum-
Welch algorithm. A computationally efficient multivariate
Viterbi algorithm may be derived in much the same way.

The Baum-Welch algorithm calculates the probability
v(3) = P(O,q: = j|\), where O = [61,...,07] is the ma-
trix of observation vectors, and A is the model. ~:(j) is
the product of a forward probability ;(j) and a backward
probability 3:(7), which are calculated using recursions of
the form:

() = p(@17) Y [ee1() p(ili) ] 2)
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In the general case, the only way to solve equation 2 is by
summing over all of the possible state vectors. The total
computation required, with Nqu possible state vectors
and T time steps, is T(N;NJ)*.

It is possible to construct a simplified approximation of
equation 2 by assuming that formant frequencies ¢, are
dependent on the “phonetic state” gq; (which is equivalent
to the state in a traditional HMM), but that given knowl-
edge that g¢ equals soem particular state jo and gi—1 = 4o,
the formant frequencies ¢p,:+ = jp and ¢, = jr are inde-
pendent:

p(310) = pGolio) [ [ p(ivlio, ip) (3)
p(6:17) [ [ p(étljo j») (4)

If the transition and observation probabilities satisfy e-
quations 3 and 4, then equation 2 can be approximated
using the equations

ai(7) & @(7) = [ [ (v o) (5)
at(jp, jo) = p(0t|jp, jo) X (6)

YD [aeilipyio) pliolio)"”” pilin, o) |

The total complexity of finding @ (j) using equation 6 for
T time steps is TP(N,Ny)>.

Even if the transition and observation probabilities sat-
isfy equations 3 and 4, equation 6 is only an approximation
of equation 2. It can be shown that a Viterbi search can be
simplified in a similar manner without suffering a similar
loss of accuracy; unfortunately, a Viterbi search does not
provide us with the probability (7). It can also be shown
that &:(7) > au(J), with equality if the phonetic state g, is
known with certainty for 7 < t.

The multivariate-state algorithm may be used as a max-
imum a posteriori formant tracker. The a posteriori distri-

bution of each of the formant frequencies given observations

01,...,0r, and given the phoneme sequence qi, ..., qr, is:
Ye(dplae) = ce(iplae) Be(Golae) (7
: (Jplar) = p(0tljp, qi) x (8)

> T ar-1(iplgi-1) p(nlip, gt-1) |

iP
The maximum a posteriori (MAP) formant transcription of
an utterance is the sequence of formants ¢, ; which maxi-
mize Ve (¢p,¢|ge)-

It may be the case that an application needs to know
how confident the formant tracker is about the estimated
formant frequency ¢, ;. Confidence limits for the formant
¢p.+ are given by the distribution ~¢(¢p,¢|g:). For example,
it is possible to numerically integrate y:(¢p,¢|g: ), and to find
two frequencies fi; and f> such that the true value of ¢ is
between f; and f» with a probability of 95%.

Phoneme classification with the multivariate-state model
can be accomplished using either the Viterbi algorithm or
the approximate Baum-Welch algorithm. Using the Baum-
Welch algorithm, maximume-likelihood phone classification
is accomplished by choosing the phone model A which max-

POIN) =) ar(f) 9)

where T is the length of the waveform. As noted previously,
exact computation of equation 9 requires on the order of
T(Nqu )? computations, which is usually not practically
feasible. An approximate maximum likelihood classification
can be accomplished by choosing A to maximize

PON =[] arlijo) (10)

p=l jo Jp

It can be shown that P(O|)\) > P(O|)), with equality if the
sequence qi, ..., qr is deterministic.

3. TEST SYSTEM

The approximate Baum-Welch algorithm described in equa-
tions 5 through 10 was tested using stop consonant releases
excised by hand from the TIMIT database. Formant track-
ing and phonetic classification were performed using seg-
ments consisting of six consecutive non-overlapping 10ms
frames, beginning 5ms before stop release.

Each of the three places of articulation (lips, tongue
blade, and tongue body) was modeled using two hidden
Markov models: one for male speakers, and one for fe-
male speakers. Each model consisted of six states, with
no self-loops and no skipped states; in other words, given
knowledge of the model, the state sequence [q1,. .., ¢s] was
deterministic and non-repeating.

Formant frequencies tend to be slowly varying, so it is
reasonable to model p(jplip,io) using a unimodal distribu-
tion, with a peak somewhere near j, = i,. The test system
modeled formant transitions using a two-dimensional Gaus-
sian distribution with phoneme-dependent parameters:

p ([ip:jp”iO) =N ([ip:jp]’ ‘i_sp(iO): Etb,p(iO)) (11)

where NV (Z,z,3) is the normal distribution with mean vec-
tor Z and covariance matrix ¥. Since jj is a discrete random
variable, the PDF in equation 11 was converted to a PMF
using approximate numerical integration.

The dependence of the observed DFT spectrum on any
given formant frequency j, was modeled using a strictly
local, independent modulation of the relative amplitude
A(jp,t) and spectral convexity C(jp,t) at the specified fre-
quency jp, with probability densities whose parameters de-
pend only on the phonetic state jo:

P(¢ljn; jo) = P(A(Gn, t)]50)p(C (i, t)]40) (12)
The spectral amplitude A(jp,t) is defined as the ratio
of the squared DFT spectrum |X (jp,t)|* to the total DFT
energy E(t), where
N/2

E(t) = Y |X(kF/N, ), (13)

k=0
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Figure 1: Lifter used to estimate spectral convexity.

and N is the number of samples in the DFT spectrum,
and Fj is the sampling rate. Since ratio variables are not
well modeled by a Gaussian distribution, the ratio is trans-
formed using a form of the logistic transform:

Ajpt) = 10logyo <%) "

The resulting amplitude measure A(j,,t) is modeled using
a Gaussian distribution, with phone-dependent mean and
variance:

P(A(ip, t)ljo) = N (A, t), Ap(jo), 0% ,p(jo))  (15)

The convexity measurement C(jp,t) is an approximation
of the second derivative of the log spectrum, created by
convolving log | X (f,¢)| with a seven-sample FIR lifter:

Cljp,t) =20 Y H(k)log,o |X(j —k,t)|  (16)
k=-3

The lifter H(k) was designed by truncating the spectrum
of a 125Hz-bandwidth complex pole pair, and normalizing
the result to zero mean and unit energy. The spectrum and
cepstrum of H (k) are shown in figure 1.

The probability distribution of C(jp,t) is not well mod-
eled by a Gaussian distribution. When human judges mea-
sure formant frequencies, they usually locate a formant fre-
quency near a local maximum of C(jp,t), implying that
larger values of C'(jp,t) are somehow “better” than average
values — in other words, the mode of p(C(jp,t)) should be
higher than the mean. Since the true form of p(C(jp,t)) was
unknown, convexity was modeled using a “half-Gaussian”
weighting distribution (not a true probability distribution),
in which all convexity values above the training sample
mean were considered equally likely:

P(C(p,t)ldo) = N (Cips t), Co(jo), 025 (Jo))  (17)

C(jp, t) = min (C(jp, t), Cp(jo)) (18)
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Figure 2: Spectrum, spectral convexity, and a posteriori
formant probabilities, as calculated by the formant tracker,
10ms after release of the first /b/ in “Barb.” A posteriori
probability distributions of all three formants are shown
on the same plot, because there is no significant overlap
between the distributions.

4. PARAMETER TYING AND ESTIMATION

The probability densities in equations 11, 15, and 17 are
specified by nine parameters per formant per phonetic s-
tate: five parameters to model the formant transition (e-
quation 11), and four to model spectral observations (e-
quations 15 and 17). Visual analysis of the training data
suggests that amplitude and convexity parameters vary lit-
tle from one place of articulation to another and from one
speaker gender to another, so the amplitude mean and vari-
ance parameters were tied across place of articulation and
speaker gender. The parameters of equation 11, on the
other hand, vary substantially as a function of place and
gender, but are more slowly varying as a function of time.
The parameters X4 ,(jo) were therefore tied together across
all states within each HMM, i.e. 34 5(q:) = Xg,»(N), where
A denotes place of articulation and gender of the speaker.
After these simplifications, the average number of trainable
parameters per formant per phonetic state is 3.17. Further
tying reduced the complexity to 1.84 trainable parameters
per formant per phonetic state; see [2] for details.

The multivariate-state model was tested in two experi-
ments, with separate training for each experiment.

In the first experiment, the model was tested as a soft-
decision formant tracking algorithm, using the a posteriori
formant probability distributions given in equation 7. The
model parameters were estimated using manual transcrip-
tions of the formant trajectories following 36 stop release
tokens, produced by 36 different speakers (18 male, 18 fe-
male). Training tokens were manually segmented, and the
mean and variance of each Gaussian distribution in equa-
tions 11 and 12 were estimated using sample means from
each segment, pooled across training tokens.

In the second experiment, the model was used to clas-
sify the place of articulation of stop releases. For this ex-
periment, the model was trained using 3141 non-word-final
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Figure 3: Spectrum, spectral convexity, and a posteriori
formant probabilities, as calculated by the formant tracker,
50ms after release of the first /b/ in “Barb.”

Vowel Correct | Num. Classified As:
Phone | Toks. | /b/ /d/ g/

Low Back | /b/ 63 92

/aa, /d/ 29 83

ah/ /g/ 64 17 81
High Front | /b/ 216 | 94

Jivy, /d/ 102 76 14
ih,ux/ Jg/ 33 15 79
High Back | /b/ 18 83 11
Juw,w, /d/ 25 88 12
uh/ /g/ 31 84
Other /b/ 174 | 90

Jeh,ae, /d/ 476 |15 72 13
ix,ax/ /g/ 474 11 81

Table 1: Stochastic formant model classification of voiced
stops, as a function of right context. Entries of 10% or less
have been omitted.

voiced stop release tokens extracted from the TRAIN sub-
directory of TIMIT. Segmentation was based on the TIMIT
segmentation, but was checked manually for each training
token. Formant frequencies were transcribed by the ES-
PS formant tracker (Entropic Research Labs, Washington,
DC); formants missed by the ESPS tracker were filled in
using an expectation maximization algorithm.

5. RESULTS

The multivariate-state model can be used as an MAP for-
mant tracker by calculating, at each time ¢, the set of for-
mant frequencies which maximize the a posterior: probabil-
ity distribution 7:(¢p|g:). If the model is used in this way,
~¢(Pplge) itself can be viewed as a frame-by-frame estimate
of the measurement uncertainty of the formant-tracking al-
gorithm.

Figures 2 and 3 show the spectrum, spectral convexity,
and a posteriori formant probabilities y;(¢,|g:) at ¢ = 10ms

and t = 50ms following the /b/ release in the word “Barb”
spoken by a female speaker. In most cases, there is a clear
peak in the spectrum near the expected value of formant
¢p, and as a result, v.(¢p|g:) has low variance. In figure 3,
however, the F1 peak obscures the location of the F2 peak,
and as a consequence, Y¢(¢2]g:) in figure 3 is more diffuse.
A different kind of uncertainty is visible in the F3 region in
figure 2: there are two clear peaks in the spectrum. The
algorithm is unable to definitively rule out either peak, so
~¢(¢3]ge) is non-zero for candidate values of ¢3 in both pos-
sible formant locations.

The model was also tested in a phoneme classification
task. The approximate Baum-Welch algorithm described
in equation 10 was used to classify the place of articulation
of 2005 non-word-final voiced stop releases in vowel, schwa,
and glide right contexts extracted from the TEST subdi-
rectory of TIMIT. Table 5 lists confusion matrices for four
different categories of right context; on average, classifica-
tion of the stop consonant was 83% correct.

6. CONCLUSIONS

This article describes a hidden Markov model which simul-
taneously tracks the phonetic state of an utterance and
three hidden formant frequencies. The model can be used
as a maximum a posteriori formant tracker, in which case
the a posteriori distributions ¢ (jp|jo) provide a frame-by-
frame estimate of formant measurement uncertainty. The
model can also be used for phoneme classification or recog-
nition.

The observation PDF used in this article models only
one sample of the spectral amplitude and one sample of the
spectral convexity per formant per phonetic state. The lim-
ited observations may explain the rather poor classification
performance of the test system. If a more complete observa-
tion spectrum can be devised which approximately satisfies
the independence constraint in equation 4, the classification
performance of the model is expected to improve.
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