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ABSTRACT

Most HMM-based speech recognition systems use Gaussian
mixtures as observation probability density functions. An impor-
tant goal in all such systems is to improve parsimony. One method
is to adjust the type of covariance matrices used. In this work, fac-
tored sparse inverse covariance matrices are introduced. Based on
U 0DU factorization, the inverse covariance matrix can be repre-
sented using linear regressive coefficients which 1) correspond to
sparse patterns in the inverse covariance matrix (and therefore rep-
resent conditional independence properties of the Gaussian), and
2), result in a method of partial tying of the covariance matrices
without requiring non-linear EM update equations. Results show
that the performance of full-covariance Gaussians can be matched
by factored sparse inverse covariance Gaussians having signifi-
cantly fewer parameters.

1. INTRODUCTION

Most state-of-the-art speech recognition systems represent the
joint distribution of features for each utterance using hidden
Markov models (HMMs) with multivariate Gaussian mixture ob-
servation densities [15]. An important goal for designers of auto-
matic speech recognition (ASR) systems is to achieve a high level
of performance while minimizing the number of parameters used
by the system. One way of controlling the number of paramet-
ers is to adjust the structure of the covariance matrix used by each
Gaussian mixture component. Traditionally, the choice is made
between either diagonal or full covariance matrices.

With diagonal covariance matrices, all off-diagonal matrix el-
ements are set to zero. For a single Gaussian component, this
means the random variables are assumed to be statistically inde-
pendent. With mixtures of diagonal-covariance Gaussians, depen-
dencies between random variables can be represented, but com-
plex distributions potentially require a large number of compo-
nents. The alternative, requiring many more parameters, has been
to use full covariance matrices where each component corresponds
to a more complex distribution. It has been demonstrated [10]
that, at least for the standard features used for speech recognition
(cepstral features), representing correlation explicitly by including
non-zero off-diagonal covariance elements can improve word ac-
curacy over a simple mixture of diagonal-covariance Gaussians.
To avoid the complexity of more parameters, this suggests a com-
promise should be used between diagonal and full covariance ma-
trices.

There are a variety of choices for covariance structure other
than diagonal or full, some of which have been previously used
as HMM state-conditioned observation densities. Two examples
include block-diagonal [8] and banded-diagonal matrices. An-
other method often used by ASR systems to reduce parameters
(and thereby increase estimation robustness) is tying, where cer-
tain parameters are shared amongst a number of different mod-
els. Accordingly, various matrix decomposition methods of the
form C = A0DA (where D is diagonal and A is an arbitrary ma-
trix) have been applied to covariance matrices along with different
styles of partial parameter tying [5, 10, 16]. These methods could

collectively be called partially tied covariance matrices since only
a portion of the covariance matrix is not tied and remains uniquely
associated with each mixture component of each HMM state.

While many statistical systems allow for a regular structure,
it is becoming apparent that the use of a sparse structure is one
method to eliminate the unnecessary parameters in a system. One
way of controlling sparseness (and number of parameters) is by
adjusting the inherent statistical dependencies made by a proba-
bilistic model. Ideally, only the important statistical dependencies
in the training data should be represented [1] and the direct rela-
tionships between the remaining random variables should be left
unspecified.

Covariance matrices are no exception to this rule. In gener-
al, the location of any zeros in the inverse covariance matrix of a
Gaussian distribution correspond to the conditional independence
properties of that distribution. By forcing certain elements of the
inverse covariance matrix to be zero, the number of parameters
in the system can be reduced. This is the idea behind covariance
selection, originally advocated in [4], described in [6, 9, 13], and
proposed for speech in [1, 3]. Also, in [14], a procedure was given
for learning the structure of mixtures of Bayesian networks which,
in that work, corresponded to mixtures of Gaussians with sparse
inverse covariance matrices.

This paper introduces two new procedures: 1) a method for co-
variance selection based on choosing statistical dependencies ac-
cording to conditional mutual information computed using training
data, and 2) a method for partially tying covariance matrices based
on U 0DU factorization, where U is a unit upper triangular matrix
and D is diagonal. This leads to an easy way of specifying the
sparse patterns of the inverse covariance matrices, and also results
in efficient linear EM update equations even when the covariance
matrices are partially tied.

Section 2 reviews an interesting property of jointly Gaussian
random variables showing that each variable is a Gaussian auto-
regressive process with dependencies on the other variables. It
also informally shows how conditional independence properties of
a Gaussian distribution are directly related to the inverse covari-
ance matrix. Section 3 shows how, via U0DU decomposition, the
inverse covariance matrix can be represented as factors of linear-
regressive and variance components, and how the resulting fac-
torization can lead to a simple EM parameter optimization strat-
egy even when the matrices are partially tied. Section 4 outlines
the method used to choose the sparse inverse covariance matrix
pattern. Section 5 shows how the number of parameters can be
significantly reduced without greatly affecting WER performance
relative to a full-covariance matrix system. Finally, section 6 con-
cludes and discusses future work.

2. NORMAL DISTRIBUTIONS AND CONDITIONAL
INDEPENDENCE

A multivariate Gaussian distribution f(x) is defined as follows:

f(x) = j2��j�1=2
e
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Figure 1: Zeros in the inverse covariance matrix correspond to
missing edges in the graphical model, and therefore control the
conditional independence properties of the Gaussian distribution.
In the figure, there is no edge between X2 and X3 implying that
X2??X3jfX1; X4g and also implying that K23 = K32 = 0.

where x is d-dimensional multivariate-vector, � is the mean, and �
is the covariance matrix. Note that if an element of the covariance
matrix is zero (i.e., �i;j = 0), then the two corresponding vari-
ables are marginally independent (i.e., f(xi; xj) = f(xi)f(xj)).

One important property of jointly Gaussian random variables
is that linear transformations of and conditioning on any set of the
component scalar variables preserves the Gaussian property. The
chain rule of probability states that:

f(x) =
Y
i

f(xijx1:i�1)

Because the factors f(xijx1:i�1) are each Gaussian, any Gaussian
distribution can be represented as a product of conditional Gaus-
sian distributions. A well-known result from multivariate statistics
is that f(xijx1:i�1) has distribution with conditional mean:

�ij1:i�1 = �i +�i;1:i�1(�1:i�1;1:i�1)
�1

(x1:i�1 � �1:i�1)

and covariance:

�ij1:i�1 = �ii � �i;1:i�1(�1:i�1;1:i�1)
�1

�1:i�1;i

where the notation Ai:j;l:m refers to a partition of a matrix A con-
taining rows i through j and columns l through m.1 Note that xi’s
dependency on x1:i�1 is only through xi’s conditional mean – the
covariance stays fixed as x1:i�1 changes.

The conditionally Gaussian distribution of xi given x1:i�1 can
be seen as linear regression [9, 13] since in this case:

xi = �i +K
�1
ii Ki;1:i�1(x1:i�1 � �1:i�1) + �i

where

�i � N(0;�ii �K
�1
ii Ki;1:i�1�1:i�1;i)

and where K = (�1:i;1:i)
�1 is the inverse covariance matrix.

In this form, it can be seen that conditional independence prop-
erties of the distribution are determined by the location of zeros in
the inverse covariance matrix. This is because when Kij = 0, xi
no longer depends on xj given the remaining variables.2 A Gaus-
sian distribution can also be viewed as a graphical model, where
nodes in the graph correspond to the scalar random variables, and
edges in the graph exist for each non-zero off-diagonal entry in the
inverse covariance matrix (see Figure 1).

1Also, Aij will refer to the element of a matrix A in row i and column
j, and Ai;l:m to columns l through m of row i.

2In [9], it is formally proven that Kij = 0 if and only if
xi??xj jxf1:dgnfi;jg where K = �

�1

3. FACTORED SPARSE INVERSE COVARIANCE
MATRICES

Another way of specifying the auto-regression coefficients of a
Gaussian is to decompose the inverse covariance matrix and then
manipulate the outer factors so that they lie within the linear com-
ponents of the exponential’s Mahalanobis distance argument. This
decomposition also leads to a method where the sparse patterns in
the inverse covariance matrix are specified by setting regression
coefficients to zero. It also allows the partial tying of the covari-
ance matrix without needing a non-linear optimization procedure
within each EM iteration.

Any positive definite matrixA has a unique decomposition in-
to factors U 0DU , where D is a positive diagonal matrix and U is
a unit upper-triangular matrix. A unit triangular matrix is a trian-
gular matrix that has ones along the diagonal. This implies that U
is non-singular and that det(A) = det(U 0DU) = det(D) since
det(U) = 1. A Gaussian density can therefore be represented as:

f(x) = j2�Dj�1=2
e
�
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where ��1 = U 0DU .
If U was a general matrix, the EM update equations for such

a model would require a non-linear optimization procedure to be
performed within each EM iteration (see [5, 16]). The unit trian-
gular matrices can be “brought” inside the linear terms, however,
as follows:

(x� �)
0
U
0
DU(x� �)

= (U(x� �))
0
D(U(x� �))

= (Ux� ~�)
0
D(Ux� ~�)

= ((I �B)x� ~�)
0
D((I �B)x� ~�)

= (x�Bx� ~�)
0
D(x�Bx� ~�)

where U = I�B, I is the identity matrix,B is an upper triangular
matrix with zeros along the diagonal, and ~� = U� is the new
mean. Note that if Bij = 0 for j > i, then Kij = Kji = 0 where
K = ��1.

This process transforms ��1 into a linear regression on x,
without effecting the Gaussian normalization coefficient. There-
fore, a full-covariance Gaussian distribution is like a conditional
Gaussian distribution with conditioning variables coming from the
same feature vector rather than from somewhere else in time. The
same optimization procedures as those used in [1, 2, 12] can there-
fore be used here.

As in other matrix decompositions [5, 16], the covariance ma-
trix for a particular mixture component and HMM state can be
represented as �(m) = U (r)0D(m)U (r) where U (r) may be tied
together over a number of different components, with D(m) re-
maining uniquely associated to a particular component of an HMM
state. With this decomposition, a partially tied Gaussian mixture
HMM system can be trained using an EM optimization strategy
that does not require an iterative non-linear optimization procedure
within each EM iteration [5, 16]. This is essentially a consequence
of the following formulas [1] which are used to produce the EM
update equations for these models. In the first case,
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whereas in the general case, the derivative
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for an arbitrary matrix A is not as easy to represent.

4. COVARIANCE SELECTION STRATEGY

With the decomposition ��1 = U 0DU , choosing the locations
of zeros in the inverse covariance matrix is equivalent to choos-
ing the zeros in the triangular matrix B. This is identical to the
problem encountered in [2], where the individual dependencies be-
tween feature vectors needed to be chosen. In this paper a simple
strategy is proposed to choose the zeros of B: Bi;j may be non-
zero only if the conditional mutual information I(Xi;Xj jQ = q)
is large enough.

There are a several ways to obtain I(Xi;Xj jQ = q). One
strategy starts with a diagonal-covariance Gaussian HMM system,
computes Viterbi paths, computes conditional mutual information
(as described in [1]), sets certain elements of B to be non-zero,
and trains the result. This is somewhat analogous to a forward ap-
proach [4] to covariance selection (and also similar to the forward
feature selection procedure of [7]). This strategy has the advantage
that it requires only a simple boot system containing relatively few
but robustly estimated parameters. Adding additional dependen-
cies can be seen as correcting deficiencies in the model as mea-
sured in according to the training data.

A problem with the above approach is that, starting from a
simple system, the Viterbi paths might not be very accurate which
reduces the quality of the conditional mutual information estima-
tion. An alternative strategy then is to start with a full-covariance
HMM system and perform the remaining steps in the same way.
This is analogous to a backward [4] (or backward selection [7])
procedure. It has the advantage that more precise estimates of
I(Xi;Xj jQ = q) can be obtained resulting in better sparse matri-
ces. The disadvantage is that it requires a trained full-covariance
HMM system, the parameters of which might not be as robustly
estimated as the diagonal-covariance system. There is obviously a
trade-off between the two approaches. In this work, however, only
the later approach is evaluated.

5. RESULTS

Speech recognition results were obtained using NYNEX PHONE-
BOOK, a large-vocabulary, phonetically-rich, isolated-word,
telephone-speech database[11]. Data is represented using 12 M-
FCCs plus c0 and deltas resulting in a d = 26 element feature
vector sampled every 10ms. The training and test sets are as de-
fined in [2]. Test words do not occur in the training vocabulary,
so test word models are constructed using phone models learned
during training. Strictly left-to-right transition matrices were used
except for an optional beginning and ending silence model.

An HMM baseline system, bootstrapped using uniform seg-
mental k-means, was developed using 42 phone models (41 mono-
phones + silence) and three HMM states per mono-phone. Each
phone model uses a mixture of 5 full-covariance Gaussians, spec-
ified by allowing non-zero values for all off-diagonal elements of
the B matrices. The dictionary included with PHONEBOOK was
used for all pronunciations. All training was performed using stan-
dard EM for maximum-likelihood parameter estimation.

Given the trained full-covariance system, Viterbi paths were
computed for the entire training set, and conditional mutual infor-
mation was calculated for each HMM state (again see [1]). The
structure of the B matrices for each component was chosen by se-
lecting a certain percentage of the possible non-zero entries of B.
The structure of the B matrices for each component of an HMM
state was set to be the same. Three different methods to choose
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Figure 2: 75 Word lexicon size.
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Figure 3: 150 Word lexicon size.

a certain percentage of possible non-zero entries of B were com-
pared. The first method chooses the entries corresponding to the
greatest values of the conditional mutual information, the second
chooses the entries corresponding to the smallest values, and the
third chooses random entries. In all cases, the values used were
10%, 20%, ..., 90% of the possible B entries.

Results are plotted in Figures 2 through 5 which show the word
error (WER) performance on test sets with different lexicon sizes
(the perplexity in this case is equal to the lexicon size). The re-
sults are plotted against the percentage of parameters relative to
the full-covariance result. Each point in the plot corresponds to
the WER evaluation of a system obtained by choosing non-zero
entries for the B matrices of each component of each HMM state,
and training and then testing the result. The left-most point on the
plots corresponds to a system with diagonal covariance matrices.
Such a system requires only 14% of the parameters of a full co-
variance matrix. The right most point on the plot corresponds to
full covariance matrices (i.e., B matrices), and has an x-axis value
of 100%.

The plots clearly show that in all cases adding entries to the di-
agonal inverse covariance matrix decreases WER. When they are
added according to the maximum conditional mutual information
procedure, the rate of WER decrease is greatest, followed by ran-
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Figure 4: 300 Word lexicon size.
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Figure 5: 600 Word lexicon size.

dom and then by minimum conditional mutual information. This
is as expected: choosing entries according to mutual information
chooses first the more important dependencies represented by the
Gaussian. It is interesting to note that the random procedure does
reasonably well. The minimum procedure performs the worst, as
it first chooses dependencies that are least important. In gener-
al, the plots show that only about 70% of the parameters of a full
covariance system are needed to achieve the same performance.

6. DISCUSSION

In the above experiments, the conditional mutual information was
computed at the HMM state level and was used to adjust the in-
verse covariance matrix’s sparse pattern for all of the state’s mix-
ture components. Permitting Bij to be non-zero will certainly al-
low a dependence between xi and xj , but this dependence could
be superfluous since, via the Gaussian mixture, the capability to
represent a dependence between xi and xj might already implic-
itly exist. An alternative procedure could compute the quantity
I(Xi;Xj jQ = q;M = m) where m is a mixture component,
and the B matrix for each mixture component is adjusted individ-
ually. Mutual information in this case would tell us more about
the dependence than can be represented by the linear dependence

in each Gaussian. Two alternatives are to use a poorer measure
of dependence (e.g., correlation), or to use a richer model at each
component. For the former case, one could just set the elements
of each B in the full-covariance system to zero that fall below a
threshold, although this was not attempted in this paper. The later
case will be investigated in future work.

Additional future work will use discriminative mutual infor-
mation [2] to select covariance structure. This will perhaps provide
models that perform as well with even fewer parameters. Also, the
partially tied covariance matrices introduced in this paper were not
yet tested.

The author would like to acknowledge the International Com-
puter Science Institute at which the computational experiments
were performed. Many thanks to Les Atlas, Becky Bates, and Ka-
trin Kirchhoff who reviewed drafts of this paper.

REFERENCES

[1] J. Bilmes. Natural Statistic Models for Automatic Speech
Recognition. PhD thesis, U.C. Berkeley, Dept. of EECS, CS
Division, 1999.

[2] J.A. Bilmes. Buried Markov models for speech recognition.
In Proc. IEEE Intl. Conf. on Acoustics, Speech, and Signal
Processing, Phoenix, AZ, March 1999.

[3] S.S. Chen and R.A. Gopinath. Model selection in acoustic
modeling. EUROSPEECH, 1999.

[4] A.P. Dempster. Covariance selection. Biometrics, 28:157–
75, March 1972.

[5] M.J.F. Gales. Semi-tied covariance matrices for hidden
Markov models. IEEE Trans. Speech and Audio Proc., 7(3),
1999.

[6] M. Knuiman. Covariance selection. Suppl. Advances in Ap-
plied Probability, 10:123–130, 1978.

[7] D. Koller and M. Sahami. Toward optimal feature selection.
In Machine Learning: Proc. of the 13th International Con-
ference. Morgan Kaufmann, 1996.

[8] R. Koshiba, M. Tachimori, and H. Kanazawa. A flexible
method of creating HMM using block-diagonalization of co-
variance matrices. Int. Conf. on Spoken Language Proc.,
1998.

[9] S.L. Lauritzen. Graphical Models. Oxford Science Publica-
tions, 1996.

[10] A. Ljolje. The importance of cepstral parameter correlation-
s in speech recognition. Computer Speech and Language,
8:223–232, 1994.

[11] J. Pitrelli, C. Fong, S.H. Wong, J.R. Spitz, and H.C. Lueng.
PhoneBook: A phonetically-rich isolated-word telephone-
speech database. In Proc. IEEE Intl. Conf. on Acoustics,
Speech, and Signal Processing, 1995.

[12] A.B. Poritz. Linear predictive hidden Markov models and the
speech signal. Proc. IEEE Intl. Conf. on Acoustics, Speech,
and Signal Processing, pages 1291–1294, 1982.

[13] R.E. Roger. Sparse inverse covariance matrices and efficient
maximum likelihood classification of hyperspectral data. Int.
J. of Remote Sensing, 17(3):589–613, 1996.

[14] B. Thiesson, C. Meek, D. Chickering, and D. Heckerman.
Learning mixtures of Bayesian networks. Technical Report
MSR-TR-97-30, Microsoft Research, 1998.

[15] S. Young. A review of large-vocabulary continuous-speech
recognition. IEEE Signal Processing Magazine, 13(5), 1996.

[16] K.-H. Yuo and H.-C. Wang. Joint estimation of feature trans-
formation parameters and gaussian mixture model for speak-
er identification. Speech Communication, 3(1):211–226, July
1999.


