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ABSTRACT

We describe a biological inspired model of binaural sound
localization using interaural time di�erences (ITDs). To
handle the problem of temporal coding and to facilitate a
hardware implementation in analog VLSI, the simulation of
the system is based on a spike response model. This neuron
model takes up physiological properties like postsynaptic
potentials (PSPs) and a refractory period. A winner-take-
all (WTA) network selects the dominant source from the
representation of the sound's angles of incidences, and can
be biased by a multisensory support. We use simulations on
real audio data to investigate the function and the practical
application of the system.

1. INTRODUCTION

Sound localization is an important function for spatial hear-
ing of human beings and animals. Many investigations and
models of auditory perception exist from neurobiology to
psychoacoustics [5, 2, 3]. But, although, we could imagine
numerous applications in robotics, videoconferencing and
speech recognition, only a few working examples are known.
When we implemented demonstration software for a mobile
robot we noticed one reason for this: the computational de-
mands of digital simulations are extremely high, but special
hardware solutions of certain auditory processing tasks are
rare. Therefore we strive for a mixed analog-digital VLSI
implementation, and use the experiences with software sim-
ulations on application-relevant audio data. Our work is re-
lated to Lazzaro's neuromorphic auditory localization sys-
tem [12], but follows a more pragmatic approach. In this
paper, we will focus on the architecture and the software
simulation of the model.
We assume, that ITD analysis provides a suÆcient cue to

many localization tasks. In our simulations, we use digital
algorithms for the preprocessing and coincidence detection
within spike patterns, as well as a uniform spiking neuron in
all other parts of the model. One motivation to use spikes
is, that a temporal resolution in the range of microseconds
is required for the ITD detection. On the other hand, spike
patterns can be considered as a consistent way of signal
coding which enables a merging of features from di�erent
modalities [11].
Figure 1 sketches the system architecture. In the current

simulations 16 parallel frequency bands, delivering a spatial
resolution of 65 azimuthal angles are computed, whereby
the system is simply scalable to practical demands or con-
straints of the VLSI design. Several stages of the model
contribute to localization:
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Figure 1: System architecture, composed of the localization
model and a following selection mechanism.

1. Filtering and spike coding: The analog signals from
two microphones are �ltered by a cochlear model (all{
pole{gammatone �lter) and coded into spike trains (re-
ceptors).

2. ITD detection: For every frequency channel the spike
patterns from left and right are cross{correlated (co-
incidence detector). The resulting pattern is stored
and postprocessed (ICc layer) and �nally projected
to a nontonotopic representation (ICx layer) of the
azimuthal locations of sound sources in the acoustic
scene.

3. Selection: As the result of a WTA process on auditory
and visual input, only one direction will be dominant
in the �nal representation.

2. NEURON MODEL

The neuron model (�gure 2) is a spike response model in-
spired by Gerstner's work [6] and takes up fundamental
properties of biological cells: the spatial and temporal inte-
gration of stimuli via postsynaptic potentials (PSP) in the
dendritic tree, the generation of an action potential when
reaching a threshold and the e�ect of diminished sensitiv-
ity during a period of refraction. An absolute refractory
period and axonal delays are not contained. To describe
the impulse response of a synapse, we chose the so called �{

function f�(t) =
t

�
e
1�

t

� , the afterhyperpolarization (AHP),
which follows a simple exponential fading function. The
combination of these potentials results in a biological plau-
sible behavior, which is more complex than the performance
of leaky integrate-and-�re models.
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Figure 2: Neuron model

3. COMPONENTS OF THE SYSTEM

3.1. Filtering and spike coding

The preprocessing generates an auditory nerve{like spike
pattern from the analog acoustic input signals. The �rst
step is the frequency analysis in the cochlea as the basis
for the tonotopic organization of the auditory pathways.
Lazzaro's neuromorphic model [12] contains silicon cochleas
with 62 output channels to process the analog input di-
rectly. In our simulation, the task is solved by a cochlear
model using an all{pole gammatone (APG) �lter cascade
[13]. With respect to the broadband tuning in the auditory
nuclei, that are involved in ITD detection [5], we calculate
16 logarithmically arranged channels in the relevant fre-
quency range from 100 Hz to 2.5 kHz from the digitalized
microphone signals.
The output of the �lter corresponds to the mechanical

properties of the cochlear basilar membrane and has to be
transformed into a neural response, the speci�c timing of
spike trains in the auditory nerve. This spike coding is real-
ized by a receptor model, simulating the interaction of inner
hair cells and ganglion cells. Since their �ring is connected
with the movement cycles of the basilar membrane, the re-
sulting spike pattern shows the e�ect of phase locking on
the acoustic stimulus. The degree of phase locking depends
on the refractory properties of the receptor.

3.2. Coincidence detection

If a sound source is not located exactly in the medial-
sagittal plane, its position will cause a time di�erence be-
tween the correlated spike patterns in the left and right
auditory nerve. According to Je�ress' coincidence model
[9] and neurophysiological �ndings [4], the evaluation of
ITD e�ects is realized by counter propagating axonal de-
lay lines. Coincidence cells, located at di�erent positions
along the axons, generate spikes if they receive a simulta-
neous stimulation from the left and the right hemisphere.
Because of the di�erent time delays depending on the length
of the propagating �bers, each cell becomes sensitive for a
certain ITD. In this way, the temporal information of ITD
is transformed into a place code, represented in the spatial
distribution of activity in the neural structure.
Numerous extensions have been proposed to the coinci-

dence model of Je�ress, e.g. the suppression of ambiguous
responses by a contralateral inhibition [3], the selforganiza-
tion in the coincidence sensitivity of the cells by Hebbian

learning [7] and the usage of bipolar dendrites [1]. In our
model a simple abstraction of the function is suÆcient {
we use a digital delay line and AND gates, which causes a
discretization of the angles. Because the maximal delay in
the structure must correspond between the model and the
real world, the model parameters length N of the delay line
and sampling frequency fs are connected with the physical
parameters base distance b of the 'ears' and sonic speed c of
the environment by N = bfs � b=cc. Using fs=44.1 kHz, b=
0.25m and c=343 m/s the model can detect 2 � N + 1=65
directions.

3.3. ICc layer

In the midbrain of birds and mammals ITDs like other audi-
tory features are projected into the Inferior Colliculus (IC),
before a further feature extraction and mechanisms of se-
lective attention take place. One possibility to illustrate
the feature representation in this auditory nucleus is to de-
scribe the formation of maps. These maps of di�erent ori-
entations in the 3-dimensional structure of the central IC
display the neural sensitivity to several features, e.g. the
tonotopic organization, modulation frequencies, or ITDs [5].
In our model, characteristic frequencies (CF) and character-
istic delays (CD) are mapped onto a neural �eld (�gure 3
left). Lateral synaptic connections between ITD-sensitive
columns of this �eld and selfexciting feedback loops are
used for a manipulation of the represented feature (�gure 3
right). In the opposite to the pure analog and massive par-
allel processing in the natural auditory system, we have to
face jitter e�ects in the response of the discrete coincidence
detector. In the introduced synaptic structure we can pre-
vent those e�ects and test the inuence of certain response
properties and coding strategies like spatial smoothing or
sharpening of the ITD feature to the postprocessing WTA
layer.
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Figure 3: Left: Formation of a 2-dimensional map repre-
senting the tonotopy and characteristic delays. Right: The
lateral interconnections cause a sharpening or smoothing of
the ITD-feature. The response to high frequencies contains
periodical components { since the coincidence detection is
similar to a cross-correlation of periodical signals, its result
is just as periodical.

3.4. ICx layer

In the context of localization, the principle of tonotopy en-
ables to distinguish ITDs from ambiguous phase di�erences
by a recombination of frequency bands. Depending on the
band's characteristic frequencies, phase di�erences are lo-
cated at di�erent positions in the ITD map. In a conver-



gent projection from many frequency bands, they produce
a di�use activation. The detected ITD position is indepen-
dent from the tonotopic organization and gives rise to a less
ambiguous feature (�gure 4). The idea of a summation of
the tonotopic response is supported by �ndings in the IC of
the barn owl, where ambiguous activations of single high-
frequency bands of the central IC, but a de�nite response
in the nontonotopic extern IC could be observed [12].
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Figure 4: The combination of the tonotopic distributed re-
sponse of the ICc in a onedimensional ICx-model enables
to distinguish ITD from phase di�erences (IPDs).

While Lazzaro combined the function of the ICx layer and
the competition between ITDs in one analog WTA layer, in
our experiments with the spike-based WTA and a multisen-
sory input, the separation of the functions to di�erent layers
has advantages. The WTA network is stimulated by a max-
imum spike frequency of just one row of neurons which is
independent of the frequency of the acoustic stimulus and
limits the dynamic range of the tonotopic distributed fea-
ture. This results in a very robust WTA performance.

3.5. WTA selection model

The response of the one-dimensional ICx model often is
disarranged by several disturbances like interferences with
other sources, echos, or ambiguities which could not yet
be suppressed. Modeling aspects of an attentive auditory
perception we need to simulate a focusing mechanism, se-
lecting a dominant ITD in the representation of competing
features. Findings about cortico-thalamic feedback loops,
mechanisms of e�erent, inhibitory control and lateral inter-
actions between neurons of the thalamic nuclei [5] suggest
the application of winner-take-all (WTA) networks to solve
this problem. Our model uses a structure containing lat-
eral and self excitation (like the IC feature map) and an
interneuron which integrates the instantaneous activity of
the net and generates recurrent inhibition to all cells. In
the resulting WTA process only a single region of dominant
feature representation can maintain activity [10].

For the application to dynamic acoustic scenes, the se-
lection network should be capable to move the focus of at-
tention to a new sound source. This e�ect called strong
WTA behavior [10] can be achieved by a suitable global in-
hibition, in particular since we are interested in a decaying
WTA activity in the case of silence.

Usually, the attentive perception, especially the localiza-
tion of objects, has a multimodal character. Various pro-
jections from the somatosensory and visual system can be
found at the level of the thalamic nuclei [5]. To model
an abstract visual support to the auditory localization, we
�rst consider where the combination of the two modalities
might take place. Since visual features have no interrela-
tions with characteristic frequencies, the �rst stage for a
visual-auditory integration might be the nontonotopic, ex-
tern IC. In our system visual information, like the detected
skin color of a speaker, is interpreted as the direction of an
object of interest. Next we had to decide, whether multiple
peaks in the visual inputs are allowed or a single location
as the result of a preceding selection process is required.
In the sense of an e�erent support, only one direction is
supported at a time. The actual inclusion of the support is
�nally realized via additional inputs to the WTA neurons.
This is a very simple approach, because it assumes, that
the auditory and visual coordinates are already aligned.
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Figure 5: Left: Structure of the WTA network. Right:
Result of the selection process.

4. SIMULATIONS AND RESULTS

The localization system was tested o�ine with data
recorded in an open environment including background
noise but only little echo e�ects. Narrow and broadband
sounds, including numerous speech signals, were recorded.
The localization of single sources proved to be robust { all

directions of broadband sounds were determined correctly.
Figure 6 illustrates the focusing to a moving source, emit-
ting pink noise. While the ICx layer displays a di�use acti-
vation and disturbances, the capability of the WTA network
to detect a dominant ITD leads to a clear feature represen-
tation. The focus stays stable, even if the sound source is
moving, which is an important feature of the strong WTA
dynamics (�gure 6).

Figure 6: Model behavior for a moving source emitting pink
noise. Visualization of the ICx output (bottom) and the
activity of the WTA neurons (top).



If multiple sources are present in the acoustical scene,
the requirements to the localization system change consid-
erably. Because of interferences between periodical sound
components, the dominance of a certain source has to be
caused by its intensity or broader spectral constitution. The
experiment shown in �gure 7 demonstrates, how the focus
of attention is shifted from a narrowband sound toward a
voice stimulus.

Figure 7: Localization of a narrow band signal and a human
call setting in after 100 ms.

Finally, the e�ect of simulated external support to the
WTA process is shown. The system is able to bridge short
breaks in the acoustic signal or keep the focus on a non-
dominant source (�gure 8).

Figure 8: Repetition of the previous experiment, with ex-
ternal support to the narrow-band signal.

In additional indoor experiments we noticed, that the
WTA process is able to focus on a sound in about
10ms { often una�ected by the �rst echos reaching the mi-
crophones. For most broadband signals, this time is longer
then the arrival of a �rst wavefront, which has been con-
sidered as the longest part of reverberate signals one can
localize. But only if a voiced sound hit the room's reso-
nance frequency (in our recordings resonances build up after
30ms), the focus of the WTA layer may be shifted apper-
ently to a random position of an interference (�gure 9). This
way, although it was not our intention, we can model ma-
jor aspects of the precedence e�ect { the dominance of the
original sound event up against it's echos. Adding a simple
onset detector and with the constraint of a comparatively
quiet enviroment, the introduced model is a suitable tool to
localize command words under reverberate conditions.
The experiences of the software simulations crucial in-

uenced the design process of a mixed analog-digital hard-
ware system, which VLSI implementation is currently in
progress. In particular the usage of real world data and

Figure 9: Onset selection in reverberate environment.

tests on robot systems are important to understand the
problem and the model in details hidden to purely theoret-
ical investigations.
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