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ABSTRACT

A multi-stream speech recogniser is based on the combi-
nation of multiple feature streams each containing comple-
mentary information. In the past, multi-stream research
has typically focused on systems that use a single feature
extraction method. This heritage from conventional speech
recognisers is an unnecessary restriction and both psycho-
acoustic and phonetic knowledge strongly motivate the use
of heterogeneous features.

In this paper we investigate how heterogeneous process-
ing can be used in two different multi-stream configura-
tions: first, a system where each stream handles a different
frequency region of the speech (a multi-band recogniser)
and, second a multi-stream recogniser where each stream
handles the full frequency region. For each type of system
we compare the performance using both homogeneous and
heterogeneous processing. We demonstrate that the use of
heterogeneous information significantly improves the clean
speech recognition performance motivating us to continue
exploring more specifically designed stream processing.

1. INTRODUCTION

Using multiple feature streams in automatic speech recog-
nition (ASR) as formulated by Bourlard et al. in [2] differs
from more conventional ASR approaches in that instead of
basing the recognition on a single line of feature extraction
followed by classification, multi-stream ASR systems rely on
multiple representations of the characteristic information in
the speech signal.

The underlying principle of the paradigm is that ex-
tracting and fusing diverse information potentially increases
the performance, since no error-free solution to the prob-
lem exists, and the streams therefore will complement each
other in correctness. The overall performance of the sys-
tem will depend not only on the individual performance
level of each stream but also on how well the error patterns
of the different streams complement each other. One of
the potentials of the multi-stream technique is therefore to
fully exploit the redundancy and diversity possessed by the
stream specific processing [1].

Figure 1 shows a schematic overview of a general multi-
stream system. Each stream is comprised of a feature ex-
traction unit followed by a classifier, such as a multi-layered
perceptron (MLP) network, whose outputs can be consid-
ered as posterior probabilities of the observed encoded data.
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Figure 1: General multi-stream system with two streams.

The probabilities are merged before being used in a conven-
tional hidden Markov model (HMM) state path decoding
that produces the recognition hypothesis.

In a multi-stream recogniser the complementariness is
achieved through diversity in the streams. In the group of
multi-stream systems known as multi-band systems, the di-
versity is enforced by letting each stream handle different
frequency regions of the speech signal [2] [3] [14]. Simi-
larly, in multi-scale systems each stream operates on differ-
ent time windows [6] [19].

Another way to augment the complementariness is
through the explicit use of heterogeneous features in each
stream. Such a principle is closely related to theories gov-
erning multiple classifiers and ensemble techniques [13][15],
as well as to systems with hierarchical architectures, i.e.
[9]. However, within the multi-stream framework very few
studies have been presented that focus on increasing the
performance through the use of heterogeneous feature pro-
cessing. Some multi-stream systems have been presented
that do make use of different feature processing in each
stream, but the effect of the heterogeneity has not been in-
vestigated explicitly since it has in general been the case
that each stream was comprised of a complete high perfor-
mance ASR system in itself [12][14][19].

In the following sections some psycho-acoustic and pho-
netic motivations for introducing more heterogeneous signal
processing in ASR is presented together with the relevant
theory. Section 3 describes the databases and systems, in
Section 4 we present the experimental results and Section
5 contains the conclusions and directions for future work.



2. HETEROGENEOUS INFORMATION IN
MULTI-STREAM ASR

The focus of the work presented in this paper is on in-
vestigating the effects of introducing heterogeneous infor-
mation in ASR, specifically in the multi-stream framework.
Apart from the above mentioned pattern recognition issues,
also several psycho-acoustic and phonetic studies have con-
tributed to our motivation to initiate this work.

2.1. Psycho-acoustic and phonetic motivations

Human speech recognition is based on heterogeneous pro-
cessing of the signal received by the ear. As a means to
convey information speech has evolved in such a way that
the different phonetic segments have distinguishable spec-
tral characteristics. The auditory system exploits this by
carrying out different processing of e.g. sonorants and non-
sonorants [8]. Studies that indicate specific processing in
different frequency bands are also widely reported on. Ex-
periments on the intelligibility of word pairs have shown
that different phonetic features are transmitted in different
temporal-frequency slots [7]. A related conclusion is made
in [17] where it was shown that the optimal frequency range
for recognising a phoneme in restricted transmission condi-
tions is very dependent on the phoneme.

In line with this we choose to experiment with two ASR.
architectures: a general multi-stream system, where each
stream processes the full spectrum, and a multi-band type
of system, where each stream handles a limited frequency
range. The questions we consider are: Can the performance
and noise robustness of a multi-stream/multi-band recog-
niser be increased by introducing heterogeneous processing
and in which way is the complementary information best
utilised?

2.2. Theory

The introduction of heterogeneous information in a multi-
stream system does not change the general formalism. The
overall object of any speech recognition system is to find the
most likely sequence of words S in a language £ given a set
of observed encoded features, X. Within the HMM theory
this breaks down to maximising the posterior probability:

p(xla .o ,XK|q]')P(q]')
p(X1,...,XK) (1)

P(qj|x17"'7xK)

where g; is the jth class, K is the number of streams and
xy, is the feature vector from the kth stream. In hetero-

geneous systems the feature vectors, {x1,...,xx} may be
extracted with diverse signal processing methods. Multiple
classifier theories view the estimation of p(x1,...,xx|g;) as

the problem of finding a fusion function, f(-) that combines
the local stream likelihoods, p(xx|g;) to a common local
likelihood:

p(xlg;) = f (W, {p(xxla}), Vk}) (2)

where W is a global set of weighting parameters. This ap-
proach is adopted for most multi-stream solutions too, and
here we will use two widely used implementations of the

fusion function: the sum and product rules, the geometric
and arithmetic means respectively:

K

1
Sum rule : p(xlg;) = Zp(xk|qj)(%) (3)
k=1
K
Product rule : p(x|g;)) = Hwk -p(xklg;)  (4)
k=1

where Zk{il wr, = 1. In the experiments reported here we
choose to use the simplest set of weights: namely equal and
constant weights.

3. SYSTEM OVERVIEW

The data for training and testing the systems is taken
from the Oregon Graduate Institute Numbers95 database
of recordings of American English speakers uttering con-
tinuous digit and number sequences over the fixed tele-
phone network [16]. 3590 and 1206 utterances from non-
overlapping sets of speakers are used for training/cross val-
idation and test purposes respectively. The vocabulary size
is 32 words. For testing the noise robustness of the sys-
tems, noise samples from the NOISEX database [18] are
added per utterance at SNR levels of 0, 6, 12 or 18dB. Car
noise, factory noise and Lynx helicopter noise are chosen
for their different spectral characteristics.

Three different feature processing methods are used for
extracting basic features plus the energy: Mel frequency
cepstrum coefficients (mfcc) [5], Perceptual linear predic-
tion coefficients (plpc) [10] and J-rasta filtered plpc’s (j-
rasta-plpc) [11]. A feature vector is extracted on 25ms
Hamming windowed frames, each overlapping 50%. Delta
and delta-delta coefficients (regressing over windows of 5
and 7 frames respectively) are added.

A full-band and a multi-band system, each based on hy-
brid MLP/HMM entities, are used. All MLP’s are trained
on feature vectors derived from 9 frames centered around
the current frame and each MLP has 33 outputs represent-
ing 32 phonemes and a silence label.

e The full-band system uses 12 basic features yielding
a 39 dimensional feature vector. The MLP has 351
(9 x 39) input units and 1500 hidden units.

e The multi-band system is comprised of four bands
with frequency ranges [216-778Hz|, [707-1632Hz],
[1506-2709Hz] and [2122-3769Hz]'. 5, 5, 3 and 3
basic features are derived respectively yielding cor-
responding vector dimensions of 18, 18, 12 and 12.
The MLP’s have 162 (9 x 18), 162, 108 (9 x 12) and
108 input units and 1000, 1000, 660 and 660 hidden
units per band respectively.

The baseline full-band and multi-band systems have a com-
parable number of parameters.

IThe frequency bands are chosen so as to roughly capture the
formant regions.



4. RESULTS

4.1. Heterogeneity in multi-band systems

As mentioned above, there are strong psycho-acoustic and
phonetic motivations to investigate the effect of processing
frequency regions differently. In this set of experiments we
investigate whether clean speech performance can be in-
creased by using heterogeneous feature extraction methods
in a multi-band system.

In order to find out which feature type each stream
could be based on, each sub-band classifier system was
tested in isolation on clean speech. The purpose was to
find out whether, for each band, there is a significant?® differ-
ence in performance level among the different feature types.
Such a difference is expectable since the feature extraction
methods are based on different principles. The plpc’s make
use of an all-pole model of the spectrum and a Bark fre-
quency scale and also try to account for some perceptual
effects. The mfcc’s are not based on any model assump-
tions and use a Mel frequency scale. Furthermore the addi-
tional j-rasta filtering is known mainly to increase the noise
robustness.

The Word Error Rates (WER’s) are shown in Table 1,
and except for the first band there clearly is a difference
in performance over the different feature types. For band

j-rasta-plpc plpc mfcc
Band 1 35.12 35.50 35.78
Band 2 31.50 29.64 | 35.25
Band 3 39.06 37.30 | 43.70
Band 4 56.06 52.72 | 55.18

Table 1: Per band WER for multi-band baseline system.
For each band the bold values identify which feature types
significantly outperform the other feature types.

2 j-rasta-plpc’s and plpc’s outperform the mfec’s and in
bands 3 and 4 the plpc’s ‘win’.

The findings are now used to test all possible combina-
tions of these ‘winning’ feature types, and the WER’s for
the resulting heterogeneous multi-band systems are shown
in Table 2. Two sets of experiments are carried out: using
either 1) the sum or 2) the product rule of combination,
eq. (3) and (4) respectively. Each table entry represents a
different combination of features. The three bottom rows
are the results from the homogeneous single feature type
systems. The best heterogeneous multi-band systems sig-
nificantly outperform the homogeneous systems for both
rules of combination. A test of all 81 (3*) possible combi-
nations of feature-streams shows that the overall best com-
bination is p+j+j+m resulting in WER’s of 17.90% and
11.56% using sum and product rules respectively. None of
the feature-streams in this superior combination obtain the
highest WER in Table 1 which indicates that it is not just
the performance of the streams but also the error comple-
mentariness which determine the overall performance of a
multi-band system.

2at a 95% significance level.

bl | b2 | b3 | b4 sum prod.

] ] P P 19.23 12.16

] P P P 19.14 12.25

Heterogeneous P j P P 18.76 | 12.36
systems P P P P 19.34 13.32

m ] P P 19.81 13.40

m P P P 19.81 13.40

Homogeneous ﬁ) ﬁ) ﬁ) ﬁ) }gii }gi’g
systems m | m | m | m || 2173 | 15.09

Table 2: WER for different feature-stream combinations.
The bold values indicate the best performing systems for
each combination rule. j=j-rasta-plpc,p=plpc,m=mfcc.

4.2. Heterogeneity in multi-stream systems

Encouraged by the multi-band experiments we proceed
to employ heterogeneous information in a multi-stream
recogniser. The system is comprised of either two or three
of the full-band recognisers, thereby having two or three
times as many parameters as the baseline full-band sys-
tems. To equalise this, two other system configurations are
tested: first a homogeneous full-band system boosted with
two or three times as many hidden units (3000 or 4500) as
the baseline full-band system, and second, another type of
heterogeneous system trained on feature vectors that are a
concatenation of the ordinary j-rasta-plpc, plpc and mfcc
feature vectors. The MLP used in this system has 1053
(9 x 39 x 3) inputs, 1500 hidden units and 33 outputs,
thereby tripling the number of parameters.

The results from testing all systems on clean speech are
shown in Table 3. The multi-stream systems are tested us-
ing either the sum or the product rule for recombination. As
was also observed with the multi-band systems, the product
rule outperforms the sum rule in general. However, for the
multi-stream systems a much smaller degradation in perfor-
mance when using the sum rule instead of the product rule
is observed. The sum rule tends to be a more severe way of
fusing when the individual streams have a low performance
[13], which is the case for the multi-band streams as seen in
Table 1. The observations made in the following are drawn
from results obtained using the product rule.

The heterogeneous multi-stream systems have an equal
or lower WER than the homogeneous full-band systems to
which they are comparable; however, the performance in-

Heterogeneous | Features Sum / Prod. rule
jitp 6.27 / 5.67
2 full-bands j+m 6.70 / 5.97
p+ m 773 ] 741
3 full-bands j+tp+m 6.72 / 5.80
concat. vectors j/p/m 5.91
Homogeneous Features 1500/3000/4500 HU
j 7.26 / 7.09 ] 6.55
1 full-band p 739 /741 /732
m 822 /7.90 ] 7.64

Table 3: WER’s for heterogeneous systems and comparable
homogeneous systems. ‘HU’ = hidden units.



crease is only significant for the j+p and j+m combina-
tions. The j+p configuration even outperforms the very
best homogeneous system, despite having only two-thirds
the number of parameters. In contrary the p+m can not
improve the performance of the corresponding homogeneous
full-bands based on 3000 hidden units. It is clear that the
choice of which features to combine is crucial, and further
research is needed to fully understand in which way redun-
dancy and diversity in features are best exploited.

The results in Table 3 also enables to compare two dif-
ferent systems based on heterogeneous processing. Both
systems reduce WER in comparison to their homogeneous
counterparts. However, it is not possible to conclude which
heterogeneous system is better: the multi-stream system or
the system using concatenated feature vectors. Arguably
the multi-stream system is far more restricted in its abili-
ties to exploit any correlations between the features. On
the other hand, even though the two systems employ a
comparable number of parameters, the MLP in the system
with the concatenated feature vectors requires more train-
ing data since the input vector has a higher dimensionality
than the vector for the multi-stream MLP’s.

To test whether the introduction of heterogeneous infor-
mation affords an increase in noise robustness, all the above
mentioned systems are tested with added Factory, Car og
Lynx helicopter noise (full details can be found in [4]). We
obtained comparable results for the homogeneous and het-
erogeneous systems. Based on these experiments we are
unable to conclude whether introducing heterogeneous in-
formation significantly increases the noise robustness. The
j-rasta-plpc’s are themselves very noise robust and adding
the extra plpc and mfcc streams do not further increase the
noise robustness. One explanation might be that j-rasta-
plpc’s are more noise robust for all phonemes. To test this
we analysed the frame errors and found that this is not
the case, and that there is a significant difference in per-
formance between the ability of the features to classify the
different phonemes. This suggests, that the combination
methods employed in these experiments are not capable of
fully exploiting the advantages of the different feature ex-
traction methods, even though performance diversity does
exist and can be observed at the frame level.

5. CONCLUSIONS

It has been shown that it is possible to increase clean speech
performance in multi-stream and multi-band systems by in-
creasing the heterogeneity of the signal processing employed
in the systems and without increasing the number of system
parameters.

The experiments reported here have employed three
rather standard feature extraction techniques but results
have encouraged us to continue exploring the potential ad-
vantages of more specifically designed stream processing.
With respect to noise robustness the experiments have also
made it clear that there is a need for more intelligent fusion
of the information streams; this should involve taking into
account advantages and weaknesses of the different streams.
It becomes a particular interesting problem if streams are
more specifically designed to specialise, for example on dif-
ferent phonetic segments, different acoustic-phonetic fea-

tures, different gender etc.
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