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ABSTRACT
This paper examines the use of interdependencies of parameter
classes in transformation-based speaker adaptation algorithms
such as maximum likelihood linear regression (MLLR). In trans-
formation-based adaptation, increasing the number of transforma-
tion classes can provide more detailed information for adaptation,
but at the expense of greater estimation error with small amounts
of data. In this paper we introduce a new procedure, inter-class
MLLR, which utilizes relationship between different classes to
achieve both detailed and reliable transformation-based adapta-
tion using limited data. In this method, the inter-class relation is
given by a linear regression which is estimated from training data.
In experiments using non-native English speakers from the Spoke
3 data in the 1994 DARPA Wall Street Journal evaluation, inter-
class MLLR provided a relative reduction in word error rates of
11.3% compared to conventional MLLR.

1. INTRODUCTION
Many adaptation methods have been developed to reduce the mis-
match between training and test conditions in a speech recogni-
tion system. If we can modify the model parameters of a speech
recognition system so that they more closely resemble the test
conditions, we can obtain better recognition accuracy.1 If a large
amount of data representing the test conditions is available,
improved performance can be achieved by simply retraining the
model parameters. We usually do not have enough data for com-
plete retraining, and we would like to achieve good recognition
accuracy even with only a small amount of adaptation data. One
way of obtaining improved adaptation performance with limited
adaptation data is by constraining the model parameters to be esti-
mated, and thereby reducing their number. In this paper we
present a new method which utilizes relationship between differ-
ent classes in transformation-based adaptation as exemplified by
maximum likelihood linear regression (MLLR) [11].

In transformation-based adaptation, we assume that a group of
model parameters are transformed by the same function. This
reduces the number of parameters to be estimated because the
number of the parameters in the transformation function is usually
much smaller than the original number of model parameters.
While we generally obtain better estimates of these parameters
with a smaller amount of adaptation data (which tends to improve
recognition accuracy), some of the information of the individual
model parameter is lost (which can impair recognition accuracy).

1. In this paper we focus on the transformation of the recog-
nition model parameters, especially Gaussian means, even
though adaptation can also be obtained by transformation of
input feature vectors.

Conventional transformation-based adaptation typically proceeds
as follows. The model parameters are clustered into sub-classes.
A form for the transformation function is chosen (usually a simple
linear function). The parameters of the transformation function
are then estimated for each class by using the adaptation data
associated with the class. Finally, the model parameters in each
class are modified by applying the estimated class-dependent
transformation function to them. Each class is modified indepen-
dently and does not affect any other.

As an example, suppose that the Gaussian means underlying a set
of mixture densities are as shown by the dots in Fig. 1. These
means can be classified either as a single class (Method I) or as
two classes (Method II). For Method I we assume that all the
Gaussian means  are transformed to adapted means  by a
single function f(⋅):

(1)

For Method II we develop two functions f1(⋅) and f2(⋅), one for
each class:

(2)

(3)

If only a small amount of speaker-specific data are present, single-
class adaptation (Method I) may be more effective than multi-
class adaptation (Method II). With multi-class adaptation, we
have a smaller amount of data available per class, so we may not
obtain reliable estimates of the functions f1(⋅) and f2(⋅). In single-
class adaptation, all data are used to estimate the function f(⋅) so
that function can be estimated more reliably. Multi-class adapta-
tion may be more effective than single-class adaptation, however,
if enough data are available to estimate the transformation func-
tion reliably for each class because the parameters of each class
are modified in a fashion that is appropriate for the individual
class. Hence, the optimum number of classes will depend on the
amount of available adaptation data.
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 Figure 1. Classification of Gaussian features as either a sin-
gle class (Method I) or as two classes (Method II)
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Gales [7] used regression class trees to find optimal regression
classes in conventional MLLR. He developed a binary regression
class tree and dynamically selected the classes so that either each
class had sufficient data or the overall likelihood of the adaptation
data was maximized. He also described a method in which MLLR
was applied to the root node and the sub-nodes of the regression
class tree iteratively. Chien et al. [5] described a hierarchical
adaptation procedure that used a tree structure to control the trans-
formation sharing and to obtain reliable transformation parame-
ters.

As we have noted above, new parameters are estimated indepen-
dently for each class in conventional multi-class regression. Nev-
ertheless, under many circumstances, estimation accuracy (and
hence recognition accuracy) can be improved if information is
shared across parameter classes. Correlation between different
model parameters, for example, has been used by several research
groups to improve estimation of parameter values with sparse
data. Most previous work using parameter correlation has been
done within a Bayesian framework (e.g. [1,2,4,9,10,13]). Within
the MLLR framework, Bocchieri et al. [3] used correlation
between the shift terms (i.e. the b term in ) to refine
further the transformation function. Correlation information was
limited to the shift terms in their work, and the relation between
the multiplication term (i.e. the A term in ) was not
considered.

In other work, principal component analysis (PCA) has been used
to reduce parameter dimensionality. For example, Kuhn et al. [12]
used “eigenvoices” to capture a priori knowledge about speakers’
characteristics. Hu [8] applied PCA to describe the correlation
between phoneme classes for speaker normalization. These
efforts are not directly related to MLLR. Doh and Stern [6] also
used PCA, but not as prior knowledge, in developing the weighted
principal component MLLR method that reduces the estimation
error in MLLR.

In the following sections, we will describe a new method which
utilizes the inter-class relationship as prior knowledge to obtain
better estimates of the transformation function in MLLR, includ-
ing the multiplication term as well as the shift term.

2. EXPLOITING INTER-CLASS
RELATIONSHIPS

Let us consider some of the issues involving inter-class relation-
ships in terms of the approach depicted schematically as “Method
II” in Fig. 1. If there is a known relation between two classes
which is given by an inter-class function g12(⋅) then we can
rewrite the transformation of Class 2 in Eq. (3) using the function

f1(⋅) of Class 1 and a modified Gaussian mean .

(4)

Since f1(⋅) is now the only unknown function for both classes in
Eqs. (2) and (4), we can use all the data from Classes 1 and 2 to
estimate f1(⋅). This approach can also be applied to the estimation
of the function f2(⋅) of Class 2. In this case, we keep the original
function f2(⋅) in Eq. (3) as it is and substitute Eq. (2) into Eq. (5)
using the inter-class function g21(⋅). Then we can use all the data

with Eqs. (3) and (5) to estimate f2(⋅) for Class 2.

(5)

The functions f1(⋅) and f2(⋅) estimated by this method will be more
reliable than those estimated by conventional multi-class meth-
ods. They also provide more effective adaptation to each class
than the class-independent function f(⋅) used in Method I because
while the adaptation is primarily based on observations within a
given class, it benefits from relevant information from other
classes as well.

This method can be extended to any form of transformation-based
adaptation. First, multiple transformation classes are defined
using clustering or ad hoc techniques, and the inter-class func-
tions are estimated using training data. For each target class, the
inter-class functions are used to modify the models in other neigh-
boring classes. The incoming adaptation data from all classes are
then combined to estimate the transformation functions for the
target class. This process is repeated for all other target classes.

In this process, the number of neighbor classes to be used depends
on the amount of adaptation data. The neighbor classes are ranked
in order of their “closeness” to the target class. Adaptation data
are selected from classes of decreasing proximity to the target
class until there are sufficient data to estimate the target function.
If only a very small amount of data is available, then all neighbor-
ing classes may be used. As more data becomes available the
number of neighboring classes used declines. In the limit no
neighboring classes are used, and inter-class adaptation asymp-
totes to conventional multi-class adaptation. Choosing the identity
function as the inter-class function is equivalent to conventional
single-class adaptation.

The advantages of the inter-class method are illustrated by a series
of simulations with artificial data whose results are summarized in
Fig. 2. We assume that there are 5 classes and that each class has 5
Gaussians. We have adaptation samples from new Gaussians
whose mean values are related to original mean values by linear
regression (LR) with known inter-class functions. New Gaussian
mean values were estimated using linear regression for the con-
ventional single-class and multi-class adaptation procedures, as
well as for inter-class adaptation.  We calculated the mean square
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 Figure 2. Mean-square errors from simulated estimates
of Gaussian means using single-class, multi-class, and
inter-class MLLR.
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estimation error (MSE) as a function of the number of available
samples. As can be seen in Fig. 2, the inter-class LR always pro-
vides lower MSE than the other methods in this simulation. We
note that while single-class LR provides better MSE than multi-
class LR when the number of samples is small, multi-class LR
surpasses it as the number of samples increases

3. INTER-CLASS MLLR
Conventional MLLR [11] assumes that a new mean values  is
related to its baseline mean value  by linear regression. For an
arbitrary regression class , the relation is given by the multipli-
cation matrix  and shift vector .

(6)

Another regression class  has a similar relation given by
and .

(7)

In this section we describe inter-class MLLR, in which we assume
the inter-class relation from class n (neighbor classes) to class m
(target class) is given by linear regression with  and , so
Eq. (7) can be written as follows.

(8)

We estimate  and  from training data. We assume that
there are many training speakers with sufficient data to estimate
reliable speaker-dependent regression parameters  and

for each speaker s and regression class m. First we estimate

and  from training data using conventional MLLR. We then
use these parameters to estimate the inter-class regression param-
eters  and .

For an adapted mean  for speaker s, Eq. (8) becomes

(9)

Letting , we obtain the linear regres-

sion between  and .

(10)

When  is the adapted mean for the training data  from

speaker s,  will be the adapted mean for the modified data

. To estimate  and  which

represent the inter-class relation for different speakers, we apply

conventional MLLR technique on Eq. (10) by using  from

all training speakers together. We estimate  and  for each
neighbor class  and repeat the same process for other target
classes. In this method, we assume that the baseline variances are
unchanged.

Once we have  and , we can use them in adapting to a
new test speaker. In this case,  and  are unknown parame-

ters in Eq. (8). For , Eq. (8) becomes

(11)

This produces a linear regression between the modified baseline

mean  and adapted mean  given by the  and  of the

regression class m. To estimate  and , we apply conven-
tional MLLR technique using Eqs. (6) and (11). We can use either
all the neighbor classes or the top N neighbor classes as described
in the previous section.

4. EXPERIMENTS
We evaluated inter-class MLLR using non-native English speak-
ers from the Spoke 3 data in the 1994 DARPA Wall Street Journal
(WSJ) evaluation. The recognition test data consist of 200 sen-
tences from which 10 non-native speakers read 20 sentences each.
We selected 5 adaptation sentences for each speaker which were
different from the test sentences, using the correct transcriptions
in supervised adaptation fashion. We used SPHINX-III as the
baseline speech recognition system. SPHINX-III uses continuous
HMMs with 6000 senones, a 39-dimensional feature vector con-
sisting of MFCC cepstra, delta cepstra, and delta-delta cepstra,
and a 5,000-word trigram language model. We choose 13 pho-
netic-based regression classes which are similar to those used by
Leggetter [11], and 25 training speakers from WSJ training data
to estimate the inter-class regression parameters  and .
Each training speaker has about 1000 sentences. We used
weighted principal component MLLR [6] to obtain more reliable
estimates of the speaker-dependent regression parameters

and  in Eq. (9) to estimate the inter-class regression parame-

ters  and . We compare results obtained using three types
of inter-class regressions for which  is assumed to be a full
matrix (which allows the parameters to be rotated, scaled, and
shifted), diagonal matrix (which allows them to be scaled and
shifted only), or the identity matrix (which allows them to be
shifted only). The shift vector  is used in all three cases. We
used all the neighbor classes to estimate each target class in inter-
class MLLR. Silence and noise phones are not adapted in these
experiments.

Table 1 summarizes the word error rates (WER) obtained using
the three types of inter-class MLLR, along with conventional sin-
gle-class MLLR. Inter-class MLLR  with a full matrix reduces the
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Adaptation Method WER

Baseline (unadapted) 27.3%

Conventional MLLR (one class) 23.7% (13.1%)

Inter-class MLLR (shift only) 22.0% (19.4%)

Inter-class MLLR (diag + shift) 21.0% (23.0%)

Inter-class MLLR (full + shift) 21.0% (23.0%)

Table 1. Word error rates for the Spoke 3 in the 1994
DARPA WSJ evaluation after only 5 adaptation sentences.
(Relative improvement over the baseline is shown in
parenthesis).
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WER by 11.3% relative to conventional MLLR, which is greater
than the reduction in WER observed using inter-class MLLR with
the identity matrix (shift only). We were surprised that the WER
obtained with the full matrix was no better than the WER
obtained using the diagonal matrix. We speculate that this may be
a consequence of greater errors in estimating the larger number of
parameters in the full matrix. The improvement in WER from
adaptation is less than that reported in the 1994 DARPA evalua-
tion primarily because we use only five sentences of adaptation
data.

It is useful to consider the extent to which the benefits obtained
using inter-class MLLR as described above approach the greatest
possible benefit from adaptation. In a side experiment, we per-
formed conventional MLLR using supervised adaptation from
120 sentences and 13 regression classes, achieving an error rate of
17.3%. This WER is probably about the best that can be expected
using this type of adaptation. In a second side experiment we per-
formed inter-class MLLR using only 5 adaptation sentences but
obtaining estimates of  and  in supervised fashion using
the same 120 sentences of data from each test speaker. The WER
obtained using this form of adaptation was 17.9%, which is close
to the best case, suggesting that the transformation parameters

 and  do indeed capture virtually all of the relevant adap-
tation information contained in the 120 adaptation sentences.
When we applied inter-class MLLR using 5 sentences with
and  estimated from training speakers, the WER was 21.0%
as shown in Table 1. It is worse than the previous cases as it is
expected.

Finally, we also considered the performance of inter-class MLLR
using native English speakers in the Spoke 0 data from the 1994
DARPA WSJ evaluation. In this case inter-class MLLR did not
provide better WER than conventional MLLR. We observed that
the improvement in WER from single-class to multi-class imple-
mentations of conventional MLLR was correspondingly small.
This suggests to us that conventional single-class MLLR captures
most of the benefit to be expected from MLLR for speaker adap-
tation for native English speakers.

In previous related work, we have described weighted principal
component MLLR [6] which provided greater improvement in
WER than inter-class MLLR for the same test data. We are cur-
rently evaluating the extent to which combining principal-compo-
nent and inter-class MLLR is worthwhile.

5. SUMMARY
In this paper, we introduced a new method called inter-class
MLLR which utilizes relationship between different classes to
achieve both the detail and reliability in transformation-based
adaptation, and we applied this method to the MLLR framework.
We described how to estimate inter-class regression parameters
from training data and apply them for adaptation. In our experi-
ments using non-native speakers from the Spoke 3 data in the
1994 DARPA Wall Street Journal evaluation, inter-class MLLR
provided a relative reduction in word error rates of 11.3% com-
pared to conventional MLLR.
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