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ABSTRACT

We describe proceduresand experimental results using speech from
diverse source languages to build an ASR system for a single tar-
get language. This work is intended to improve ASR in languages
for which large amounts of training data are not available. We
have developed both knowledge-based and automatic methods to
map phonetic units from the source languages to the target lan-
guage. We employed HMM adaptation techniques and Discrimi-
native Model Combination to combine acoustic models from the
individual source languages for recognition of speech in the tar-
get language. Experiments are described in which Czech Broad-
cast News is transcribed using acoustic models trained from small
amounts of Czech read speech augmented by English, Spanish,
Russian, and Mandarin acoustic models.

1. INTRODUCTION

Language independent acoustic modeling was one of the topics
studied at the 1999 Johns Hopkins University Language Engineer-
ing Workshop hosted by the Center for Language and Speech Pro-
cessing. Our work was motivated by the need for speech recogni-
tion in languages other than the well-studied European and Asian
languages as spoken by the majority populations of Europe, Asia,
and America. The statistical techniques used for speech and lan-
guage modeling require relatively large amounts of monolingual
speech and text as training data. In the ‘resource-rich’ languages
which have suchcorpora, these statistical methods have been shown
to work quite well. However, if only small amounts of training
data are available in a language, these monolingual techniques are
less effective. Our goal was to address this problem by develop-
ing techniques that reduce the amount of data needed to model
resource-poor languages by borrowing data and models from
resource-rich languages.

While in our studies we used multiple languages simultane-
ously, our goal was not to build a ‘multilingual’ ASR system ca-
pable of recognizing several languages equally well. We hoped
instead to develop a good monolingual system for a specific tar-
get language by borrowing data and models from other languages.
Calling this ‘language independent acoustic modeling’ is meant
to suggest a similarity with speaker independent modeling. In
the current state-of-the-art, speaker independent models are first
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trained from multiple speakersand then adapted to a specificspeaker
either before or during recognition. Analogously, language in-
dependent modeling is a methodology that combines speech and
models from multiple source languages and transforms them for
recognition in a specific target language.

As mentioned above, acoustic training data is only one re-
source needed for statistical ASR. However, we have assumed that
language models, pronunciations, and appropriate acoustic pro-
cessing are available for the target language, and that only tran-
scribed acoustic training data is in short supply. This is not a com-
pletely unrealistic scenario, however, in that dictionaries with pro-
nunciations are available for many languages, as are on-line news-
papers and other text. However, we stress that we address here
only one aspect of language independent modeling.

Our work focused on the development of methods to share
data and acoustic models between languages. Underlying these
methodsare ‘phone mappings’ that describe the similarity of sounds
in two different languages. We obtain these phone mappings using
both knowledge-based andautomatic methods. The knowledge-
based methods rely only on acoustic-phoneticphonetic categoriza-
tions of the individual languages and as such can be used if no data
at all is available in the target language. The automatic methods
derive phone mappings using small amounts of acoustic data in the
target language. By either approach we can borrow models from
several languages simultaneously to cover the phone inventory of
the target language. The automatic methods allow additional re-
finement by borrowing models sub-phonetically at the HMM-state
level. This can be especially valuable if the target language con-
tains phones not found in any of the source languages since these
techniques are free to assemble a new phone model from states of
different source language phone models.

While both the automatic and knowledge-based phone map-
pings can be useddirectly to construct recognizers in the target lan-
guage by borrowing acoustic models from the various source lan-
guages, we found it beneficial to use HMM adaptation techniques
to improve the source language systems using the small amount of
target language adaptation data we assume is available. As a fur-
ther refinement, we obtained the best recognition performance not
from individually adapted source language acoustic models but by
using Discriminative Model Combination (DMC) [1] to combine
models from several languages simultaneously. This combination
can be done at the sentence or sub-word level, with better perfor-
mance obtained using phone-level combinations. We note in par-
ticular that DMC makes effective use of source language acoustic
models that by themselves do not perform well in transcribing the
target language.



We present here a brief description of our experiments. Our
web sitewww.clsp.jhu.edu/ws99/projects/asr contains a final re-
port of our work, some of the language data and models used, and
a more extensive bibliography of prior work in language indepen-
dent and multilingual acoustic modeling (e.g. [2, 3, 4, 5, 6, 7, 8]).
This paper expands upon an earlier report of our work [9] and
presents additional results in cross-language adaptation and dis-
criminative model combination for multilingual acoustic model-
ing.

2. TRAINING AND TEST SETS FOR MULTILINGUAL
ACOUSTIC MODELING

As part of our research program we established an experimental
framework for language independent acoustic modeling. We se-
lected Czech language Voice of America (VOA) broadcasts as our
test domain since news broadcasts contain a variety of different
types of speech and are relatively easy to obtain. We chose Czech
since we have ongoing projects [10] from which we could borrow
resources. We also felt that studying Czech as a rapid-porting task
was realistic since, unlike English, Spanish or Mandarin, there is
relatively little knowledge of existing Czech ASR to influence our
work. Our final test set consisted of one week of news broad-
casts, although due to evolution of our experiments, not all results
reported here are directly comparable; see our web site for more
detailed reporting.

As our source-languageacoustic training data, we used broad-
cast news recordings in English, Spanish, and Mandarin obtained
from the Linguistic Data Consortium. We also used read Rus-
sian speechcollected at West Point for computer aided foreign lan-
guage instruction and read Czech speech from the Charles Univer-
sity Corpus of Financial News (CUCFN). All speech was down-
sampled to 16KHz as needed. The acoustic models were trained
from mel-frequency, cepstral data using HTK [11]. Unless oth-
erwise noted, the source language acoustic models were multiple
mixture monophone systems to simplify cross-language mapping;
full system descriptions are on our web site.

After comparing performance across the monolingual Czech
read and broadcastdomains, we decided to use 1.0 hour of CUCFN
read speech as our Czech acoustic training set. After first training
monolingual Czech ASR systems using this one hour of speech,
our goal was to improve their performance on Czech VOA by
borrowing from English, Mandarin, Spanish and Russian. This
provides a realistic and interesting training scenario that involves
cross-domain as well as multilingual factors. The experimental re-
sults that led to this decision can be found in our final report (see
also [9]), however we note that language is just one characteristic
of speechand that other conditions, such as speakingstyle, are also
significant factors in ASR performance. It is therefore critically
important to obtain diverse training and test sets for multilingual
experiments to ensure that cross-language effects are not domi-
nated by other factors. As a related point, it is also important that
results of limited domain experiments, such as training and testing
with data from the same news program, be interpreted cautiously
since performance may not carry over to more diverse domains.

3. KNOWLEDGE-BASED PHONE MAPPINGS

In some applications, it is highly desirable to develop speech recog-
nition systems for new languages without any acoustic training
data. In such situations, borrowing models from other languages

for which speech recognition technology is well-developed is an
attractive idea. The approaches we studied to address this problem
are referred to as knowledge-based because they exploit linguistic
knowledge of the languages and their phoneme inventories, and
because they do not involve retraining using any target language
acoustic data.

Our initial experiments involved simple mappings in which
phones from the Czech target language were mapped to their near-
est neighbor in a single source language using a similarity mea-
sure based on feature-based descriptions of the phones. This is
a manual procedure that leverages extensive knowledge of acous-
tic phonetics when available. Our approach involved first describ-
ing the phones in both the source and target languages in terms
of their articulatory positions; a complete inventory of the features
and mappings used is available online.

We then determined the proximity of a sound in the target
language to a sound in the source language using this represen-
tation, and developed an associated symbol-to-symbol mapping.
While it was possible to achieve reasonable mappings for each
language, there are significant variations in the level of detail used
in the source language phonetic inventories. Spanish, for exam-
ple, only used 25 phones, while Russian used 44 phones. We
used these mappings to obtain baseline performance using acoustic
models from the source languages derived from these mappings.
The procedure was quite simple: represent each phone symbol in
the Czech lexicon using a corresponding source language phone
located from these mappings. Overall, we observed that perfor-
mance is poor - in the range of 80%WER. It was a great surprise to
observe that the Russian acoustic models, though they were trained
on read speech, performed relatively well on the Czech VOA data,
especially considering the differences in microphones, speaking
style, and speaking rates. We also observed from these experi-
ments that performance for English and Spanish was comparable,
and performance for Mandarin lags the other systems.

4. AUTOMATIC GENERATION OF PHONE AND STATE
LEVEL ACOUSTIC MAPPINGS

We next investigated a general methodology that makes use of
small amounts of target language speech to derive cross-language
mappings automatically both at phonetic and sub-phonetic levels.
We call our approach theConfusion Matrix approach to finding
cross-lingual mappings. These confusion matrices are tables of
acoustic similarity between phonesacross languages. They are ob-
tained by first performing a monolingual phonetic labeling of the
target language acoustic data using the target language phone set -
this can be done manually or via forced-alignment using HMMs;
we used the latter approach. Phonetic recognition of this data is
then performed using acoustic models from each of the source
languages; for this we used simple, unweighted, phone-loop rec-
ognizers. This yields parallel phonetic segmentations of the target
language acoustic data in the source language phone inventories.

Once a criterion for co-occurrence between two phonetic la-
belings of the acoustic segments is defined (e.g., a minimum num-
ber of overlapping frames, etc.), we can arrange the phones of the
source language and target language into a matrix that contains the
counts of co-occurrences between then

th andkth phones of the
source and target languages, respectively, in the(n; k) entry of the
matrix. This matrix of co-occurrences is the confusion matrix.

After the confusion matrix between the phones of two lan-
guages is obtained, we derive mappings from this matrix. Given a



Method Source(s) WER Source(s) WER

Phone EN 68.3 SP 68.7

State EN 64.8 SP 70.0
State MA 79.7 EN,SP,MA 62.3

3-State EN,SP,MA 55.8 EN,SP,MA 54.4

Table 1: WER(%) Using Automatic Phone Mappings.

source phone (in thenth row), we would like to select the phone
in the target language that best matches it (i.e., choose the best
matchingkth column). To do this we can simply choose the col-
umn with the highest count. A better method takes into account
the number of times thekth source language phone was hypothe-
sized by dividing the counts of the bin(n; k) by the accumulated
counts of the columnk.

We extended this technique to the state level, motivated by our
intuition that some phones seemedhard to match across languages.
To obtain the sub-phonetic mapping, we broke each HMM in the
source and target language into its states and derived single state
HMMs from each of these states. Using these new, sub-phone
HMMs we constructed a new confusion matrix. As expected, we
found that some of these hard-to-match target language phones
were modeled by assembling new models from phonetic subunits
from other languages.

We described above how we established the best mapping for
each phone/state of the target language. We found that when many
states and phones from various languages were competing to rep-
resent any given target model, several models seemed to give high
counts and thus might also be considered as matching candidates.
We explored the possibility of including several of these best match-
ing candidatesby combining the Gaussianmodels in their mixtures
after weighting them accordingly. We established the weights used
in this state combination in proportion to the normalized number
of counts corresponding to the map.

Table 1 shows recognition experiments we conducted using
mappings derived from confusion matrices. For comparison in
this experiment, monophone Czech models trained on 1 hour of
Czech give 38% WER. When mappings are obtained using the
phone-level confusion matrix approach, the word error rate drops
below 70%. State-level mappings further reduce the error rate of
the English mappings. Better results are obtained when multiple
source languages are included (English, Spanish and Mandarin),
and state mappings are obtained for both state-to-state mapping
and best three states to a single Czech state (the 3-state method).
The best result is below 55% WER. The 3-state methods reported
differ in the presence (54.4%) or absence (55.8%) of count nor-
malization of the columns in the confusion matrix.

4.1. Language Adaptive Clustering

We examined a novel method to find cross-lingual phone mappings
using a modified version of vector quantization [12]. The key fea-
ture here is that we allow the source language data to be acted upon
by language-specifictransformations. The goal is to learn transfor-
mations that normalize acoustic variability across languages while
performing phone clustering.

We used a modified VQ objective function to incorporate these
transformations. Letxp;li denote theith sample of phonep from
languagel. The quality of a set of codewordsC = fC kg and trans-

Source / Mixtures / Type Unadapted Adapted
MA 10 hr. / 20 / monophone 88.7 63.0
SP 10 hr. / 20 / monophone 71.6y 50.9
RU 3 hr. / 20 / monophone 60.8y 45.3
EN 10 hr. / 20 / monophone 75.7 47.2

EN 10 hr. / 8 / triphone 78.8 32.6y
EN 72 hr. / 12 / triphone 72.1 32.7z

CZ 1 hr. / 20 / monophone 33.4y -
CZ 1 hr. / 6 / triphone 30.7z -

Table 2: WER(%) After MLLR+MAP Adaptation of Source Lan-
guage Systems Using 1 Hour of Read Czech.

formsfT p;lg is measured on on a set of Czech, Spanish, Russian,
Mandarin, and English data as
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Note that no transformation is applied to the target language data:
in this way we hope to find the best target language codewords
along with mappings from the source language data to the tar-
get language codewords. We considered two possible families
of transformations: rotationsT p;l(xp;l

i
) = W
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shiftsT p;l(xp;li ) = x
p;l

i + b
p;l. In either case, the LBG algorithm

was modified so that, after recomputing the centroids and clusters,
the transformations were recomputed given the new centroids and
clusters.

Given one hour of aligned data in each language, we found
that this technique was comparable to the phone-level automatic
methods described above. We found that it is crucial to apply the
transforms learned during clustering. For example, one mapping
initially yielded 86.4% WER, which was reduced to 71.6% WER
after transformation of the source language HMM mean vectors by
the additive shifts found during clustering. Encouragedby this, we
applied the per-phone additive transformations to the best 3-state
automatic alignment described above and found that the reported
WER fell from 54.4% to 48.8%. While this approach falls far short
of incorporating cross-language modeling into acoustic training, it
suggests that simple normalization techniques can capture signifi-
cant cross-language variability.

5. ACOUSTIC ADAPTATION

We explored acoustic model adaptation as a way to transform well-
trained source language HMM systems using only a small amount
of the target language training data. In these experiments we found
that despite the substantial variation in the quality of the phone
mappings obtained by knowledge-based and automatic state-level
phone mappings, adaptation using MLLR and MAP (see the HTK
Book [11] for a description of the methods used) on the 1.0 hour
of Czech read speech largely compensated for these differences,
as shown in Table 2. Furthermore, while performance improves
significantly, the adaptedsystems do not individually improve over
the best monolingual Czech systems.

6. DISCRIMINATIVE MODEL COMBINATION OF
MULTIPLE SOURCE LANGUAGE ACOUSTIC MODELS

We explored the use of DMC [1] to improve upon the adapta-
tion of single language source ASR systems. DMC aims at an



DMC Monophone Baseline:Lcz;Aczy 30.9
Lcz; V CSczy 30.8

Lcz; V CSruy; V CSspy; V CSczy 30.8
Lcz;Aczy;Aruy;Aspy; Aeny 28.9

Lcz; V CSczy; V CSruy ; V CSspy; V CSeny 28.5

DMC Triphone Baseline:Lcz;Aczz 28.1
Lcz; Aenz;Aczz 27.4

Lcz; V CSenz; V CSczz 27.1

N-Best oracle 19.8

Table 3: WER(%) in DMC Rescoring of 1000-Best Lists.

optimal integration of all available acoustic and language mod-
els into one log-linear posterior probability distribution. The co-
efficients of the log-linear combination are estimated on training
samples using discriminative methods to obtain an optimal clas-
sifier. For example, a multilingual combination at the sentence
level of scores from Czech, Spanish, and Mandarin acoustic mod-
els has the following form for a sentence hypothesisw k given the
acoustic datax: �lmLcz(k) + �czAcz(xjk) + �spAsp(xjk) +
�maAma(xjk), whereLcz(k) is the Czech language model likeli-
hood,Acz(xjk),Asp(xjk),Ama(xjk)are the Czech, Spanish, and
Mandarin acoustic likelihoods. The parameters� are optimized to
minimize WER on a held-out set of Czech data.

We have found that DMC rescoring at the sentence level im-
proves over the monolingual Czech performance and that it is also
possible to apply DMC at the phoneme-class level for further im-
provement. For example, the acoustic likelihoodA cz(xjk) can
be separated by the contribution of vowels, consonants, and si-
lence models. Parameters can then be introduced to define a poste-
rior distribution based on these language-specificphonetic classes:
�cz;V Vcz(xjk)+ �cz;CCcz(xjk) + �cz;SScz(xjk). For brevity,
this is denoted as�cz � V CScz.

The source language systems described in Table 2 were com-
bined at the sentence level and at the phone class level. In these
experiments we combine acoustic scores obtained by forced align-
ment using N-Best hypothesesgenerated by the Czech monophone
system. The results reported in Table 3 are based on direct opti-
mization of the DMC WER using the simplex downhill method,
known as amoeba search [13]. We found this produced better re-
sults than methods that approximate WER by a smooth cost func-
tion (see our earlier results [9]); we hypothesize that for a small
number of parameters, direct minimization is effective and avoids
approximation errors. We found that the structuring into phoneme
classes improves performance over combination at the sentence
level. Furthermore, combination of multilingual phoneme-class
models performs better than the monolingual Czech systems, even
when the monolingual systems are optimized using DMC,i.e. op-
timized overLcz andAcz.

7. CONCLUSION

We have presented the results of our experiments in language in-
dependent acoustic modeling. We studied both knowledge-based
and automatic methods to derive cross-lingual phonetic and sub-
phonetic mappings, and found that the automatic methods per-
formed significantly better than the knowledge-based methods.
Acoustic HMM adaptation further improved the source language
models, although not to the point that they performed better than

monolingual Czech systems. However, multilingual interpolation
with adapted source-languageacoustic models was effective in im-
proving the performance of monolingual systems. Surprisingly,
even source-languagemodels that perform poorly when used indi-
vidually can contribute to the overall combination when their con-
tribution is determined by DMC-training. In summary, we have
developed a methodology in which cross-language phonetic map-
pings, acoustic adaptation, and discriminative model combination
can be used to improve monolingual systems trained from small
amounts of speech.

Acknowledgement We thank M. Riley and F. Pereira of ATT
for use of their large vocabulary decoder.

8. REFERENCES

[1] P. Beyerlein, “Discriminative model combination,”Proc.
ICASSP, pp. 481–484, 1998.

[2] T. Schultz and A. Waibel, “Fast bootstrapping of LVCSR
systems with multilingual phoneme sets,”Proc. EU-
ROSPEECH, pp. 371–374, 1997.

[3] B. Wheatley, K. Kondo, W. Anderson, and Y. Muthusamy,
“An evaluation of cross-language adaptation for rapid HMM
development in a new language,”Proc. ICASSP, pp. 237–
240, 1994.

[4] P. Cohen,et al., “Towards a universal speech recognizer for
multiple languages,”Proc. ASRU, pp. 591–598, 1997.

[5] T. Schultz and A. Waibel, “Language independent and lan-
guage adaptive large vocabulary speech recognition,” in
Proc. ICASSP, pp. 1819–1822, 1998.

[6] J. Kohler, “Multi-lingual phoneme recognition exploiting
acoustic-phonetic similarities of sounds,” inProc. ICASSP,
pp. 2195–2198, 1996.

[7] P. Fung, C. Y. Ma, and W. K. Liu, “MAP-based cross-
language adaptation augmented by linguistic knowledge:
from English to Chinese,”Proc. EUROSPEECH, pp. 871–
874, 1999.

[8] A. Constantinescu and G. Chollet, “On cross-language ex-
periments and data-driven units for ALISP,”Proc. ASRU,
pp. 606–613, 1997.

[9] P. Beyerlein,et al., “Towards language independent acoustic
modeling,”Proc. ASRU, 1999.

[10] W. Byrne, et al. “Large vocabulary speech recognition for
read and broadcast Czech,”Proc. Wkshp. on Text Speech and
Dialog, Marianske Lazne, Czech Republic, 1999.

[11] S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev, and
P. Woodland,The HTK Book. Entropic, Inc., 1999.

[12] R. M. Gray, “Vector quantization,”IEEE ASSP Magazine,
pp. 4–29, April 1984.

[13] J. Nelder and R. Mead, “A simplex method for function min-
imization,” Computer Journal, vol. 7, pp. 308–313, 1965.


