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Abstract

We present a computational model of how verbs might be learned within
the limited domain of hand actions. We hypothesize that such verbs refer to
the activities of underlying motor schemas, and leverage this constraint to
build a system with strong enough biases that it can learn from a reasonably
small number of examples, while still having adequate exibility to learn the
hand-action verbs of any language. The completed system should demon-
strate its knowledge both by labelling its own behavior and by carrying out
verbal commands in a simulated world.

1 Overview

How do children learn to describe simple actions, such as lifting a mug or pushing a

box? This paper outlines a computational model of children's acquisition of verbs,

as well as an activity-based model of their semantics, within the restricted domain of

actions that can be performed by one hand upon simple objects on a tabletop. In

English, these verbs would include push, pull, shove, grab, hold and touch. Beyond

these simple verbs, our model also endeavors to learn verb \complexes", such as pick

up, unzip, or keep hitting.

The model will be evaluated and re�ned by incorporating it into a computer system

that can learn the relevant verbs within a context of carrying out actions in a simulated

world. The system learns from labels attached to its actions, and must demonstrate its

acquisition of the verbs in two ways. First, it must be able to label novel actions|i.e.,

recognition. Second, it must be able to carry out appropriate actions when given a
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verb as a command in a novel situation. A human-body animator connected to our

system will be used to collect training data and to evaluate the trained system.

This work is part of the L0 language learning project (Feldman et al. 1990), a theme

of which is to bring together constraints from linguistics, psychology, neurobiology, and

computer science, in order to discover underlying universals in cognitive representa-

tions. One such constraint derives from crosslinguistic variation. Requiring our models

to be capable of learning the relevant portion of any natural language without change,

guides us toward the proper amount of innate bias|too little, and learning will be too

slow; too much, and we won't be able to represent some languages.

A second constraint is the hypothesis that semantics are often grounded in the

body (Lako� & Johnson 1980; Johnson 1987). Within the particular domain of hand

actions, the hypothesis is that the semantics primarily involve aspects of intentional

motor behavior, such as goals, primitive motor synergies, their parameters (such as

amount of force), and their coordination. Our current model attempts to capture the

essence of motor control within a representation called executing schemas, from which

verb semantics are derived.

We should make clear that our primary aim is to provide a framework for explaining

how the processes of language interact with other processes such as motor control. It

is unlikely that this model of verb semantics will be either complete or exactly correct.

Instead, we hope the model serves to suggest how the larger picture of language use

partially determines the nature of verb semantics.

At the end of the paper, this work will be set within a larger context by connecting it

to other L0 projects modelling the semantics of spatial terms, the semantics of auxiliary

and force-dynamic verbs, and the understanding of discourse and metaphor.

2 Computational Model

Figure 1 shows the top-level view of the model. Essentially, the model consists of

separate components for verbs and for motor actions, connected by a bi-directional

mapping|the upward direction performs recognition, while the downward direction

carries out commands. These two components have very di�erent structures:

� The motor system involves structures whose fundamental character is that they

are executing. In other words, they are controllers, and their semantic contribution

comes from their activity, rather than their structure.

� Language involves structures that are fundamentally descriptive, in other words

passive. Thus, they are operated upon by external processes, e.g. in order to be
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Figure 1: Top-level view of the model, highlighting the processes involved.

composed to represent phrases. Passive representations are also used in other kinds

of reasoning and are the mainstay of standard Arti�cial Intelligence techniques.

As a result, a key design point is how the model links these two components. Figure 2

shows the details of our solution, in the form of an example. The next two sections

discuss the data structures and their interconnections. Later sections describe the

processes which operate on these structures, including the learning algorithm. The

reader will want to refer back to Figure 1 and Figure 2 while reading these sections.

2.1 Components

2.1.1 Executing components

The executing components in our model are called executing schemas (schemas for

short), and they are drawn in hexagonal boxes. Schemas are meant to (crudely) capture

the character of motor synergies (Bernstein 1967), as well as Piaget's motor schemas

(see Drescher (1991) for a computational version), and can be considered an analogue

of visual image schemas. Essentially, executing schemas capture the coordination of

primitive movements into organized higher-level actions, by encoding sequentiality,

concurrency, repetition, hierarchicality, parameterization, and error recovery.
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Figure 2: A more detailed view of the model, highlighting data structures and connections

involved in carrying out a push left command.
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Internally, schemas are expressed using a formalism based on Petri nets (Reisig

1985). For the reader unfamiliar with Petri nets, the formalism is like �nite state ma-

chines, or, more precisely, recursive transition networks, along with extensions to allow

multiple \ows of control" which can be initiated either intentionally (to begin multiple

simultaneous actions) or by external input (to trigger an error-recovery action).

Note that schemas can both test the world state to determine their next action, as

well as a�ect the world state via their actions. Consequently, determining a schema's

unfolding response to a given input and initial world state is most easily and directly

accomplished by simply executing it.

Turning to speci�cs, our current schema set includes the following. The simplest

(i.e., non-decomposable for our purposes) schemas include

GRASP

RELEASE

CONTACT-WITH-PALM

MOVE-ARM

as well as simple calculation schemas such as

COMPUTE-DIRECTION

COMPUTE-FORCE.

From these, complex schemas can be built, such as

MOVE-HAND-TO

GRIP-OBJ

MOVE-HELD-OBJ-TO

OBTAIN-OBJ

RELINQUISH-OBJ

OPPOSE-FORCE

MOVE-OBJ

DEPRESS.

These schemas are generally implementable as a sequence of several primitive schemas,

with occasional parallel steps. For an example see theMOVE-OBJ schema in Figure 3.

While an agent may invoke one of the above schemas directly, often the agent has

some other, more speci�c goal in mind. To model this, we have another set of schemas

which often simply invoke one of the above schemas, but which serve to indicate the

\higher-level" goal. Examples include

INSERT

GET-OBJECT-OUT-OF-WAY
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Figure 3: The MOVE-OBJ schema. Note that it is composed of more primitive schemas.

COVER

REMOVE.

2.1.2 Descriptive components

All descriptive components in our model take the form of feature structures, or f-

structs for short. They consist of a �xed set of features, each assigned a value. F-

structs are drawn as a double row of boxes, where each column contains a feature

and its corresponding value. Values may be of a variety of types, including boolean,

multi-valued, numerical, etc. An f-struct may also assign to a feature a probability

distribution over possible values.

F-structs are so named because they play a role similar to feature structures in

various linguistic theories. However, it's crucial that our f-structs di�er from the con-

ventional variety in the following ways:

1. A relatively large number of features are employed, at a relatively �ne granularity.

2. Feature values are not only binary, but also multi-valued, numerical, or probabilis-

tic.

3. Our feature set is bodily grounded via its connection to a model of the motor

control system.

Of course, feature-structures are a fairly general and common representation, and

that is a strength. Any number of traditional Arti�cial Intelligence reasoning algo-
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rithms employ feature structures and thus they can be used to augment our model as

necessary in scaling up to richer domains.

Again turning to speci�cs, a subset of our current feature set is shown below. The

goal is to include only those features which are linguistically relevant, and in this regard

we have been motivated by Talmy (1985) and our own informal crosslinguistic analyses

of English, Tamil, Cantonese, and Farsi. Importantly, this set is just a starting point,

subject to inevitable revision and extension as the model is implemented and tested:

Top-level schema (encodes agent's goal)

Set of sub-schemas executed

Direction of motion or force

Force on �nger muscles

Force on arm muscles

Initial/�nal supportedness of object

Repetition count for looped schemas

Hand posture (at palm, 5-�nger grip, index-�nger-extended, etc.)

2.2 Architecture

2.2.1 The linking f-struct

The central structure of the whole model is the linking f-struct pictured in the center

of Figure 2. Its importance derives from its function as the sole interface between

descriptive components such as language or \reasoning", and the executing schemas.

It therefore must contain all features which could ever be linguistically relevant in any

language, and thereby makes a strong theoretical claim. (In this project, however, it

contains only those features potentially relevant to verbs describing hand actions.) The

linking f-struct can be used either to summarize important results during execution of

a schema, or to guide schema execution; both uses are described shortly.

2.2.2 The world-state f-struct

The model includes a world-state f-struct to hold information about the current state

of the world. Generally it can be considered to hold the output of high-level percep-

tual processes (which we are not concerned with modelling explicitly). The world-state

f-struct is used by schemas during execution in order to choose actions and their pa-

rameters. Importantly, it is also used when interpreting a verbal command, in order

to choose the most applicable amongst multiple senses of a verb.
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2.2.3 Word sense f-structs

A word-sense f-struct represents the semantics of a word. While it may contain some

features which are assigned a simple value, it will generally contain other features

which are assigned a probability distribution over possible values. Moreover, a word

sense may simply omit those features which have proven to be irrelevant. Note that

by taking the mode from each probabilistically de�ned feature, one obtains what we

might call a prototype for the word. Since some words may be most usefully thought

of as having multiple senses/prototypes, the model allows multiple word-sense f-structs

for each word.

2.2.4 Slots

The complexity of the upper, linguistically-oriented portion of Figure 2 stems from

our desire to handle not only simple verbs, but full verb complexes|that is, verb roots

along with auxiliary verbs, a�xes, and satellites (in the sense of Talmy (1985)). For

example, we would ideally like to handle expressions such as keep picking up.

We assume, rather than model, a mechanism to segment such a verb complex into

four slots containing the morphemes keep, pick, -ing, and up, but importantly we do not

assume prior knowledge of the semantic roles played by these slots. After learning, each

slot in the system contains a node for each word (or morpheme) which has appeared

in it. In turn, each node is attached to its word-sense f-structs. In Figure 2, two slots

are shown as large boxes, and word nodes are shown as circles.

While the model does not rely upon prior knowledge of the semantic roles played

by slots, we certainly do intend to model learning such information as a by-product of

word learning, and using it to facilitate learning of new words.

2.3 Processes

The four arrows in Figure 1 represent the four key processes underlying language use

once the system is trained. The two upward arrows|feature extraction and labelling|

are active when the system is producing an appropriate verb complex for its own

actions. The two downward arrows|interpretation and execution guidance|are active

when the system is carrying out a verbal command. The learning algorithm is saved

for the next section.
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2.3.1 Feature extraction

A schema, while executing, may cause certain values to be placed into the linking f-

struct. These values may reect states encountered during execution, the parameters of

various actions, or ow-of-control patterns such as looping, and may represent averages

over the whole schema execution, or just the value at a particularly salient moment. As

a result of feature extraction, the linking f-struct contains a \summary" of a schema's

execution once it has completed.

2.3.2 Labelling

The labelling process involves matching the current contents of the linking f-struct

against the store of word-sense f-structs. In the case of simple verbs, we simply choose

the best-�tting word-sense and emit the corresponding word, where the degree of �t

is a function of both the prior probability of the word-sense (i.e., its frequency in the

training set) and the likelihood of the word-sense generating the linking features. In

the case of verb complexes, a more complex process is required, which chooses words

to �ll slots until all salient linking features have been communicated by one slot or

another.

2.3.3 Interpretation

Interpretation is the process of mapping from linguistic input to a setting for the

linking f-structure. This involves choosing senses for each word in the input and then

combining them, in a way that minimizes conicts amongst the words senses and the

initial world state. Our current algorithm is a simple one related to uni�cation|its

adequacy remains to be tested.

2.3.4 Execution guidance

Once the linking f-struct is set, it should guide schema execution appropriately. This

involves choosing the proper schema to execute, transferring values down to parameters

of actions (where they may fully specify, or merely modulate, those parameters), and

inuencing branching decisions.
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3 Learning

The real strength of our representation is that it lends itself to the use of powerful

learning techniques. The learning process involves three activities:

1. formation of word-sense f-structs as appropriate

2. determination of which features to include in each word-sense f-struct

3. �nding the proper value or probability distribution for each included feature.

Our current algorithm is Bayesian model-merging (Omohundro 1992), a common

and well tested probabilistic clustering technique. A key feature of this algorithm is its

explicit, tunable mechanism for striking a balance between generating too many, very

speci�c senses of a word, and generating too few, excessively general senses. Another

advantage is that it is on-line; in other words, sensible results emerge after just one

training example. The algorithm also provides a means for biasing|but not forcing|

the representation of a new word toward those features which have proven to be relevant

for other words in the same slot.

A pseudo-code version of the algorithm follows; the reader may wish to skip ahead

to the example in the next section.

For each word:

1. Collect one or more training-example linking f-structs for the word.

2. Create a word-sense for each, by turning each feature value

into a probability distribution (using priors for word's slot).

3. Add these word-senses to the existing set of word-senses.

4. LOOP

Set (ws1,ws2) = the best-matched pair of word senses

IF (merging ws1 and ws2 would yield a higher a posteriori model)

THEN Delete ws1 and ws2; Insert Merge(ws1,ws2)

ELSE terminate loop

END

5. Go back to step 1.

3.1 A Learning Example

Let us suppose that there are two senses of the English verb push, one of which involves

moving an object away from oneself, usually using the palm of the hand, and the other
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Figure 4: Step by step view of learning two senses of push. Training examples are incorpo-

rated into the model from top to bottom.

being the case of pressing a button. How would the learning algorithm synthesize two

word-sense f-structs to represent these senses?

For simplicity, let the linking f-struct contain just four features: top-level schema

executed, direction of motion, hand posture, and amount of force used. We'll illustrate

the algorithm without worrying about how these features are extracted from schema

execution.

Figure 4 shows the model's changing representation of push, as four training examples|

i.e., settings of the linking f-struct|are processed. Initially, a word-sense f-struct is

created which closely matches the �rst training example. The second training example

is deemed close enough to this word-sense that it is merged with it, causing the word

sense to generalize a bit|note the widened range of acceptable force values. Training

example 3 is deemed too di�erent for merging into the current word sense|it di�ers

on every feature. Instead, a new word sense is created closely matching the training

example. Finally, training example 4 most closely matches the �rst word sense, and so

is merged with it. At this point, the force values have varied so much within this word

sense that force is dropped as a relevant feature.

4 Relevant Cognitive Linguistics Issues

This project is currently in the implementation phase, and so we do not yet have hard

results on the adequacy of the model. However, it is worth reviewing here the linguistic
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issues which the model purports to address, and the kinds of predictions it would make

if successful.

4.1 Semantics

We hope we have presented a plausible account of how semantics for action-oriented

words may be bodily grounded via a connection to the motor synergies which drive

behavior. An important implication of the model is that schema internals|such as joint

angles or detailed patterns of muscle contractions{are not available at the linguistic

level, leading to the prediction that no language will contain verbs referring to these

details.

4.2 Pragmatics

Our model exempli�es the notion that semantics can be simpli�ed by relying on prag-

matics. A single word sense may give rise to a variety of appropriate behaviors, because

(a) it is combined with the initial world-state f-struct to produce a variety of possi-

ble linking f-structs; and (b) the resulting linking f-struct can give rise to yet further

variety of behavior, because the changing world state also a�ects schema execution.

4.3 Radial categories and prototype theory

Our word representation, viewed as a \concept", exhibits both fuzzy boundaries and

multiple prototypes, made possible by allowing multiple word senses with probabilistic

distributions. However, we haven't modelled the relational structure of the multiple

prototypes composing a radial category, nor inferences which might be derivable there-

from.

4.4 Polysemy and compositional semantics

A version of polysemy and compositional semantics follows from our use of multiple

word-senses and the Interpretation Process. When given a command, the Interpreta-

tion Process chooses a sense for each word of the command so as to minimize conicts,

demonstrating how linguistic context can determine the intended sense of a polysemous

word. Then, the combining of the chosen senses into the linking f-struct|including a

mechanism for resolving remaining conicts|demonstrates how compositional mean-

ings may be formed. If correct, these mechanisms predict that one would not �nd
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verb-complexes which use any but the least-conicting senses of their component words.

4.5 Learning language patterns

Children are able to learn semantic patterns in the language they are acquiring (e.g.,

learning that verbs encode path vs. manner), as documented in Choi & Bowerman

(1991). Our model captures this via the learning algorithm's ability to alter the initial

assumption of what features are relevant for a new word, based on the relevant features

for words previously learned within the same slot. A resulting prediction is that words

which violate their language's patterns will take longer to learn.

5 Related L0 Work

5.1 Semantics of Locatives

In many ways this project is patterned after earlier L0 work by Regier (1992), in which

a system was built which could learn the semantics of spatial terms from a variety of

languages. In both projects, the aim is to arrive at universal semantic features by (1)

balancing the dual constraints of e�cient learning and crosslinguistic applicability; and

(2) grounding these features in an idealized, or \schematic" representation. In Regier's

case the semantic features are grounded in an idealization of the human visual system,

while in our case it's an idealized motor control system.

5.2 Aspect and Force Dynamics

Jonathan Segal is working on a schematic representation for force-dynamic and aspec-

tual terms such as keep, let, hinder, etc. The key idea is to posit a special schema for

controlling other schemas as they progress through their stages, such as start, process,

suspend, �nish, etc. Then, the semantics of the terms of interest can be encoded by

features which map to the behavior of this special schema. This work �ts in nicely

with the framework presented in this paper.

5.3 Metaphor and Understanding Sentences

Will the architecture presented here scale up to handle arbitrary natural language? We

think it might, and this is explored in the thesis work of Narayanan (1995). Since our
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feature structures are a rather conventional type of representation, one can imagine

adding any number of standard Arti�cial Intelligence inference mechanisms to the

architecture, in a position where they can inspect and modify the contents of the

linking structure and world state structure, but do not have access to the internals of

the schemas. In particular, Narayanan is exploring the use of belief networks to model

how feats such as disambiguation might result from probabilistic reasoning over the

products of schema execution. Furthermore, he is modelling metaphor within these

belief nets, so that metaphorical inferences might be explained via execution of the

relevant source-domain schemas.
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