
E�ient Filtering Support for High-Speed Network Intrusion DetetionbyJosé María GonzálezM.S. (University of California at Berkeley) 2000Engineering (Tehnial University of Madrid, Spain) 1995A dissertation submitted in partial satisfation of therequirements for the degree ofDotor of PhilosophyinComputer Sienein theGRADUATE DIVISIONof theUNIVERSITY OF CALIFORNIA, BERKELEY
Committee in harge:Professor David Wagner, ChairDr. Vern PaxsonProfessor David BrillingerProfessor Ion StoiaFall 2005

The dissertation of José María González is approved:
Chair Date

Date
Date
Date

University of California, BerkeleyFall 2005

E�ient Filtering Support for High-Speed Network Intrusion Detetion
Copyright 2005byJosé María González

1Abstrat
E�ient Filtering Support for High-Speed Network Intrusion DetetionbyJosé María GonzálezDotor of Philosophy in Computer SieneUniversity of California, BerkeleyProfessor David Wagner, ChairNetwork Intrusion Prevention Systems (NIPS) are a key element in defending net-works against all kinds of malware (worms, virus, et.). This investigation addressessome funtionality and performane issues related to running suh systems in veryhigh-speed networks (1 Gbps or faster).The traditional approah to arry out sound intrusion prevention is the use ofsoftware-based approahes, as only they provide the �exibility and dynami funtion-ality that is required to detet rapidly-evolving malware.The main obstale for the deployment of software-based NIPS in high-volumeenvironments is performane, in terms of the amount of tra� the NIPS is able toproess. NIPS present a double hallenge to system performane, namely proessingload and internal state storage management.

2We argue that any approah that intends to run NIPS in high-speed links mustrely on e�ient �ltering, i.e., allow the NIPS to deide whih tra� it is interested inanalyzing and whih it is not, in an e�ient fashion.The �rst ontribution of this thesis work is the development of �ltering tehniquesruial for the operation of network intrusion detetion and prevention in high-volumeenvironments. In the �rst part of the dissertation we disuss new �ltering models. Weintrodue innovative ways to take advantage of tra� �ltered using traditional paket�lter apabilities, and new mehanisms to extend paket �lter apabilities with new�ne-grained abstrations.In the seond part of this dissertation, we go a step further with one of the newabstrations disussed earlier, and disuss a paket proessing arhiteture based onimplementing the abstration in a hardware devie. The key insight of the approahis that some paket proessing tools, inluding NIPS, an bene�t enormously fromthe addition of a redued set of very simple operations oriented to performing fastlassi�ation of tra�. These operations are simple enough as to permit an extremelyfast hardware implementation. We illustrate the performane of the arhiteture bydesribing a prototype, and our experiene with its usage.
Professor David WagnerDissertation Committee Chair

i

To my parents,Santos and Maribel

ii
Contents
List of Figures viList of Tables viii1 Introdution 11.1 Motivation . 11.2 Dissertation overview . 42 Integration of Sampling and Filtering into Intrusion Detetion 52.1 Abstrat . 52.2 Introdution . 62.3 Related Work . 92.4 Seondary Path . 102.4.1 Main Path . 102.4.2 Seondary Path Desription 122.4.3 Operation . 182.4.4 Implementation . 192.4.5 Example . 212.4.6 Performane . 222.5 Appliations . 252.5.1 Trae . 262.5.2 Large Connetion Detetion 262.5.3 Heavy Hitters . 402.5.4 Bakdoor Detetion . 502.6 Conlusions . 553 Paket Filter Augmentation 573.1 Abstrat . 573.2 Introdution . 583.3 Related Work . 62

iii3.3.1 Paket Filters . 633.3.2 Paket Classi�ers . 733.3.3 Sampling . 743.4 Random Sampling . 753.4.1 Implementation . 763.4.2 Random Sampling Behavior 803.5 Random Sampling Disussion . 813.5.1 On IP Header Entropy . 833.5.2 IP ID Field . 853.5.3 In�uene of the IP ID Field Behavior in samp Features 883.6 Random Sampling Experiments . 963.6.1 Isolated Trae Analysis . 963.6.2 Long-Term Traes . 1023.6.3 Conlusions . 1123.7 State Addition . 1173.7.1 Related Work . 1173.7.2 Persistent State Addition . 1183.7.3 Persistent State Design . 1233.7.4 Implementation of Hash Aess Using BPF Primitives 1353.7.5 Results . 1373.7.6 Appliations . 1433.7.7 Future Work . 1483.8 Summary . 1494 Shunting 1544.1 Abstrat . 1544.2 Introdution . 1554.2.1 Shunting in a Nutshell . 1574.3 Related Work . 1604.3.1 Intrusion Detetion Systems 1614.3.2 NIDS Types . 1634.3.3 NIDS Examples . 1664.3.4 Ambiguities and Evasion Tehniques 1684.3.5 Resoure Exhaustion Management 1754.3.6 NIDS Parallelization . 1804.3.7 Hardware Support for Paket Proessing 1814.3.8 Software Support for Paket Proessing 1854.3.9 Filtering Models . 1874.3.10 Network Tra� Heavy-Tailed Evidene 1884.4 Shunting . 1894.4.1 Inline Proessing Bottlenek 1904.4.2 Shunting Presentation . 192

iv4.4.3 Rationale . 1964.4.4 Ations . 1984.4.5 Other Details . 2084.4.6 Disussion . 2164.4.7 Appliations . 2174.4.8 Comparison with BPF-Based Approahes 2194.5 Design and Implementation . 2214.5.1 Implementation Desription 2214.5.2 Devie-to-Shim Connetion 2234.5.3 Shunt Devie . 2334.5.4 Analyzer-to-Shim API . 2384.5.5 Shunt Shim . 2394.5.6 Analyzer . 2434.6 Evaluation . 2464.6.1 Projet Status . 2464.6.2 Trae Desription . 2484.6.3 Shunt Filtering Ratio . 2494.6.4 Shunt Performane . 2524.6.5 Devie Limited-Size In�uene 2564.6.6 Live Shunting . 2624.7 Future Work . 2644.7.1 Expiring Entries (BTL) . 2644.7.2 Shunting Other Analyzers . 2764.7.3 Evitions and Default Shunting 2764.8 Conlusions . 278Bibliography 280A Seondary Path Details 295A.1 Generi Algorithm for Deteting Interative Bakdoors 295B Shunt Details 299B.1 Shunt Interonnet Protool (SHIP) Details 299B.1.1 ACK Messages . 300B.1.2 Devie-Ready Messages . 301B.1.3 Open Messages . 301B.1.4 Capabilities Messages . 301B.1.5 Close Messages . 302B.1.6 Reset Messages . 302B.1.7 Error Messages . 302B.1.8 Status-Request Messages . 303B.1.9 Status-Response Messages . 303

vB.1.10 Statistis-Request Messages 304B.1.11 Statistis-Response Messages 305B.1.12 Assoiate Connetion Messages 305B.1.13 Deassoiate Connetion Messages 306B.1.14 Assoiate Address Messages 306B.1.15 Deassoiate Address Messages 307B.1.16 Assoiate Port Messages . 307B.1.17 Deassoiate Port Messages . 307B.2 Shim Appliation Programming Interfae 308B.2.1 shunt_open() Funtion . 308B.2.2 shunt_lose() Funtion . 308B.2.3 shunt_reset() Funtion . 308B.2.4 shunt_drop_paket() Funtion 309B.2.5 shunt_injet_paket() Funtion 309B.2.6 shunt_get_status() Funtion 309B.2.7 shunt_status_event() Event 310B.2.8 shunt_get_statistis() Funtion 310B.2.9 shunt_statistis_event() Event 310B.2.10 shunt_assoiate_onn() Funtion 310B.2.11 shunt_deassoiate_onn() Funtion 311B.2.12 shunt_assoiate_addr() Funtion 311B.2.13 shunt_deassoiate_addr() Funtion 311B.2.14 shunt_assoiate_port() Funtion 311B.2.15 shunt_deassoiate_port() Funtion 312B.2.16 shunt_evit_onn_event() Event 312B.2.17 shunt_evit_addr_event() Event 312B.2.18 shunt_evit_port_event() Event 313B.2.19 shunt_inonsistent_onn_event() Event 313B.2.20 shunt_inonsistent_addr_event() Event 314B.2.21 shunt_inonsistent_port_event() Event 314B.3 Ethertype Field Information Paking 314

vi
List of Figures

2.1 Main vs. Seondary Path . 142.2 Seondary Path Use Example . 212.3 Performane of the Seondary Path with an Empty Event 242.4 Large Connetion Detetor Example 312.5 Large Connetion Detetor Expression 322.6 Detetor Estimation for a Large Connetion 382.7 Detetor Corretness for the Largest Connetions 392.8 Large Connetion Detetor Performane 402.9 SSH Bakdoor Detetor Example . 523.1 Pakets Captured by rnd . 813.2 IP Header Format . 833.3 Timeline for Biggest Connetion in Analyzed Trae 983.4 Timeline for Biggest Connetion in Analyzed Trae (Reverse Path) . 993.5 Total Tra� Captured by rnd . 1033.6 Di�erene in Tra� Captured Between samp and rnd, and samp andnidz . 1053.7 Pakets With Zero IP ID . 1093.8 IP ID Distribution for the 2004/01/15 Trae 1113.9 Timeline for Biggest Connetion in 2004/01/15 Trae 1133.10 Timeline for Biggest Connetion in 2004/01/15 Trae (Reverse Path) 1143.11 Data Struture Used as Assoiative Array 1303.12 Performane of Stateful BPF versus BPF 1383.13 Time Required to Compile a New Whitelist Filter in BPF 1393.14 Theoretial and Experimental Number of Evitions 1423.15 Experimental Probability of an Entry Evition 1443.16 Experimental Number of Evitions 1503.17 Experimental Probability of an Entry Evition 1514.1 Trae Bytes as a Funtion of the Smallest Connetions 188

vii4.2 Shunting Main Arhiteture . 1934.3 Shunting Deision Proess . 2154.4 Shunting Tables . 2154.5 Design of an Intrusion Prevention System Using Shunting 2224.6 Shunt Interonnet Protool Paket Format 2254.7 Shunt Devie Struture . 2344.8 Shunt Devie State Transition Diagram 2344.9 Shunt Devie Filtering Algorithm . 2354.10 Shunt Shim Struture . 2434.11 Table Size Oupation . 2584.12 Inorretly Shunted Byte Rate . 2594.13 Inorretly Shunted Bytes . 2614.14 HTTP Persistent Connetion Example 2664.15 BTL Operation . 2694.16 HTTP Breakup in trae tp−1 . 2724.17 Bene�t of BTL in HTTP Tra� . 275A.1 Generi Bakdoor Detetor Implementation 296A.2 Generi Bakdoor Detetor Implementation (ont.) 297A.3 Generi Bakdoor Detetor Implementation (ont.) 298B.1 Shunt Interonnet Protool Variable Payload Example 300B.2 SHIP Status Response Entry Example 304B.3 16 bit Ethernet Header Type Field Remapping 315

viii
List of Tables

2.1 List of Di�erenes between the Main and Seondary Paths 172.2 Tables Used by the Heavy Hitters Detetor 442.3 Example Report From Heavy Hitters Detetor 462.4 Performane of Signature-Based Bakdoor Detetor 532.5 Performane of Generi Bakdoor Detetor 553.1 iotl API to Con�guring PRNG . 783.2 Pakets Captured from the Largest Flow 1003.3 Pakets Captured from the Full Trae 1003.4 iotl API to the Hash Funtions . 1313.5 iotl API to the Hash Tables . 1323.6 Average Number of Evitions for Small Values of w 1414.1 Seleted Bro Events . 1674.2 Shunt Interonnet Protool Header 2254.3 Shunt Interonnet Protool Payload 2274.4 Bro Shunt Aess API (Funtions) 2404.5 Bro Shunt Aess API (Events) . 2424.6 Shunted Tra� Deomposition, tp-1 2504.7 Shunt Performane Results . 2544.8 Shunted Tra� Deomposition, Live Tra� 263B.1 SHIP Open Variable Contents . 301B.2 SHIP Devie Capabilities Variable Contents 302B.3 SHIP Status Response Table Types 304B.4 Remapping of the 16 bit Ethernet Header's Protool Field 315

ixAknowledgmentsI am very grateful to my advisor, Vern Paxson, for his guidane and support.Working with him has been an unforgettable experiene. His help and advie havebeen determinant in my researh, for whih I am gratefully indebted.I would also like to thank the rest of the ommittee, for their omments andhelp: Professor David Wagner and Professor Ion Stoia from the Computer SieneDeparment, and Professor David Brillinger from the Statistis Deparment (Muitoobrigado pela sua ajuda e generosidade!).Speial thanks to my former advisor in Berkeley, Professor Larry Rowe. He hasbeen a most inspiring example, researh and otherwise. I greatly pro�ted from hisinvolvement in my �rst few years in Berkeley, and learnt to do researh while workingwith him.I gratefully aknowledge Nik Weaver, whose ollaboration in the Shunting Chap-ter had been invaluable; Professor Dik Karp, for his preious help in the disussionof assoiativity in�uene in hash tables of Chapter 3; Eran Halperin, for the ountlessnumber of times he has been willing to provide his help in a large number of subjets;and Eddie Kohler, for his advie in the design of the Shunting environment.My aknowledge to the German rowd in the Bro group, Holger Dreger, ChristianKreibih, and Robin Sommer, not only for their invaluable help in understanding thedetails of Bro (in exhange of some kiker lessons), but also, and espeially, for alwayssmiling when being requested help. Vielen Dank!

xI am partiularly grateful to my advisor in Universidad Politénia de Madrid,Ángel Álvarez, who enouraged me to ontinue my studies in the United States.I am also deeply indebted to the International Computer Siene Institute (ICSI),where I have worked for the last few years, inluding two of them under the spon-sorship of the Spanish Ministerio de Eduaión y Cienia. María Eugenia Quintana(½Graias, �aa!), Lila Finhill, Alberto Amengual, Pedro Ruíz, and all the otherpeople have made my experiene at ICSI something to remember forever.My amazing and astonishing experiene in Berkeley would not have been the samewithout all the people I have befriended, and whih have beome in some sense myfamily in the US. Iván Castillo, with whom I had the luk of sharing a house for morethan one year, and who ignited my interest and love for Mexio. Guillermo Rein,my best friend in Cal, and with whom I have shared almost everything, inludingso many experienes, a house for more than three years, and the presene of Neza-hualóyotl. Larissa Muller, who not only agreed to an indigestion of geek lingo byproof-reading this thesis, but also managed to qualify for the roommate ategory ina quite heterodox way: By her harm, sweetness, ever-lasting apaity to disuss andmake people smile, and her endurane to bad puns and worse poetry.Carlos Arteta, for his friendship and innumerable disussions on politis and lifeduring our �rst years in Berkeley. I will even forgive his reurring habit of playingSilvio Rodríguez musi. Curro Blanh, for so many good hours spent together. ManuForero and Ryan Shmidt, for demonstrating how far you an reah just with harm.

xiSylvia Ratnasamy, my best friend in the Department, the funniest ompany in somany Nefeli evenings, and the only person that an get a smile out of me at six in themorning after having worked all night long in a dull arhiteture paper. Eran Halperinand Letiia Ortiz, for all the disussions on life and politis lasting until well past �vein the morning, for their on�dene, and for always reminding that there is anotherside for everything. (Toda raba, ahi tov!) Álex Lago, for his amazing apaity tolight up the darkest of the days, and for starting the Spanish Assoiation in Berkeley,where so many good moments have oured. All the members of the Spanish (Iberia)and Italian (IISA) assoiations in Berkeley, for reating a soial environment in whihenjoying the pleasures of life is possible. And a person that should have been here,but is not for a reason we both know.Celine Monget and Javier Cardona, for always being there, for feeding the hungryand giving drink to the thirsty, for putting up with some of my worst moments, forsharing their joie de vivre, and for granting me the utmost privilege of marrying them.Por último, a mi familia: Santos, Maribel, Santos, Luis, Esperanza, Pablo, Maríae Ina (que no llegó hasta aquí): si alguna vez leéis esto, os quiero omo no se puedequerer a nadie. Saber que estáis ahí es el prinipio y el �nal de todo.

1
Chapter 1
Introdution
1.1 MotivationThe popularization of the Internet at the end of last entury has produed a toolof immense utility, but also the advent of a multitude of malware. Malware anbe de�ned as software designed spei�ally to damage or disrupt a system, and itinludes suh software as viruses, worms, and Trojan horses.The osts of malware inlude lost produtivity, leaning up the malware, stoleninformation, data destrution, and loss in ustomer on�dene. While hard to quan-tify with exatitude, they are believed to be in the order of several billion dollars pervirus.Malware, a bragging ativity in its beginnings, has turned today into a lurativeindustry, with more sophistiated and motivated attakers launhing both targeted

2and generi attaks. With the deeper reliane of advaned soieties in the networkinfrastruture, and the di�ulty to trak the attakers, the problem is only posed toget worse, and to involve more soial and politial issues: the Nahi worm aused AirCanada to delay �ights by overwhelming its reservation systems, and the Slammer onemanaged to ripple some mahines monitoring the Ohio Davis-Besse nulear plant.A key element in defending networks against all kinds of malware is NetworkIntrusion Prevention Systems (NIPS). The basi idea of a NIPS is to monitor all tra�exhanged between the network being defended and the Internet, detet seurityproblems, and blok the malware transmissions.The traditional approah to arry out sound intrusion prevention is to use software-based approahes: Malware is extremely adaptive, and mutates onstantly in orderto take advantage of new exploits, to add new payloads, to generate polymorphiversions of the same malware, et. Some malware just resort to go undeteted, hidingthemselves inside benign tra�. Any sensible detetion approah must rely on �exibleand dynami funtionality, whih only software-based approahes an provide.Other malware just resort to brute fore, trying to infet the largest possiblenumber of vitims before defenses an be raised. It is understood that, due to theapaity of worms to spread at very fast speeds, only �exible and automati defensesare useful against worms [Moore et al., 2003b; Staniford et al., 2002b℄. This, again,makes the ase for software-based approahes.The main obstale for the deployment of software-based NIPS in high-volume

3environments is performane, in terms of the amount of tra� the NIPS is able toproess. NIPS present a double hallenge to system performane, namely proessingload and internal state storage management.The �rst hallenge is proessing load: While parsing a paket is in most ases alight task, the amount of tra� in a high-speed link easily exeeds the apaity of thesystem's proessing resoures [Dreger et al., 2004℄.The seond hallenge is internal state storage management. In order to soundlyanalyze network tra� at the network-, transport-, and appliation-layers, NIPS po-tentially need to store all the tra� going bak and forth between the two onnetionpeers. This may aount for a very large amount of data even in a relatively slowonnetion. How to manage all this information beomes a hallenge for the system.To mitigate both problems, a straightforward approah to permit running NIPS inhigh-speed links is e�ient �ltering. The main idea is to permit the NIPS to speifyin a �ne-grained way the exat subset of tra� it needs to analyze. This reduesthe amount of tra� it must deal with, in exhange of skipping tra� that it is notinterested in.This dissertation explores e�ient �ltering support for NIPS in high-speed net-works. It desribes new �ltering models using traditional paket �lter apabilities,and new mehanisms to extend suh paket �lter apabilities with new, e�ient, more�ne-grained abstrations.

41.2 Dissertation overviewThis dissertation is divided into three hapters and two appendies.Chapter 2 desribes the integration of sampling and �ltering into intrusion de-tetion. We propose to augment and enrih the main proessing path in statefulNetwork Intrusion Detetion Systems (NIDS) by the addition of a parallel, state-less (onnetion-less) paket-�ltering path. We desribe several examples on usingthe new paket-�ltering path, and evaluate their advantages, namely simpliity andperformane.Chapter 3 proposes the addition of e�ient support for high-speed intrusion de-tetion in paket �lters. We propose to extend the widely-used BPF paket �lter withtwo new paket �lter mehanisms, namely in-kernel, paket-based random sampling,and in-kernel, �xed-size, generi-purpose, persistent, assoiative tables. We ompareboth additions to the urrent apabilities, and study their bene�ts.Chapter 4 justi�es and desribes Shunting, a novel arhiteture that permits high-speed, extensive (non-sampled and in-depth), stateful, inline tra� proessing by in-tegrating a simple, ative, hardware devie with a omplex, software, deision engine.We present a prototype implementation of the Shunting arhiteture, and the modi�-ation of a popular NIDS in order to serve as its engine. We evaluate its performane,and suggest other �elds di�erent from intrusion detetion where it an be used.

5
Chapter 2
Integration of Sampling and Filteringinto Intrusion Detetion
2.1 AbstratThis Chapter desribes the integration of sampling and �ltering into networkintrusion detetion. We propose to augment and enrih the main proessing path instateful Network Intrusion Detetion Systems (NIDS) by the addition of a �SeondaryPath,� a parallel, stateless (onnetion-less) paket-�ltering path.In a stateful NIDS, the main paket-apture path (Main Path) performs network-and transport-layer analysis, and provides a framework for appliation ontents analy-sis. It reeives the raw tra� and analyzes the lower ommuniation layers. After thisanalysis, the appliation ontents are dispathed to the orresponding appliation-

6layer analyzer, whih performs its spei� analysis.The Seondary Path is an alternate hannel for aquiring pakets. It providesa network-layer framework for tra� analysis. In other words, the tra� is serveddiretly to the analyzers, without any previous analysis.The main bene�t of using the Seondary Path is that analyzers that use it maytake advantage of �exible �ltering and sampling, while at the same time avoiding theost assoiated to the Main Path performing full onnetion-oriented analysis. Whilea simple addition, we laim that, in some senarios, this alternate tra� proessingan provide useful information that an omplement or disambiguate the informationobtained by the Main Path.We introdue the Seondary Path, justify it, and present an implementation on apopular stateful NIDS. We also show several examples of its use.
2.2 IntrodutionMonitoring network tra� from a seurity perspetive is required to manage to-day's networks. Maliious ativity, from portsanning or denial of servie attaks toviruses and worms, is a ontinuous presene in ommuniation networks, and presentsserious hallenges to their day-to-day operation.In order to prevent or detet the presene of maliious ativity, one of the maintools available are Network Intrusion Detetion Systems (NIDS). NIDS are systemsthat detet maliious network ativity by monitoring network tra� [Mukherjee et

7al., 1994℄.NIDS work by apturing pakets from the network and analyzing them. Di�erentanalyzers hek the orretness of the various protool layers, and produe eventswhen observing anomalies. While not all NIDS do atually parse all the di�erentprotool layers, it is well understood in the researh ommunity that only full protoolanalysis, from the network layer up to the appliation layer, provides a sensible defenseagainst attaks to operative networks. This is known in the literature as �deep paketanalysis.�Moreover, NIDS analysis must be stateful. Sound appliation-layer protool anal-ysis may require aess to the full appliation-layer ontents (the �Appliation-layerData Unit,� or ADU). ADU ontents may be spread along di�erent pakets, andtherefore pakets an be proessed only by onsidering them in the ontext of theironnetion.When reeiving a new paket, a NIDS must onsider it in the ontext of existing in-formation on the paket's onnetion. This ontext is obtained from already-reeivedpakets from the same onnetion, whih the NIDS must have stored. Connetion-oriented dependenies not only extend to the past, but also to the future: The NIDSmay not be able to omplete the proessing of the paket until it reeives furthertra� from the onnetion.A stateful NIDS may therefore need to store an inde�nite amount of per-onnetiondata for an inde�nite amount of time. This data inludes ADU ontents, per the nor-

8mal paketization issues just disussed. It may also inlude network- and transport-layer ontents, in order to be resilient to attaks based on ambiguities [Ptaek andNewsham, 1998℄.Deep, stateful per-paket monitoring of a high-speed link to detet seurity intru-sions is a resoure-intensive task. Eah paket must be aptured and analyzed, and insome ases, stored. The analysis part, i.e., deiding whether a paket poses a seuritythreat or not, may require a onsiderably omplex proessing e�ort. The storage partmay require a onsiderably expensive bus and memory aess e�ort. Operational usein a high-volume environment intensi�es the problem by inreasing the amount oftra� that must be proessed.This problem is magni�ed by two other e�ets, namely tra� diversity and statemanagement. First, as the amount of tra� inreases, the tra� diversity and therud in the link also inrease, whih produes not only more false alarms, but alsomore diverse ones [Dreger et al., 2004℄.Seond, the amount of state needed to produe a good snapshot of the networkstate in stateful NIDS grows with the amount of tra� proessed. This reates anenormous state management problem.This Chapter proposes the use of two paket-apture paths with di�erent serviesin the ontext of network intrusion. While a NIDS traditional path (deep and state-ful) is a must for some analyzers, others may be willing to tradeo� isolated-paketproessing in exhange of e�ieny. The latter is ahieved by reduing the amount

9of tra� reeived using �ltering and/or sampling.Our idea is developed in the �Seondary Path,� a lightweight, stateless, paket-apture path that omplements a NIDS traditional, deep, stateful paket-apture path(whih we name the �Main Path�). We desribe an implementation of the SeondaryPath on Bro [Paxson, 1999℄, a popular, stateful, open-soure NIDS. We also presentseveral appliations that use it, inluding large onnetion, bakdoor, and P2P tra�detetion.To our knowledge, this is the �rst time that paket paths with di�erentiatedservies have been proposed in the ontext of intrusion detetion. We are not awareof any NIDS that ombines a stateful path with a stateless one.The rest of the hapter is organized as follows: Setion 2.3 introdues relatedwork. Setion 2.4 presents the Seondary Path, an implementation, its operation,and how to use it. Setion 2.5 disusses several appliations of the Seondary Pathin a stateful NIDS. Setion 2.6 onludes.
2.3 Related WorkThe goal of Network Intrusion Detetion Systems is to detet attaks on omput-ers, espeially those arried out over the network. Setion 4.3.1 in Chapter 4 disussesrelated work on NIDS.The Chapter desribes the integration of sampling and �ltering into network in-trusion detetion. The main basis of �ltering is Paket Filters. A Paket Filter is

10a mehanism to selet pakets from a paket stream using a programmable riterion(the �lter). Related work on Paket Filter models is presented in Setion 3.3.1 inChapter 3.The other integration idea is sampling. Setion 3.3.3 in Chapter 3 disusses relatedwork in sampling.The researh work related to the partiular appliations implemented on the Se-ondary Path is desribed in the ontext of Setion appliationsWork related to the partiular appliations being implemented on the SeondaryPath is desribed in the ontext of the appliations themselves.
2.4 Seondary Path2.4.1 Main PathThe operation of a typial stateful NIDS onsists of (a) apturing tra� from oneor several paket-apture devies, (b) heking network- and transport-layer ontents,() reassembling the appliation-layer ontents, and (d) handing them out to theorresponding analyzer. We all this mehanism to proess tra� the �Main Path.�The Main Path provides a framework for appliation-layer tra� analysis: It isused by analyzers that perform onnetion-oriented, ADU analysis.The onnetion-oriented nature of the Main Path permits hiding the details of thereassembling from the appliation-layer analyzers. The Main Path reassembles the

11appliation-layer payloads of di�erent pakets, and dispathes them to the analyzers.The latter are provided with full appliation-layer payloads for deep analysis, plussome onnetion information.The main drawbak of providing full appliation-layer analysis is that the tra�proessed by the Main Path must be omposed of full onnetions. This limits sub-stantially the usage of input-volume ontrol tehniques (sampling or �ltering), whihare needed for performane reasons.For example, �ltering an be based solely in the �ve �elds that ompose the on-netion tuple (soure and destination address and port, plus transport-layer protool).A well-known, e�ient operation mode for NIDS onsists of limiting the amount oftra� they must proess by fousing in just a subset of the protools (port-based�ltering), instead of parsing all the tra� in the wire.Sampling an only be onnetion-based, whih is not available in urrent paket-�lters and has di�erent properties than paket-based sampling. 1We believe that, while full-payload analysis is required for sensible deep, statefulanalysis, there are some ases where omplementary information an be obtained moree�iently from analysis of isolated pakets. The information obtained in suh a wayis independent of the obtained from the Main Path, and an be used to omplementor disambiguate the latter.
1Chapter 3 of this thesis disusses onnetion- based sampling in the ontext of a popular paket-�lter, BPF.

122.4.2 Seondary Path DesriptionThe Seondary Path is an alternate hannel for aquiring pakets. It works byapturing pakets from one or several paket-apture devies, and handing them outto the orresponding analyzer, without any previous analysis.It is very important to remark that the Seondary Path is an alternate hannel:It provides a stateful NIDS with a means to obtain information about the monitoredtra� whose generation using the Main Path is either ine�ient or ambiguous. Itdoes not substitute the Main Path. Instead, it omplements it.The Seondary Path is simpler than the Main Path: Analyzers are served withisolated pakets, instead of full onnetions. No reassembling is arried out, andtherefore no state must be kept. A paket is reeived, dispathed to the interestedanalyzers, and then disarded.The onsequene of not performing paket reassemble are that analysis throughthe Seondary Path is suseptible to evasion. In other words, it is easy for an attakerto avoid a Seondary Path analyzer by fragmenting her tra� adequately [Ptaek andNewsham, 1998℄.Note, however, that while the Seondary Path is stateless per se, analyzers thatuse it may be stateful, by relying in the NIDS state apabilities.The Seondary Path provides a framework for network-layer paket analysis. An-alyzers reeive network-layer headers and payloads, whih are the only ones that areguaranteed sensible in the absene of onnetion ontext.

13Analyzers based on the Seondary Path must be areful when using transport- orappliation-layer ontents. Both may be divided among several pakets, whih mayarrive to the destination out of order, or even dupliated.Figure 2.1 ompares the Main and Seondary Path. The Main Path reeives traf-�, and performs network- and transport-layer analysis, and hands proessed ontents(ADUs) to the analyzers. The Seondary Path just dispathes pakets to the ana-lyzers. Its typial use is the monitoring of low-bandwidth, onnetion-less paketsubsets.The main advantage of the Seondary Path is e�ieny. While the same informa-tion that an be obtained with the Seondary Path an also be obtained with the MainFilter by analyzing the whole tra�, the latter performs network- and transport-layeranalysis. We present some examples where this analysis is unneeded.FilteringThe other main advantage of the Seondary Path is that it allows analyzers tomake extensive use of �ltering and/or sampling. As a onsequene, it diminishes theamount of tra� the NIDS must proess, whih helps it to operate in high-speedenvironments.It is often possible to extrat useful information from a paket stream by analyzinga small subset of the tra�. This subset an be de�ned by speifying a stati, simplepaket-�lter expression. This expression may be based in network- and/or transport-

14
Pr

im
ar

y
Pa

thPSfrag replaementsMain Path SeondaryP
ath

appliation-layer
transport-layer
network-layer

ombinedlayeranalysisanalysis

analysis
analysis

Figure 2.1: Main vs. Seondary Path

15layer headers, whih are easily aessible using standard expressions. Note that thetransport-layer based �ltering ase is less reliable, as TCP or UDP ontents may bedivided among several IP pakets. On the other hand, if there is no evasion, thisis relatively unommon and, what is more, typially restrited to a small subset ofprotools [Shannon et al., 2002℄.Filtering may also inlude appliation-layer ontents. While paket-based �lteringis limited to mathing bytes loated in �xed paket positions, modern appliation-layer protools sometimes use headers with distintive ontents in �xed positions [Zhangand Paxson, 2000a℄.For example, HTTP request headers start with one of 7 di�erent method string(�GET�, �POST�, et.), and HTTP response headers start always with the string�HTTP/� [Fielding et al., 1999℄. In the same way, SSH onnetions always transmitthe SSH lient and server version by sending a paket with the strings �SSH−1� or�SSH−2� [Ylonen, 1996℄.An analyzer that reeives pakets from the Seondary Path, and that uses as�lter that the �rst 5 bytes of the paket payload are �HTTP/�, aess one and onlyone paket per HTTP onnetion, with high probability. With persistent HTTPonnetions, the analyzer will likely reeive one paket per entity, as entity headersare typially sent in a di�erent paket than the previous entity body. The analyzerwill also be able to aess to HTTP responses in non-standard ports.Creating a paket-�lter expression that aptures SSH onnetions or HTTP re-

16quests is just slightly more ompliated.Due to the �xed-loation limitation of paket �ltering, and the stateless onditionof the Seondary Path, appliation-layer ontents provide less leverage than network-or transport-layer ontents.For example, if she wants to avoid an HTTP onnetion being deteted, she mayjust fragment the �rst 5 bytes in two di�erent pakets. If she wants to inrease thetra� reeived by a NIDS trying to detet HTTP tra�, she may just forge fakedpakets starting with the mentioned 5 bytes.SamplingThe seond mehanism that permits thinning the amount of tra� analyzed bythe NIDS is paket-based sampling. Paket-based sampling generates a ompletelyunstrutured tra� stream, whose main properties are related to those of the originalstream [Du�eld et al., 2002, 2003℄.A ase example of sampling is identifying heavy hitters, i.e., onnetions or hoststhat aount for large subsets of all the tra�. If the sampling is unbiased, a heavyhitter in the total tra� is very likely a heavy hitter in the sampled tra�.DrawbaksThe �rst drawbak of the Seondary Path is that is suseptible to evasion. It iseasy for an attaker to avoid a Seondary Path analyzer by fragmenting her tra�

17adequately [Ptaek and Newsham, 1998℄.The Seondary Path is not intended for analyzers that require full appliation-layer ontent aess. While the analyzer may write a �lter that provides aess to thefull onnetion, and then reassemble the ontents itself, this is very ine�ient, andbetter suited for the Main Path.Last, �ltering always implies a tradeo�, as information that ould be used to re�nea onlusion has often been �ltered out. Moreover, an attaker knowledge of the �lteran be used to either evade or overwhelm the detetor.Table 2.1 summarizes the main di�erenes between the Main Path and the Se-ondary Path. Main Path Seondary Pathproessing o�ered L7 analysis L3, and some L4 and L7analysisproessing arried out L3, L4 analysis noneL4 reassemble yes nomemory stateful stateless�ltering �exibility poor (port-oriented) riher when oupled withstateful BPF (see Se-tion 3.7)sampling stati, onnetion-orientedonly riher when oupled withrandomness in BPF (seeSetion 3.4)Table 2.1: List of Di�erenes between the Main and Seondary PathsNew Filtering ModelsWe think there are enough opportunities for leverage sampling and �ltering usingthe Seondary Path. Among other, we expet the Seondary Path to be useful for

18analyzers that an make do with a small, easily-de�nable subset of the tra�, namely:
• pseudo-random sampling. For example, the heavy hitters detetor desribed inSetion 2.5.3 uses a random-sampling �lter, for example �random(1000)�.
• deterministi sampling. Setion 2.5.2 introdues a �large onnetion detetor�based on a �lter whose funtionality is �tp.seq inside a series �xed ranges�.
• network- and transport-layer headers. Setion 2.5.4 disusses a generi bakdoordetetor based on TCP header ontents.
• appliation-layer ontent signatures easily expressible with BPF. Setion 2.5.4presents a payload-based bakdoor detetor.2.4.3 OperationThe operation of the Seondary Path is fairly simple: Analyzers provide a paket-�lter expression that de�nes the tra� subset for whih they are interested in per-forming isolated paket analysis.The Seondary Path reates a �lter resulting from the union of all the analyzer�lters (Seondary Filter), and opens a paket-�lter devie with it.When a paket mathes the ommon �lter, the Seondary Path runs eah parti-ular analyzer �lter against the paket, and dispathes the latter to those analyzerswhose �lter mathes the paket.

19Note that, during the Seondary Path operation, eah analyzer �lter is atuallyrun twie: �rst as a part of the full Seondary Filter, and seond as the analyzer'spartiular �lter. This does not present problems with the BPF paket �lter, as BPF�lters are idempotent: running a �lter F over a set of pakets already �ltered by Fdoes not ause the rejetion of any paket.On the other hand, when adding state or randomness to BPF (see Chapter 3),�lters are not anymore idempotent, and the Seondary Path's double �ltering maynot produe the expeted results for analyzers using �lters based in pseudo-randomsampling. A quik solution is to identify those �lters using pseudo-random �ltering,and set a separate paket-�lter devie for eah of them.2.4.4 ImplementationWe have implemented the Seondary Path in a stateful NIDS, namely Bro [Paxson,1999℄.The implementation of the Seondary Path is fairly simple: Analyzers assoiateto the Seondary Path a tuple formed by a paket �lter expression, and a Bro event.In order to do so, the appliation adds an item to the global table seondary_�lters,assoiating a string index (the paket �lter expression) with an event yield (the eventthat will be raised when a paket mathes the expression).The interfae(s) being monitored is open twie, one for the Main Path, and anotherfor the Seondary Path. The expression used for the Seondary Path paket �lter is

20the OR'ed juxtaposition of all lient rede�nitions to the seondary_�lters table. Inpartiular, the Main and Seondary Path expressions are independent, and eah opensits own paket-�lter devie.Whenever a paket mathes the Seondary Path, every �lter assoiated to it isrun against the paket. For those �lters that math the paket, the orrespondingevent is �red with the paket as one of the arguments.Figure 2.2 shows how to use the Seondary Path. The ode will ause Broto invoke the event SFR_�ag_event for every paket that mathes the expression�tp[13℄ & 7 <> 0�, i.e., every time there is a TCP paket with any of the SYN, FIN,or RST �ags set.Note that the event interfae provides only the network- and transport- headers,but not the appliation-layer payloads. The reason is that Bro's sript language makesaess to binary ontents lumsy, and so far, none of the detetors we have writtenhas needed the appliation-layer ontents.In the urrent implementation, analyzers are provided only with network- andtransport-layer headers of pakets mathing their �lters. While we ould make thepayload available, this presents some implementation problems, as the Bro sriptlanguage is not well-suited to support binary payload aess. Moreover, we have notyet seen any ase where aess to the appliation-layer ontents is required to do theanalysis.

21redef seondary_�lters += { ["tp[13℄ & 7 != 0"℄ = SFR_�ag_event}type tp_hdr: reord {sport: port; # soure portdport: port; # destination portseq: ount; # sequene numberak: ount; # aknowledgment numberhl: ount; # header length (in bytes)dl: ount; # data length (xxx: not in original tphdr!)�ags: ount; # �agswin: ount; # window};type udp_hdr: reord {sport: port; # soure portdport: port; # destination portulen: ount; # udp length};type imp_hdr: reord {imp_type: ount; # type of message};type pkt_hdr: reord {ip: ip_hdr;tp: tp_hdr &optional;udp: udp_hdr &optional;imp: imp_hdr &optional;};event SFR_�ag_event_event(�lter: string, pkt: pkt_hdr){} Figure 2.2: Seondary Path Use Example2.4.5 ExampleAn example of the usage of the Seondary Path to obtain omplementary informationis bakdoor detetion (see Setion 2.5.4). [Zhang and Paxson, 2000a℄ suggests several

22mehanisms to detet interativity in onnetions. These mehanisms do not requirefull analysis of eah onnetion. For example, in the �Generi Algorithm for DetetingInterative Bakdoors,� only the timing and the frequeny of the small pakets isrequired to detet interative tra�. On the other hand, the analysis annot belimited to just a subset of the ports: A bakdoor, by de�nition, normally runs on anon-standard port, so that it an hide itself from seurity monitoring.An example of the usage of the Seondary Path to disambiguate informationobtained in the Main Path is large onnetion detetion (see Setion 2.5.2). Aommon, heap approah to monitor TCP onnetion sizes onsists of subtratingthe TCP sequene number �eld at the end of the onnetion from the same �eld atthe beginning of the onnetion. Unfortunately, this mehanism produes ompletelywrong results with extremely large onnetions that wrap up the sequene numberspae, or when dealing with broken TCP implementations.2.4.6 PerformaneExperiments Con�gurationUnless otherwise noted, all experiments desribed in this Chapter have beenarried out in a single-proessor, Intel Xeon (Pentium) CPU running at at 3.4 GHz,with 512 KB ahe and 2 GB of total memory. The host operating system wasFreeBSD 4.10.All times reported are the addition of the user and system times, as reported by

23the Operating System. All experiments have been run in an idle host.Experiments were run 100 times, and the standard deviation alulated. In allases the standard deviation was negligible ompared to the average times.Empty Event PerformaneThe �rst interesting feature of the Seondary Path is its ost. In order to measurethis ost, we have used the Seondary Filter to run an empty event, i.e., an eventthat does not arry out any work, and returns as soon as it is raised.This ost depends not only on the number of pakets that raise the SeondaryPath event, but also on the number of pakets than do not raise the Seondary Pathevent, but must be read by the kernel and eventually disarded by the SeondaryFilter.Figure 2.3 shows the performane of the Seondary Path using an empty event.Note that both sales are logarithmi.The thik line represents the ost of rejeting pakets with the Seondary Filter.It was obtained by running the Seondary Path with just one detetor whose �ltermathes no pakets. (The experiment was run for several traes of di�erent sizes.)We all this ost ��xed�, as it is independent of the number of pakets aeptedby the Seondary Filter. It is the sum of two e�ets, namely (a) the �xed ost ofrunning Bro, and (b) the ost of aessing all the pakets in the stream and �lterthem (even if they are all rejeted). It is lear that the �rst e�et is more important

24PSfrag replaements �xed, per-trae ostvariable ost (apture 1:1 pakets)variable ost (apture 1:10 pakets)variable ost (apture 1:100 pakets)variable ost (apture 1:1000 pakets)
time(se)

100

10

1

0.1

0.01

0.001 trae pakets100 1 k 10 k 100 k 1 M 10 MFigure 2.3: Performane of the Seondary Path with an Empty Eventwith small traes (this is the �at part to the left of the 10 K paket mark), while theseond e�et is more important with large traes (ost inrease to the right of the1 M paket mark).The dashed and dotted lines show the ost of an empty detetor (a detetor whoseevent returns immediately), when a given ratio of the pakets math the �lter. Weall this ost �variable�, as it depends on the ratio of pakets reahing the SeondaryFilter event. We have subtrated the �xed per-trae ost in order to separate the�xed and variable (per-mathing paket) osts.There are two interesting insights in Figure 2.3.First, the variable ost is proportional to the ratio of pakets mathing the �lter.In other words, the variable ost of sampling, say, 1 in 10 pakets is 10 times larger

25than the variable ost of sampling 1 in 100 pakets.Seond, the �xed ost of running the Seondary Path with a very simple eventis similar to the variable ost of apturing 1 in 100 pakets. This means that, if theSeondary Path event proessing is simple, whether the detetor's �lter mathes 1 in
1000 pakets or 1 in 10000 pakets does not a�et the Seondary Path overhead. Itis when the ratio gets lose to 1 in 100 pakets that the Seondary Path ost startsbeing a�eted by the ratio of aptured pakets.
2.5 AppliationsWe have reated 3 examples of tools that take advantage of the Seondary Pathtehnique to augment the reah of the Main Path.Setion 2.5.1 disusses the trae used for most appliation experiments.Setion 2.5.2 introdues a Large Connetion Detetor. The goal of this detetor isto disambiguate large onnetion information. It uses a low-bandwidth, deterministi�lter (a series of equidistant stripes in the TCP sequene number range).Setion 2.5.3 desribes a Heavy Hitters Detetor. The goal of this detetor is todisover heavy tra� patterns. It uses a low-bandwidth, pseudo-random sampling�lter.Setion 2.5.4 presents an implementation of the Bakdoor Detetion algorithmspresented by [Zhang and Paxson, 2000a℄. The goal is to detet interative tra�in non-standard ports, whih is often assoiated to bakdoors. It uses a series of

26low-bandwidth, deterministi �lters.2.5.1 TraeThe trae used for most experiments (named tp-1) was obtained at the LawreneBerkeley National Laboratory (LBL) DMZ, whose link is 1 Gbps. It onsists ofTCP-tra� only, and aounts for 1.2 M onnetions, 127 M pakets, and 113 GB(an average of 892 bytes/paket). The trae was taken on a weekday's working hour,in September 2005. Its total duration is 2 hours (an average bitrate of 126 Mbps).2.5.2 Large Connetion DetetionRationaleThe �rst example of �ltering is a large TCP onnetion detetor. This is anexample of stati tra� haraterization.Related WorkThe goal of tra� haraterization is to summarize the tra� in a link by desribingthe quantitative importane of several ategories. These ategories may be de�nedby using one or several riteria alongside multiple dimensions.An appliation of tra� haraterization is getting the largest onnetions in alink. The riterion used to ategorize the tra� is the traditional 5-tuple (104-bit)onnetion de�nition.

27A related appliation is tra� matries, in whih the ategories are eah of theombination of 2 nodes exhanging tra� [Medina et al., 2002℄. Tra� matriesare used for several purposes, inluding designing network topologies, planning linkapaities, and on�guring network routing poliies. Note that �nodes� may be IPaddresses or subnetworks.Note that both appliations are examples of stati tra� haraterization: theexat riterion used to ategorize the tra� is de�ned a priori. The analysis isrelatively simple: Every time there is a new paket, its orresponding ategories areidenti�ed and their size updated.The main issue in stati tra� haraterization is performane: In high-speedlinks, the amount of pakets that need be proessed may be large enough as to limitthe per-paket proessing budget to just a few operations per paket (proessingonern). At the same time, the number of onnetions may be large enough as toprelude keeping information about eah onnetion in fast, small memory (memoryonern).The traditional researh in stati tra� haraterization onsists of proposingmehanisms that permit spending the redued resoure budget only in the largeategories, whih are the ones being measured anyway.For example, [Mitzenmaher and Upfal, 2005℄ proposes the use of ount-min �ltersto ount large onnetions. Count-min �lters work by setting a 2-dimensional arrayof ounters (k groups of m/k ounters eah, totaling m ounters), whose initial values

28are zero, and whih should be big enough as to �t the total amount of tra� beingmeasured.When a paket arrives, its onnetion identi�er (the 5-tuple omposed by thesoure and destination address and port, plus the transport-layer protool) is hashedusing k Universal Hash Funtions (�UHF�). UHFs selet one ounter per group, whihis inremented by the paket size.In order to alulate the size of a onnetion, its onnetion identi�er is hashedagain using the k UHFs. From the k seleted ounters, the one with the smallestounter is seleted as the size of the onnetion.The authors show that the smallest ounter assoiated with a onnetion is anupper bound in its real size, and with bounded probability, it is o� by no more than
ǫ times the total number of pakets proessed, where ǫ an be obtained by solvingEquation 2.1

(k

mǫ

)k

= e−mǫ/e (2.1)The authors also propose the use of onservative update, where from the k ountersseleted by the UHFs, only the one with the smallest ount is always updated. Forthe remaining ones, it is ensured that no ounter ends up with a smaller value thanthe previously-updated smallest ount.

29[Estan and Varghese, 2002℄ proposes the use of �sample and hold� and multistage�lters to e�iently estimate statistis of large �ows. �Sample and hold� is a tehniqueto measure the tra� inurred by the largest tra� �ows in high-speed environmentsby using a relatively-small SRAM ahe (the �onnetion ahe�). The idea onsistsof storing per-onnetion information in the onnetion ahe. Pakets reeived areonly aounted for if their onnetion is already in the onnetion ahe, or if theyare randomly hosen to oupy a new entry in the onnetion ahe.Multistage Filters has the same large-onnetion aounting goal. In this ase,the idea is to hash the onnetion tuple, and when the orresponding entry exeedsa given threshold, add its information to the �ow ahe. Multistage Filters are proneto false positives, as several small �ows may hash to the same entry. In order to avoidthem, the authors propose to use several stages using independent hash funtions.Large-Connetions Detetor DesriptionA heap mehanism that is often used to alulate the amount of tra� in a stateful(TCP) onnetion onsists of omparing the sequene numbers at the beginning andat the end of the onnetion, and subtrat them. Unfortunately, this is not veryreliable in (a) onnetions that do not terminate or for whih the NIDS misses theirestablishment, (b) very large (greater than 4 GB) onnetions that end up wrappingaround the TCP sequene number (note that this is allowed in TCP while there isno ambiguity on what a paket's sequene number means, due to its use of a window

30smaller than 2 GB in size), and () broken TCP staks that ause inorret sequenenumbers, espeially at the RST segment.OperationThe large onnetion detetor works by �ltering for several thin, equidistant,randomly-loated stripes in the sequene number spae. A truly large �ow will passthrough the stripes in an orderly fashion, maybe several times. The detetor willkeep trak of all pakets that pass through any of the stripes, ounting the numberof times a paket from a given �ow passes through onseutive regions (K).For example, if we lay down 4 stripes separated 1 GB in the 4 GB-long TCPsequene number range, and we see a onnetion passing through 2 onseutive stripes(K = 1), we know that the onnetion has likely aounted for at least 1 GB.It is important that the �rst stripe is loated randomly, i.e., that the loation �eldof the detetor mask is hosen randomly. This way, an attaker annot predit whihsetions of the sequene spae are being monitored. Thus, she annot overwhelm thedetetor by sending lots of pakets in the stripes.Note that the detetor returns always two guesses, an upper limit on the amountof tra�, and a lower limit. If a onnetion has been seen in two onseutive stripes,the estimated size may be as large as the distane between 4 onseutive stripes, oras small as the distane between 2 onseutive stripes. In the previous example, weknow that the onnetion has likely aounts for at most 3 GB of tra�.

31Figure 2.4 shows an example with 4 stripes. The 4 horizontal stripes, named
sA, sB, sC , and sD, respetively, represent the parts of the TCP sequene numberrange where the detetor is �listening� for pakets. The thik diagonal lines depitthe time and TCP sequene number of the pakets of a given TCP onnetion. Thedotted, vertial lines represent events in the Seondary Path. Note that we ould usea di�erent number of lines, and lines with di�erent width. This is disussed in thenext Setion.

PSfrag replaements
4 GB

sA

sB

sC

sD

0 time

seq number

Figure 2.4: Large Connetion Detetor ExampleThe �rst stripe is loated randomly in the sequene spae. The remaining onesare loated at a �xed distane from the �rst, whih divides the TCP sequene numberrange in equidistant zones.

32For the detetor implementation, the main di�ulty is to alulate the tpdumpexpression that will identify TCP pakets falling in any of the stripes. This expressionis always of the form �seq & mask == value�, where seq is the paket's sequenenumber, mask is a on�guration mask, and value is �xed.Figure 2.5 shows the struture of a generi large onnetion detetor expression.
������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������
������
������
������

������
������
������
������

������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������

������������
������������
������������
������������

PSfrag replaements
32 bits

pre�x loation su�x

TCP seq numbermask
�xed value

0 · · · 00 · · · 0 111 · · · 1

Figure 2.5: Large Connetion Detetor ExpressionThe expression is alulated by dividing the 32 bit TCP sequene number �eld inthree parts, a pre�x, a loation, and a su�x.The pre�x represents the number of stripes the detetor is using. Its lengthis the logarithm in base 2 of the number of stripes. In our example, therefore,its length would be 2 bits. As the detetor must apture pakets whose sequenenumber is loated in any of the stripes, the expression must aept any value in theorresponding TCP sequene number bits. The orresponding bits in the mask are

33therefore reset. Note that by loating the stripe index as a pre�x, we manage to laythe stripes in an equidistant fashion.The su�x represents the stripe size, and its size is the logarithm in base 2 of thestripe size (in bytes). In the example, its length would be log
2
(2048) = 11 bits. Asthe detetor must apture pakets whose TCP sequene number falls in any plaeof a given stripe, the expression must aept any value in the orresponding TCPsequene number bits. The orresponding bits in the mask are therefore reset.The loation �eld states the exat loation of the stripes. It oupies the remainingbits between the pre�x and the su�x. The detetor must only apture pakets whoseTCP sequene number falls in a given set of stripes, i.e., whose loation �eld has a�xed value. Therefore, the orresponding bits in the mask are set to one. In theexample, the bits not used for pre�x or su�x (19) are used to set the loation. In thisase, the �nal mask will be 00 1111111111111111111 00000000000, or 0x3FFFF800in hexadeimal.Let's assume we hoose as the loation �eld of the �xed value loation the binarynumber 0101010101010101010. Therefore, the �nal �xed value will be will be 00

0101010101010101010 00000000000, or 0x15555000 in hexadeimal. The �nal tpdumpexpression will be �(tp [4:4℄ & 0x3FFFF800) == 0x15555000�.The onnetion depited in Figure 2.4 is a truly large onnetion, wrapping aroundthe TCP sequene range 4 times. It is therefore seen 16 times by the detetor. Thesize will be estimated in 16 GB.

34Tra� InoherenesAn important ase on the detetor operation is the existene of inoherenes.We de�ne a transition as the apture of two onseutive pakets of the sameonnetion in di�erent stripes2. For example, if two onseutive pakets for a givenonnetion are seen in stripes X and Y , where X 6= Y , we say that the detetor sawa transition (X,Y) for the onnetion.We say a transition (X,Y) is valid when Y = X + 1. In other words, when thetwo aptured pakets fall in two onseutive stripes. Otherwise, the transition is saidto be invalid, and the onnetion is said to have an inoherene. Inoherenes are dueto bogus onnetions, but also to network and stak e�ets suh as paket reordering,losses, or retransmissions.For every new paket aptured in a stripe, the detetor's urrent operation followsthree steps: First, if the transition is valid, it adds one to the onnetion's K ounter.Seond, if the transition is invalid, it adds one to the onnetion's invalid transitionounter. Third, the stripe identi�er of the last paket is reorded.As an example, seeing the onnetion onseutively in stripes 7, 8, 9, 10, and
11 implies the detetor ounts 4 valid transitions, namely (7, 8), (8, 9), (9, 10), and
(10, 11). After all the transitions, K = 4.The main advantages of this approah is that it is heap, simple to implement,and rejets bogus onnetions. Traking a onnetion requires only three ounters of

2When two onseutive pakets of the same onnetion are seen in the same stripe, the detetorjust ignores the seond one.

35detetor state, namely the identi�er of the last stripe in whih the onnetion wasseen, K, and the number of inoherenes aused by the onnetion. Proessing apaket is a simple three-step task. Bogus onnetions will appear in few or no stripes,and will only inrease their number of inoherenes.The main drawbak is that inoherenes aused by pathologies in the network(retransmissions or reordering) will ause the detetor to underestimate the real sizeof the onnetion.Consider a onnetion where paket retransmissions our. Assume the detetorsees the onnetion onseutively in stripes 7, 8, 7, 9, 10, and 11. In this ase,transitions (8, 7), and (7, 9) are invalid, and the onnetion's K is not inremented.The remaining transitions are valid, and therefore the �nal value of K will be 3.Consider a onnetion where paket reordering ours. Assume the detetor seesthe onnetion onseutively in stripes 7, 9, 8, 10, and 11. In this ase, transitions
(7, 9), (9, 8), and (8, 10) are invalid, and the orresponding K is not inrementedfor them. The �nal value of K will therefore be 1 (orresponding to the only validtransition, (10, 11)).Note that inoherenes aused by network pathologies are muh more likely toour when the stripes are loser, i.e., when the number of stripes is large.

36Detetor TuningThe large onnetion detetor an be tuned by setting the number of stripes orthe stripe width.First, the detetor permits inreasing the de�nition of the returned information,by inreasing the number of stripes. This trades o� proessing, as more pakets willbe �ltered in, in exhange of de�nition.We know that the TCP sequene range is 4 GB. If the number of stripes is S, weknow that the distane between stripes is D = 4 GB / S. The size of a onnetionseen in K onseutive stripes will be reported as (K − 1)D < size < (K + 1)D. Itfollows that the absolute error for either the upper limit or the lower limit will neverbe larger than than ǫ = 2D. By operating in the middle of both limits, the maximumerror of the size estimate is ǫ / 2 = DFor example, in the ase of 4 stripes, we know D = 1 GB, and a onnetion seenin two onseutive stripes will be larger than 1 GB, but smaller than 3 GB. By using2 GB as the average value, we would never be o� by more than 1 GB.The seond tuning parameter is the stripe size, W . Assuming the SeondaryPath produes no paket drops, the stripes need be wide enough to ensure that, ina sequene of maximum-size pakets, at least one of them is aptured by the �lter.This means stripes need only be as large as the maximum network paket size, whihis usually 1500 bytes (or 2 KB to make for an easier operation). 3
3The appearane of jumbo frames (9 KB) in urrent networks is very small [Dykstra, 1999℄.

37When the Seondary Path su�ers paket drops, the detetor may not see thepassing of a onnetion through a stripe, and wrongly assume that the onnetion ismisbehaving. Wider stripes ensure that pakets drops will not a�et the reliability ofthe detetor, and therefore make the detetor more aurate. The ost of using widerstripes is, again, that more pakets will be �ltered in, and therefore more proessingwill be needed.Let's show an example: Assuming the Seondary Path sees no paket drops, thestripes need only be W = 2 KB wide. If we want to detet large TCP �ows with amaximum error of ǫ = 4 MB, we know that D = 2 MB, and therefore S = 4 GB /
D = 2 K stripes. The total spae being monitored in the TCP sequene range willbe SW = 4 MB, whih, onsidering the full range (4 GB), means that an average of1 in 1024 pakets will be aptured.ResultsWe ran the Large Connetion Detetor in the trae desribed in Setion 2.5.1. Wetried several values for the number (S) and the width (W) of the stripes.Figure 2.6 shows, for the largest onnetion in the trae (3.5 GB appliation-layerpayload), its real size, the upper and lower estimations reported by the detetor,and the average of the last two (the average estimation), for di�erent number ofstripes, and for 2 KB-wide stripes. The stripe width does not a�et signi�antly theorretness of the detetor, whih makes sense as the experiment was done o�-line,

38and therefore there were no paket drops.

PSfrag replaements

onnetionsi
ze(L7bytes)

0

0.5 GB1 GB1.5 GB

2 GB2.5 GB3 GB3.5 GB4 GB4.5 GB

number of stripes4 16 64 256 1024 4096 16384 65536

runtime(se
)

200

400

600

800

1000

1200

upper estimationreal sizeaverage estimationlower estimationrunning time (stripe: 2 KB)

Figure 2.6: Detetor Estimation for a Large ConnetionIn order to show the overall performane of the detetor, and the in�uene ofnetwork pathologies, Figure 2.7 shows, for the largest 50 onnetions in tp-1 , theaverage of the detetor's average estimation absolute error (thik line), and omparesthis error with the average number of inoherenes for the same set of onnetions(dashed line). We use absolute instead of relative errors beause the detetor's errordepends on the number of stripes S, but not on the size of the onnetions.The left side of Figure 2.7 (up to 256 stripes) shows a signi�ant derease in theaverage absolute error. There are almost no inoherenes reported, and reportederrors are both positive (overestimation) and negative (underestimation).The right side of Figure 2.7 (more than 2K stripes) shows a stabilization of the

39absolute error around 6 MB, and a signi�ant inrease in the number of inoherenes.Almost all errors are negative. As expeted, loser stripes implies a higher probabilitythat the detetor gets onfused by network pathologies (inreasing number of inoherenes),whih auses systemati underestimation of the onnetion's real size.

PSfrag replaements

error(L7byt
es)

1 GB
100 MB
10 MB
1 MB number of stripes4 16 64 256 1024 4096 16384 65536

inoherenes
0

5

10

15

20

25

30

35average absolute erroraverage number of inoherenes

Figure 2.7: Detetor Corretness for the Largest ConnetionsFigure 2.8 shows the performane of the large onnetion detetor. In order toseparate the ost of the Seondary Path to that of the Main Path, we ran Bro with theMain Path disabled. For omparison purposes, we also run the Main Path withoutthe Seondary Path, and no appliation-layer analyzers. The total time required torun the trae was 890 se.When the number of stripes is smaller than S = 1024, the detetor's runtime isbasially onstant (280 seonds), and only a small part of the time needed by the

40PSfrag replaements

time(se)
0

200

400

600

800

1000

1200

number of stripes4 16 64 256 1024 4096 16384 65536

stripe size = 16 KBstripe size = 8 KBstripe size = 4 KBstripe size = 2 KB

Figure 2.8: Large Connetion Detetor PerformaneMain Path to rejet all pakets from the trae (890 seonds). Moreover, most of thetime is used to to aess to the trae (75% of the reported time is system time).When the number of stripes is larger than S = 1024, the running time startsgrowing signi�antly, as the amount of tra� proessed by the detetor grows linearly.(Note that both the x- and y-axis in the �gure are logarithmi.)2.5.3 Heavy HittersRationaleThe goal of the heavy hitters (HH) detetor is to disover heavy tra� patternsusing a low-bandwidth, pseudo-random sampling �lter on the Seondary Path.

41Related WorkThe goal of dynami tra� haraterization is to summarize the tra� in a linkby desribing the quantitative importane of several ategories, while at the sametime automatially de�ning suh ategories.Dynami tra� haraterization deals with a slightly di�erent problem than statitra� haraterization. In the former, there is an inde�nite amount of overlappingategories. A ategory is interesting if it is large enough in relative terms, and if thereare no more spei� ategories that are just slightly smaller.In dynami tra� haraterization, the goal is to produe hybrid tra� summaries,in whih several overlapping riteria are onsidered together. The results are �lteredso that only the most-spei� and signi�ative ategories are reported [Estan et al.,2003℄.For example, the tra� originated by a host will be interesting, not only if it islarge enough, but also if there is not a single onnetion that aounts for most of itstra�. In the latter ase, the interesting item is the tra� from the single onnetion,whih is more spei� than the tra� originated by the host.Autofous is a tool that automatially haraterizes network tra� based on 5dimensions, namely soure and destination address and port, and IP protool [Estanet al., 2003℄. Autofous starts by omputing the most-spei� information possible,using the 5 dimensions, whih is atually equivalent to per-onnetion aounting.Then, it selets the ategories that exeed some threshold. Last, it ompresses

42the seleted ategories by introduing more generi ategories, and keeping thosesigni�antly larger than the more-spei� ones that they omprise.[Xu et al., 2005℄ proposes data-mining and information-theoreti tehniques toautomatially disover signi�ant behavior patterns. Their idea is to start with 4tra� dimensions (soure and destination address and port) and �x one of them(the soure address). Then, the tra� is lustered by �xing two of the remainingdimensions, and alulating the unertainty (entropy) of the fourth. The authorsshow that the tra� is typially lustered in the extremes (omplete unertainty orno unertainty at all).This tehnique permits reating a behavioral haraterization of tra� based onstrutural models of tra�, simple enough as to permit monitoring of suh ategoriesas they hange over a period of time.Heavy-Hitters Detetor DesriptionThe goal of HH is to ahieve e�ient detetion of large pseudo�ows. We de�ne apseudo�ow as a set of pakets that share some of the �elds in the traditional 5-tupleonnetion de�nition (IP soure and destination addresses, transport-layer soureand destination ports, and transport protool). Note that this de�nition inludes theonnetion (pakets sharing the 5 �elds), but also other ases, as a host being �ooded(all pakets sharing the same IP destination address �eld), a busy appliation server(all pakets sharing a ommon IP address and port value), et.

43The basi idea of the HH detetor is very similar to that of Autofous [Estan et al.,2003℄. HH aounts for a tra� stream using the most spei� ounting riterion, the
5-tuple onnetion de�nition, and then tries to ompress the information about smallonnetions into more-generi ategories. The latter are obtained by the addition ofdata alongside one or more of the 5 ategories. For example, a host sanning a networkmay not have any large onnetion, but the addition of all the data orresponding toall its onnetions may be important enough as to deserve reporting.HH aptures tra� using the Seondary Path, whih may be expensive to runin full traes. Therefore, the input of the detetor is typially a low-bandwidth,pseudo-random sample of the tra� being monitored.HH presents several advantages over the large onnetion detetor disussed inSetion 2.5.2. First, HH aounts not only for TCP tra�, but also for any UDP andICMP. Seond, HH is able to disover heavy tra� patterns di�erent from onnetions.OperationThe Heavy Hitters detetor works by obtaining a pseudo-random sample of thetra� monitored, and then lustering all pakets that share several network- andtransport-layer harateristis together in pseudo�ows. These pseudo�ows are hekedperiodially, and when the amount of tra� in any of them is large enough, thedetetor reports it immediately.In the normal operation, HH keeps 7 tables with data from onnetions, as

44desribed in Table 2.2. The spei�ity �eld is used to order the tables from morespei� to more generi. Every time a new paket is reeived by the detetor, theorresponding ounter in every one of the tables is updated.table name spei�ity desriptionsaspdadp 4 onnetion (traditional 5-tuple de�nition)saspda__ 3 tra� between a host and a host:port pairsa__da__ 2 tra� between two hostssasp____ 2 tra� from or to a host:port pairsa____dp 2 tra� between a host and a remote portsa______ 1 tra� from or to a host__sp____ 1 tra� from or to a portTable 2.2: Tables Used by the Heavy Hitters DetetorThe user may de�ne a series of warning levels. When any of the tra� tablesreahes a warning level, an alert is �red. After the alert, all less spei� tables areinstruted not to onsider the data that aused the alert in a future alert.Note that more spei� tables (the most spei� being the onnetion table) havelower warnings levels than more generi ones. Therefore, a very large onnetion willappear �rst as an alert in the onnetion table, and the alerted ontents will not beonsidered for an alert in any of the more generi tables.We use Bro's state managing apabilities to ontrol the amount of state. All ofthe 7 tables use self-expiring entries, whih are removed when no ativity (read orwrite) has been deteted in a �xed amount of time.

45PerformaneTable 2.3 shows an example of a report from the Heavy Hitters Detetor. The �rst5 lines are produed in realtime (the time �eld represents the timestamp when theyare produed). The remaining lines are produed after the proessing has ended (thisonly happens in traes). All addresses are anonymized. The �ags �eld states whetherthe reported host belongs to the list of hosts belonging to the internal network beingmonitored (a user-on�gurable parameter).Connetion Health StatistisAlongside the basi pseudo�ow ativity ounters (pakets and bytes), we havede�ned several pseudo�ow �onnetion health� statistis for tra�, inluding (a) TCPsymmetry [Kreibih et al., 2005℄, (b) ratio of ontrol TCP segments (i.e., segmentswith their SYN, FIN, or RST �ags on) to data (non-ontrol) ones, and () ratioof pakets to onnetions. These statistis are used to di�erentiate legitimate fromill-formed pseudo�ows. The �rst two apply only to TCP tra�, while the latter appliesto any type of tra�. Tra� is onsidered bogus if any of the three onnetion healthstatistis falls outside of user-de�ned orretness bounds.The �rst statisti used is symmetry, de�ned as the ratio of pakets in the forwarddiretion of a onnetion to pakets in the reverse diretion of the same onnetion.The intuition behind this statisti is that a well-formed TCP onnetion must havetra� in both diretions. Even if the appliation-layer transfer of data is unidiretional,

46

Table 2.3: Example Report From Heavy Hitters Detetortime pseudo�ow id pkts bytes event �ags1130965527 164.254.132.227:* <-> *:* 986 k 823 MB large sr internal1130969123 *:* <-> 164.254.133.198:80/tp 1.07 M 654 MB large dst internal1130990210 *:* <-> 164.254.133.194:* 1.12 M 357 MB large dst internal1130992153 54.75.124.72:19150/tp <-> 164.254.133.146:* 977 k 79 MB large �ow1130999627 164.254.132.247:80/tp <-> *:* 1.02 M 781 MB large sr internal164.254.132.227:* <-> *:* 1.90 M 1.47 GB large sr internal164.254.133.198:80/tp <-> *:* 1.84 M 1.22 GB large sr internal164.254.132.247:80/tp <-> *:* 1.21 M 968 MB large sr internal71.213.72.252:80/tp <-> 164.254.133.56:* 498 k 522 MB large �ow*:80/tp <-> 164.254.132.88:* 459 k 479 MB large dst internal*:* <-> 164.254.133.194:* 1.35 M 427 MB large dst internal

47the reeiver should be sending bak ACK segments to lok the transmitter.Due to the widespread use of delayed ACKs ([Braden, 1989℄, Setion 4.2.3.2),we expet the symmetry in well-formed TCP onnetions to be between 0.5 and 2.Considering the e�et of paket losses and sampling artifats, we expet the limitswhih will ause an alarm event to be more enompassing. [Kreibih et al., 2005℄proposes a 8:1 ratio as sensible limit, but they use non-sampled tra�, whih produesmore aurate symmetry ratios.Note that this statisti would apply to the 7 tables mentioned, and not only tothe onnetion one. The reason is that all the tables are non-diretional, i.e., theyaount for information about both sides of a onnetion in the same table entry.The seond statisti is ontrol/data, de�ned as the ratio of TCP ontrol segments(those with the SYN, FIN, or RST �ag set) to TCP non-ontrol (data) segments.The intuition behind this statisti is that ontrol segments are signaling tra�, andtherefore a large stream of legitimate TCP tra� should be omposed of muh moredata segments than ontrol ones. A very large ratio of ontrol segments omparedwith data segments is onsidered a signal of bogus tra�.The third statisti is paket/onnetion, de�ned as the ratio of number of paketsto the number of onnetions. Note that this statisti does not apply to the onnetiontable (where the number of onnetions is always one), but does apply to non-TCPtra�.The intuition behind the paket/onnetion statisti is that a high-volume pseudo�ow

48will be omposed of a small number of onnetions when ompared to the number ofpakets. If a pseudo�ow has a number of onnetions omparable to its number ofpakets, we onsider this as a signal of a bad behavior.Using the tables and the three onnetion health statistis, we de�ne some heurististhat di�erentiate pseudo�ows in the following ategories:
• Flooders and Floodees.We de�ne a �ood as a high-volume host, host:port pair, or host:remote portpair, for whih the tra� is bogus. Floods our typially beause of attaks orbroken protools.An example of a �ood is a �SYN �ood,� where lots of TCP segments with theSYN bit set are seen by the NIDS. A that uses SYN segments as signals of newonnetions, and reats to them by reating per-onnetion state, an be easilystressed by a SYN �ood4.A SYN �ood direted to a given host will be seen by the NIDS as a large entryof bogus tra� (the ontrol/data ratio will be unusually large) in the host table.Flood events an be used to �ght �oodings behavior, by deteting �ooders inreal-time, and then using this information to avoid reating state in the NIDSassoiated to the �ooders. A straightforward deision is to blaklist �ooders.

4[Dreger et al., 2004℄ states that Bro reates up to 240 bytes of state per SYN segment, and that asigni�ant part of these state hunks orrespond to SYN segments never answered (e.g. sans). Theauthors show how a onnetion ompressor permits deferring the instantiation of a full onnetionstate until both sides of the onnetion have shown ativity.

49Note that this sheme detets both �ooders and ��oodees� (hosts being subjetedto �oods). This helps to limit the event prodution in the NIDS. For example,if several attakers are �ooding a given host, we want to generate a �host being�ooded� that enompasses all the pakets orresponding to the distributed �ood.
• High-VolumersWe de�ne a high-volumer as a host that is generating or reeiving a very largeamount of legitimate (non-bogus) tra�.
• Big ConnetionsWe de�ne a big onnetion as an entry in the onnetion table with an unusualamount of tra�. An example is a large FTP transfer.
• Big Appliation SessionsWe de�ne a big appliation session as a large entry in �host and a host:port pair�or host:host tables with legitimate tra�. A big appliation session orrespondsto a high-volume transfer (the session) splitted among several onnetions. Thisis often used, for example, to avoid the problems of TCP ongestion ontrol invery fast links [Lee et al., 2001℄.
• Non-Symmetri TCP ConnetionsWe de�ne a non-symmetri TCP onnetion as a entry in the onnetion or thehost:host tables whose symmetry statisti is too di�erent from 1.We are still working on tuning the values for the three statistis that di�erentiate

50bogus tra� from valid tra�.2.5.4 Bakdoor DetetionAnother appliation well-suited for implementation using the Seondary Path isZhang and Paxson's work on how to use paket �lters to e�iently detet bakdoors[Zhang and Paxson, 2000a℄. The authors de�ne bakdoors as onnetions not runningin their well-known port, preferentially interative, and propose several �lters todetet them.[Zhang and Paxson, 2000a℄ proposes two di�erent mehanisms to detet bakdoors:The �rst one onsists of looking for traes of interative tra� behavior by analyzingthe timing harateristis of small (less than 20 bytes of payload) pakets. Theintuition behind it is that interative onnetions will be haraterized by shortkeystrokes (large proportion of small pakets) aused by human responses (largeproportion of large intervals between eah two small pakets).The seond one onsists of extrating some signatures of partiular protools (SSH,FTP, Gnutella, et.), and using them to analyze tra� in eah protool's standardport. Finding a server for a given protool running in a port other than the standardone may indiate the presene of a bakdoor.We have added both approahes to Bro using our Seondary Path model. Doingso is simple, and provides a nie operational apability, namely the ability to detetuse of these protools in a very e�ient fashion. It also permits to integrate the

51results into further analysis, this time using the Main Path.Signature-Based Bakdoor DetetorsThe �rst addition for bakdoor detetion are the 8 signature-based bakdoordetetors proposed by [Zhang and Paxson, 2000a℄. From them, we disarded therlogin and telnet ones beause they are too broad. In the generi trae used for ourexperiments, 50 K pakets math the rlogin signature, and 92 math the telnet one.This oinides with operational experiene running the original bakdoor detetors inLBL.In the telnet ase, visual inspetion of some pakets mathing the telnet signatureshows pakets orresponding to bulk data transferenes (SSH, HTTP, and otherprotools) whose �rst 2 bytes of payload happen to be 0x� and 0xfa-0x�, respetively.ImplementationThe main advantage of implementing the detetors using the Seondary Path isease in adding them. Figure 2.9 shows the SSH analyzer ode. bakdoor_ignore_portsis a set of ports where interative tra� is expeted, inluding FTP, SMTP, SSH,rlogin, telnet, and others.The seond advantage is that, when oupled with BPF state tables (see Setion 3.7)or with Shunting (see Chapter 4), it permits ativating the Main Path when abakdoor uses a protool that the NIDS knows how to analyze. For example, if the

52global ssh_sig_�lter = "tp[(tp[12℄>>2):4℄ = 0x5353482D and(tp[((tp[12℄>>2)+4):2℄ = 0x312e or tp[((tp[12℄>>2)+4):2℄ = 0x322e)";event bakdoor_ssh_sig(�lter: string, pkt: pkt_hdr){# get rid of tra� in well-known portsif (["ssh-sig", pkttpsport℄ in bakdoor_ignore_ports)return;if (["ssh-sig", pkttpdport℄ in bakdoor_ignore_ports)return;print fmt("%s bakdoor_ssh_sig,, %s:%s -> %s:%s", network_time(),pktipsr, pkttpsport, pktipdst, pkttpdport);}redef seondary_�lters += {[ssh_sig_�lter℄ = bakdoor_ssh_sig,}; Figure 2.9: SSH Bakdoor Detetor Exampleanalyzer detets an SSH onnetion in a non-standard port, it an add a new entryin the BPF table that aptures paket from the onnetion, and label the tra�aordingly so that the Main Path knows it must use its SSH analyzer to proesstra� from that onnetion.EvaluationIn the evaluation side, we have just foused on the performane, instead of theorretness of the mehanism. The latter is already disussed by [Zhang and Paxson,2000a℄.We ran four di�erent experiments on the tp-1 trae:

53approah explanation time
A Main Path, no analyzers 890 se
B Main Path-based bakdoor analyzer 1659 se
C Main Path, Se. Path-based bakdoor analyzer 1064 se
D Se. Path-based bakdoor analyzer 327 seTable 2.4: Performane of Signature-Based Bakdoor Detetor

A Bro using no appliation-layer analyzers
B The original implementation of the bakdoor ode, whih is �red by Bro events,and is not �lter-based
C The new bakdoor ode using the Seondary Path
D The new bakdoor ode using the Seondary Path, after disabling Bro's MainPathIn all ases, we ran all the detetors but the telnet and rlogin one.Table 2.4 shows the performane of the original and Seondary Path-based detetors.The extra ost aused by the original, Bro-event based, bakdoor detetor implementationis 769 se (B - A).In omparison, the extra ost of running the same detetors using the SeondaryPath is just 174 se (C - A). The ode is basially several piees of the form depitedin Figure 2.9.

54Generi AnalyzerWe also wrote the Generi Algorithm for Deteting Interative Bakdoors desribedby [Zhang and Paxson, 2000a℄ using the Seondary Path. The ode is very similarto the urrent Bro version of the detetor, but being �red by the Seondary Path,instead of Bro events.The two main advantages of implementing the detetor using the SeondaryPath are ease and performane. Setion A.1 in Appendix A desribes the detetorimplementation.CorretnessThe orretness of the approah is disussed in the original paper [Zhang andPaxson, 2000a℄. We ompared the results of the original detetor and the one basedon the Seondary Path. As the used trae (desribed in Setion 2.5.1) had almost nobakdoor-like tra� (just some AOL Instant Messenger, or AIM, tra�), we deidedto hek how good was the detetor for disovering the trae's only well-knowninterative onnetions, namely SSH tra�. In order to do so, we took SSH outfrom the list of well-known ports where the detetor does not arry any proessing.PerformaneWe ran four di�erent approahes on the tp-1 trae:
A Bro using no appliation-layer analyzers

55
F The original implementation of the generi bakdoor ode, whih is �red by Broevents, and is not �lter-based
G The new generi bakdoor ode using the Seondary Path
H The new generi bakdoor ode using the Seondary Path, after disabling Bro'sMain PathTable 2.5 shows the performane of the four di�erent approahes.approah explanation time

A Main Path, no analyzers 890 se
F Main Path-based generi bakdoor analyzer 1296 se
G Main Path, SP-based generi bakdoor analyzer 1179 se
H SP-based generi bakdoor analyzer 284 seTable 2.5: Performane of Generi Bakdoor DetetorIn this ase, the extra time inurred by the original detetor is 406 seonds, whilethe extra time inurred by the SP-based version is 289 seonds.

2.6 ConlusionsWe have desribed the Seondary Path, an alternate hannel for aquiring paketsin intrusion detetion and monitoring environments. The Seondary Path supportsanalyzers interested in isolated paket, network-layer (onnetion-less) based proessing.This is in omparison with analyzers that prefer using the appliation-layer basedproessing environment provided by the Main Path.

56The Seondary Path rationale is that, in some senarios, alternate tra� proessingbased on isolated paket analysis an provide useful information that omplementsor disambiguates the information obtained from the Main Path.The Seondary Path permits new �ltering models based on paket �ltering andsampling. We present several examples, and show how all of them an be easilyimplemented using a very small amount of ode. An added advantage is performane:Seondary-Path detetors run sensibly faster than their Main Path-based ounterparts.

57
Chapter 3
Paket Filter Augmentation
3.1 AbstratThis Chapter desribes two new paket �lter mehanisms that provide riher,�ne-grained, dynami ontrol of the paket �ltering proess.These mehanisms are designed with the goal of keeping the simpliity thatde�nes the popular BPF paket �lter, while allowing the �lter to both apture tra�at high-speed rates, and perform e�ient validation of the �lters for seurity andrunning-time bounding purposes.The �rst mehanism provides in-kernel, paket-based random sampling, introduingrandomness as a �rst-lass objet in both the human-readable language where userswrite their �lters, and the low-level, assembler syntax-like language that is e�etivelyrun in the kernel.

58The seond mehanism provides in-kernel, �xed-size, generi-purpose, persistent,assoiative tables plus a set of hash funtions to index them. The main goals of thisaddition are to provide easily-available onnetion-based random sampling, and topermit implementing the Shunting devie (see Chapter 4) in the kernel, without theneed of speial-purpose hardware.
3.2 IntrodutionThe traditional de�nition of a paket �lter is a �kernel-resident, protool-independentpaket demultiplexer.� [Mogul et al., 1987℄ A paket �lter is a system that reeivesnetwork tra�, and sends some of the pakets to a set of proesses that register inthe paket �lter. Whether eah proess reeives the pakets or not, depends on ariterion (the �lter) that eah proess de�nes. For example, an appliation may bejust interested in all web tra�, while another just wants to see ICMP pings.When a user-level proess wants to reeive a subset of the tra� arriving to a host,one option is to reeive all the tra�, and then deide whih pakets are interesting.This mehanism is very �exible, but it fores eah paket into rossing the kernel-userboundary, even if it is not needed by the appliation. If the atual number of paketsof interest for the user-level proess is low, the approah results in a large systemoverhead.A key idea in paket-�lter systems is the �lter. A �lter is an appliation-spei�program that, when run against a paket, returns a Boolean value that states whether

59the paket is interesting to the appliation or not (this is also known as whether the�lter aepts or rejets the paket). Instead of the appliations reeiving all paketsand then piking the ones they are interested, appliations an provide the kernelwith a �lter that lets the kernel take the same deision, therefore only dispathinginteresting pakets.The fat that �lters are run on the appliation's behalf by the kernel permits thatpakets that are not wanted by any appliation never ross the kernel-user boundary.In some senarios, this results in a large performane savings.Running user-provided �lters in the kernel presents two tradeo�s, namely seurityand unbounded running times. Maliious or broken programs may obtain aess toprivileged resoures, ause mayhem in the hosts where they are running, or just runforever, e�etively hogging the host resoures. The kernel must therefore be able tovalidate the �lter safety, i.e., that the program will not do anything that it is notsupposed to do, and to bound the total amount of time a �lter may run.The traditional approah to address both issues onsists of a) writing the �ltersin a speial-purpose, low-level language limited to performing paket �ltering; thislanguage is normally simple enough so as to permit fast �lter running, heap validationof the �lter safety, and e�ient alulation of a bound in the running time; and b)running the �lter a virtual proessor with very limited resoure aess.Running paket �lters in high-speed environments stresses the performane issuesin the paket �lter. Any added mehanisms must follow the general priniple of

60minimizing the amount of per-paket work arried out. This normally translates intosimpliity. At the same time, this e�ieny onern annot be dealt with withoutonsider the impat on seurity.In this Chapter we disuss the justi�ation, implementation, and performane ofnew paket �ltering models, based on two abstrations that augment urrent paket�lters. These abstrations are randomness and persistent state, and they are designedwith the e�ieny and seurity onerns in mind.The proposed additions intend to provide the following new �ltering models:
• sampling: a primary need in network monitoring is sampling, both paket- andonnetion-based. Sampling permits sound analysis of tra� streams withoutthe requirement of parsing them in full. This is useful in senarios where fullanalysis is impossible or too expensive. For example, a lient may be interestedin studying a set of network pakets, so large that its full analysis is out ofreah. If the properties being studied remain onstant for a sample of the set,then analyzing the set may provide similar answers. Randomness is therefore aruial need.
• persistent state: the seond addition provides the apability to keep statebetween di�erent pakets in the paket �lter. We provide persistent-statemanagement failities that are a) seure, as they limit the amount of stateavailable to eah user proess, its aess to privileged resoures, and guaranteeeasily-provable bounds on the running time; b) simple enough to permit fast

61implementation; and) generi enough to support the addition of other new�ltering models of whih we are not aware.Our persistent-state management mehanisms also permits the use of �lters thatmodify their persistent state themselves1, without the need for their appliationsto request the hanges expliitly. This feature permits managing �lter statewithout the need to ross the kernel-userlevel boundary.
• riher �lter ontrol: the last augmentation onsists of having riher ontrol ofthe paket �ltering proess. We provide an e�ient mehanism that enablesdynami, �ne-grained ontrol of the �lter program. This is translated in two�ltering models.First, support of e�ient management of inremental �lters where statefulparsing of appliation-layer tra� is required to re�ne the �lter spei�ation.For example, if you want to apture all FTP tra� in a link, apturing allpakets that orrespond to the standard FTP port just aptures ontrol onnetions[Postel and Reynolds, 1985℄. Data onnetions often use negotiated, randomports di�erent from the standard FTP ontrol port. Therefore, they will notbe apture by a �lter that fous on the latter. On the other hand, it is possible tomonitor the negotiation in the ontrol onnetions, therefore obtaining informationthat uniquely identi�es the data onnetions. It is easy for an appliation to

1This does not imply self-modifying �lters, whih is a hard problem from a seurity point of view,and whose usefulness is not lear. Filters may modify their state, but not their program.

62parse the ontrol onnetions, and when it detets the negotiation of a dataonnetion, to add it to the �lter. We support this by providing e�ient aessto the �lter persistent state.Other examples of protools where the bulk-data onnetions are dynamiallynegotiated in ontrol onnetions inlude multimedia session ontrol protools[van der Merwe et al., 2000℄ and p2p protools [Karagiannis et al., 2004℄.The seond �ltering model inludes onnetion-based sampling. Connetion-basedsampling has di�erent properties than paket-based sampling [Du�eld et al.,2002℄, and may be useful depending on the use the samples will have.An outline of this Chapter is as follows: Setion 3.3 disusses related work.Setion 3.4 introdues a simple random paket-sampling mehanism, and disusses itsimplementation. Setion 3.5 ompares our pseudo-random sampling approah witha simple, heap solution used to imitate it, so that the strengths and weaknesses ofthe latter an be understood. Setion 3.6 shows some results from pseudo-randomsampling. Setion 3.7 introdues inter-paket state in paket �lters. Finally, Setion 3.8summarizes the hapter.
3.3 Related WorkThis Setion lassi�es related work in three di�erent ategories, namely paket�lters (Setion 3.3.1), paket lassi�ers (Setion 3.3.2), and sampling (Setion 3.3.3).

633.3.1 Paket FiltersA Paket Filter is a mehanism to selet pakets from a paket stream using aprogrammable riterion (the �lter).OperationTraditional paket-�lter implementations use a simple proessor (often virtual)operated by a redued, speial-purpose Instrution Set Arhiteture (ISA). Thissimple proessor, whih typially resides inside the kernel, has full aess to the paketbeing �ltered, whih is mapped into the proessor memory.Paket �lters operate as follows: Appliations register a �lter with the paket �lter.When the paket �lter reeives a new paket, it runs every registered �lter against thepaket. Every �lter that aepts the paket auses the paket to be dispathed to theorresponding appliation. This operation mode enables several lient appliationswith registered �lters at the same time.Appliations express their �lter needs using a high-level language, whih is ompiledinto a lower-level language (the ISA language) that an be run in the paket-�lterproessor. The rationale for the two-tier language system is threefold. First, appliationsan write �lters using a human-readable language onsisting of paket-�ltering spei�primitives ombined with Boolean operators. This high-level language syntax permits�exible expression of ompliated �lters. Seond, the paket-�lter proessor reeives�lters written in a low-level language whih is simple enough to be run fast, enables

64validation of the �lter safety (whih is important for both maliious and broken �lters),and permits bounding the �lter's running time. Third, this two-tier system permitsode optimization in the ompilation proess between the high-level and the low-levellanguages.CSPFCSPF [Mogul, 1990; Mogul et al., 1987℄ proposed the idea of putting a pseudo-mahinelanguage interpreter in the kernel, whih avoids �ltered-out pakets rossing protetionboundaries. CSPF parses a high-level �lter desription into a Boolean expression tree,whih then is run through eah paket using an operand stak-based interpreter. Bothonstant values and bytes obtained from the paket are pushed into the stak. A setof arithmeti and logial operations pop the top two words from the stak, and thenpush bak the result. After evaluating a program, if the top of the stak is not zero,or the stak is empty, the paket is aepted. Otherwise it is rejeted.CSPF presents several shortomings. First, an operand stak is not the usual CPUmodel. Therefore, it must be simulated, whih is quite ine�ient as it requires a lotof memory aesses. Seond, the enapsulated nature of network protools makesthe tree model inherently ine�ient, as it annot express protool dependenies. Andthird, CSPF annot parse variable paket headers, as there is no indiretion operation.

65BPFIn order to address these shortomings, BPF proposes substituting the Booleanexpression tree with a direted ayli Control Flow Graph (CFG), and the stak-basedinterpreter with a register-based virtual mahine [MCanne and Jaobson, 1993℄.BPF is the most ommon paket-�lter arhiteture today, and is used as thedevelopment framework for most paket-�lter researh, inluding this Chapter. Therefore,we desribe it in depth.BPF �lters are written using a high-level language (alled expressions) omposedof paket-related primitives linked by Boolean operators. Primitives usually onsistof an identi�er (name or number) preeded by one or more quali�ers. There are threedi�erent kinds of quali�ers, namely type, dir, and proto. Type quali�ers selet whatthe identi�er refers to. There are three types of type quali�ers, namely �host�, �net�,and �port�. Dir quali�ers speify the transfer diretion to/from the identi�er. Thereare two types, � sr� and �dst�. Proto quali�ers speify a partiular protool. Thereare several proto quali�ers, inluding �tp�, �udp�, � ip�, and others. Valid Booleanoperators are �and�, �or�, �not�.As an example, the expression � sr port 80� mathes all pakets whose soureport is 80. The expression � ip [2:2℄ = 60� mathes all IP pakets where the result ofonatenating the seond and third IP bytes (the IP length �eld) produes the value60. High-level expressions are atually ompiled into low-level language programs,

66whih are then run in the BPF virtual mahine. This mahine onsists of a bu�erwith the paket ontents, two registers (A and X), a small srath memory (denotedM[℄), and an impliit program ounter.Low-level language programs are based on a redued instrution set. The BPFISA follows an �assembler syntax� omposed of six di�erent instrution types:1. load instrutions: opy a value into either A or X. Addressing modes (where thevalue omes from) inlude immediate, diret (�xed o�set) fromM[℄ or the paketbu�er, indiret from M[℄ using X, and the paket length. Load instrutionsinlude ld (load word, or 32 bits), ldh (load halfword, or 16 bits), ldb (loadbyte, or 8 bits), whih load the orresponding paket data into A; and ldx (loadword), whih loads the orresponding paket word into X.2. store instrutions: opy either A or X into M[℄. Load instrutions inlude st(store word), whih stores the word in A into M[℄; and stx (store word), whihstores the word in X into M[℄. Both store instrutions operate using indiretaddressing with a onstant value.3. ALU instrutions: this ategory inludes both arithmeti and logi instrutionsthat get its operands from A and either X or a onstant, and put the resultbak into A. ALU instrutions inlude add, sub, mul, div, and, or, lsh, and rsh.4. branh instrutions: alter the program ounter depending on the result of aomparison test between A and either X or a onstant. Note that branh

67o�sets are always positive values, so only forward branhes are allowed. Branhinstrutions inlude jmp, jeq, jgt, jge, and jset (the latter performs a onditionalbit test).5. return instrutions: terminate the �lter and indiate how many bytes of thepaket to dispath to the appliations. (Length zero means the paket isrejeted.) The only return instrution is ret.6. other instrutions: the original implementation inludes just transferenes betweenA and X in this ategory. This inludes tax and txa.Inter-Paket and Inter-Filter StateAn interesting detail in BPF is all runs of a paket over a �lter are ompletelyindependent of eah other. Every paket �lter uses its own srath memory (denotedM[℄), so two di�erent �lters do not a�et eah other. We all this property �inter-�lterindependene.�Also, BPF has no persistent state. The srath memory is zeroed every timethere is a new paket, so the proessing of a paket in a �lter does not a�et theproessing of further pakets in the same �lter. We all this property �inter-paketindependene.�BPF is inter-�lter and inter-paket independent.

68MPFMPF [Yuhara et al., 1994℄ desribes two modi�ations to BPF to make it moree�ient when used for arrying out network- and transport-layer protool proessingin mirokernels.The �rst modi�ation introdues sharing of some proessing in the same paketamong several �lters. For e�ieny reasons, protool proessing in mirokernels isarried out outside the kernel. This means that eah onnetion requires registeringa �lter in the paket �lter. Given that eah paket must be run with every registered�lter, plain protool proessing auses a large overhead in the mirokernel.As all protool staks use very similar �lters, of the form �get all pakets thatorrespond to the {TCP/UDP, remote address, remote port, loal address, loal port}tuple�, MPF adds to BPF an assoiative math funtion that permits ombiningtogether all stak �lters. This way, all stak �lters are run using a single �lter,that eventually dispathes to a single orresponding appliation (the stak that mustreeive the tra�).The seond modi�ation a�ets the way IP fragments are proessed. One of themain problems of paket �lters is how to proess IP fragments. IP fragments do notinlude transport-layer headers, and therefore its soure and destination ports areunknown. When a fragment arrives to a mirokernel, it must be dispathed to allonnetions whose remote address is the paket's soure address, independent of thesoure port. It is the responsibility of the user-level protool stak to detet whether

69the fragment orresponds to its remote port or a di�erent one before aepting ordropping it.MPF proposes the addition of per-�lter, persistent memory to link fragmentinformation (the IP ID �eld) to the transport-layer information (the soure anddestination ports). It was the �rst to suggest the use of inter-paket dependenies.xPFxPF [Ioannidis et al., 2002℄ proposes taking BPF's idea of pushing paket proessingto the kernel to a deeper level. xPF's goal is for the paket �lter to be not only amehanism for demultiplexing appliations to user-spae, but also an engine to fullyexeute monitoring appliations.While keeping the BPFmodel, xPF proposes two main additions to it: a) persistentmemory: The authors propose to add inter-paket persistent memory, whih an beread and written by the ompiled �lter and the user-spae appliation. It also proposesadding indexed load and store instrutions, whih requires areful heking for everyinstrution and every running of the engine. b) eliminating engine restritions: Inorder to provide a riher exeution environment, xPF proposes eliminating BPF'srequirement of forward-only branhes. This introdues a potential starvation problem(a user-spei�ed �lter getting into an in�nite loop, for either maliious or bad-programmingreasons), whih the authors takle by limiting the number of BPF instrutions any�lter an run. If a �lter goes beyond its assigned instrution budget, xPF runs

70a user-spei�ed exeption handler, whih retains the original forward-only branhrequirement.mmdumpmmdump is a tpdump-like tool that is able to e�iently apture multimedia-sessiononnetions [van der Merwe et al., 2000℄. The main problem in apturing multimediastreaming �ows (RTSP, H.323) using plain BPF is that the ports used to send thebulk data are not �xed. Instead, they are dynamially negotiated during the sessionontrol onnetion, whih does use a �xed, well-known port.A multimedia-session onnetion apturer must therefore listen to session ontrolonnetions, parse their ontents, and dynamially modify the kernel �lter to add anynew, negotiated data onnetion.In order to apture the data sessions, mmdump adds two new features to BPF.The �rst one is dynami modi�ation of �lters. Whenever information from a newdata session is distilled from a session ontrol onnetion, it must be added to theompiled BPF �lter that already resides in the kernel. The straightforward approahof hanging the tpdump �lter every time there is an addition, then reompiling andinstalling it, is very expensive, ine�ient, and does not sale with the number oftraked sessions. Instead, the authors take advantage of the similarity and simpliityof all data session desriptions (�host A and port B�), generating a new BPF subtreeper session desription, and grafting it to the overall kernel �lter.

71The seond new feature is persistent state. While it is not neessarily required inorder to apture the data sessions, mmdump uses per-session state to a) keep sessionstatistis (whih are reported on session teardown), and b) bu�er the full sessionontrol data before sending it to the orresponding protool parser.Lastly, mmdump uses a resoure sarity detetor to fore the evition of persistent,per-session state.FPLFPL [Cristea and Bos, 2004; Cristea et al., 2005℄ is a new paket-�lter languageintended to run, among others, in the FFPF network monitoring framework [Boset al., 2004; Nguyen et al., 2004℄. While FFPF an run several other paket-�lterlanguages (inluding BPF), FPL is designed to exploit all of FFPF features.FPL is based on registers and persistent memory. It uses a new, generi (inludingfor loops, if/then/else operations, and a native hash funtion), fully funtional, extensiblelanguage as the high-level language. It uses the proessor native language as thelow-level one. The latter means that it an be run natively in the kernel, but alsoin speial-purpose hardware, as network proessors or dediated ASIC boards. Thisshould provide an important performane boost, as ompared to generi boards. Onthe other hand, implementing a generi language in dediated hardware introduesperformane onerns related to e�ient pipelined implementations.FPL deals with seurity issues at both language levels. When ompiling a high-level

72language program, FPL limits the number of times a for loop an be run. This isdone in order to ensure bounds on the number of instrutions run by a �lter. Whenthey �nish ompiling a �lter, trusted FPL ompilers add an MD5 signature to the�lter. This should ensure that the FPL proessor only runs low-level (native) languageprograms produed using a trusted ompiler.E�ient Paket Filter CompilationA related part of work on paket �lters onerns the optimization of the �lteringproess.DPF [Engler and Kaashoek, 1996℄, among other ode optimizations, proposesthe generation of dynami ode from the �lter desription, so that the �lter an beompiled and run instead of interpreted.BPF+ [Begel et al., 1999℄ enhanes the optimization of the �ltering by detetingand eliminating redundant prediates and omputation, and by looking for opportunitiesto use lookup tables when arrying out several omparisons related to the same �eld.BPF+ also permits ompiling the high-level �lter spei�ation into native ode, byusing just-in-time ompilation, and heks the seurity of the natively ompiled �lterby using a ode veri�er.

733.3.2 Paket Classi�ersClosely related to paket �lters are paket lassi�ers. A paket lassi�er is amehanism that inspets pakets from a paket stream, and determines how to proessthem. The proessing ation an be where to dispath a paket, whih resoures (e.g.priority) to assign to a paket in an OS, or how to route a paket in a router.Paket lassi�ers work by assigning a tag to eah paket, and an ation to eahdi�erent tag. Compared to paket �lters, paket lassi�ers assoiate pakets withriher semantis than just ��lter in� or ��lter out�. On the other hand, their deisionsare typially limited to parsing a group of seleted �elds.Paket lassi�ers are typially spei�ed using delarative ations, known as �rules�.Paket lassi�ers are normally programmed by delaring a set of rules, whih mappatterns to tags. When a paket is reeived, it is mathed against all the patterns,and the mathing one is used to selet the tag. By omparison, paket �lters arespei�ed using imperative ode.The non-exlusive nature of paket lassi�er rules poses the problem of on�itdetetion and resolution, in other words, what to do with a paket that mathesseveral patterns. Paket lassi�ers solve it by seleting always the longest pre�x thatmathes.Another di�erene between paket �lters and paket lassi�ers is that the latterare omposed of a very large set of rules, in some ases more than several tens ofthousands rules. Paket �lters, on the other hand, tend to work with more onise

74rules.In order to support lassifying tra� in high-speed networks, PathFinder [Baileyet al., 1994℄ proposes a design to express pattern-mathing spei�ations. PathFindersupports fragmentation by storing information on how to proess a paket from the�rst fragment, and out-of-order fragments by postponing their proessing. PathFinderdesribes two implementations, one in software and one in hardware. It proposes theimplementation of a subset of the lassi�er rules in hardware. The network adapterruns a subset of the rules against the paket. If the paket mathes any, it is (quikly)lassi�ed and proessed without ever reahing the host. Otherwise, it is sent to thehost for omplete proessing.3.3.3 SamplingAnother large piee of related work is paket and onnetion sampling. Cla�yet al. [Cla�y et al., 1993℄ disuss three paket sampling methods, namely systematisampling, strati�ed random sampling, and simple random sampling, and study theire�ets in the distribution of paket sizes and paket interarrival times.In (simple random) paket sampling, the sampler makes a random deision onwhether to sample eah paket or not. Pakets are lassi�ed in onnetions, whihan also be sampled. In onnetion sampling, the sampler only takes a randomdeision for the �rst paket of the onnetion. After that, all pakets orrespondingto the same onnetion follow the same deision.

75Note that, assuming the same sampling ratio, a paket has the same probabilityof being sampled whether using paket or onnetion sampling.Paket sampling is easier to implement than onnetion sampling, as the latterrequires the sampler remembering the deision on whether pakets from a givenonnetion must be sampled or not. On the other hand, it is not possible, in general, toobtain onnetion statistis from paket sampled traes, as paket sampling removessome of the �ow information present in the unsampled stream.Du�eld et al. [Du�eld et al., 2002, 2003℄ disuss how to determine onnetionstatistis from paket-sampled traes, and whih onnetion properties from theoriginal stream an be inferred from paket-sampled onnetion statistis.Estan and Varghese [Estan and Varghese, 2002℄ propose the use of �sample andhold� and multistage �lters to e�iently estimate statistis of large �ows. Estan etal. [Estan et al., 2003℄ show a method to automatially luster tra�: Their idea isto start with exhaustive (exept in the ase of IP addresses) information about thetra� in the leaves of a tree, and keep ompressing the tree upwards until they reaha given threshold.
3.4 Random SamplingThe �rst modi�ation is the introdution of randomness, and as a onsequene,random sampling. We onsider pseudo-random sampling a major neessity in kernelpaket �lters. Pseudo-random sampling is not available in BPF.

76Random paket-sampling is a relatively straight-forward addition to paket �lters.We provide a new instrution that provides lients a Pseudo-Random Number Generation(PRNG), that an be instruted to provide a number in a user-provided range. ThePRNG also permits the user to seed it diretly. This an also be used to enforedeterministi behavior, whih is useful for debugging purposes.3.4.1 ImplementationA new Pseudo-Random Number Generator (PRNG) has been written as an extensionto BPF. It produes pseudo-random, uniformly-distributed values in the range 0 to
232 − 1.The tpdump expression syntax (see Setion 3.3.1) has been extended with a newtype quali�er, �random�, that generates a load instrution with random addressingmode. For example, the result of running the primitive �random(x)� is a randomnumber between 0 and x − 1. The expression �random(3) = 0� returns the Booleantrue value randomly, with probability 1 in 3.The BPF ISA (see Setion 3.3.1) has been extended with a new load ommand,namely ldr. ldr is implemented as a new addressing mode for the BPF load instrution.When a load instrution with the addressing mode set to random is run, the BPFengine loads into the seleted register a random value between 0 and the value of theinstrution immediate value (k �eld).

77Randomness SoureRandomness is produed using two di�erent PRNGs, inluding a) a popular LinearCongruential Generator [Park and Miller, 1988℄, and b) a less-popular, but strongerrandom number generator based on the RC4 algorithm [Shneier, 1995℄.The main advantage of the LCG generator is that it is widely available. We wantedto know whether performane was an issue. We ran a simple experiment, in whihpakets from a large trae were sampled with a very low sampling rate, using a simple�lter �random(x) = 0�. The rationale of this setup an be justi�ed as follows: First,we used a large trae and a very simple �lter that onsumed one random number fromthe PRNG per paket. This maximizes the number of times the random generatoris alled. Seond, the tpdump expression produed a very low sampling rate. Thisminimizes the in�uene of the inherent per-paket proessing in the BPF engine.The performane di�erenes between proessing the full trae with the LCG-basedgenerator versus the RC4-based generator were negligible (around 0.1%).In any ase, it is not lear how an attaker ould break the LCG generator: itannot aess its internal state (neither the seed nor whether a given paket is sampledor not), and the paket-�lter apturing proess does not produe any outgoing ativitythat an be used to sense its state [Kumar et al., 2005℄.

78Random SeedingAnother feature of the PRNG is that the user is able to speify the seed, so theyan have added ontrol over the randomness (say, to thwart attakers from guessingthe state). We have implemented this in BPF by adding two new methods in thestandard devie/soket ontrol mehanism (iotl /setsokopt).Table 3.1 shows the odes for aess to the random seed in the iotl ase.ommand explanationBIOCSRNDSEED set the random seedBIOCGRNDSEED get the urrent random seedTable 3.1: iotl API to Con�guring PRNGWe onsidered adding random seeding as a new expression primitive that is runonly one. The idea was to prepend a primitive like �random_seed(0xdeadbeef)� infront of the primitive using the randomness (e.g., � ip and random(10) = 0�). Whenthe kernel proessed the expression for the �rst time, it would notie the run-one�random_seed� primitive, run it (e�etively seeding the PRNG), and then remove itfrom the per-paket �lter program.The main advantage of this approah is easy portability. Random seeding isrequested using the already-existent ontrol mehanism (i.e., the expression). Itsimplementation only requires modi�ations on the expression parser (so that the newprimitive is reognized as a valid one), and the BPF engine (so that the seedingis atually arried out, and then removed from the �lter). Both modi�ations areommon to all paket �lter implementations. In partiular, it does not require adding

79a new ontrol hannel to the kernel (the iotl /setsokopt alls desribed above).The idea of the initialization, run-only-one primitives ould also be extended toreate a model that supports other generi one-time initializations, suh as a privatekey for the hashing operands (see Setion 3.7).We found dynami �lter adjusting to be too umbersome. First, BPF is too rigidfor this. For example, BPF does not reognize numbers bigger than 4 bytes. Thisis a problem to some of the initializations we have in mind, as for example wheninitializing an HMAC key, whih is 16-bytes long.Seond, we want to be able to reuse an already-ompiled �lter with a di�erentseed.Finally, the redued BPF instrution spae seems the wrong hoie to supportpotentially inde�nite on�guration options.Optimizer IssuesThe main implementation di�ulties are related to the BPF optimizer. First, BPFonsiders itself free to arbitrarily reorder primitives, whih may hange the expressionsemantis.For example, this means an expression like �port telnet or (port ftp and random(3)= 0)�, whih means "get any telnet tra�, or any ftp tra� with 1/3 probability",might get reordered to "get any telnet tra�, or with probability 1/3 look to see ifit's FTP, and if so apture it", whih has very di�erent sampling properties.

80Seond, BPF is keen to ollapse two equal instrutions with no dependenies. Forexample, if the tpdump �lter reads twie the same IP �eld, the optimizer will usethe value of the �rst reading in both uses. This is wrong for PRNG, as two allsto �random(x)� with the same value of x should produe independent result. Thesolution is to make any 2 random instrutions di�erent to the optimizer eyes. We dothis by marking eah instrution with the address of the memory used to store theinstrution itself.3.4.2 Random Sampling BehaviorThis Setion ontains results of a very simple experiment to hek the orretnessof the random sampling addition (rnd) in a ontrolled environment. Just to makesure the addition works, we run the �lter �random(x)�, for di�erent values of x, on apaket trae, and ounted the number of pakets aptured as a funtion of the paketbeing proessed.Figure 3.1 shows the number of pakets aptured by rnd as a funtion to thepaket being proessed. We report results for three di�erent sampling rates, namely
10, 1000, and 4096 to 1. Both the x and y-axis are in a logarithmi sale.We an see in all the ases how rnd aptures the expeted ratio of tra� rapidly.

81

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1000 10000 100000 1e+06 1e+07

C
ap

tu
re

d
P

ac
ke

ts

Packet Number

random 10
random 1000
random 4096

Figure 3.1: Pakets Captured by rnd3.5 Random Sampling DisussionIn this Setion, we ompare the pseudo-random sampling approah, rnd, with asimple, urrently-available approah, samp.The samp approah tries to leverage on the inherent entropy of IP headers to arryout unbiased sampling. samp assumes the IP heksum �eld to be approximately arandom number. Sampling is arried out by masking the IP heksum �eld, andomparing the result to a �xed number. As an example, if you want to sample 1 in 4pakets, you ould use the tpdump expression � ip[10:2℄ & 3 == 0�. This expressiongets the last 2 bits of the 11th IP header bit (i.e., the last 2 bits of the IP heksumless signi�ant byte), and returns true if their value is zero.

82The main bene�t from samp is portability. It an be used in any BPF-basedpaket �lter. Users need not modify the Operating System kernel to sample a paketstream.Note that ost is not really an issue. Masking and omparing two numbers is notthat di�erent from generating a random number using only integer operations (forexample, an LCG-based PRNG requires an integer multipliation and division perrandom number). In a simple experiment, the di�erenes in the time taken to runsamp versus rnd on the same trae, and with the same apture ratio, where lessthan 1%.This Setion ompares both approahes, assuming rnd produes a sample withstatistial properties omparable to that of a true random sample. We want to knowin whih senarios is samp OK, and in whih ones samp is wrong.The remainder of this Setion is strutured as follows: Setion 3.5.1 disussesthe entropy present in IP headers. Setion 3.5.2 lists the approahes that di�erentOperating Systems take in order to manage the value of the IP ID �eld, and Setion 3.5.3studies the onsequenes of eah of these approahes in the �randomness� of the IPheksum �eld values, and therefore the quirks shown by samp when apturing tra�from eah of the approahes. Setion 3.6.1 provides evidene of suh quirks by runningboth rnd and samp in some isolated, unsampled traes. Setion 3.6.2 desribes aomparison of the performane of rnd to samp in a real environment for a largeamount of time. Setion 3.6.3 onludes.

833.5.1 On IP Header EntropyFigure 3.2 depits the �elds in an IP header.
B

yt
es

IHLVersion Total Length

Options (0 to 40 bytes) Padding

12−15

16−19

8−11

0−3

4−7

0 4 8 12 16 20 24 28 31

Bits

Identification Fragmentation Offset

Header ChecksumProtocolTime to Live

Source Address

Destination Address

Type of Service

M
F

D
F

Figure 3.2: IP Header FormatThe IP heksum �eld (bytes in positions 10 and 11) is produed as a linearombination of all other IP header �elds (atually, as the negation of the 1's omplementsum of all the other �elds [Postel, 1981a℄). Assuming there is enough entropy in anyof the remaining IP header �elds, samp should produe relatively good samplings.How good is suh an assumption? Let's onsider the main paket aggregationunit, i.e., the onnetion. All pakets from a onnetion share the same soure anddestination addresses, protool, and typially TTL �elds. Moreover, IP options arevery rare, whih means the header length �eld almost always has the same value. TheTOS/Di�serv/ECN �eld urrently goes unused most of the time, or with the samevalue for every soure host.

84The paket length is a better soure of entropy, but not good enough. A largeonnetion is likely to be used to transfer bulk data (e.g., a large �le) or live multimediaontents (e.g., a VoIP onversation). In the �rst ase, the paket size is likely to bealways the maximum transmission unit (MTU) in the data transfer diretion, andthe minimum transport protool size in the opposite (aknowledgment) diretion. Aless-ommon use of large onnetions is sending multimedia ontent. In this ase, wemust di�erentiate Variable Bit Rate (VBR) enoders from Constant Bit Rate (CBR)ones. The latter will most likely use onstant-sized pakets.The IP paket length is a better soure of entropy for small onnetions, with oneexeption: TCP ontrol segments usually are the same size for all pakets between thesame two hosts. The reason is that TCP ontrol pakets do not arry TCP payload,and the number of TCP options is typially the same in all pakets between the sametwo hosts.Fragmentation ould be another soure, but in our traes is very unommon: lessthan 0.2% of our pakets are fragments. Other researhers report similar numbers [Shannonet al., 2002℄.Therefore, the prinipal soure of entropy when alulating the IP heksum �eldis the IP ID �eld.

853.5.2 IP ID FieldThe IP Identi�ation (IP ID) �eld is a 16-bit long �eld used to implement IPfragmentation [Postel, 1981a℄. It is used to �distinguish the fragments of one datagramfrom those of another.� [Postel, 1981a℄ The only requirement for setting the IP ID�eld is to �set (it) to a value that must be unique for that soure-destination pairand protool for the time the datagram will be ative in the internet system.� [Postel,1981a℄As fragmentation is unommon, the �eld is typially unneeded. Its value, though,varies depending on the IP stak implementation. We have seen at least the followingbehaviors in a signi�ant number of hosts. (Note that the approahes do not neessarilyexlude eah other.)
• CONSECUTIVE: One per-host ounter, inreased by one in eah paket. Thisis the most ommon approah, as it is the one used by Windows hosts.A variation of this approah in some little-endian proessors does the inrementin network order, so the atual inrease is 256 (as is the ase in some oldWindows hosts). This does not a�et the rest of the disussion, so we willonsider both ases together under the same label.Another variation inludes one per-�ow ounter, inreased by one in eah newpaket. A ��ow� is de�ned as all the pakets between the same endhost pair.Note that the variation inludes per-�ow ounters, instead of per-onnetion

86ounters. The reason is that the IP ID �eld an only depend on other IP �elds.Ports are transport-layer �elds, and fragments (exept the �rst one) do notarry transport headers. This variation is preferred by several Unix �avors (e.g.Linux 2.4.21.).
• ZERO: In some ases, hosts set the IP ID �eld to zero for some paket subset,and using other approahes for the remaining pakets (e.g. CONSECUTIVE).The most ommon variation of this approah onsists of using the CONSEC-UTIVE approah for all pakets but the TCP SYN/ACK segments. Thesesegments are always sent with the IP ID �eld set to zero.The goal of setting SYN/ACK segments to zero is to avoid leaking informationon the number of pakets a host sends, whih an represent a privay problem[Bellovin, 2002℄. Some �avors of Linux 2.4 and 2.6 follow this behavior.In order to set the IP ID to zero, the soure end-host needs to ensure that paketswill not be fragmented in their path to the destination. Note that setting theDF (�Don't Fragment�) bit in the IP header is not enough: If a middleboxreeives a DF paket so large that it annot be forwarded, the middlebox willdisard the paket [Postel, 1981a℄.Methods to ensure no fragmentation will our fall into two ategories: First,some hosts set the IP ID �eld to zero only in pakets that are small enough toavoid fragmentation. This variation is followed by some older Linux (2.4) and

87FreeBSD versions (5.2-RC2). Seond, other hosts use Path MTU to disoverthe maximum transmission unit (MTU) along the path [Mogul and Deering,1990℄, and then set the IP ID �eld to zero in pakets whose size is smaller thanthe MTU.Sending SYN/ACK segments with zero IP ID �elds is an example of the �rstategory: these segments are always very small pakets (typially 40 bytes plusthe TCP options), and it is very unlikely that they will need fragmentation.Other hosts atually set the IP ID �elds to zero in TCP segments with the RSTor FIN �ags set, as they do not arry payload, and therefore are limited to theIP and TCP header size.Note that setting the IP ID to zero is a bad idea. Some middleboxes (routers,load balaners, �rewalls, et.) illegally remove the DF along the path (e.g.Ciso DSL/L2TP reommends avoiding this in its trouble shooting setion forbroadband aess via DSL/L2TP, where the MTU is lower than 1500 beauseof the tunneling overhead).
• RANDOM: Some OpenBSD and FreeBSD �avors have the option of makingthe IP ID �eld random for seurity reasons. FreeBSD assumes that gettinga random ounter per new onnetion is an expensive task ompared to theimportane of the information leakage, and therefore it is disabled by default.

883.5.3 In�uene of the IP ID Field Behavior in samp FeaturesThe existene of di�erent approahes to IP ID management will produe threemain e�ets in the tra� sampled by the samp approah.E�et 1: Beause of the prevalene of CONSECUTIVE staks, most largeonnetions are sampled systematially, instead of randomly.Let's onsider a large onnetion using CONSECUTIVE. As we mentioned already,almost all pakets from that onnetion will have the same IP header �eld values.The only �eld that therefore hanges between pakets in the same large onnetion,and therefore its only soure of entropy when alulating the IP heksum, is the IPID. This �eld is inreased just by one on eah onseutive paket.samp only aptures a paket when the paket's heksum mathes a given mask.In other words, when its value is in a �xed set of values, whih we will all the�heksum set�. As the funtion used to alulate the IP heksum is atually linear[Postel, 1981a℄, the �heksum set� will have a orresponding �IP ID set� of valuesthat will ause a paket to be sampled by samp.If the IP ID always hanges by +1, this means that samp will not sample paketspseudo-randomly. Instead, samp will sample pakets systematially, piking onepaket of every R = 1/p, where p is the sampling ratio.Systemati sampling has di�erent properties than random sampling [Lohr, 1999℄.Let's onsider a �ow i, omposed of ni pakets, and aptured using a p sampling

89ratio. If the �ow is aptured with the rnd approah, the apture of eah paketis a Bernoulli proess, and therefore the total number of pakets aptured follows aBinomial distribution with parameters ni, p. The average and variane of the numberof aptured pakets are shown in Equations 3.1 and 3.2.
µi,random = nip (3.1)
σ2

i,random = nip(1 − p) (3.2)What is the aggregated e�et of random sampling? Let's assume the stream isomposed of F �ows, named f1, f2, · · · , fF , eah omposed of ni pakets, and where
N =

∑F ni. The sampling of �ow i is independent of the sampling of �ow j, where
j 6= i. Therefore, the average and variane of the aggregated number of paketssampled from the full stream are show in Equations 3.3 and 3.4.

µT,random =
F

∑

µi,random =
F

∑

nip = pN (3.3)
σ2

T,random =
F

∑

σ2

i,random =
F

∑

nip(1 − p) = Np(1 − p) (3.4)Now let's try to get the same statistis for samp, whih does systemati sampling.Let's assume the number of pakets in the ith �ow is ni = kiR + ǫi, where ki and
ǫi are integers, and 0 ≤ ǫi < R. A systemati sampler will apture ki pakets with

90probability ǫi/R, and ki + 1 pakets with probability (R − ǫi)/R. The average andvariane of the number of aptured pakets for �ow i are shown in Equations 3.5and 3.6.
µi,systematic =

F
∑

xipi = (ki + 1)
ǫi

R
+ ki

(R − ǫi)

R
= ki + ǫip = nip = µi,random (3.5)

σ2

i,systematic =
F

∑

(xi − µ2

i,systematic)pi = (ki + 1 − nip)2
ǫi

R
+ (ki − nip)2

(R − ǫi)

R
=

= (1 − ǫip)ǫip (3.6)Note that the variane σ2

i,systematic is bounded between 0 and 1/4. As 0 ≤ ǫi/R =

ǫip < 1, the variane σ2

i,systematic = (1 − ǫip)ǫip will be 0 ≤ σ2

i,systematic ≤ 1/4.What is the aggregated e�et of systemati sampling? Let's onsider the samestream as before. The sampling of eah �ow in the stream is independent of eahother. Therefore, the aggregate number of pakets sampled from the full streamis µT,systematic =
∑F µi,systematic =

∑F nip = pN on average. The variane will be
σ2

T,systematic =
∑F σ2

i,systematic =
∑F (1−ǫip)ǫip, whih is bounded by 0 ≤ σ2

T,systematic ≤

F/4, where F is the number of �ows.A per-�ow omparison shows that the average number of pakets aptured byboth samp and rnd is the same (µi,systematic = µi,random). This also applies to theaggregated results (µT,systematic = µT,random).The per-�ow variane is smaller in the samp ase than in the rnd ase. In e�et,

91applying ni = kiR + ǫi, 0 ≤ ǫi < ni, and being ǫi an integer, ǫi = 0 or ǫi ≥ 1, andtherefore ǫip ≥ p. If ǫi = 0, then σ2

i,systematic = 0 < σ2

i,random. If ǫi ≥ 1, then ǫip ≥ pimplies 1 − ǫip ≤ 1 − p, and therefore σ2

i,systematic < σ2

i,random (see Equation 3.7.)
σ2

i,systematic

σ2

i,random

=
(1 − ǫip)ǫip

nip(1 − p)
=

(1 − ǫip)

1 − p

ǫi

ni

< 1 (3.7)As the per-�ow variane is smaller, σ2

T,systematic =
∑F σ2

i,systematic <
∑F σ2

i,random =

σ2

T,random, and therefore the aggregated variane is also smaller in the samp ase thanin the rnd aseIn summary, the aggregate results of samp will be equal to the results of rnd onaverage, but with a smaller variane (atually bounded in the samp ase).Another onsequene of sampling being systemati instead of random is thatpaket inter-timings are biased. Therefore, saling down inter-paket timings fromsampled traes to estimate unsampled inter-paket timings should be avoided.Considering that most hosts today run some Windows �avor, we should expetthe CONSECUTIVE approah to manage IP IDs to be almost ubiquitous.E�et 2: Beause of the existene of ZERO staks, some subsets of tra�are aliased.The ZERO approah onsists of setting the IP ID �eld always to zero. If a hostfollows the ZERO approah, the only soure of entropy for the pakets it sends to a

92given destination (a ��ow�) is the IP length.The IP length is not a good soure of entropy. As we mentioned in Setion 3.5.1,large onnetions are likely to have a onstant paket size. Therefore, pakets from a�ow originating at a ZERO host will always have the same IP headers, inluding theIP heksum �eld.If the �ow's IP heksum value happens to be one that mathes samp's mask, allpakets from the �ow will be aptured. Otherwise, no paket from the �ow will everbe aptured.Aliasing is ommonly de�ned as a sampling e�et that auses two di�erent signalsto beome indistinguishable when sampled. In our ase, the signals are the totalnumber of pakets per onnetion, and the sampled signal is the number of per-onnetionpakets aptured by the sampling method.Let's assume a sampling ratio of 1 in R pakets, and two onnetions. The �rst oneis omposed of n pakets, and its IP ID �eld follows the CONSECUTIVE approah.As we have seen before, the average number of aptured pakets will be n/R = m.The seond onnetion is R times smaller, i.e., omposed of m = n/R pakets.Its IP ID �eld follows the ZERO approah, and its (onstant) IP heksum �eld ispart of the �heksum set� of values that are aptured by the sampling mehanism.Therefore, all of its m pakets will be aptured.The sampling mehanism aptures approximately the same number of pakets forboth onnetions (m), and therefore the estimation for the original size is approximately

93the same in both ases, namely mR = n. For the �rst onnetion the estimation is�ne, but in the seond ase is ompletely wrong. We say that the seond onnetionis aliased. More onretely, we say that the onnetion is aliased positively.If the seond onnetion had a (onstant) IP heksum �eld not part of the�heksum set,� no pakets from this onnetion would have been aptured. Thesampling method would estimate the size of the onnetion as zero. We say theonnetion is aliased negatively.In relative terms, the negative versus positive aliasing ratio would be a funtionof the sampling ratio, p. Let's assume samp is sampling 1 in R pakets, where
R = 1/p. If a �ow is aliased, whether it is positively aliased or negatively aliaseddepends on the mask hosen for samp. The mask is mathed proportionally to p.If we onsider R ZERO �ows, we will expet 1 to be aliased positively, and theremaining (R − 1) to be aliased negatively. This means that, from all aliased �ows,the ratio of negatively-aliased �ows will be q = (R − 1)/R = 1 − p, and the ratio ofpositively-aliased �ows will be 1 − q = p.What is the e�et of eah type of aliasing on samp? When samp is used toapture a negatively-aliased, n paket-long �ow, it will apture no pakets from it.This means n pakets will not be seen by samp. When samp is used to apturea positively-aliased, n paket-long �ow, it will apture the whole n pakets from it.After saling bak the sampling ratio, samp would report that it aptured n paketsfrom a n/p = nR paket-long �ow.

94What is the aggregated e�et of aliasing? A �ow is aliased or not independent ofwhether other �ows are aliased.If a �ow is aliased, it will be negatively-aliased with probability q (and thereforenot aptured at all), and positively-aliased with probability 1 − q (aptured in full).Therefore, the average number of pakets aptured will be as shown in Equations 3.8and 3.9.
µaliasing =

∑

xipi = 0q + n(1 − q) = np (3.8)
σ2

aliasing =
∑

(xi − µ2

aliasing)pi = (0 − np)2q + (n − np)2p =

= n2p(1 − p) = nσ2

random (3.9)The aggregated e�et of negative and positive aliasing in samp is atually zero onaverage terms. On the other hand, the variane of the number of aptured pakets bysamp is n times bigger than the same variane when pakets are aptured by rnd,where n is the size of the unsampled �ow. Therefore, the standard deviation of thenumber of pakets in aliased �ows aptured by samp will be √
n times bigger thanwhen aptured by rnd.The larger variane means that the total number of pakets from ZERO staksthat samp aptures will be �noisier� than the total number aptured by rnd.Operating Systems that use ZERO are unommon, so the overall e�et should

95be small in absolute terms. Moreover, we expet that, in general, R will be a largenumber, so that the number of positively-aliased �ows will be a small fration ofthe number of negatively-aliased ones. Negative aliasing will be unommon, andwill slightly derease the amount of tra� aptured by samp. Positive aliasingwill be extremely unommon, but its existene may bias the sampling results verysigni�antly, inreasing the total amount of aptured tra� in a signi�ant way.A possible solution to avoid aliasing is to further re�ne samp, exluding anypakets with zero IP ID. We all this approah nidz. By �ltering out pakets withzero IP ID, nidz should get rid of positively aliased �ows, therefore avoiding biasingthe total amount of aptured tra� in a signi�ant way.As a separate fat, we note that aliasing will be, in general, an asymmetri e�et.Aliasing depends just on the sender end-host, whih is the one that sets the IP header�elds. Therefore, �ows an be aliased in one diretion, the reverse, or in both.E�et 3: Beause of the seletive use of ZERO staks, sampling of somesubsets of the tra� is biased.Let's onsider a soure host that uses CONSECUTIVE to set the IP ID �eld forall the pakets but for TCP SYN/ACK segments, where it uses ZERO.When sending a SYN/ACK segment to a given host, all the IP header �elds will bealways the same, and therefore they will have the same IP heksum. This auses analiasing e�et, in whih, depending on the exat value used in the samp omparison,

96either all the SYN/ACK segments to a given host, or none, are aptured. In otherwords, the samp approah is ompletely biased against some IP pairs, and ompletelybiased toward other IP pairs.As we will see later, the prevalene of this approah, at least in the traes we areusing, is important enough that, when apturing SYN/ACK segments, the results ofthe samp or nidz approahes are too biased to permit drawing valid onlusions fromTCP SYN/ACK segment analysis.
3.6 Random Sampling Experiments3.6.1 Isolated Trae AnalysisThis Setion shows the three e�ets in a ontrolled senario. The main dataset for this study is a trae taken at the International Computer Siene Institute onNovember 2004. The trae is around 45 minutes long, and adds up to 757 onnetions,1.9 M pakets, and 968 MB (509 bytes/paket on average). The trae is omposed ofSSH tra� only.We sampled the trae using both rnd and samp. In both ases, the samplingratio was 1 in 4096 pakets.

97E�et 1: Beause of the prevalene of CONSECUTIVE staks, most largeonnetions are sampled systematially, instead of randomly.Figure 3.3 shows the life of the biggest onnetion in the trae. The top �gureshows the rnd-aptured onnetion, while the bottom �gure shows the same onnetion,but aptured by samp.Every point in the trae represents a paket, with the x axis showing its IP ID,and the y axis representing its timestamp. The line stithing all the points togetheris stritly inreasing in the y axis. In other words, it is a time line. We an see thestrong systemati 1-in-N e�et in the samp-aptured onnetion. Almost all paketsin both graphs are 1500-byte long.Figure 3.4 shows the same systemati sampling e�et as Figure 3.3, but for thereverse path. Large data transmissions tend to be asymmetri, as one of the hostssends data to the other, whih just keeps aknowledging it. Pure ACKs normally arethe same size, aounting for just the IP and TCP headers. While the use of TCPoptions is ommon, all pakets from the same onnetion that ome from the samehost typially have the same number of TCP options. This means all the reverse-pathpakets have the same size (e.g., 40 bytes when no TCP options are used), andtherefore the same systemati 1-in-N sampling e�et an be seen in the reverse path.Almost all pakets in both graphs are 52-byte long (TCP options aount for 12 bytesper paket).Using both samp and rnd, we sampled the largest onnetion, whih is omposed

98

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(a) As aptured by rnd

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(b) As aptured by sampFigure 3.3: Timeline for Biggest Connetion in Analyzed Trae

99

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(a) As aptured by rnd

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(b) As aptured by sampFigure 3.4: Timeline for Biggest Connetion in Analyzed Trae (Reverse Path)

100of 465203 pakets and 441 MB (24% and 45.6% of the respetive totals). In bothases the sampling ratio was p = 1/4096, and the experiment was repeated 100 times.Results are shown in Table 3.2, where Ȳ represents the sample mean, S2 the samplevariane, and SE(Ȳ) the standard error of the sample mean.approah Ȳ S2 SE(Ȳ)samp 113.51 6.111 0.247rnd 113.44 121.18 1.101Table 3.2: Pakets Captured from the Largest FlowNote that, while the sample means are very similar, the sample variane of thesystemati approah is 19 times smaller than the sample variane of the randomapproah.Using both samp and rnd, we sampled the full trae. In both ases the samplingratio was p = 1/4096, and the experiment was repeated 100 times. Results are shownin Table 3.3. approah Ȳ S2 SE(Ȳ)samp 469.13 250.17 1.582rnd 472.44 506.75 2.251Table 3.3: Pakets Captured from the Full TraeNote that the sample means are again very similar. On the other hand, the samplevariane of the systemati approah is only 2 times smaller than the sample varianeof the random one.Note also that, omparing the pakets aptured from the largest �ow and thepakets aptured for the full trae, the sample variane for the rnd approah gets

101multiplied by 4. This makes sense, as the ratio between the total number of paketsin the full trae and the total number of pakets in the largest �ow is also 4. On theother hand, the same sample variane for the samp ase gets multiplied by 41. Flowaggregation in the samp ase inreases the �noise� of the apturing proess.E�et 2: Beause of the existene of ZERO staks, some subsets of tra�are aliased.Our trae does not show any negatively- nor positively-aliased �ows. We will lookfor evidene of suh �ows in the larger traes experiments.E�et 3: Beause of the seletive use of ZERO staks, sampling of somesubsets of the tra� is biased.In our SSH trae, there are 779 TCP pakets with the SYN and ACK �ags setboth to one. From those pakets, 669 (86%) have IP ID set to zero, and thereforethey have no soure of entropy. Their heksum is only a funtion of the soure anddestination host. Therefore, the results of sampling TCP SYN/ACK segments usingsamp will be biased toward some IP address pairs, and biased against all the others.

1023.6.2 Long-Term TraesDesriptionData sets for this study were olleted from a GigEthernet link at LawreneBerkeley National Laboratory (LBNL). For both the rnd and the samp samplingapproahes, we used an o�-the-shelf FreeBSD host. For samp, we aptured thetra� running plain tpdump/libpap/BPF. For rnd, we aptured the tra� usingour modi�ed version of the same apture suite. In both ases, the sampling ratio was1 in 4096 pakets.The data sets over the LBNL DMZ for almost the full year of 2004 and the �rsttwo weeks of 2005. Just about all traes are 86,400 seonds (1 day) long, though afew are shorter due to reboots.Figure 3.5 shows the total amount of tra� aptured by rnd 2. The top �gureshows the daily results in pakets, and the bottom one shows the daily results inbytes. The daily average is 340 K pakets (300 MB) per day, whih after onsideringthe 1:4096 sampling, produes an average number of 16 K pakets/se (114 Mbps).Total Di�erenesFigure 3.6 shows a) the di�erene between the amount of tra� aptured by sampand the amount of tra� aptured by rnd, and b) the di�erene between the amountof tra� aptured by nidz and the amount of tra� aptured by rnd. The y axis
2Note that for the trae desription we fous on rnd, instead of samp, beause our approahonsiders rnd to be the orret measurement unit against whih samp's orretness will be ompared.

103

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

P
ac

ke
ts

Month

Total Traffic Captured by RND

(a) Pakets

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 9e+08

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

B
yt

es

Month

Total Traffic Captured by RND

(b) BytesFigure 3.5: Total Tra� Captured by rnd

104shows this di�erene as a perentage of the rnd tra�. The top �gure measuresthe tra� in pakets, while the middle and bottom ones do the same in bytes andbytes/paket, respetively. A 5% value in the top graph, for example, means that forthe given day, either samp or nidz aptured 5% more pakets than rnd.Just onsidering the total tra� aptured, samp performs quite well. On average,it aptures around 1% fewer pakets than rnd, and approximately the same numberof bytes. The di�erene in the number of pakets is between ±5% at any time exeptduring the �rst two weeks of Marh, when the di�erene inreases up to 20% (03/06trae). The di�erene in the number of bytes is always between ±10%.While the amount of tra� is very similar, the tra� being aptured is not.Partial Di�erenes with sampThe most obvious di�erene between rnd and samp is the 20% extra paketsaptured by samp during the �rst two weeks of Marh. Even more interesting, thedi�erene in bytes during the same period is almost impereptible, and therefore theaverage paket size is up to 15% smaller (03/06 trae). samp is not only apturingmore pakets, but it's apturing di�erent pakets. This is evidene that samp isbiased toward some types of tra�.What is ausing up to a 20% inrease in pakets during the �rst two weeks ofMarh? Based on a visual inspetion, we notied that the exess tra� aptured bysamp, as ompared with rnd (up to 28,000 pakets/day) an be ompletely attributed

105

-10

-5

 0

 5

 10

 15

 20

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

P
ac

ke
t D

iff
er

en
ce

 (
P

er
ce

nt
ag

e)

Month

Difference in Traffic Captured by SAMP and RND
Difference in Traffic Captured by NIDZ and RND

(a) Pakets

-10

-5

 0

 5

 10

 15

 20

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

B
yt

e
D

iff
er

en
ce

 (
P

er
ce

nt
ag

e)

Month

Difference in Traffic Captured by SAMP and RND
Difference in Traffic Captured by NIDZ and RND

(b) Bytes

-15

-10

-5

 0

 5

 10

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

B
yt

es
/P

ac
ke

t D
iff

er
en

ce
 (

P
er

ce
nt

ag
e)

Month

Difference in Traffic Captured by SAMP and RND
Difference in Traffic Captured by NIDZ and RND

() Bytes/PaketFigure 3.6: Di�erene in Tra� Captured Between samp and rnd, and samp andnidz

106to a group of TCP SYN/ACK segments sharing exatly the same IP headers, inludinga zero IP ID. In omparison, the trae of the same day as aptured by rnd only shows�ve pakets with the same harateristis.This is a ase of positive aliasing (E�et 2). The inrease in tra�, as seen bysamp, during the �rst two weeks of Marh, an be explained by positive, asymmetrialiasing of an IP-pair �ow where the soure host follows the ZERO approah forsome subset of the tra�. Beause all SYN/ACK segments between this IP pairshare the same IP headers, they all have the same IP heksum �eld, and thereforesamp aptures all of them, instead of a 1:4096 sample.Correting Aliasing With nidzSetion 3.5.3 introdued nidz, a re�ned version of samp in whih pakets withzero IP ID are �ltered out.The main advantages of nidz are (1) it is as simple as samp (it just requiresadding �and not ip[4:2℄ = 0� to the �lter used to apture tra�), and (2) it avoidspositive aliasing by getting rid of pakets with zero IP ID. The main disadvantage isthat it keeps biasing against some hosts and some subsets of tra�.Figure 3.6 shows the e�et of apturing tra� using nidz. Considering the numberof aptured pakets, nidz aptures on average 2% fewer pakets than rnd. Its resultsare, nevertheless, less noisy than those of samp. The number of pakets apturedby nidz never di�ers from the number aptured by rnd by more than 5% (ompare

107with 20% in the ase of samp and rnd).Considering aptured bytes, nidz follows very losely the results of rnd. Themain exeption is an 8% derease in total bytes aptured in the 05/01 trae.By analyzing that trae, we an see that 78% of the paket di�erene and 95%of the byte di�erene an be explained by UDP pakets between a given host and 23others, all with the same IP headers (1500 bytes length, zero IP ID, and DF bit set).This is a ase of negative aliasing (E�et 2). The derease in tra�, as seen bysamp, in the 05/01 trae, an be explained by negative, symmetri aliasing of tra�between a given host and 23 others, where the 24 hosts follow the ZERO approahfor some subset of the tra�.Note also that nidz does not ombat negative aliasing, only the positive one.Bias Measurement on Tra� SubsetsThe long-term traes also present evidene of bias in the sampling of some subsetsof the tra� (E�et 3). In order to show this bias, we have de�ned some subsetsof the tra�, and then measured the perentage of pakets that have zero IP ID onthem.Figure 3.7 shows the perentage of pakets with zero IP ID for three di�erentsubsets of tra�, namely (1) TCP SYN/ACK segments, (2) TCP RST or TCP FINsegments, and (3) Other pakets (any paket not inluded in (1) or (2)). The top�gure shows the results for tra� aptured by rnd, and the bottom �gure shows the

108results for tra� aptured by samp.Note the strong disrepanies between the results returned by samp and rnd,espeially in subset (1). This indiates that, for this subset of tra�, the resultsreturned by samp are ompletely biased, and do not represent a sample of the totalpopulation. Note that, in this ase, using nidz does not enhane the sampling quality,as no zero IP ID pakets are aptured. nidz is therefore ompletely biased againstsubset (1) of the tra�.Moreover, from the top �gure, we an see that, on average, 33% of TCP SYN/ACKsegments have zero IP ID. Assuming that, for pure CONSECUTIVE hosts, theprobability that a TCP SYN/ACK segment has zero IP ID is negligible (1/65536),then this means that, in 33% of the TCP onnetions, the responder (the serverin a lient-server onnetion) uses the ZERO approah to set paket IP IDs. Thisapproah an be either full (i.e., all pakets have zero IP ID), or just limited to theTCP SYN/ACK segments. As the perentage of "Other Pakets" (subset (3)) thathave zero IP ID is negligible, we know that this 33% of the servers use ZERO justfor the TCP SYN/ACK segments.As would be expeted from the low popularity of hosts running Operating Systemsthat use it, the pure ZERO approah is marginal. Its in�uene in the aggregatedsampling numbers is minimal. On the other hand, an startling third of all the serversuse a variation of ZERO in whih the IP ID of TCP SYN/ACK segments is set tozero.

109

 0

 10

 20

 30

 40

 50

 60

 70

 80

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 T

ha
t H

av
e

Z
er

o
IP

 ID

Month

TCP SYN/ACK Segments
TCP RST or TCP FIN Segments

Other Packets

(a) When Captured by rnd

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

01/15 02/14 03/15 04/14 05/14 06/13 07/13 08/12 09/11 10/11 11/10 12/10 01/09

P
er

ce
nt

ag
e

of
 P

ac
ke

ts
 T

ha
t H

av
e

Z
er

o
IP

 ID

Month

TCP SYN/ACK Segments
TCP RST or TCP FIN Segments

Other Packets

(b) When Captured by sampFigure 3.7: Pakets With Zero IP ID

110Another subset of the tra� where there is a high perentage of pakets with zeroIP ID is UDP. Of all UDP pakets, on average 23% have zero IP ID. This meansthat the results obtained from sampling UDP tra� with samp are strongly biased.When using nidz, we will not see 23% of the total UDP tra�.Note that UDP is the main soure of IP ID tra�: 78% of all pakets with zeroIP ID are UDP.Systemati SamplingThe long-term traes also present evidene of systemati sampling (E�et 1).Figure 3.8 (top) shows an histogram of the paket IP IDs for the tra� apturedby rnd. The distribution of IP IDs is uniform, with the exeption of the IP ID =0 point, due to the existene of diverse ZERO staks. The bottom �gure shows thesame histogram, but for the orresponding samp trae.We an see a strong bias in several values. Every vertial, standing-out �line�of values orresponds to a series of pakets from the same (large) onnetion. Thereason of having 16 equidistant lines is that our sampling rate is 1:4096, whih in65,536 values implies 16 sampled ones.The same systemati sampling e�et an be seen in a di�erent way. Figure 3.9shows the life of a given large onnetion (atually the biggest one in its trae). Thetop �gure shows the onnetion as sampled by rnd, while the bottom �gure showsthe same onnetion as sampled by samp.

111

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000 40000 50000 60000

N
um

be
r

of
 P

ac
ke

ts

IP ID(a) rnd

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 10000 20000 30000 40000 50000 60000

N
um

be
r

of
 P

ac
ke

ts

IP ID(b) sampFigure 3.8: IP ID Distribution for the 2004/01/15 Trae

112Every point in the trae represents a paket, with the x axis showing its IP ID,and the y axis representing its timestamp. The line stithing all the points togetheris stritly inreasing in the y axis. In other words, it is a time line. We an see thestrong systemati 1 in N e�et in the samp-aptured onnetion. Almost all paketsin both graphs are 1500-byte long.As an interesting side e�et, the same systemati sampling bias an be seen in thereverse path. In this ase, all reverse-path pakets are 40-bytes long.Figure 3.10 shows the same e�et as Figure 3.9, but for the reverse path.Finally, this aliasing produes aliasing in the time domain. We analyzed theinterpaket timing for the same onnetion (Figures not shown). While the timingdistribution in the ase of pakets aptured by rnd is entered very lose to zero, thedistribution in the ase of pakets aptured by samp is bimodal, with one mode inzero and the other lose to 0.5 seonds. This re�ets the fat that 1 paket in 4096 isbeing systematially sampled, so therefore the onnetion bandwidth is lose to 8192pakets per seond.3.6.3 ConlusionsThe main onlusions on omparing rnd and samp or nidz are:
• E�et 1: Beause of the prevalene of CONSECUTIVE staks, most largeonnetions are sampled systematially by samp, instead of randomly. Systematisampling redues the variane on the amount of tra� aptured by samp,

113

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(a) rnd

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(b) sampFigure 3.9: Timeline for Biggest Connetion in 2004/01/15 Trae

114

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(a) rnd

 200

 250

 300

 350

 400

 450

 500

 0 10000 20000 30000 40000 50000 60000

tim
e

(s
ec

)

IP ID(b) sampFigure 3.10: Timeline for Biggest Connetion in 2004/01/15 Trae (Reverse Path)

115introdues intertiming bias, and may present problems when the property beingmeasured is periodi, and the sampling ratio is near its period [Lohr, 1999℄.Systemati sampling is typially symmetri, a�eting both diretions of a �ow.
• E�et 2: Beause of the existene of ZERO staks, some subsets of tra� arealiased by samp. This aliasing an be positive (all the pakets in the subsetare aptured by samp), or negative (no pakets in the subset are aptured bysamp).As the sampling ratios used are normally very small, negative aliasing is unommonand its e�et steady but not very important (samp aptures slightly less tra�than what it should). Positive aliasing is extremely unommon, but whenit happens, its e�et an hange signi�antly the amount and pro�le of theaptured tra�.Positive aliasing an be �xed by using nidz instead of samp.Aliasing may be asymmetri: One should use aution when drawing onlusionsbased on a single onnetion.
• E�et 3: Beause of the seletive use of ZERO staks, sampling of some subsetsof the tra� is biased. This inludes at least TCP ontrol segments and UDPtra�.These three e�ets are not a risk, but a reality. From experiments in a realenvironment, we an onlude how well samp and nidz perform, and where they an

116be trusted and where not.The bene�ts of using samp and nidz are:
• The total amount of aptured tra� by samp is very similar to rnd, just1% lower [All perentages refer to pakets. Byte di�erenes are typially evensmaller.℄ The total amount of tra� aptured by nidz is also very similar, just2% lower.
• nidz (samp plus eliminating all pakets with zero IP ID) does a good job of�xing positive aliasing problems. Negative aliasing problems annot be �xed.The drawbaks of using samp and nidz are:
• TCP SYN/ACK sampling (and to a small degree TCP FIN or RST sampling)is �awed. One should not draw onlusions based on TCP ontrol segments.
• UDP sampling is �awed. One should not draw onlusions based on UDP tra�.
• Using nidz biases against some Operating Systems that set the IP ID to zeroin ertain environments.
• Paket inter-timing is �awed. (This is probably irrelevant in sampled tra�anyway.)

1173.7 State AdditionThe seond modi�ation onsists of the introdution of state in the paket �lter.We extend the paket �lter pseudo-mahine arhiteture to inlude a persistent memoryunit, whih permits storing and reovering information between di�erent pakets.We provide �ne-grained aess to this memory unit, using both BPF paket-�lterprograms, and the standard devie ontrol interfae.3.7.1 Related WorkThe idea of adding some sort of persistent (inter-paket) state to BPF is not new.Our approah di�ers from previous work in the generality of the persistent-statemanagement apabilities.MPF and mmdump are ad-ho solutions to spei� problems. MPF uses persistentstate to math fragments to �ows, and therefore dispath fragments only to interestedappliations [Yuhara et al., 1994℄. mmdump uses persistent state to keep multimediasession statistis [van der Merwe et al., 2000℄.xPF [Ioannidis et al., 2002℄ and FPL [Cristea and Bos, 2004℄, on the other hand,provide generi memory aess (read and write). xPF keeps the BPF ISA, augmentingit. Its goal, nevertheless, is to provide a generi engine for exeuting monitoringappliations, and therefore it provides a di�erent, more generi high-level language toexpress �lters. One of the e�ets of the added generality is that branh restritions areeliminated, and therefore the �lter exeution time is not impliitly bounded anymore

118by the �lter program length.FPL hanges both the high- and low-level �lter languages, instead using generi-purposelanguages. Considering that the operation of paket �lters onsists of the kernelrunning user-provided ode, FPL introdues seurity- and performane-related issues(Setion 3.3.1).3.7.2 Persistent State AdditionOur approah keeps both the BPF ISA and the high-level language (tpdumpexpressions). We keep the same tpdump expression language, whose programmingmodel is easy to understand, popular, and at the same time well-suited for the paket�ltering operation. We extend both languages, by adding primitives that permitaess to the persistent memory.Assoiative ArraysThe most ommon requirements for persistent memory in the ontext of paket�ltering are the storage and retrieval of information assoiated with a subset of thepaket �elds. We believe these requirements an be ful�lled by providing a set ofassoiative arrays, whih an be aessed using a subset of the paket �elds as thekeys.An assoiative array (also known as map, lookup table, or ditionary) is a datastruture that assoiates keys with values. Operations available in assoiative arrays

119inlude (a) lookup, whih returns the value assoiated with a key, if present; (b)insert, whih adds a {key,value} tuple to the table; and () delete, whih erases thetuple assoiated with a key, if present.Assoiative Array Usage ExamplesLet's desribe some examples of paket-�lter programs taking advantage of assoiativearrays.The �rst ase is onnetion �ltering. Appliations may want to manage informationon a per-onnetion basis. A ommon ase is performing onnetion sampling, wherethe deision to sample a paket or not is the same for all pakets belonging to thesame onnetion.Connetion sampling an be implemented using an assoiative array whose keyis the 5-tuple (104-bit) that de�nes a onnetion (soure and destination addresses,transport-layer protool, and soure and destination ports), and whose value is a 1-bitlong quantity that, when interpreted as a Boolean value, deides whether pakets fromsuh onnetions must be aptured.The operation of suh implementation of onnetion sampling is simple. Onreeiving a paket, the paket �lter heks the onnetion-sampling assoiative array.Then, it reads the bit value, and depending on the value, deides to �lter in the paketor not.Fragment �ltering an also be implemented using assoiative arrays. The problem

120with �ltering fragments is that those that are not the �rst one in a fragment series donot arry transport headers. Therefore, any �ltering that relies in transport headerinformation annot be applied to them.A possible solution is to store the transport header of the �rst fragment in a series(or at least some of its �elds, for example both the soure and the destination port)in a fragment table, indexed by the soure address, destination address, and IP ID�eld. When reeiving the �rst fragment in a series, its soure and destination portare stored in the table, indexed by the paket's soure and destination address andIP ID �eld. When reeiving a fragment di�erent from the �rst one in a series (i.e.,without transport header), the paket �lter will get both ports by querying the table.This table does not help in the ase of out-of-order fragments. In this ase, the�ltering deision an be moved from the paket �lter to the appliation itself.Another example of the usage of assoiative arrays is IP address tables. Thesetables an be used, for example, to implement lists of interesting (whitelists) anduninteresting (blaklists) hosts in an e�ient and dynami fashion. On reeiving apaket, the paket-�lter heks the paket address in the whitelist and blaklist hoststable. If the host address is in the �rst table, the paket is aptured. If the hostaddress is in the seond table, the paket is rejeted.

121Why Not Generi BPF?Note that generi BPF has the required funtionality to implement the threeexamples mentioned before. As an example, let us onsider the address whitelistexample. It is possible in BPF to implement a host whitelist by using as a �lter thedisjuntion of several � (host = host_address)� primitives (one for every host in thelist).There are two problems with this approah, namely e�ieny and dynami aess.The e�ieny problem is due to the sequential nature of the operation of BPF �lters.In order to run a plain BPF �lter storing primitives for N host addresses, the BPFengine must run the N primitives in sequential order, until it �nds a math or it�nishes. Therefore, its running time is O(N).The dynami aess problem relates to the stati nature of BPF �lters. If anappliation needs to make any hange to its �lter (either add a new primitive ordelete an existing one), it must reate the new �lter from srath: write the tpdumpexpression, ompile and optimize it, and then send it to the kernel, so that the latterheks and installs it. This an take a long time when the number of primitives islarge.Both problems mean that BPF does not sale to more than a few hundreds ofprimitives. In omparison, looking up an address in a ditionary takes O(1) time,and there is no ompile ost to add or delete a new address.

122Assoiative Array RequirementsThe examples above introdue several requirements for the funtionality of theassoiative arrays:
• arbitrary-length values: As shown in the examples, the values stored in theditionary may have di�erent sizes. In some ases, appliations need only adeision on whether the paket will be aepted or not. This requires just 1 bitper value. In the fragment dispathing ase, appliations need two transport-layerports, whih require a 32-bit value.
• arbitrary-length keys: Keys used to query the ditionaries may also have di�erentlengths. In our examples, we have seen ases from 32 bits, in the ase of IPaddresses, to 104 bits, in the ase of per-onnetion �ltering.
• multipliity: Appliations may need several ditionaries, with di�erent key andvalue widths. A one-size-�ts-all ditionary using the largest key and valuewidths would be too ine�ient.
• arbitrary-length size: The kernel must keep state for all the ditionaries of apaket-�lter appliation. Appliations should be able to deide the size of theirditionaries.

1233.7.3 Persistent State DesignOur extension to add state to BPF onsists of inluding a number of set-assoiativehash tables. We add to every BPF devie a set of hunks of memory, whose size isdetermined on initialization by the user, and whih are aessible as hash tablesthrough some basi primitives.Design Spae and AppliabilityThe design spae of the hash tables presents several alternatives that in�uenethe appliability of the persistent state addition to di�erent senarios.The �rst issue is whether the size of the tables must be fully dynami (growingwith eah new entry), �xed, or �xed but resizable. Dynami-sized tables are de�nitelymore �exible, but they introdue potential seurity hazards. For example, onsiderthat the hash tables are used by a seurity monitoring appliation (e.g., a NetworkIntrusion Detetion System, or NIDS), whih reates state for every onnetion itsees. As the size of the memory alloated by the NIDS grows as a funtion of networktra� (the number of onnetion seen), this an be used by an attaker to inreasethe NIDS footprint, ausing it to eventually rash. This is ompliated by the fatthat, in order to run e�iently, BPF must be run in privileged (kernel) mode. Thismeans that an attaker ould rash not only the NIDS, but also the host in whihthe NIDS runs.An intermediate approah is to used �xed-size tables, but with the possibility of

124on-demand resizing. This is, for example, the approah used by Bro [Paxson, 1999℄.Bro dynamially resizes its internal hash tables when their hash buket hains exeeda ertain average length [Dreger et al., 2004℄. Resizing a table requires to opy allpointers from the old table to the new one, whih an take hundreds of milliseondsfor large tables. Bro resizes its tables inrementally, keeping both tables for a while,and opying only a few pointers per new paket [Dreger et al., 2004℄.The seond issue is whether false false negatives are allowed. False negatives areby-produts of the limitation in table sizes. If the hash table size is �xed, one it isfull, the only way to deal with new insert requests is by eviting old entries. Thismay reate false negatives, for example, when information on a given onnetion hasbeen evited from the tables beause of apaity onerns.For example, let's onsider a table used to trak suspiious onnetions. Anattaker ould take advantage of the table �xed size by reating multiple fake onnetions,inreasing the table oupation until its has to evit entries. If she manages to ausethe table to evit the entry orresponding to the onnetion she does not want to betraked (the ulprit onnetion), she is in e�et hiding the ulprit from monitoring.The problem is made worse if �nding whih entries ause the evition of a givenentry is an easy task. This means that the number of fake onnetions the attakerneeds to reate in order to evit the ulprit entry is the table assoiativity [Crosbyand Wallah, 2003℄.A better approah involves the use of strong hash funtions in the table layout.

125If it is not possible to know whih entries will ause the ulprit entry to be evited,the only approah left for the attaker is brute fore, i.e., adding a number of entriesomparable to the table apaity, with the hope that the ulprit one will be eventuallyevited. Combined with a random evition mehanism, this ensures the attaker isnot able to deterministially ontrol the ontents of our tables.The last issue refers to false positives. In order to maximize the use of the thespae alloated for the tables, and espeially if the key used is large (e.g., the 104 bitsused by the traditional 5-tuple onnetion de�nition), there is the possibility of storinga hash of the key, instead of the full key. For example, instead of the 104 bits, weould store a 32 bit hash of it.This works �ne as long as the oupation of the original key spae is sparse (whihis the ase, for example, of the 104 bit onnetion de�nition). If the hash funtionis strong enough, it ensures that the probability of 2 onnetion keys hashing tothe same 32 bit value (a false positive, in whih a onnetion is dealt with as if itwere another) is marginal. Another disadvantage of storing the hash value is that weannot know the real key of the table entries, just its hashed value.Our approah is to use �xed-size tables, and to give the user full ontrol overwhether the original keys or a hashed version of them are stored as table entry keys.Note that, in any ase, the interfae (API) provided by the BPF state additionskeeps the same. A possible addition is to add on-demand resizing. This ould beeasily added by relying in the urrent table size iotl funtion (see Table 3.5).

126The reason to hoose hash tables between the di�erent assoiative array struturesavailable, and this partiular design spae point, is that the tables have O(1) averagelookup time, regardless of the number of objets in the table.3 Moreover, this lookuptime is not a�eted by resizing.We expet that some of the tables will have a very large number of tuples, whihmakes average lookup time an important metri.Hash tables provide 4 di�erent aess funtions:
• �lookup: {table, key} → T/F�: lookup a key in a given table.
• �retrieve: {table, key} → value�: retrieve the value assoiated with a key in agiven table.
• �insert: {table, key, value}�: insert the {key,value} tuple in a given table.
• �delete: {table, key}�: delete the tuple assoiated with a key in a given table.In our paket-�ltering senario, we expet lookup to be the most ommon of thefour operations.Probabilisti Collision ResolutionOne of the main issues when designing hash tables is ollision resolution. In a hashtable, a �ollision� is de�ned as the ase where the keys of two inserted {key,value}tuples hash to the same position in the table.

3In omparison, for example, self-balaning binary searh trees have O(log n) average lookuptime.

127As a generi hash table does not know the keys in advane, perfet hashing isnot possible, and ollisions may our. From the di�erent approahes used to solveollisions, we have hosen probabilisti set-assoiative hash tables over haining oropen addressing.Chaining (assoiating with eah position a list of slots where tuples are stored) hastwo main drawbaks. First, it requires a memory alloator that is driven indiretlyby a user appliation (tra� direted to the appliation), and that auses the liststo grow, potentially unbounded. This presents seurity onerns, as the tables areloated in the kernel. Seond, worst-ase performane is O(n) instead of O(1). Notethat this is an e�ieny onern, but also a seurity one: Worst-ase behavior maybe due to either degenerated workloads or algorithm omplexity attaks [Crosby andWallah, 2003℄.Open addressing (resolving ollisions by setting a mehanism to look in alternateloations of the table for a given key) has two main e�ieny drawbaks. First,deleting elements may be very ostly, as it ould require reorganizing the full table.Seond, worst-ase performane is also O(n) instead of O(1).Probabilisti hashing resolves ollisions by eviting tuples. In the simplest ase,a given tuple an be loated in just one position in the hash table. This means thattwo tuples {Ka,Va} and {Kb,Vb} that ollide annot be in the table at the same time.If we want to insert {Ka,Va} in the table, an {Kb,Vb} is already inserted, we must�rst evit the latter in order to make spae for the former.

128Probabilisti hashing does not require a memory alloator, has a �xed bound in thesize of the stored data, and keeps an O(1) worst-ase behavior. It ompletely avoidsthe seurity onerns assoiated with unbounded table sizes by �xing the amount ofmemory used by eah paket �lter.The main tradeo� of probabilisti hash tables is that they may produe falsenegatives. In the previous ase, if we lookup the tuple {Kb,Vb} after it has beenevited, it will not be found.In order to limit the amount of evited tuples, we introdue assoiativity into thehash table. In a w-way assoiative hash table, the table entries are lustered in groupsof w onseutive positions. A tuple is inserted in the emptiest entry of the group towhih it hashes (ties are broken arbitrarily).Assoiativity dereases the probability that a ollision auses an evition, as the
w entries in a group must be full before there is an evition. On the other hand, thelookup funtion must hek all the entries in every group, and therefore the lookupperformane is O(w) instead of O(1).Bloom FiltersThe seond issue is spae use, and therefore relates only to e�ieny. Hash tablesused in paket �ltering proesses typially have keys wider than the values they index.This means most of the hash table data bu�er must be used to keep the keys. Forexample, onnetion sampling tables require 104 bits of key spae for every bit of

129value spae.A related issue is the fat that the urrent BPF Virtual Mahine registry isomposed of only two 32-bit registers, whih makes it very hard to implement operationsthat involve more than 32 bit items.To address both issues, our solution proposes a more e�ient approah, whihsaves spae by keeping a hash value of the key instead of the full key. This is a speialase of a Bloom �lter [Bloom, 1970℄, where a) the number of hash funtions is k = 1,and b) we use an array of 2v di�erent values (where v is the width of the values)instead of an array of bits. Note that the latter is possible beause k = 1.This data struture may result in false positives, i.e., returning a result when thequeried key is not in the array. Consider two keys Ka and Kb, mapped to the values
Va and Vb respetively, whih hash to the same hash value Ha. Consider also that thetuple {Ha, Va} is stored in the table. A lookup query for Kb will return Va instead of
Vb. The operation of the �nal data struture is shown in Figure 3.11. The originaltuple {Ka, Va} is transformed into a narrower tuple {Ha, Va}, where Ha = h1(Ka).The redued tuple is inserted into a probabilisti hash table using a seond hashfuntion, h2().Note that, in order to avoid lustering e�ets in the hash table, it is enough forthe �rst hash funtion (h1()) to ause as few ollisions as possible. For the seondhash funtion, h2(), we use a simple mod funtion.

130
Ka HaVa Va

h1 h2

Ha Va

Figure 3.11: Data Struture Used as Assoiative ArrayHash FuntionsFor the �rst hash funtion, h1(), we provide three options:1. Linear Congruential Generator (LCG): LCG is a simple hash funtion. Thereason for providing this hash funtion instead of permitting the appliationto build it by itself is the lak of the modulus operator in BPF. On the otherhand, it is prone to to worst-ase behavior with either degenerated workloadsor algorithm omplexity attaks [Crosby and Wallah, 2003℄.2. Message Digest (MD5) [Rivest, 1992℄: MD5 is a ryptographi hash funtion. Itis slower than the LCG-based funtion, but it provides pseudo-random values.3. Universal Hash Funtions (UHASH) [Carter and Wegman, 1979℄: UniversalHash Funtions provide less strong guarantees than ryptographi hash funtions,but are muh faster.

131Programming ModelWe provide two methods to aess to the memory unit, namely the standarddevie/soket ontrol mehanism, and diret aess via BPF paket-�lter primitives.The �rst method is fairly straight-forward. The user appliation makes requeststo the kernel by alling the iotl funtion in the BPF devie desriptor (setsokopt inthe soket �lter when the Operating System uses the soket API to implement BPF,as in the Linux Soket Filter ase). The kernel aptures suh requests, and honorsthem.Tables 3.4 and 3.5 show the iotl list for on�guring and aessing the hashfuntions and the hash tables, respetively. (Note that BIOCSHTSIZET an only beused at initialization time.)ommand explanationBIOCSHFLCGSEED set the LCG hash funtion seedBIOCGHFLCGSEED get the LCG hash funtion seedBIOCGHFLCG get the LCG hash value of a keyBIOCSHFMD5SEED set the MD5 hash funtion seedBIOCGHFMD5SEED get the MD5 hash funtion seedBIOCGHFMD5 get the MD5 hash value of a keyTable 3.4: iotl API to the Hash FuntionsThe seond method permits diret aess to the hash funtions and tables fromthe BPF program itself.To aess the hash funtions, we provide two new tpdump primitives, namelyhash_lg and hash_md5. Both of them aept a variable number of arguments, andreturn the hashed value of the onatenation of all the arguments. The �rst one uses

132the LCG hash funtion, and the seond one uses the MD5 hash funtion.To aess the tables, we provide four new tpdump primitives, namely lookup,retrieve , insert , and delete. They implement the hash tables funtions of the samenames.The two query-only primitives are relatively easy to integrate in a omplex paket�lter. For example, the following �lter an be used to perform TCP onnetionsampling.(lookup(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄))) or(lookup(0, hash_lg(ip[16:4℄, ip[12:4℄, tp[2:2℄, tp[0:2℄)))This �lter alulates the hashed value of the key formed by the 104-bit TCPommand explanationBIOCSHTNUMBER set the number of tablesBIOCGHTNUMBER get the number of tablesBIOCSHTID set the working hash tableBIOCGHTID get the working hash tableBIOCSHTSIZET set the table size (bytes)BIOCGHTSIZET get the table size (bytes)BIOCSHTSIZEA set the assoiativityBIOCGHTSIZEA get the assoiativityBIOCSHTSIZEK set the key size (bits)BIOCGHTSIZEK get the key size (bits)BIOCSHTSIZEV set the value size (bits)BIOCGHTSIZEV get the value size (bits)BIOCSHTDEFAULT set default value when non-existent entryBIOCGHTDEFAULT get default value when non-existent entryBIOCSHTPUT insert a {hashed key,value} tupleBIOCGHTGET lookup a hashed key, and return the orresponding valueBIOCSHTREM mark the entry assoiated with a hashed key as invalidTable 3.5: iotl API to the Hash Tables

133onnetion tuple (note that the IP protool in this ase is set to the TCP number),and uses it as the key to lookup the orresponding value in table 0.The other two primitives (insert and delete) are harder to integrate in useful �lters:they modify the tables, and typially they must be run only in a small perentageof the paket �lter runs, when some ondition holds. For example, in onnetionsampling, an insert operation may only be arried out when the �rst paket of a newonnetion is seen. Conversely, a delete operation will only be arried out when thelast paket of a new onnetion is seen.Note that this works provided that tpdump expressions are evaluated left-to-right.This may not be always the ase, as the BPF optimizer that translates the high level�lters into BPF programs has omplete freedom to reorder the former [MCanne andJaobson, 1993℄. Our approah depends therefore on limiting the reordering �exibilityof the optimizer.One primitive reordering has been forbidden, tpdump expressions provide alimited form of �ow ontrol by onsidering the left-to-right evaluation order of �lters.The way to ahieve onditional evaluation of a primitive is by setting a �lter omposedof the onjuntion of the ondition and table aess primitives, in this exat order.If the ondition primitive is not true, the onjuntion is also false, and therefore theseond primitive need not be evaluated. If the ondition is true, the onjuntion istrue or false depending on the seond primitive (the state-modifying primitive).As an example, the following �lter performs random onnetion sampling, so that

134all the pakets in one in four onnetions are aptured.(lookup(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄))) or(lookup(0, hash_lg(ip[16:4℄, ip[12:4℄, tp[2:2℄, tp[0:2℄))) or((tp[13℄ & 18 = 2) and(random(4) = 1) and(insert(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄),1)))The �rst two primitives hek whether the onnetion tuple is already in theonnetion table. The last primitive deides whether pakets from a onnetion areto be sampled or not. It is omposed of three sub-primitives, from whih the �rstone heks for SYN segments (beginning of a onnetion). If it does not hold, thefull primitive is false, independently of the other two sub-primitives, and therefore,the latter are not evaluated. In the same manner, the seond sub-primitive takes arandom deision, whih is true one in four times. If the �rst and seond sub-primitivesare true, then the third one is evaluated, and the tuple information is stored in table
0. As another example, the following �lter ounts TCP per-onnetion bytes.1 (lookup(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄)) and2 insert(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄),3 ip[2:2℄ +4 retrieve(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄)))) or

1355 (lookup(0, hash_lg(ip[16:4℄, ip[12:4℄, tp[2:2℄, tp[0:2℄)) and6 insert(0, hash_lg(ip[16:4℄, ip[12:4℄, tp[2:2℄, tp[0:2℄),7 ip[2:2℄ +8 retrieve(0, hash_lg(ip[16:4℄, ip[12:4℄, tp[2:2℄, tp[0:2℄)))) or9 insert(0, hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄, tp[2:2℄), ip[2:2℄)While looking slightly more ompliated than the previous ones, the �lter is easyto understand: Lines 1-4 hek for the onnetion in the forward diretion (lookupprimitive). If the onnetion is found there, the urrent length in bytes is retrievedfrom the table (retrieve primitive), added to the urrent paket size (ip[2:2℄ primitive),and then reinserted in the table (insert primitive). Lines 5-8 do the same proess butin the bakwards diretion. Line 9 is run if none of the previous primitives are true.It reates a new entry for the paket's onnetion, and inserts the size of the paket.4Finally, we want to remark that this �lter an be installed in the kernel, and runwithout the need for kernel boundary rossings.3.7.4 Implementation of Hash Aess Using BPF PrimitivesHash FuntionsThe implementation of the hash funtions is relatively straightforward. Themain di�ulty is that both hash_lg and hash_md5 may have a variable number of
4We are interested in adding more idioms or keywords in order to make for easier �lter on-strution. For example, we ould use hash_tp_fwd to obtain hash_lg(ip[12:4℄, ip[16:4℄, tp[0:2℄,tp[2:2℄).

136arguments. We add 3 new ALU operation modes to the BPF ISA, namely BPF_HBEG,BPF_HUPD, and BPF_HEND.A BPF_HBEG ALU operation is generated at the beginning of a hash funtion.This operation stores the seed in the A register (for the LCG ase), or resets an MD5internal bu�er (for the MD5 hash ase).A BPF_HUPD operation is generated for every argument in the hash funtion,exept the last one. In the LCG hash ase, this operation stores into the register Athe result of applying the LCG operation to the bitwise exlusive OR of A and thevalue of the argument. In the MD5 ase, it just appends the new argument to theMD5 internal bu�er.A BPF_HEND operation is generated for the last argument in the hash operation.In the LCG ase, the result is the same as the previous operation. In the MD5operation, the last argument is appended to the MD5 internal bu�er, and then theMD5 hash operation is arried out. The �rst 32 bits of the result are opied into theregister A.Hash operations are not re-entrant.Hash TablesThe implementation of the hash tables relies in adding BPF_HASH, a newaddressing mode to the load (BPF_LD) and store (BPF_ST) operations. Withthe new addressing mode, the urrent hash table is aessed using register X as the

137hashed key, and, in the ase of the insert operation, register A as the tuple value.3.7.5 ResultsPerformaneWe are interested in omparing the performane of running a �lter using our hashtable approah to running the same �lter implemented using plain BPF.The trae used for the experiments is omposed of 3 M pakets, adding up to345 MB. It onsists of generi tra� generated by a small set of desktops and laptops(half of the tra� is HTTP) at the International Computer Siene Institute (ICSI).Figure 3.12 ompares the performane of stateful BPF to (original) BPF. In theexperiment, we have set both BPF and stateful BPF to apture only those paketswhose soure or destination address are in a given list (whitelist). The number ofhosts in the list is shown in the x axis. The time taken to proess eah paket isshown in the y axis. The error bars in the BPF ase show 95% on�dene intervals.The whitelist implementation in the BPF ase onsists of setting one primitive ofthe form �or host hostname� for eah host. The implementation in the stateful BPFase uses one of the hash tables. The average time to aess one element in the hashtable is 1.827 us.If the whitelist ontains 12 hosts or more, the stateful BPF approah is fasterthan original BPF. In operational environments, blaklists with more than hundredsor thousands of addresses are not unommon.

138

 0

 5

 10

 15

 20

 25

 30

 0 20 40 60 80 100

tim
e

re
qu

ire
d

to
 fi

lte
r

a
pa

ck
et

 (
us

)

number of addresses in whitelist

Original BPF
Stateful BPF

Figure 3.12: Performane of Stateful BPF versus BPFFigure 3.13 shows the time required to ompile a whitelist �lter in the BPF ase.Compiling a full �lter is required every time a new host is added to or deleted fromthe list. The ost does not exist in the stateful BPF ase.AssoiativityWe are interested in understanding and measuring the in�uene of assoiativityin the probability of false negatives.Consider a table omposed of N entries. In this table, we insert m items (tuples),in the order they arrive. When an item arrives, the entry where it will be insertedis deided randomly. If another item was already oupying the frame, it is evited.This is the traditional �balls-and-bins� problem.

139

-10

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300 350 400 450

tim
e

re
qu

ire
d

to
 c

om
pi

le
 a

 fi
lte

r
(s

ec
)

number of addresses in whitelist

BPF

Figure 3.13: Time Required to Compile a New Whitelist Filter in BPFIn order to add assoiativity to the problem, we inlude a third parameter to theproblem, w, whih is the assoiativity of the table. The operation desribed aboveorresponds to the ase w = 1.When w > 1, the N frames in the table are assoiated in N/w groups of size weah. When an item arrives, one of the groups of frames is hosen randomly.We want to know, for a given N , m, and w, a) the average number of evitions,and b) the probability that there will be an evition.We know that, for a given N , m, and w, we have N/w groups. Consider the jthgroup. We de�ne the random variable Xj to be the number of items in frame j afterthe experiment. We know that Xj ∼ Bin(m, p), where p = w/N .We assume that the distribution of the number of items in a given group is Xj ∼

140
Poisson(λ), where λ = mp = mw/N . This way we an treat the group loads asindependent, identially-distributed (IID) random variables.5We know that E[Xj] = λ.We de�ne the random variable Nj to be the number of evitions in Xj. We knowthat:

Nj =

0 if Xj ≤ w

1 if Xj = w + 1

2 if Xj = w + 2

...

m − w if Xj = mThe number of items evited in the jth frame is Nj = Xj − w, exept:
• when Xj = 0, Nj = (Xj − w) + w,
• when Xj = 1, Nj = (Xj − w) + w − 1,
• when Xj = 2, Nj = (Xj − w) + w − 2,
• · · ·

• when Xj = w − 1, Nj = (Xj − w) + 1,
5Note that Xj are de�nitely not IID. For example, if we know the value of all the random variablesbut the last one, the last one is ompletely determined. [Mitzenmaher and Upfal, 2005℄ disussesthe appliability of this approximation.

141Therefore, the average number evited items in the jth frame is:
E[Nj] = (E[Xj] − w) + wP (Xj = 0) + (w − 1)P (Xj = 1) + (w − 2)P (Xj = 2) + · · · +

+1P (Xj = w − 1)

= λ − w +
w

∑

i=0

(w − i)P (Xj = i) = λ − w + eλ

w
∑

i=0

(w − i)
λi

i!We de�ne the random variable M to be the total number of items evited. Weknow that M =
∑N/w

j=0
Nj, and therefore:
E[Nj] =

N

w
λ − n + eλ

w
∑

i=0

(w − i)
λi

i!Table 3.6 shows some values of E[M] for small values of w.
w E[M]
1 λ − 1 + eλ

2 λ − 2 + eλ(2 + λ)
4 λ − 4 + eλ(4 + 3λ + 2λ2/2 + λ3/6)Table 3.6: Average Number of Evitions for Small Values of wFigure 3.14 shows the number of evitions for a table with N = 100 and N = 10000entries, for di�erent values of w and m. The solid lines orrespond to the theoretialresults. The non-solid lines show the experimental results.If the table is lightly loaded, we are also interested in the value of the table

142

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 c

ol
lis

io
ns

total entries

w=1
w=2
w=4
w=8

w=16

(a) N = 100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
r

of
 c

ol
lis

io
ns

total entries

w=1
w=2
w=4
w=8

w=16

() N = 10000Figure 3.14: Theoretial and Experimental Number of Evitions

143oupany (m/N) when evitions start happening.It an be shown that:
P (no evition) =

[

e−λ

w
∑

0

λw

w!

]N/w

The average number of tuples required to start having ollisions orresponds tothe median m̄, i.e., the value of m that auses P (no evition) = 1/2. Unfortunately,the expression is not easily simpli�ed. We have instead run some experiments forsome values of N , m, and w.Figure 3.15 shows the experimental probability of at least an evition happen, fora table with N = 100 and N = 10000 entries, for di�erent values of w and m.3.7.6 AppliationsWe envision several uses for this extension. First, we an implement Shuntingwithout the need of a hardware devie (see Chapter 4).Seond, we are interested in providing the ability of whitelisting and blaklistinghosts in very large numbers (thousands) whih, as we have seen in Setion 3.7.2, isnot possible to do e�iently in urrent BPF.Another main use is TCP onnetion sampling. We want to provide appliationswith the ability to randomly sample TCP onnetions, i.e., to sample all pakets from

144

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

pr
ob

ab
ili

ty
 o

f c
ol

lis
io

n

total entries

w=1
w=2
w=4
w=8

w=16

(a) N = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

pr
ob

ab
ili

ty
 o

f c
ol

lis
io

n

total entries

w=1
w=2
w=4
w=8

w=16

() N = 10000Figure 3.15: Experimental Probability of an Entry Evition

145a random sample of onnetions.Some researhers propose to perform onnetion or IP-pair sampling by relyingonly in plain BPF apabilities [Dreger, 2004℄. The idea is to use as �lter somethinglike �(ip[12:4℄ xor ip[16:4℄ xor tp[0:4℄) mod P = R�.6[Moore et al., 2003a℄ desribes a similar idea in a di�erent senario: load-balaningtra� between several network monitors. The authors propose (a) to use only thesoure and destination IP addresses, and (b) to hash the result of the xor using a
P -valued hash funtion.This �lter onatenates the 104-bit onnetion using the xor operation (the IPprotool is set to the TCP number), alulates the modulus with a prime number (Pin this ase), and then piks one of the residues (R). The prime number is the inverseof the sampling ratio.The main appeal of this approah is simpliity. As in the ase of the sampapproah to paket random sampling, it an be run in any BPF-based arhiteture.The main drawbaks of this approah are, �rst, stati behavior: Appliations mustdeide whih onnetions will be sampled when installing the �lter. Seond, a lakof �exibility: Appliations annot pik spei� onnetions to be sampled. Third,potential existene of bias: The sampling is neither random nor uniform. The residuedeides whih onnetions will be �ltered in, so this is atually deterministi sampling.Moreover, [Dreger, 2004℄ does not deal with fragments, while [Moore et al., 2003a℄

6Note that this is the logial �lter. The real �lter is slightly more ompliated, as BPF has noxor, mod, or bitwise negation operations, and as onnetion sampling must inlude pakets going inboth forward and bakward diretions.

146presents a strong aliasing, as all onnetions between two hosts are sampled the sameway.Other uses for the stateful approah inlude:
• In-kernel ount of bytes per onnetion (already suggested).
• Capture of tra� from protools that use ontrol and data onnetions. Atraditional operation mode in this type of protool reates a ontrol onnetion,whih is spei�ed by seleting a standard port, and one or more data onnetions,whih are negotiated dynamially in the ontrol onnetion. Therefore, dataonnetions annot be spei�ed in advane. This is the ase, for example, forFTP [Postel and Reynolds, 1985℄ and some multimedia protools [van der Merweet al., 2000℄.The ase-example is FTP transmissions. If an appliation is interested inexpliitly apturing FTP data onnetions, it may do so by apturing all paketsorresponding to the standard FTP ontrol port, or whose onnetion has beeninserted into a hash table.The appliation requests and analyzes the ontrol onnetion ontents. As soonas it gets an FTP ontrol paket that spei�es an FTP data onnetion, itadds this onnetion to the hash table. Pakets from the data onnetion willsubsequently be aptured.Note that this mehanism may reate rae onditions between reognizing the

147negotiation and modifying the hash table.Note also that this mehanism an also be applied to expliitly rejet dataonnetions. This an be useful for operational purposes. An example ismonitoring systems foused on ontrol onnetions where reeiving the ontentsof data onnetions may impose an overwhelming load on the appliation.
• Dynami �lter ontrol. We an use generi tables to use information that willbe read for eah �lter run. The ontents of suh tables are updated by the user,whih produes an arbitrary state BPF.An example of dynami �lter ontrol is dynami random sampling. Considerthe ase of an appliation that is randomly sampling 1 in 5 pakets, using theprimitive �random(5) = 0�. At some moment, the appliation deides that it istoo busy, and that it wants to move to sampling 1 in 50 pakets. We want theappliation to be able to hange the �lter without �ushing the state.This an be implemented by setting one of the hash tables with spae only forone tuple with a 1-bit key and a 32-bit tuple. The sampling primitive will be�random(retrieve(id, 0)) = 0�. This primitive will retrieve the value in positionzero at the hash table with identi�er id, and use it to alulate a random numberbetween 0 and the value. We initialize the table by inserting the tuple {0, 5}.If we want to hange the sampling ratio to 1 in 50, we just need to insert thetuple {0, 50} in the same table.

1483.7.7 Future WorkIn order to redue the number of ollisions and the probability that a givenamount of tuples ause a ollision, we are interested in adding 2-hoie hashing forthe management of hash tables. 2-hoie hashing [Azar et al., 2000; Karp et al., 1992℄onsists of inserting tuples in a table by hashing with 2 hash funtions, instead of only1. The tuple is put in the emptiest entry in the table (ties are broken arbitrarily).The main advantage of 2-hoie hashing is that the tuples are distributed moreevenly among the table entries. In fat, the number of tuples in the fullest entry ina 2-hoie hash table has exponentially less tuples than the fullest entry in a normalhash table with the same apaity [Azar et al., 2000℄.Adding more than 2 hoies to the algorithm improves the e�et of 2-hoiehashing by only a onstant fator [Azar et al., 2000℄. Therefore, we will not onsiderit. The main drawbak of 2-hoie hashing is that lookups get penalized in two ways.First, 2 hash values must be alulated. Seond, 2 positions in the hash table must beheked, instead of one. The seond penalty should be omparable to that in 2-wayset-assoiative hash tables.We have run some experiments for the number of evitions and probability ofthe �rst entry evition for some ombinations of set-assoiative hashing and 2-hoiehashing.Figure 3.16 shows the number of evitions for a table with N = 100 and N = 10000

149entries, for di�erent values of w and m, and for both 1- (i.e., normal 1-funtionhashing) and 2-hoie hashing. Note that lines are laydown top-to-bottom, so theupper line is the one with more ollisions.Figure 3.17 shows the experimental probability of at least an evition happen, fora table with N = 100 and N = 10000 entries, for di�erent values of w and m, and 1-and 2-hoie hashing.The graphis show 2-hoie hashing as a promising alternative: The e�et of
2-hoie, 2-way set-assoiative hashing is similar to that of 8-way set-assoiativehashing. The ost is running 2 hash funtions, and heking 4 entries in the 2-hoiehash table. Compare to heking 8 entries in the 8-way set-assoiative hash table.
3.8 SummaryCurrent stateless �ltering abstrations are very limited for the purpose of bothpaket- and onnetion-based sampling. This is most unfortunate in an IDS senario.We have developed two new mehanisms, random paket-sampling and statemanagement, to the popular paket apture library (libpap) running on BerkeleyPaket Filter (BPF)-based mahines [MCanne and Jaobson, 1993℄. The main goalis to keep the simpliity (and therefore the performane) of traditional paket �lterswhile inreasing its �exibility.The �rst addition is random sampling. While the implementation is extremelysimple, we want to understand how other approahes that simulate random sampling

150

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

nu
m

be
r

of
 c

ol
lis

io
ns

total entries

w=1
w=2

2-choice, w=1
w=4
w=8

2-choice, w=2
w=16

2-choice, w=4

(a) N = 100

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

nu
m

be
r

of
 c

ol
lis

io
ns

total entries

w=1
w=2

2-choice, w=1
w=4
w=8

2-choice, w=2
w=16

2-choice, w=4

() N = 10000Figure 3.16: Experimental Number of Evitions

151

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100

pr
ob

ab
ili

ty
 o

f c
ol

lis
io

n

total entries

w=1
w=2

2-choice, w=1
w=4
w=8

2-choice, w=2
w=16

2-choice, w=4

(a) N = 100

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

pr
ob

ab
ili

ty
 o

f c
ol

lis
io

n

total entries

w=1
w=2

2-choice, w=1
w=4

2-choice, w=2
w=8

w=16
2-choice, w=4

() N = 10000Figure 3.17: Experimental Probability of an Entry Evition

152perform ompared to true pseudo-random sampling. A ommon approah is to assumeuniform randomness in IP heksum �elds, and sample pakets by masking these�elds. We have run some experiments to evaluate the strengths and weaknesses ofthis sampling method.We have found that, after solving a main weakness, it works �ne in most senarios.This weakness is the soure of randomness in IP headers. The main soure is the IPID �eld. This means onnetions where one of the end hosts uses a zero IP ID (e.g.,some Linux hosts) are normally aliased (either positively or negatively). Even after�ltering out those hosts, we have still found some aliasing e�ets in the ompositionof the sampled tra�.The seond addition is inter-paket persistent state. We provide a set of probabilisti,Bloom-�lter based, set-assoiative hash tables that permit e�ient aess to a �xedhunk of memory. This aess an be arried out through the standard devie/soketontrol mehanism, or diretly using the BPF �lter.The main advantages of the state addition programmingmodel are, �rst, simpliity:We keep the tpdump expression model, and just add ditionaries for inter-paketstate. This keeps the implementation simple, and therefore we do not need to resortto eliminating branh restritions. Seond, spae e�ieny: This omes at the ostof a small probability of both false positives and false negatives. Third, performanee�ieny: Our modi�ations permit stateful paket proessing (for example, randomonnetion sampling) without ever rossing the kernel-user boundary.

153Both approahes introdue a series of new �lter mehanisms, whih provide riher,�ne-grained ontrol and new abstrations to the �ltering proess.As an example of the power of these abstrations, we show a seure and e�ientpaket proessing mehanism to ount per-onnetion bytes that never sends a paketfrom kernel spae to user spae.

�Beware the Ides of Marh.�� WILLIAM SHAKESPEARE, Julius Cesar (I, ii, 33) (1599)

154
Chapter 4
Shunting
4.1 AbstratThis Chapter desribes and motivates a novel arhiteture that permits high-speed,extensive (non-sampled and in-depth), stateful, inline tra� proessing by integratinga simple, ative, hardware devie with a omplex, software, deision engine. The basiidea is that the hardware devie provides simple mehanisms to proess pakets,whih are leveraged by the software deision engine to o�oad work into it. By takingadvantage of the heavy-tailed nature of the proessed tra�, a limited-size hardwaredevie an proess most of the pakets, whih never reah the software deision engine.This way, the software deision engine task gets limited to performing per-paketanalysis on just a small subset of the tra�, and to setting the poliy that drives thehardware devie mehanisms.

155We present an appliation of the Shunting tehnique to monitoring network intrusion.Our implementation permits full, in-depth network intrusion detetion and preventionin Gigabit links. We use a modi�ed version of a Network Intrusion Detetion Systemas the basis of the software deision engine. We provide an evaluation of the behaviorand performane of our implementation. We also desribe the operational experieneresulting from running suh implementation in a real environment.While we use the Shunting arhiteture to arry out intrusion monitoring, weargue that its usefulness is not limited to network seurity. We suggest other possibleuses, inluding tra� aounting, tra� routing, and in general any other paketlassi�ation proess based on onnetions, and whih an take advantage of thearhiteture's simple, generi mehanisms to lassify tra�.
4.2 IntrodutionThis Chapter desribes Shunting. Shunting is a novel arhiteture to performhigh-speed, extensive (non-sampled and in-depth), stateful, inline tra� proessing.We will frame Shunting in the ontext of arrying out Network Intrusion Preventionin high-speed links (1 Gbps and above).Network Intrusion Detetion System (NIDS) and Network Intrusion PreventionSystem (NIPS) are systems that detet maliious network ativity (denial of servieattaks, port-sans, et.) by monitoring network tra� [Mukherjee et al., 1994℄.The main di�erene between NIDS and NIPS is their reation to the detetion of

156suh maliious ativity. While NIDS are passive systems that �re alerts and logattaks, NIPS are reative systems: They respond by bloking attaks, droppingpakets deemed hostile while letting innouous pakets go through.NIPS and NIDS are typially used to defend an organization network from externalattaks. This means they are typially loated in the link that onnets suh anorganization to the Internet.1 This also means they do not provide any defenseagainst attaks against loal hosts initiated by other loal hosts.Inline, rih per-paket monitoring of a high-speed link to detet seurity intrusionsis a resoure-intensive task. Eah paket must be aptured, analyzed, and forwardedif deemed innouous. The analysis part, i.e., deiding whether a paket poses aseurity threat or not, may require a onsiderably omplex e�ort. Operational use in ahigh-volume environment intensi�es the problem by introduing performane-relatedompliations.The straightforward system troubles aused in NIDS by an inrease in the amountof tra� are magni�ed by two other e�ets, namely tra� diversity and state explosion.First, as the amount of tra� inreases, the tra� diversity and the rud in thelink also inrease, whih produes not only more false alarms, but also more diverseones [Dreger et al., 2004℄.Seond, NIDS that want to understand the tra� they are seeing need use state.When reeiving a new paket, a NIDS must onsider it in the ontext of existing
1This zone is typially known as the DMZ, from �DeMilitarized Zone,� a military term thatdesribes a bu�er area between two enemies.

157information on the paket's onnetion. This ontext is obtained from already-reeivedpakets from the same onnetion, whih the NIDS must have stored. Connetion-orienteddependenies not only extend to the past, but also to the future: The NIDS may notbe able to omplete the proessing of a paket until it reeives further tra� fromthe onnetion. This statefulness requirement gets exaerbated by the existene ofattaks based on stak or topology ambiguities [Ptaek and Newsham, 1998℄.In stateful NIDS, the amount of state needed to produe a good snapshot of thenetwork state is proportional to the amount of tra�. This reates an enormous stateexplosion problem.4.2.1 Shunting in a NutshellTo address this problem, we introdue Shunting. Shunting is a new paket proessingarhiteture that provides a software analyzer with a tool to proess tra� at veryhigh speeds. The proessing Shunting o�ers is based in tables, whih while simplehave three main advantages: They an be implemented in fast hardware, they an beprogrammed dynamially, and they provide the right granularity the analyzer needsto proess tra� (namely onnetions, addresses, and ports).The basi idea of Shunting is to have a simple-but-fast hardware devie thatperforms table lookups as the front-end of a omplex-but-slow tra� analyzer. Tra�is proessed �rst by the hardware devie, whih looks up the paket in its tables, andtakes a very simple deision, namely whether the paket has to be forwarded diretly,

158dropped, or diverted to the analyzer (shunt the paket).The analyzer reeives the shunted tra�, proesses it, and maybe reinjets it bakto the devie. The analyzer also updates the ontents of the devie tables, thereforedriving the devie poliy.In order for Shunting to be e�etive, the proessing must be suh that most of thetra� ends up being proessed only by the hardware devie (forwarded or dropped,but not shunted) . This implies that the analyzer physially reeives a muh smallerstream than the one it is proessing.By making the hardware-devie deision mehanism as simple as a table lookupwith a handful of possible yields, we are trading o� simpliity in exhange of temporaland spatial e�ieny, in other words, being able to do very fast lookups, and providingvery large tables, �tting millions of entries.Shunting permits extensive, stateful, inline tra� proessing in several paketproessing senarios, inluding intrusion detetion. The proessing that Shuntingpermits has three properties: First, it is extensive. Shunting does not resort tosampling (unless spei�ally requested by the user), and permits in-depth, rih per-paketanalysis. Seond, it is stateful. The analyzer may store state from the proessedpakets. Last, it is inline. Therefore, it allows performing intrusion prevention (�bumpin the wire� proessing).Shunting is arried out using ommodity PC hardware, and a simple, speial-purposehardware devie.

159Shunting is based on a simple observation: Paket proessing engines may have toperform an intensive analysis to deide how to proess a single paket, but they areoften able to dynamially deide that a subset of all future tra� an be proessedwith minimal, simple analysis. This analysis is automated into a simple, hardwaredevie, where the engine an o�oad work out of itself. This produes the e�etof limiting the resoure onsumption of the engine without reduing the amount oftra� proessed.An example of the aforementioned observation an be drawn from the intrusiondetetion world. Let's assume a NIDS is monitoring the appliation-layer payloads ofan SSH onnetion.The NIDS is the deision engine in the Shunting model. It proesses pakets, anddeides what to do with them. For the NIDS, however, appliation-layer ontents areonly useful until the onnetion gets enrypted. If, at that point, the NIDS is ableto label the onnetion as maliious, the proessing of all the remaining onnetiontra� is as easy as �drop any paket orresponding to this onnetion.� Otherwise, asany further tra� is enrypted, analyzing it is useless for intrusion detetion purposes.The best way to proess all the remaining onnetion pakets is �forward any paketorresponding to this onnetion.�The rest of the hapter is organized as follows: Setion 4.3 introdues the intrusiondetetion problem through a related-work disussion. Setion 4.4 presents Shunting inan in-depth fashion, and justi�es its rationale. It also disusses several appliations,

160inluding intrusion detetion. Setion 4.5 desribes the Shunting design, inludinga preliminary implementation for arrying out intrusion detetion on a high-speedlink. Setions 4.6 presents an evaluation of the Shunting arhiteture. Setions 4.7disusses some future work, and Setions 4.8 onludes.
4.3 Related WorkThis Setion is strutured as follows: Setion 4.3.1 introdues Intrusion DetetionSystems, both Host-Based and Network-Based. Shunting is an arhiteture orientedto the seond type, for whih Setion 4.3.2 provides a taxonomy, and Setion 4.3.3 adesription of some examples, inluding Bro, where we have implemented Shunting.Setion 4.3.4 desribes a fundamental problem in NIDS, namely the existeneof ambiguities. A onsequene of the mehanisms used to deal with ambiguities,espeially in high-speed networks, is the need to manage resoure exhaustion, desribedin Setion 4.3.5. Shunting is a tehnique to help manage resoure exhaustion in NIDS.Setion 4.3.6 desribes researh in NIDS parallelization, whih has a strong in�uenein our work. Setion 4.3.7 desribe the use of hardware support for fast paketproessing, from whih Shunting draws heavily. Setion 4.3.8 desribe the �ne-tuningof the software side of network adapters, whih is omplementary to the previouslymentioned researh.Setion 4.3.9 ompares the Shunting �ltering model with those of traditionalpaket �ltering models.

161Setion 4.3.10 disusses researh in heavy-tailed evidenes in network tra�, andhow it justi�es our hoie of the shunting ations.4.3.1 Intrusion Detetion SystemsThe goal of Intrusion Detetion Systems (IDS) is to detet attaks on omputers.There are two main types of IDS, namely Host-based Intrusion Detetion Systemsand Network-based Intrusion Detetion Systems.Host-based Intrusion Detetion SystemsThe �rst well-known approah for deteting attakers is Host-based IntrusionDetetion Systems (HIDS) [Denning, 1987℄. HIDS run on the end-hosts they areproteting, monitoring suh ativities as session logins [Denning, 1987℄, system alls[Bernashi et al., 2000; Forrest et al., 1996℄, program exeution [Denning, 1987℄,�le aess [Denning, 1987; Pennington et al., 2003℄, et., searhing for anomalousbehavior. A user, program, or system behavior is onsidered �anomalous� when itdi�ers substantially from a �normal� behavior model. The latter an be generatedmanually [Bernashi et al., 2000℄ or automatially [Denning, 1987; Forrest et al., 1996℄,inluding through stati analysis of the program soure [Wagner and Dean, 2001℄.In a seminal work proposing the idea of HIDS, Denning desribed IDEA, a modelof a real-time intrusion detetion expert systems [Denning, 1987℄. Denning's ideaonsists of a set of tools that �rst reates a statistial model of the users' behavior

162(session logins, program exeution, and �le aess), and then tries to detet anomaliesin the atual behavior. Suh anomalies are onsidered a signal of omputer abuse.The HIDS idea is related to the notion of omputer introspetion, in whih asystem or a program develops a model of what it should be doing and/or what itshould not, and tries to identify the latter.Network-based Intrusion Detetion SystemsNetwork Intrusion Detetion Systems (NIDS), on the other hand, try to detetattaks on omputers by monitoring the network [Mukherjee et al., 1994℄. A NIDStypially operates by observing the tra� pakets or onnetions as they �ow throughthe network, trying to detet maliious network ativity, suh as servie attaks orport sans.The best advantage of HIDS, as ompared to NIDS, is that their loation in themonitored host makes them resilient to evasion tehniques based on ambiguities atthe network, transport, and espeially appliation protool [Paxson, 1999; Ptaek andNewsham, 1998℄. In that sense, HIDS enjoy better and broader visibility of the attakthan NIDS: They an see the attak at di�erent stak levels, and therefore resolvethe ambiguities the same way the host does. Finally, their workload is muh smallerthan that of NIDS.HIDS present two main ons. First, they run on the same host they are trying todefend, so the defender (HIDS) is not independent of the defended one (the host). This

163implies that HIDS are, at most, as resistant as the host they defend. Crash or subvertthe host, and the HIDS will beome ompletely useless. To ombat this problem,some researhers propose running HIDS as a Virtual Mahine Monitor (VMM), sothat the HIDS will be isolated from an attak on the monitored host [Gar�nkel andRosenblum, 2003℄.Seond, you must install one HIDS for every host you want to defend, whih notonly is umbersome, but also may inlude porting the NIDS to a wide variety of hosts.In omparison, a single NIDS an be used to monitor networks omposed of severalthousand, heterogeneous, diversely-administered hosts.4.3.2 NIDS TypesThere are three prinipal types of NIDS: anomaly-based, spei�ation-based, andsignature-based NIDS.
• Anomaly-based NIDS (A-NIDS) look for unusual behavior in the network ativity[Gil and Poletto, 2001; Jelena and Greg, 2002℄. They use a database of normalbehavior pro�les, usually adapted to the network they are proteting, plusa set of statistial methods to detet unusual behavior in new tra�. Suhunusual behavior is onsidered a signal of maliiousness. A-NIDS typiallylearn what normal behavior is in an automati fashion, by being trained withnormal network ativity. Inferring automatially what is normal behavior is afundamental feature of A-NIDS.

164
• Spei�ation-based NIDS (Spe-NIDS) are provided with an spei�ation ofwhat is legal behavior, and therefore allowed [Ko et al., 1997℄. In some sense,Spe-NIDS are manual A-NIDS. What is allowed or not is not inferred fromseeing normal tra�, but diretly spei�ed by the user. This makes Spe-NIDSmore reliable than A-NIDS, at the ost of being more labor-intensive. (Thespei�ations must be enoded.) The main advantage of SpeNIDS is that theyare able to detet zero-day attaks.
• Signature-based NIDS (S-NIDS), on the other hand, look for known patterns ofattaks (known as signatures) inside the tra� they are monitoring. They arealso known as misuse detetors, pattern detetors, or paket greppers. S-NIDSuse a database of attak signatures, expressed as onnetion or paket ontents.Tra� is ompared to the database, and if any mathes, it is onsidered a signalof maliiousness.The three NIDS �avors must deal with a tradeo� onerning the tightness oftheir attak de�nitions (normal behavior pro�les in A-NIDS and Spe-NIDS, attaksignatures in S-NIDS). Tighter de�nitions risk missing slight variations of a well-knownattak (false negatives), or misinterpreting slight variations of good-behaved tra�(false positives). Looser de�nitions risk mathing perfetly valid or maliious tra�,therefore inreasing the amount of false positives or false negatives.S-NIDS are typially more preise than Spe-NIDS and A-NIDS. The reason isthat S-NIDS work with signatures, i.e., expliit information of how an attak looks

165like. Assuming the signatures are distintive enough, a math implies strong evideneof an attak. Spe-NIDS and A-NIDS, on the other hand, use deviations of normalbehavior as a proof of malie. This means they may produe false positives when thebehavior of some perfetly valid tra� is unusual enough.S-NIDS are more limited in sope and more stati than the other two. S-NIDShave no means to detet novel attaks, or variations of previously-known attaks, asthey lak a signature for the attaks. Spe-NIDS and A-NIDS, on the other hand,may detet some previously unknown attaks, provided the attak behavior is unusualenough.S-NIDS are more ooperation-friendly. S-NIDS signatures an be desribed in asimple form, whih makes it easy to share them among di�erent NIDS.The last di�erene between the three types of NIDS is the type of informationdeisions are based on. While S-NIDS' tight de�nition of attaks typially limitsthem to paket-ontent or onnetion-ontent grepping, A-NIDS and Spe-NIDS'adaptable de�nition of normality permits them to use more information soures thanjust ontents, suh as inter-paket timing and size [Zhang and Paxson, 2000a℄, addressorrelation [Zhang and Paxson, 2000b℄, tra� meaningfulness [Staniford et al., 2002a℄,host �promisuity�, �ow rates [Jelena and Greg, 2002℄, �ow rate asymmetry [Gil andPoletto, 2001℄, et.

1664.3.3 NIDS ExamplesTwo well-known open-soure (and therefore suitable for study) NIDS are Snort[Roesh, 1999℄ and Bro [Paxson, 1999℄.Snort [Roesh, 1999℄ is a popular, open-soure, Signature-based NIDS. Snort isbasially tpdump with pattern mathing. It aptures a subset of the tra� usinglibpap, and then ompares it to a set of pattern-mathing rules. When any of thepatterns is mathed, Snort raises an alert or logs an event, depending on the rulede�nition.Snort permits speifying unused hosts and ports, and will report ativity on any ofthem. Snort also supports IP fragmentation reassembly, via the frag2 preproessor,and TCP segment reassembly.Finally, Snort supports state timeout poliies to avoid attaks based on stateaumulation.Bro [Paxson, 1999℄ is another well-known open-soure NIDS. It is of speial importanefor this thesis, as we are using it as the network analyzer that drives the Shuntingsystem.Bro is a mixture of Anomaly-based, Spei�ation-based, and Signature-basedNIDS. Bro generates events the re�et the ativity in the network, whih are usedby intrusion detetion-oriented analyzers. In some sense, Bro is a mehanism wheredi�erent poliies (analysis types) an be performed.Bro's basi model onsists of three layers: paket �ltering, event engine, and poliy

167sript interpreter.The �rst step is paket �ltering: Bro uses libpap to speify whih tra� it knowsand wants to analyze, and therefore separate it from the remaining tra�.The seond step is the event engine. The event engine performs analysis of tra�at network-, transport-, and analysis-layer protool, inluding IP defragmentation,and heking that the pakets are well-formed. Upon analyzing the tra�, the eventengine generates a set of events, established at di�erent semanti levels.Table 4.1 shows a list of seleted Bro events.layer event name raise for every · · ·network new_paket new IP pakettransport onnetion_established new full TCP handshaketransport onnetion_attempt TCP onnetion where the origin SYNhas not been followed by a SYN/ACKtransport onnetion_timeout TCP onnetion for whih somerequired ativity has not been seentransport udp_request UDP paket whose port has noappliation-layer analyzer assoiatedappliation http_request new HTTP requestappliation http_reply new HTTP responseappliation ftp_request new FTP ommandappliation ftp_reply new FTP replyTable 4.1: Seleted Bro EventsThe idea of the event engine is to provide a NIDS framework, i.e., a generimehanism where NIDS poliies an be implemented. In that sense, the event engine ispoliy neutral, and it annot be quali�ed as neither Signature-based, Spei�ation-based,or Anomaly-based NIDS. It supports the three of them. Of ourse, the de�nition ofthe events (the mehanism itself) introdues a great deal of shaping in the poliy

168possibilities.The last step is the poliy sript interpreter. Bro de�nes a NIDS-oriented languagethat permits users to speify poliies on what the NIDS should do to respond to anevent. The poliy sript writer an make use of rih data types, persistent state,timers, and external appliations. This way she an inorporate as muh ontext asshe needs in order to deide how to reat to the event, whih an inlude updatingthe state or generating alerts.4.3.4 Ambiguities and Evasion TehniquesA fundamental problem for passive NIDS is the existene of ambiguities in thetra� stream [Handley et al., 2001℄, whih make unlear how to interpret it. Ambiguitiesoriginate beause of three di�erent auses [Handley et al., 2001; Ptaek and Newsham,1998℄:
• Inomplete NIDS: A NIDS must be able to analyze the omplete range of optionsfor every protool.An example of this type of ambiguities is dealing with IP fragmentation. Thisis a umbersome proess, as it requires storing and reassembling fragments inthe NIDS. As a onsequene, some NIDS do not orretly reassemble fragments[Ptaek and Newsham, 1998℄.An example of network-layer, inomplete-NIDS ambiguity is dealing with IPfragmentation. Some NIDS are unable to reassemble IP fragments, or to reorder

169out-of-order IP fragments. Fragmented or out-of-order fragments are thereforeproessed inorretly by the NIDS.An example of transport-layer, inomplete-NIDS ambiguity is dealing withTCP segment reordering: Some NIDS are unable to reorder out-of-order TCPsegments. Out-of-order TCP segments are proessed inorretly by this type ofNIDS.
• Stak-based ambiguities: Some protools spei�ations do not speify theirbehavior exhaustively. As a onsequene, di�erent end hosts behave di�erently.This get ompliated by wrong or inomplete implementations of suh protools.The network and transport protools are the most ommon targets, althoughappliation protools (Layer 7) an also be attaked.An example of network-layer, stak-based ambiguity is inonsistenies in IPfragments. The IP spei�ation [Postel, 1981a℄ does not state what the reeivingside should do when onfronted with two overlapping fragments whose ontentsare inonsistent. Some staks use the ��rst byte ever� priniple, some use the�last byte ever� priniple, and others use a mix. An example of ambiguityrelates to the use of unommon TCP-�ag ombinations. When onfronted with asegment with some spei� TCP-�ag ombinations, some stak implementationsdrop the segment, while others aept it.Some examples of transport-layer, stak-based ambiguities inlude: (a) TCP

170segmentation inonsisteny: The TCP RFC [Postel, 1981b℄ does not state whatthe reeiving side should do when onfronted with two overlapping segmentswhose ontents are inonsistent. Some staks use the ��rst byte ever� priniple,some use the �last byte ever� priniple, and others use a mix. (b) TCP options:Another soure of ambiguities is the use of TCP options, whih are not mandatedby the TCP spei�ation [Postel, 1981b℄. A ase example is the use of PAWS(Protetion Against Wrapped Sequene Numbers) [Jaobson et al., 1992℄. ThePAWS TCP option is a mehanism to rejet old dupliate segments that mightorrupt an open TCP onnetion. If the vitim interprets PAWS and the NIDSdoes not (or vie versa), a arefully rafted segment will be rejeted by thevitim, while aepted by the NIDS.An example of L7 stak-based tehniques is HTTP Request Smuggling (HRS),where di�erent and/or wrong implementations of HTTP persistent onnetionsare used to ause di�erent HTTP tra� views at the end-host and diversemiddleboxes (web ahe, web proxy, �rewall, et.) [Linhart et al., 2005℄. HRSan be used to poison web ahes, evade IDSs, and, when ombined with asript vulnerability in the server, request hijaking at a proxy server.
• Topology-based ambiguities: In some ases, it is the fundamental operation ofan e�ient networking protool whih auses the ambiguities.An example is TTL-based ambiguities. The TTL �eld in an IP paket states

171how many more hops the paket an be forwarded before being disarded. Theobjetive of this �eld is to avoid that routing inonsistenies or mison�gurationsforward pakets around in the network inde�nitely. Routers derement by onethe TTL �eld of any paket they forward. If the TTL �eld reahes zero, thepaket is dropped, instead of forwarded.TTL-based ambiguities our when the NIDS sees a paket whose TTL is smallenough that it may or may not reah the end host.Other topology-based ambiguities relate to (a) path MTU: If the path MTUnarrows between the NIDS and the end host, pakets sent with the �Don'tFragment� bit set to 1 may not reah the end host (it depends on whetherthe paket size is big enough that it does not �t in the narrower path). (b)bandwidth: If there is a slow and ongested link between the NIDS and thevitim, low-priority pakets will be dropped in the path between the NIDS andthe end host.Note that, while inomplete NIDS ambiguities an be solved by reating betterNIDS, stak-based and topology-based ambiguities are fundamental, and NIDS annot get away from them by using pure passive analysis.Evasion TehniquesA problem faed by NIDS is attaks that expliitly target the NIDS. These attaksan be as harsh as overloading or even rashing the NIDS (e.g., Denial of Servie

172attaks), and as subtle as Evasion [Ptaek and Newsham, 1998℄. Evasion is basedon taking advantage of ambiguities. It onsists of an attaker forging data tra�with the expliit purpose of duping and/or attaking the NIDS to evade its detetion.Evasion is today a reality [Song, 2001℄.Evasion tehniques take advantage of the fat that ambiguities in ommuniationprotools may ause the NIDS and a vitim end-host to reat to the same tra� indi�erent ways.Evasion tehniques ome in two �avors, insertion and evasion. An Insertion attakonsists of fooling the NIDS into aepting data the vitim end-host will rejet.Evasion is based on the opposite idea: the NIDS is fooled into rejeting data that thevitim end-host will aept. The objetive in both ases is the same: The attakerwill reate a view on the onnetion data at the NIDS di�erent from that at thevitim.Note that both tehniques an often be used to reate the other. For example, ifan attaker an insert a paket into the NIDS that the vitim host will not see, shean use it to insert a forged RST segment. The NIDS will think that the onnetionhas been torn down. For the NIDS, any further segment from the same onnetion isspurious, and therefore will be not onsidered. In the vitim's eyes, further segmentsare perfetly valid. Therefore, further onnetion pakets are evaded from the NIDS,and inserted into the vitim.The same approah may often be used to turn evasion into insertion. By evading

173an RST segment from the NIDS, an attaker will make the vitim end-host delarethe onnetion losed. The vitim will drop any further paket from that onnetion,whih the NIDS will aept.Interestingly enough, the tehniques that permit evasion tehniques an be usedfor �ngerprinting. Stak-based tehniques are routinely used to �ngerprint hosts(nmap), Topology-based tehniques are used to �ngerprint networks (traeroute).Fighting AmbiguitiesAssuming that it implements all required protool spei�ations, there are severalapproahes to ombat ambiguities:
• Normalization [Handley et al., 2001℄ onsists of introduing an inline networkelement to path up (normalize) the paket stream in order to remove potentialambiguities. As disussed by [Handley et al., 2001℄, there are several issues withnormalization.First, normalizing tra� modi�es the end-to-end semantis of a onnetion.While some modi�ations are probably harmless (dropping inonsistent, overlappingfragments), some a�et perfetly legal, useful tra� (low TTLs are the basis oftraeroute).Seond, normalizing tra� an a�et the end-to-end performane of a onnetion.For example, removing the TCP window sale option dereases the performaneof a TCP transferene.

174Third, the view from a normalizer an be fundamentally inomplete to detetan attak. For example, the semantis of TCP urgent pointers depend on theappliation. If an attaker sends a segment with the text �robot,� with the URGpointer pointing to the 'b' harater, the reeiving end appliation will reeive�robot� or �root� depending on whih options were used to open the soket.Last, normalizing tra� requires keeping state to detet some of the ambiguities.This means an attaker may try to rash the normalizer by instantiating lotsof state. An example is to send multiple, inonsistent IP fragments, but neverompleting a full paket.Shunting an at as a generi inline paket proessor, and therefore serve asa framework for normalization, if the NIDS driving the Shunting arhiteturesupports it.
• Ative-Mapping [Shankar and Paxson, 2003℄ onsists of gathering informationon the hosts omprising the intranet being monitored, and using this informationto solve ambiguities. Ative mapping assumes that the monitored intranetis relatively stable. It generates a pro�le of the way all internal hosts solvestak ambiguities, and the internal network topology (hop ounts and pathbandwidths).When reeiving an ambiguous paket, the ative mapper heks the pro�le ofthe target host, and then deides the exat meaning of the paket. Shankar

175and Paxson report being able to map a single host in 35 seonds with 19 KB oftra�, using just 100 bytes of spae per host.
• Exhaustive Analysis, also known as bifurating analysis, onsists of storingall the ambiguous data, and analyzing the tra� following all the reasonableombinations of the di�erent ambiguity resolutions. This presents an importantproessing problem, as the analysis may grow exponentially with eah newambiguity. It also presents a storage problem, as the state may grow proportionallyto the amount of data in every onnetion.4.3.5 Resoure Exhaustion ManagementOne of the main problems with sophistiated NIDS is resoure exhaustion [Dregeret al., 2004℄. The problem is two-fold: for stateless NIDS, the main problem is CPUload. For stateful NIDS, the problem is state explosion.This problem is made worse when operating NIDS in high-speed environments.Dreger et al. provide some operational experiene when running Bro in Gigabitnetworks [Dreger et al., 2004℄.Two ommon solutions to run NIDS on high-speed environments are state managementand input-volume ontrol tehniques [Dreger et al., 2004℄. They are omplementary:Input-volume ontrol tehniques limit the amount of tra� that the NIDS mustproess, while state management tehniques manage the state reated by the proessedtra�.

176State ManagementState-management tehniques are intended to limit the amount of state kept bythe NIDS [Dreger et al., 2004; Paxson, 1999℄. This inludes using timeouts, �xed-sizebu�ers, ompressing state, and hekpointing.The goal of timeouts is to perform impliit state removal. Some transport protools,suh as TCP, signal the end of a onnetion expliitly in the wire. Therefore, the NIDSan take advantage of a TCP onnetion FIN/RST handshake to safely remove allthe information related to that onnetion. In other words, the NIDS an expliitlyerase the state assoiated to the onnetion. Other transport protools, as UDP, donot signal the end of a session in the wire. Therefore, there is no generi way forthe NIDS to realize an UDP onnetion is terminated, exept for the absene of newdatagrams. The idea of timeouts is to delete state orresponding to onnetions thathave not shown ativity for a while. This also overs TCP onnetions where theRST/FIN segments have been lost.The rationale behind �xed-size bu�ers is similar to that of timeouts: Old state isless valuable than new state, and therefore the NIDS may dispose of it easily. Thedi�erene is that �xed-size bu�ers only evit state when needed. In the �xed-sizebu�ers tehnique, the NIDS alloates a �xed hunk of storage for all the state.Removal of state ours only when a new piee of state must be reated, but thetotal storage hunk is full. In this ase, an old piee of state is seleted for removal.(FIFO is a sensible approah.) The main advantage of �xed-size bu�ers is that there

177is a guaranteed hard limit in the amount of state the NIDS requires, namely thestorage hunk size. The main disadvantage is that �xed-size bu�ers evit state whenthey need to, not when the state it old or unused (and therefore probably less useful).This means underestimating the amount of alloated storage may ause thrashing,while overestimating it may limit the bene�t of the state limitation tehnique (theNIDS may end up keeping very old information, as there is no need to evit it).Compressing state takes a similar approah, fousing on avoiding state reationwhenever possible. For example, Bro only reates full per-onnetion state when itsees ativity (a paket) from both endpoints of a onnetion. This way, it avoidsreating a onnetion state entry for every unanswered onnetion attempt, whihdiminishes the probability of being overwhelmed by state during �ooding attaks,large worm events, or simple portsans.Related to state management, [Sommer and Paxson, 2005℄ proposes the use ofindependent state in NIDS. The goal of independent state is to provide the abilityof extrating the NIDS state out of the proess it exists into. This permits thestate being shared between onurrent instanes of NIDS (spatially independentstate), and ontinuing to exist after the proess terminates (temporally independentstate) [Sommer and Paxson, 2005℄. Independent state an also be used to helpparallelize NIDS proessing among several NIDS instanes (see Setion 4.3.6).A similar piee of work in state management is hekpointing [Paxson, 1999;Sommer and Paxson, 2005℄. NIDS stability tends to diminish with time, as more

178state is kept. The idea of hekpointing is basially restarting the NIDS periodially,resetting the state, and giving the NIDS a fresh start. It is a very oarse-grainedapproah.Input-Volume Control TehniquesInput-Volume ontrol tehniques work by reduing the amount of tra� the NIDSproesses, limiting the analysis to only part of the tra�. This limitation an be statior dynami.The stati limitation is quite simple: The NIDS on�gures the paket �lter sothat it gets fed only with a subset of the tra�. This subset may inlude what theNIDS is interested in, or what it atually an proess. For example, a NIDS shouldonly request reeiving tra� from those ports whose standard servies it knows howto proess.Another stati approah onsists of sampling the input stream, either in a paket-or a onnetion- basis. (Some analysis require aessing to full onnetions.)A more powerful tool to redue state is being able to set the paket �lter dynamially.Two mehanisms that dynamially limit the NIDS input volume are load-levels [Dregeret al., 2004; Lee et al., 2002℄ and �ood detetors [Dreger et al., 2004℄.The idea of load-levels is to extend the NIDS with a set of ordered paket �lters.Eah �lter is more restritive that the previous one, therefore providing a smallerinput volume. The NIDS senses its workload, swithing to a more restritive �lter

179when it feels overwhelmed, and to a less restritive �lter when it feels idle.A �ood detetor tries just to shun from the NIDS all the tra� related to Denialof Servie �oods direted to a single host. This tehnique onsists of deteting the�ooders, and shunning them from the NIDS. It leverages the fat that �ooding hasno other meaning than overwhelming a resoure, and therefore further analysis is notrequired.Shunting is an example of dynami input-volume ontrol tehnique. Shuntingpermits NIDS to speify the tra� they want to analyze in a very �ne grained way.It does so using per-onnetion, address, and port tables. It is a more dynamiand �ne-grained approah than load levels. The address table permits the e�ientimplementation of the �ood detetor.The resoure exhaustion problem gets exaerbated in inline paket proessors (asShunting), as paket drops are a harder problem here: If an (o�ine) NIDS dropspakets, it will only have a blurrier/more limited vision of the tra�. Assuming thatthe amount of maliious tra� is a small fration of the whole tra�, and that theattak tra� is not orrelated with the drops2(i.e., that the probability that a paketis dropped does not depend on whether it is maliious or not), the probability thatit misses an attak is low, and even if it happens, it merely auses a false negative.A NIPS, by de�nition, is an inline element. If a NIPS drops pakets, it will resultin a paket loss in a onnetion. This will ause throughput loss, not only beause of
2Of speial importane in this ase is that the attaker herself is not able to orrelate her tra�with the drops.

180the onsequent retransmissions, but also, and espeially, beause of the interferenewith transport-protool ongestion-avoidane mehanisms.4.3.6 NIDS ParallelizationYet another idea to avoid resoure exhaustion is to implement the NIDS as severalhosts running in parallel, and divide the work among them.Kruegel et al. implement a high-performane, signature-based NIDS by olloatingseveral NIDS in parallel [Kruegel et al., 2002℄. The authors propose a 4-step proessthat manages to provide eah NIDS with a subset of the total tra� that onformsto a small superset of the tra� it needs to detet an attak.1. Input tra� is plugged �rst into a fast, simple piee of hardware (�satterer�),whih divides the tra� evenly (round-robin) among a group of lassi�ers (�sliers�).2. Every slier has a omplete list of all the signatures supported by the system.Sliers hek every paket, identify suspiious ones, and forward them to theorresponding reassembler. Note that, if a paket mathes more than onesignature, it may end up being forwarded to several reassemblers.3. Reassemblers �x the paket stream (they may reeive out-of-order pakets, iftwo pakets are dispathed by di�erent sliers) before it is passed to the di�erentNIDS engines.4. Sensors are the NIDS engines. They are assigned a portion of the signatures,

181and they reeive a subset of the total tra�, on whih they run the signaturemathing.Shunting an be used to parallelize the intrusion detetion work among severalinstanes of NIDS. The granularity o�ered to divide tasks is onnetions, addresses,and ports. In omparison, the granularity o�ered by [Kruegel et al., 2002℄ is stringmathing. As a onsequene, Shunting is not limited only to Signature-Based NIDS,and an be also used in Anomaly- and Spei�ation-Based NIDS.4.3.7 Hardware Support for Paket ProessingIn order to proess tra� at high-speed links, a traditional solution is to use somehardware support. This is ommonly known as �pushing proessing to the networkadapter.�Shunting also uses hardware support, whih we term the �hardware devie.� Ourhardware devie is used to perform fast table-based �ltering. A similar idea hasbeen suggested to perform passive paket apture (see Setion 4.3.7) and to o�oadtransport-protool work (see Setion 4.3.7).Pushing Proessing to the Network Performane CardThere are several network adapters that perform omplex paket proessing, thereforepermitting the host in whih they are loated to ahieve high-speed paket proessingby pushing proessing to the adapter.

182Juniper routers permit �ltering pakets based on (at least) soure and destinationIP address and port, paket type, protool, length, ICMP type and ode, VLAN ID,TCP �ags, and fragments [Markatos, 2005℄.Deri proposes to perform high-speed passive paket monitoring using a router(Juniper M-series, whih allows for tra� �ltering based on header �elds) that atsas a smart Network Interfae Card (NIC), performing generi tra� aounting andsimple paket �ltering and sampling, and sending the �ltered/sampled stream to aLinux host [Deri, 2003℄.The Intel IXP family of �network proessors� provides a framework to performin-NIC paket-proessing [Intel, 2005℄. The IXP1200 series is omposed of six RISCproessors (aka miroengines) that operate in parallel, and a StrongARM ontrolproessor running Linux. Eah miroengine has 1 KB of instrution storage, someregisters, and four ontexts. There is also a shared 4 KB srath spae [Markatos,2005℄.Endae's DAG ards are PCI-based network adapters speialized in passive monitoringof high-speed links [Cleary et al., 2000℄. While they are able to apture full pakets,the ommon approah used to make DAG ards apture high-speed tra� is toinstrut them to apture only the �rst few bytes (the network- and transport-layerheaders) of every paket [Markatos, 2005℄. This approah is ommonly known as�pushing the snaplen into the network adapter,� and while it is �ne in some senarios,it is unaeptable in NIDS.

183A DAG ard onsists of (a) a programmable FPGA, whih generates high-preisiontimestamps (possibly oming from a GPS devie), parallelizes physial layer bytes into32-bits words, �lters out unwanted data, bu�ers pakets in a FIFO before sendingthem to the host, and ounts dropped pakets; (b) an ARM based CPU (ARM7 inDAG 2 ards, StrongARM in DAG 3 ones); and () a PCI interfae to ommuniatewith the host PC.Using Endae's DAG 4 ards, Iannaonne et al. show a network adapter thatmay permits passive monitoring of OC-192 links (10 Gbps) [Iannaone et al., 2001℄.The authors' idea is to use a speialized piee of hardware (the DAG ard's on-boardFPGA) to ompress the snaplen-redued pakets into �ow traes, and only send those�ow traes to the PC host. The authors use a hashed, limited-size onnetion tableto store the �ow traes, and laim what, with the help of fast PCI buses (64 bits,66 MHz), it is possible to monitor IP, TCP, and UDP headers (throwing the rest ofthe pakets) in 10 Gbps links.The SCAMPI projet proposes using a smart network adapter to limit the amountof tra� that reahes the host in paket apture senarios [Coppens et al., 2003, 2004℄.SCAMPI runs on several di�erent arhitetures, inluding Intel IXP family of networkproessors, Endae's DAG ards, and their own network adapter, alled �COMBO.�COMBO adapters perform systemati (deterministi) and probabilisti 1-in-N sampling,address- and port-based sampling, payload string searhing, generi �ow-state aountingand reporting, and paket �ltering using FPL-2 (an extended, BPF-like language).

184In omparison with all the mentioned approahes, Shunting is muh simpler, onlypermitting �ltering based on the three aforementioned tables. The main bene�ts ofsimpliity are spae and e�ieny. Simple lookup-based proessing permits very-largetables, whih math the requirements of large-sale onnetion-based proessing, andeasy parallelization of the proessing, whih auses an inrease in paket proessingthroughput.NIC O�oading ProessingThe idea of o�oading work to the network adapter has also been proposed inthe ontext of network protool implementation, a �eld related to paket proessing.The idea is also known as �Protools in Silion [Clark et al., 1989℄,� and onsists ofinstrumenting the interfae ard to do part of the network or transport protool stakproessing for the CPU. The whole set of tehniques to o�oad network stak workto the NIC are also known as �TCP O�oad Engines [Currid, 2004; Mogul, 2003℄,� orTOE.Protool stak o�oading has been proposed in several forms. One is �interruptoalesing,� where the interfae ard is instrumented to wait some amount of timeafter a paket arrives, with the hope that the ard an serve many pakets with justone interrupt.Another TOE tehnique, and probably the most popular, is �Cheksum O�oading,�in whih the interfae ard heks the network and transport heksums of inoming

185pakets, and alulates the network and transport heksums of outgoing pakets[Kleinpaste et al., 1995℄.Other TOE tehniques inlude moving to the NIC the updating of stak state(TCP sequene and aknowledge numbers), timers, segmenting and reassembling,bu�er management, sattered opies, et.4.3.8 Software Support for Paket ProessingSome researhers have foused on optimizing the software side of the paketproessing tools.The traditional approah to paket apture is the use of interrupt-driven systems.In suh systems, when a paket arrives, the NIC interrupts the CPU. The orrespondinginterrupt servie routing (ISR), whih we will name the �hardware ISR,� does someinitial paket proessing, plaes the paket on a queue, and �nally generates a softwareinterrupt. Some time later, the orresponding ISR (the �software ISR�) is dispathed.It proesses the paket in full, inluding �ltering, if aptured through a paket �lter.When running at high speeds, interrupt-based paket apture systems may su�er�reeive livelok� [Mogul and Ramakrishnan, 1997℄. For historial reasons3 the softwareinterrupt has less priority than the hardware one. In high-speed senarios, the reeiverservies the hardware ISR, and before it manages to servie the software one, anotherpaket interrupts it. The baklog of software ISR keeps inreasing, until the driver
3Old NICs had little bu�er memory, and therefore it was ruial to move pakets as fast aspossible out of the NIC and into memory.

186bu�ers get full. When the hardware ISR �nds the driver bu�ers full, it just dropsthe paket. Therefore, the reeiver spends all its time proessing interrupts, and nopakets are ever delivered to the user appliation. The resulting throughput is zero.[Mogul and Ramakrishnan, 1997℄ proposes some solutions to avoid reeive livelok:(a) interrupt oalesing: It onsists on bathing several interrupts, so that severalpakets are proessed with the help of just one interrupt; (b) limiting the interruptrate: If the system detets too many hardware interrupts, it disables them temporarily;and () avoiding preemption of the software ISR by the hardware ISR.A modern approah to paket apture is the use of devie polling [Mogul andRamakrishnan, 1997; Morris et al., 1999℄. In suh a system, the kernel polls thedevie's reeive DMA queue periodially, in ase there is a newly arrived paket. Thetraditional argument against polling is that it auses a large overhead when no tra�is reeived. [Mogul and Ramakrishnan, 1997℄ proposes to use a ombination of both,so interrupts are used during low loads, and polling during high loads. [Morris etal., 1999℄, on the other hand, proposes a pure polling approah, arguing that �eveninfrequent PC interrupts are simply too expensive� in modern PCs.Another related approah to enhane the performane of software paket-apturesystems is to minimize the number of opies of paket bu�ers. A suggested approahis to share bu�ers between the appliation �nally proessing the pakets and thekernel [Wood, 2004℄. A bolder approah is to give appliations full ontrol over theNIC, inluding the ard registers, so the appliations an do the polling themselves

187[Cleary et al., 2000℄. This introdues several problems related to synhronizationwhen there are multiple readers [Degioanni and Varenni, 2004℄.Optimizing the software side of paket proessing tools is omplementary to Shunting.The goal of Shunting is to be narrow the stream that reahes the analyzer, andtherefore the amount of job that the NIC must perform. Still, the narrowed streammay be big enough as to require software tuning in the paket apture proessing.4.3.9 Filtering ModelsAnother related piee of work is researh in �ltering models. Setion 3.3 inChapter 3 desribes previous work in paket �ltering, fousing on BPF, the mostommon paket �lter.Shunting provides a muh simpler �ltering model than traditional paket �lters.Instead of providing a generi, virtual proessor with most of the operations availablein normal proessors, shunting o�ers a very simple, stateful, dynamially-programmabletable lookup mehanism based on three simple tables.Shunting renounes to the �exibility existent in traditional paket �ltering models,in exhange of being able to leverage very fast, parallel table lookups in a hardwaredevie.

1884.3.10 Network Tra� Heavy-Tailed EvideneThe last piee of related researh is the multiple evidenes of the self-similarity innetwork tra� [Crovella, 2001℄. In partiular, onnetion sizes have shown to followa heavy-tailed (power-law) distribution [Crovella and Bestavros, 1996; Paxson, 1994;Paxson and Floyd, 1995℄, with the heavy-tailed distribution of data objet sizes beingsuggested as the underlying ause of it [Crovella and Bestavros, 1996℄.4Figure 4.1 shows the bytes in the tp-1 trae as a funtion of fration of smallestonnetions. Less to 0.4% of the onnetions aount for more than 90% of the bytes.
PSfrag replaements FrationofT

otalBytes

Fration of Smallest Connetions0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 4.1: Trae Bytes as a Funtion of the Smallest ConnetionsAn interesting property of heavy-tailed distributions is the mass-ount disparityproperty. The intuition behind this property is that, when the size of proessed
4More preisely, a random variable X is onsidered heavy-tailed when its umulative distributionfuntion FX(x) is FX(x) ∼ 1 − cx−α, where 0 < α < 2.

189objets follows a heavy-tailed distribution, a large fration of the bytes an be servedby just taking are of a small fration of the subsets [Crovella, 2001℄.Shunting works as long as it is able to proess most of the tra� in the hardwareomponent. While the analyzer poliy is the one that spei�es tra� subsets, andhow eah one must be proessed, the mehanism (the hardware omponent) must beable to proess most of the tra� with a limited storage unit.The key insight behind shunting is that a very large proportion of the tra�in a link is omposed by a spei� tra� subset, namely the set of high-volumeonnetions. Moreover, from these onnetions, intrusion detetion is interested onlyin their ontext, and not in the bulk data transmission.
4.4 ShuntingInline tra� proessing is a demanding ativity. A passive paket-proessingengine that drops pakets just gets a redued view of the tra� �ow. While paketdrops remain a small perentage of the total amount of pakets, most paket-proessingengines an bear dropping tra� without too many problems.In omparison, inline paket-proessing engines must injet bak in the wire anypaket that they apture. This provides an extremely powerful tool, as no paketpasses the inline proessing element without the element permitting it. On the otherhand, the inline element dropping pakets a�ets the quality of unreliable onnetions,and the throughput and lateny of reliable onnetions. This e�et is magni�ed by the

190fat that paket losses are interpreted by TCP endhost staks as ongestion signals.The remainder of this Setion is strutured as follows: Setion 4.4.1 desribesbottleneks when proessing high-speed tra� with o�-the-shelf hosts. Setion 4.4.2presents the Shunting arhiteture, and Setion 4.4.3 its rationale. Setion 4.4.4introdues the main proessing mehanisms. Setions 4.4.5 and Setion 4.4.6 disussthe arhiteture in depth. Setion 4.4.7 desribes some appliations of Shunting.Finally, Setion 4.4.8 ompares Shunting to BPF-based approahes.4.4.1 Inline Proessing BottlenekA fully-used Gigabit link reates too large a workload for a ommodity PC to doinline proess. The problem presents di�erent edges, depending on whether the NIDSis stateless or stateful. The former typially su�er beause of the load imposed in theCPU, and the latter beause of the state volume impat on memory and host businterfae bandwidth [Dreger et al., 2004℄.Some bak-of-the-envelope numbers may provide an idea of the magnitude of thebus apaity problem. NIDS need at least to (a) transfer the paket from the networkinterfae to the host memory, (b) proess the paket, and () injet it bak to theinterfae.In some ases, the paket may not be injeted bak into the network. This is thease, for example, in network intrusion prevention, when a paket is deemed maliious.In any ase, in any network intrusion senario, we expet maliious pakets to be a

191very small fration of the total tra�, so the ratio of pakets dropped should benegligible.Moving the tra� from the network interfae to the CPU and then bak to thenetwork interfae for injetion would aount for 2 opies per paket, whih assuminga (bidiretional) 1 Gbps link (2 Gbps of tra�), implies 4 Gbps of peripheral busand memory bus tra�, onsidering no other tra� ompetes for the resoures, andthat the interrupt overhead on the bus does not limit the number of transations perseond.If the NIDS is being run in userland, this means at least two extra data opies, topass the paket from the kernel to userland, and bak to the kernel. (Some OperatingSystems add extra opies [Shneider, 2004℄.) This would means 2 more data opies,or another 4 Gbps in the memory bus.Bus and memory are proessing bottleneks in stateful NIDS. A fast, onventionalPCI (2.1) bus works at 66 MHz and has a 64 bit wide bus. Therefore, its maximumtheoretial transfer rate is approximately the 4 Gbps. On the other hand, PCI isa shared bus, and transation overhead (sheduling, addressing, and routing) plusontention and ollisions typially redue the e�etive bandwidth to one third ofthis [Arramreddy and Riley, 2002; Cleary et al., 2000℄, far away from the needed4 Gbps.This is hanging fast. New parallel host bus arhitetures (PCI-X) are faster(PCI-X 2.0 at 533 MHz reports a 34 Gbps peak rate) and more e�ient than the

192previous models: Depending on the blok size transmitted, PCI-X is able to providebetween 66% and 85% of the theoretial bus bandwidth [Arramreddy and Riley,2002; Compaq, 1999℄. At the same time, high-speed serial interfaes suh as PCIExpress provide salable, e�ient performane (PCIe lines operating at 2.5 GHz havea maximum theoretial transfer rate of 3.2 Gbps per line) [Brewer and Sekel, 2004℄.This is not the ase for memory, however. Copying data between memory andthe network adapter for a 1 Gbps link is already a di�ult task, for both bandwidthand lateny reasons. Problems are only expeted to grow when proessing pakets inhigher speed links (10 Gbps and 40 Gbps), as the memory gap keeps widening.5On the other hand, these approahes still leave small headroom for the NIDSanalysis, espeially when onsidering (a) we have not onsidered the overhead ausedby non-data touhing proessing [Kay and Pasquale, 1993℄, and (b) we want NIDSmonitoring 10 Gbps or 40 Gbps links. The goal is for Shunting to provide NIDS withample headroom to perform extensive analysis, instead of running on the edge andhaving to sari�e it.4.4.2 Shunting PresentationShunting is an arhiteture to perform paket proessing on high-speed links.Figure 4.2 shows the Shunting arhiteture: A Shunt onsists of two elements, a
5Aording to Gilder's Law [Aboba, 2001; Gilder, 2000℄, we should expet networking apaitiesto grow at least three times faster than CPU proessing power (doubling every 9-12 months, asompared to every 18 months for CPU power, following Moore's Law). The �memory gap� is evenbigger: Memory lateny (inreases only at 10% per year) and bandwidth inrease even slower thanCPU proessing power [Patterson and Hennessy, 2004; Patterson et al., 1997℄.

193software paket proessing engine (the shunt engine), and a hardware ative element(the shunt devie). The shunt devie elements an be thought of as a smart NIC.The shunt engine is the deision mehanism, and is omposed of two parts, namelyan external analyzer that proesses the tra� (for example, a NIDS), and a thin layerthat sits in the middle and knows how to make analyzer and devie interat (theshunt shim).
PSfrag replaements

shunt engineanalyzer
shunt shimshunt devie(a) forward(b) drop() shunt
(.1) injet(.2) drop

Figure 4.2: Shunting Main ArhitetureWhen a paket arrives to the devie, the latter has three possibilities: It an(a) forward the paket to the opposite interfae (thik, solid line), (b) drop it (thin,dashed line), or () send it to the analyzer (thin, dotted line). The latter is alsoknown as to shunt the paket.In the intrusion detetion senario, for example, the three options an be mapped

194to the devie's judgment on the paket's goodness, namely whether the paket isinnouous (forward the paket), maliious (drop it), or none of the above (shunt it).The latter inlude pakets ataloged as suspiious, or for whih the devie has noopinion.Pakets neither dropped nor forwarded are sent to the analyzer, where they an beproessed more arefully. After this proessing, the analyzer takes another deisionabout the paket's fate: It an (.1) injet bak the paket to the network interfae,or (.2) drop it. In the intrusion detetion senario, again, the analyzer an be aheavy-weight Intrusion Detetion System, whih makes another judgment on whetherthe paket is maliious (drop it) or innouous (injet it bak to the network interfae).There are several interesting points worth noting:
• Shunting is just a mehanism. The poliy is deided by an external analyzer,whih takes advantage of Shunting. In that sense, Shunting is poliy neutral.
• The Shunting mehanism is extremely simple. The goal is to permit a very fasthardware implementation with lots of spae for table entries.
• In normal operation, we should expet the large majority of tra� to be forwardedby the devie, and therefore never reah the engine. This will permit to run theanalyzer in ommodity hardware.
• A shunted paket is delayed and proessed by the analyzer. If the analyzer �ndsthe paket orret, it forwards it. In the intrusion senario, it means the devie

195ataloged it as suspiious, but the analyzer later aquitted it.
• Every paket is shunted by default, so it is the analyzer's obligation to instrutthe devie on whih pakets to forward, drop, or shunt. In the intrusiondetetion world, all pakets are suspiious unless otherwise proven.
• Unlike the devie, the analyzer need not take a deision as soon as it sees apaket. Instead, it an queue it, and proess it later. In the intrusion detetionsenario, if the paket is still suspiious, it an be stored until more informationis available.
• Another possibility is �ahe and shunt�. The idea is that the devie wouldahe the paket, map it to a unique identi�er, and send a opy to the enginealongside the identi�er. The latter would take a deision, and ommuniate it tothe devie as a {identi�er, deision} tuple. This would save memory bandwidthin the engine to devie path, as a paket injetion would ause the engine tosend just an identi�er to the devie, instead of the full paket ontents.We hose not to implement this idea for simpliity's sake. One of the main goalsof Shunting is to be able to implement the shunt devie using fast hardware,where memory is a sare resoure. Holding pakets in a hardware omponentwould imply reduing the spae for table entries. We therefore hose not to addit.
• We onsidered, but hose not to inlude, the possibility of the devie reassembling

196fragments before sending them to the analyzer. We deided against this idea,for the same reason as in the previous point (memory is a sare resoure in ahardware devie.)
• There is an extra possibility we are studying, namely �forward and shunt�: Thedevie would forward the paket into the wire, and at the same time send aopy to the analyzer for proessing. The latter would not need to reinjetthe paket bak into the link, therefore saving bandwidth. In the intrusionprevention world, for example, this ould be useful to monitor onnetionsdeemed non-maliious (for example, to know when they �nish so that theirassoiated state an be freed).4.4.3 RationaleIn order to justify Shunting, we �rst make three simple observations that hold forsome inline paket-proessing appliations, inluding intrusion prevention:The �rst observation is that, while the per-paket proessing may be very intensive(inluding deep analysis of the paket and others it is related to), the �nal deisionon what to do with the paket is very simple: whether the paket must be forwardedor not.This observation implies that only a generi host (the analyzer) is �exible enoughto perform the potentially intensive work that permits deiding how to proess apaket.

197The seond observation is that appliations are often able to easily speify somesubsets of the tra� for whih (a) no analysis at all is required, and (b) the deisionon what to do with a paket is the same for all the subset pakets. These subsetsinlude, for example, all pakets from the same onnetion, and may be spei�ed inadvane or dynamially (i.e., as a onsequene of the paket proessing itself).This observation implies that, one the generi proessor is able to speify aneasily proessable subset of the tra�, proessing that subset an be pushed into aspeialized hardware element (the devie).The third observation relates to the heavy-tailed nature of network tra� (seeSetion 4.3.10). The number of bytes per onnetion has been shown to follow aheavy-tailed distribution [Crovella and Bestavros, 1996; Paxson, 1994; Paxson andFloyd, 1995℄. We believe that the analyzer is able to take a deision on how toproess the onnetions in the distribution tail (the very large ones) early in theonnetion life. Therefore, most of the onnetion ontents will be proessed onlybu the hardware devie. By fousing on the large onnetions, a limited number ofentries in the hardware omponent are enough to proess a large part of the bytes inthe wire.From these three observations, we draw the following hypothesis: In some senarios,as intrusion detetion, it is possible to do useful paket proessing by dynamiallyspeifying subsets of the tra� that (a) ompose most of the tra�, (b) an beproessed using simple, table-lookup operations implementable using a hardware

198omponent.Let's illustrate the hypothesis with an example.Consider a NIDS monitoring a link. Every time it reeives a paket, the NIDSmust take a simple deision on what to do with it: either let it pass, or drop it.While the deision is simple, taking it may require an intensive task, inluding deepinspetion of the paket, and querying information about previous pakets from thesame onnetion. On the other hand, sometimes the intrusion detetion system isable to deide that any future pakets from the same onnetion will be forwarded,without previous analysis. Then, it an instrut a hardware omponent to proessthose pakets by itself.4.4.4 AtionsShunting works as long as most of the pakets are proessed only at the devie,and the devie operations remain simple enough to be e�iently implementable inhardware. The question is, therefore, whih operations must be inluded in the devie.Some examples of useful operations in the intrusion detetion senario inludedropping all pakets related to hosts found to arry out attaks or port-sans, orforwarding all pakets related to onnetions known to be safe.Another example an be drawn from an aounting senario, where the goal is toquantify the amount of tra� used by eah onnetion [Mills et al., 1991℄. In this ase,relatively reliable aounting of TCP onnetions may be arried out by just shunting

199the onnetion-establishment and onnetion-teardown handshakes, and forwardingall the remaining tra�.6In order to provide a ommon framework where di�erent analyzers an programtheir deisions, Shunting provides a series of �ations� that state, for every proessedpaket, whether it must be forwarded, dropped, or shunted. In order to ombinedi�ering ations, programmed ations are assoiated with a priority, and the ationwith the highest priority is followed.In order to ahieve the goal of analyzing most of the tra� using simple hardwareproessing, we have added ations only after onsidering (a) the bene�t they provideto quik lassi�ation, and (b) the resoure budget they onsume from the otherations. While an extra ation will always augment the �exibility of the devie, itwill onsume part of the devie's limited resoures.We have identi�ed four ations that permit quik paket lassi�ation for most ofthe tra� in several important senarios. These four ations are onnetion, address,port, and �lter.Connetion TableThe �rst ation that permits quik paket proessing is the onnetion, onsideredas the traditional 5-tuple (104 bits) that de�nes a TCP onnetion ({soure address,soure port, destination address, destination port, transport-layer protool}). Withthis ation, onnetions an be mathed to the 3-valued deision, namely forward,
6Setion 2.5.2 in Chapter 2 disusses this aounting method in depth.

200drop, or shunt. When the devie reeives a paket, it looks for its onnetion tuplein the onnetion table. If the onnetion tuple mathes, the orresponding deisionis used to proess the paket.The onnetion ation is easy to implement. From the devie point of view,it implies reading 104 �xed bits in every paket, then querying a table that yields a3-valued deision. This ease permits implementing this table with a very large numberof entries.From the analyzer's point of view, the onnetion seems a natural ategory inwhih to take deisions. In the intrusion detetion world, for example, it is easy to�nd ases where all pakets from a onnetion are dealt with in the same fashion,dropping all of them if the onnetion is maliious, and forwarding all of them if theonnetion is safe.The onnetion ation is also e�etive, by leveraging the heavy-tailed nature ofonnetion sizes and durations [Crovella and Bestavros, 1996; Paxson and Floyd,1995℄. If, in the general ase, the analyzer is able to limit the proessing of aonnetion to just a few of its initial pakets, and then take a deision on how toproess any additional pakets from the same onnetion, it is possible to diminishthe total amount of tra� the analyzer proesses, while e�etively proessing allonnetions. This seems a useful aid in any paket proessing appliation that requires�ow state management, as intrusion detetion or �ow lassi�ation.This ation an also be useful to limit the tra� load a server must bear. If

201the analyzer detets an unexpeted, non-maliious spike in the amount of tra�direted to a server that may overwhelm it, the analyzer an opt between (a) to keepmonitoring all the tra� it sees, but simplifying the monitoring type, and thereforereduing the amount of per-paket proessing; or (b) to keep the same amount ofper-paket proessing, but limiting the total amount of monitored tra�, for example,by forwarding some of the onnetions without further analysis. This is a key poliydeision that should be taken by the analyzer, not by the Shunting arhiteture.Note that the insertion of a forward tuple in the onnetion table is aused by theanalyzer guessing that further proessing is not needed, or that further proessing isnot possible. The latter may happen, for example, if the analyzer knows it does notknow how to analyze a onnetion (beause, say, it is an unknown protool). In thisase, it may just forward all suh tra�.Let's disuss an usage example. Consider a NIPS monitoring an SSH onnetion.An SSH onnetion onsists of two parts [Ylonen, 1996℄: First, a lear-text, sessionhandshake, in whih the lient and server (a) exhange identi�er strings, (b) agree onthe iphers and authentiation method they will use, and () reate the session keythat will be used for the rest of the session. Seond, enrypted tra�, in whih theappliation data is exhanged.The �rst pakets of the onnetion are shunted to the NIPS. After the lear-textsession handshake ends, the software NIPS may realize that the onnetion is dangerous,for example if any of the SSH version identi�er strings shows the SSH server is running

202a buggy software version. If the NIPS realizes this, any additional paket belongingto the onnetion an be dropped without further paket analysis.Conversely, if at any moment the NIPS deems the onnetion is safe, any additionalpaket belonging to the onnetion an be forwarded without further paket analysis.7Moreover, and assuming that the NIPS does not know the session key, the NIPSannot peek into the onnetion ontents one they get enrypted. Any further paketanalysis is therefore a resoure waste. If the NIPS did not �nd anything bad in theonnetion, it will not be able to do so in the future. Therefore, it an just pass alongany additional paket from the onnetion, without inspeting it.Address TableThe seond ation that permits quik paket proessing is the IP address, of boththe soure and the destination. IP addresses an be mathed to 3-valued deisions,namely forward, drop, or shunt. When the devie reeives a paket, it reads bothits soure and destination addresses, and looks for them in the address table. If theaddress tuple mathes, the orresponding deision is used to proess the paket.The address ation is easy to implement. From the devie point of view, it impliesreading 64 �xed bits in every paket (32 per address), and then arrying out twoqueries to a table that yields a 3-valued deision. From the analyzer point of view,the address seems a natural ategory in whih to take deisions. In some ases, it
7The analysis atually may want to wait a little bit to guess if the lient is using brute fore tolog in the server. This is typially seen as three tries and fails in the enrypted stream, and an beguessed by heking the paket sizes before termination.

203is easy for the analyzer to develop a simple drop/forward poliy for all the tra�oming from or going to a given host. This is also known as host blaklisting andhost whitelisting.The address ation is also e�etive. We believe an important perentage of thetra� may be proessed by just looking at eah paket soure and/or destinationaddresses. For example, if a NIPS detets that an external host is sanning thenetwork, it may deide to blaklist it. This means that any further pakets whosesoure address is that of the sanner will be dropped without further proessing.The opposite may be also true. Some organizations use a host to san theirnetwork in searh of vulnerabilities. These sanners look at the internal networkhosts for servies that are mison�gured, outdated, or just plainly forbidden. Awell-known mehanism to arry out this searh is to open onnetions to all the portswhere suh servies an be loated. In most ases, the servie will not exist, and theonnetion will fail.Of ourse, this behavior is not that di�erent from that of port-sanners, so anetwork analyzer may qualify the sanner's tra� as maliious. In this ase, theNIPS must not drop the sanner tra�. What's more, it may deide all tra� relatedto this type of host is innouous (albeit it looks maliious), and therefore whitelist it.The address ation also permits Shunting to defend hosts inside the networkagainst unusual surges of maliious tra� (�ooding), by temporarily disabling theiraessibility from the outside network. Consider a distributed �ooding of an internal

204host. If the engine detets the amount of tra� direted to a host inreases exessively,but suh tra� has anomalous harateristis (for example, a large asymmetry, or anunusual perentage of onnetions losed just after the initial SYN), it an instrutthe devie to drop any paket direted to the attaked host, e�etively isolating itfrom outside tra�.Note that the isolation an be further re�ned to permit host-initiated onnetionsto be forwarded, by using priorities (see Setion 4.4.5).Shunting an use this isolation tehnique to defend itself from suh �oodings.While most attaks reorded so far against intrusion detetion and prevention systemsare based on software bugs in suh systems [Moore and Shannon, 2004℄, there arealready some tools that attak the analyzer itself, either by inreasing the numberof false positive, or by inreasing the workload until the analyzer gets overwhelmed.Some of these tools inlude Stik [Giovanni, 2001℄, Squealing [Patton et al., 2001℄,and Snot.Last, the isolation tehnique provides a mehanism for the analyzer to defenditself against unusual surges of well-behaving tra�: The ability to forward paketswithout any in-host proessing. If the analyzer detet some large inrease in theamount of tra� it is proessing, it has the option to instrut the devie to justforward a subset of it. This would invalidate the analyzer's protetion in the tra�subset, at the bene�t of keeping the protetion in the remaining tra�. Again, thisis a poliy deision the Shunting mehanism is neutral to.

205Port TableThe third ation that permits quik paket proessing is the transport protoolport, inluding both the soure and the destination one. Transport (TCP or UDP)ports are mathed to 3-valued deisions, namely forward, drop, or shunt. When thedevie reeives a paket, it reads both its soure and destination port, and looks forthem into the port table. If any port tuple mathes, the orresponding deision isused to proess the paket.The port ation is extremely easy to implement. From the devie point of view,it implies reading 40 �xed bits (the two ports plus the transport protool identi�er)from every paket, and then arrying out two queries to a table that yields a 3-valueddeision.From the engine point of view, the port seems a natural ategory in whih totake deisions. There are some ports that orrespond to well-known inseure servies(telnet), and others whih, while not being inseure, its presene in a DMZ is rarelyjusti�ed (e.g. Mirosoft NetBIOS or NFS tra�). If the site poliy onsiders thattra� in any of these ports onstitutes a seurity problem, the port table mehanismpermits dropping all their pakets. Shunting permits re�ning this poliy by usingseveral tables at the same time. (See Setion 4.4.5 for a disussion on the prioritysystem.)In the intrusion detetion world, the port ation an be used to slow the spreadingof fast worms. If the analyzer detets an extreme inrease in similar tra� direted

206to an unusual port, and it onludes it is due to worm ativity, it an instrut thedevie to drop all tra� direted to that port. On the other hand, we doubt thatwe an ever set an entry in the port table to forward all tra� orresponding to aspei� port. That ould be used by an attaker: by setting her tra� loal port tobe equal to the forwarded port, she would in fat launder all her tra�, getting a freepass on the NIPS. Diretionality would help here, as we will see in Setion 4.4.5.In the aounting senario, on the other hand, we imagine there are some protoolsthat, beause of poliy reasons, are not interesting. These ports ould be dealt withby setting an entry in the port table to forward .Note that, while we understand port and servie are independent entities, we areassuming they are normally related, at least in the loal network endhost, whih isthe side the intrusion detetor is trying to defend.The utility of the port table is de�nitely more limited than the two previous tables.On the other hand, the ost of a port table is very low, as a 3-valued yield requires 2bits per port. Considering the two main transport protools, TCP and UDP, everyprotool has 64 K ports. This implies we an arry information about all TCP andUDP ports for just 32 KB of memory.FilterThe last ation that permits quik paket proessing is three �xed BPF �lters,known as the �forward �lter,� the �drop �lter,� and the �shunt �lter,� that ause

207pakets mathing them to be always proessed the same way (forwarded, dropped, orshunted, respetively).Note that the three �lters are stati. The option of implementing a generi BPFengine in the devie, where dynami �lters ould be uploaded at will, is ompliatedin hardware terms, and would limit the hardware parallelization opportunities.The stati nature of the three �lters is ompensated by ombining their use withthe dynami tables. In this way, we envision that they ould be useful in helping theanalyzer managing its state.As an example, while an intrusion detetion system may deide to forward allpakets from a given TCP onnetion, it would bene�t from seeing the onnetiontermination segments, as it an free the assoiated spae. In a similar fashion, anaounting analyzer ould bene�t from seeing suh termination segments, from whihit ould estimate the total onnetion size.In order to ensure the onnetion termination segments are always sent to theanalyzer, while at the same time forwarding a onnetion's bulk transmitted data, aplausible approah ould be to set the stati shunt �lter so that TCP segments withthe RST or FIN �ags set math, and then add, with a smaller priority, an entry tothe onnetion table ausing pakets from the onnetion to be forwarded.A paket belonging to suh onnetion will be diretly forwarded, exept when ithas the RST or FIN �ags set, in whih ase it will be shunted.The stati nature of the three �lters makes them a likely target for attakers. For

208example, if an attaker wants to �ood a NIPS whih she knows uses a �TCP RST orFIN segments� shunt �lter, she ould send a large amount of TCP segments with anyof the two �ags set. If the attaker an be identi�ed, and she is not spoo�ng the IPsoure address, the attak an be thwarted by setting an even higher-priority entryin the address table, assoiating the attaker address to a drop result.The �lter ation is easy to implement, onsidering it is stati. For example, theshunt �lter mentioned before (�TCP RST or FIN segments�) an be implemented byreading just the network and transport protool header.We expet the �lter ation to be e�etive, not on the amount of tra� it will beable to uniquely desribe, but in the e�et that suh tra� will have in the engine(state management). Moreover, we expet the �lter to be simple enough so as toimpose a very low burden on the devie. In partiular, its memory usage will be verysmall.4.4.5 Other DetailsSome details about how the shunt arhiteture works are:
• Priorities: The shunt arhiteture inludes the idea of �ne-grained (per-tuple)priorities, assoiated with di�erent ations. The objetive is twofold. First, it isintended to solve potential on�its between deisions obtained from di�erentations. For example, let's assume the port table has an entry that states thatpakets from a given port are to be forwarded. Let's also assume that the

209address table has an entry that states that pakets direted to a given host areto be drop. If a paket mathes both ations, the devie will follow that withthe highest priority.Seond, �ne-grained priorities permit the user to have at her disposal a hierarhialdeision system. Loal, low-priority defaults an be set with the protetionof higher-priority safeguards. An example is how to instrut the devie to(a) forward all pakets from a given TCP onnetion, while at the same timeensuring (b) the onnetion teardown segments are sent to the engine, and () anattaker annot overwhelm the engine by sending lots of TCP ontrol segments.As we mentioned before, priorities may be used to address this problem: Apaket belonging to the given onnetion is forwarded with low priority, a paketwith any TCP ontrol �ag on is shunted with medium priority, and a paketfrom a well-known attaker is dropped with high priority. The devie, therefore,heks every paket with the four ations, and takes the highest priority deision.We de�ne a on�iting math as the ase where two tables provide di�erentations with the same priority. This is onsidered an error, and the result isthat the paket will be shunted.Note that priorities are set in a per-tuple basis. Therefore, di�erent tuples inthe same table may have di�erent priorities.
• Diretionality: Another added point is the in�uene of diretionality in the

210onnetion, address, and port tables. A onnetion table tuple mathes paketsgoing in both the forth and bak diretions. Di�erent yields an be set for thesame onnetion. For example, you an set pakets going in the forth onnetionto be forwarded, while pakets going in the bak diretion are shunted. Thisway, the engine will only see one side of the onnetion.For the address table, diretionality helps di�erentiate soure and destinationport. Again, it makes perfet sense for the devie to take di�erent deisionsdepending on whether the paket goes to a given host, or omes from a givenhost. The same reasoning an be applied to the port table.
• Default Shunting: If no ations mathes a paket, it is shunted to the engine.The main goal of this deision is analysis exhaustivity, i.e., ensuring that anypaket whose proessing has not been made expliit in advane, will be sent tothe engine.Default shunting introdues two interesting onepts: First, �safe deision�,i.e., shunting, whih is never wrong in funtionality terms (though it maybe in performane terms). This presents an additional advantage: It permitshardware designs where, in order to inrease e�ieny (in performane or spaeterms), results are only probabilisti or even knowingly inorret.Shunting supports suh implementations while their errors are single-sided, i.e.,they hange forward and drop into shunt , but they never transform a shunt into

211a forward or a drop.An example of the usefulness of a hardware design that may knowingly produeinorret results is devies with limited storage spae. In these devies, tableentries an be evited for spae reasons. Consider the ase of a paket thatwould have been mathed by a tuple in one of the tables, but suh tuple hasbeen evited due to lak of spae. As no tuple exists now, the paket willbe shunted by default. If the original deision was shunt , the paket will gothe right path. If it was forward or drop, it will go the wrong path (it willbe shunted), but one it arrives to the analyzer, the latter will �x its path.The engine will then either injet the paket bak in the network interfae, ordrop the paket itself (and probably update the orresponding table). The �nalpaket proessing will be the same in the limited storage devie as in a deviewith unlimited storage spae, at the ost of proessing a paket through theshim instead of just in the devie.The seond onept is the possibility of the shim reissuing entries that have beenevited by the devie. If the devie, beause of limited spae, needs to evitan entry in one of the tables, the shim will know, as it will get a paket thatshould have been proessed diretly by the devie. In this ase, the shim mayreissue the entry into the devie table, therefore optimizing the omposition ofthe devie tables.The main problem of default shunting is old-start. When the shunting system

212is started, it is swamped with the full link tra�. This high-load situationlasts until the engine manages to populate the onnetion, address, and porttables. Moreover, some of the tra� orresponds to partial onnetions, i.e.,onnetions from whih the engine will never see the start. The analyzer in theengine should be able to take poliy deisions based on suh partial onnetions.These deisions annot just be forward all partial onnetions: This ould betaken advantage of by an attaker: She ould launder all her TCP tra� bysending a non-SYN segment to the vitim address and port before the realonnetion. The analyzer would think it is a partial onnetion, and forwardany further paket.There is also another problem related to Default Shunting, whih is disussedin Setion 4.7.3.
• Sampling: Another funtionality added to the Shunting arhiteture is theintrodution of per-tuple, random sampling. Alongside the forward/drop/shuntyield (in both diretions) and the priority, all entries in the three tables and allstati �lters have a shunt sampling ratio. When a tuple's yield is forward ordrop, or either the forward or the drop �lter math a paket, the orrespondingshunt sampling ratio is heked. If it is not zero, a random deision with thementioned sampling ratio is taken. If the deision is sample, then the forwardor drop yield is substituted with a shunt yield, and the priority is kept the same.

213Sampling permits the analyzer to arry out triks like reeiving small piees ofa large subset of tra� without having to apture the full subset. An examplease is a large onnetion that the engine annot a�ord to proess, and thereforesets to forward . On the other hand, the engine is willing to see a paket fromtime to time, in order to detet strong bitrate variations, or absene of ativity.Note that the sampling infrastruture has been designed to be very heap. Oneof the main arhiteture onerns is spae, and there is a sampling ratio foreah table entry. We do not want to spend 32 bits just for eah samplingratio. Instead, we have limited the sampling rate representation to a few bits ofgranularity, 3 in our primary implementation. This permits 7 di�erent samplingratios, plus 0 for �no sampling.� The exat meaning of eah of the 7 samplingratios an be de�ned by the analyzer.
• Interonnetion: An important implementation deision is the interonnetionbetween the shim and the shunt devie. Beause we want the analyzer to haveaess to generi proessor apabilities, the shunt engine will run in a generihost. As for the devie, we have onsidered two di�erent options.First, the devie may be interonneted using the host loal bus (for example,PCI). This presents simpliity advantages: Installing a shunting host should beas easy as plugging a new ard in the loal bus, and the shim and the deviewould not need are about ommuniation reliability.

214Seond, the devie may be interonneted using a generi network link (forexample, Gigabit Ethernet). The main advantage of this approah is that itpermits deoupling devie and engine physially, and beause Ethernet is ashared medium, to ombine several devies with several engines.This presents several interesting possibilities, like a single engine managingseveral devies, whih ould be used to, for example, ahieve a entralized,omplete view of the DMZs linking a domain to the rest of the internet; or asingle devie dividing its load among several engines, so that the workload anbe shared between the analyzers in the di�erent engines; or a ombination ofboth.The arhiteture is neutral to the interonnetion �avor.Figure 4.3 shows an abstrat representation of the shunting deision proess. Apaket is passed through the four ations (the three tables plus the stati �lters), andeah ation produes a tuple {deision, priority}. The deision taken by the devieis the one orresponding to the yield with the highest priority. (If a table does notontain the paket's orresponding entry, or if none of the three stati �lters mathesthe paket, then the orresponding tuple ontains a shunt deision with minimumpriority.)Figure 4.4 shows the struture of the three tables. Note that the yield oupiesonly 10 bits per entry, inluding 4 for the forward and shunt ation in both diretions,3 for the priority �eld, and 3 for the sampling apability.

215
PSfrag replaementspaket onnetion tableaddress tableport table

3 stati �lters yc

ya

yp

yf

priorities

forward , drop, shuntFigure 4.3: Shunting Deision Proess
PSfrag replaements

kc

ka

kp

y

y

y

f fs sforth bak priority sample

rows
saddr sport daddr dport

proto
protoaddressport

104 bits 32 bits24 bits10 bits
kc: onnetion table key
ka: address table key
kp: port table key
y: yield

y: forward/drop
s: shuntFigure 4.4: Shunting Tables

2164.4.6 DisussionThe rationale behind the proposed mehanism is that the engine an typiallystate whih tra� it need not proess, or annot proess, and that it an expressits statement in the aforementioned ations. Therefore, the engine will only reeivetra� it an and must proess.The performane bene�t of the Shunting arhiteture relies in proessing themajority of the tra� at the earliest possible stage, the devie. Most of the tra�never goes into the host, therefore saving the host's sare resoures (bus, memory,and CPU).In order to do this proessing, Shunting uses the shunt devie, an augmentedNIC that permits generi paket proessing o�oading. As any hardware element,the devie sari�es �exibility for performane. It an only perform a redued set ofations (forwarding, dropping, and shunting pakets) based on four simple ations:onnetion, address, and port tables, and �lter. In exhange, the devie an performvery fast paket proessing.To ontrol the devie, Shunting uses the shunt engine. The devie providesprogrammable funtionality to lassify tra�. The use of that funtionality is deidedby the engine. The devie is the mehanism, and the engine provides the poliy.This simple setup permits reduing the amount of proessing in the softwareengine, as it an o�oad proessing to the devie, while at the same time allowingfor fast proessing in the hardware devie, as the simpliity of the four ations allows

217for fast implementations.Another bene�t of Shunting is to permit engine self-defense. This self-defense anbe atually weighted with the urrent engine workload. For example, when feelingoverwhelmed, the engine may deide to forward some subset of the tra� beause itis low-value to proess versus the load it requires.Yet another bene�t of Shunting is to provide a framework where to permit e�ientanalysis of tra� in non-standard ports. The analyzer ould �ngerprint any onnetionit sees, and one it manages to do so, it ould avoid seeing any more pakets fromsuh onnetion by inserting a orresponding entry in the onnetion table.4.4.7 AppliationsThis setion desribes some appliations of the Shunting arhiteture.
• The main Shunting senario use we devise, and the one evaluated in this Chapter,is network monitoring. This inludes both network intrusion detetion [Paxson,1999℄ and network debugging [Agarwal et al., 2003℄. For network monitoring,Shunting an be seen as a �exible, though e�ient, Input-Volume ControlTehnique (see Setion 4.3.5). Shunting allows for dynamially deiding whihpakets reah the engine. This provides a very powerful tool to redue theamount of state reated in intrusion detetion systems, and to e�iently apturetra� in network debugging systems.
• Shunting also permits performing network monitoring in subsets of tra� that

218require inremental, dynami �lter spei�ations. Some examples of data sessionsbeing dynamially negotiated inlude: (a) multimedia streaming, where thebulk media data is sent over a UDP session (RTP, session ontrol hannels)that is negotiated during a ontrol protool session (RTSP, H.323) loated ata well-known TCP port [van der Merwe et al., 2000℄; (b) apturing FTP datain either ative or passive transfer mode, where the bulk data transmission isdone using a onnetion de�ned during the FTP ontrol protool [Postel andReynolds, 1985℄; and () peer-to-peer sessions, where the full �ow spei�ationkeeps hanging through the life of the data transmission, when data providers(transmitters) keep appearing and disappearing.
• Another senario where Shunting is useful is to perform load balaning in paketproessors. The basi idea is to use shunting as very-fast paket apture deviesfor the paket proessors. The idea of using a omplex devie (the shuntingarhiteture, in our ase) as a fast paket apture devie is similar in spiritto [Deri, 2003℄. In that ase, the author proposes using a router. By setting thedevies to divide the tra� using any of the three onnetion, address, and/orport tables, several paket proessors an be limited to proess only a subset ofthe tra�. The main problem of plaing Shunting systems in parallel is that itan inrease paket delay and paket reordering.
• Shunting an also prove useful for tra� aounting. Shunting helps to apture

219information about onnetions without having to pass the full data through theanalyzer. Also, e�ient sampling permits probabilisti billing.
• As we disussed in Setion 4.3.4, Shunting an be used to perform tra�normalization.4.4.8 Comparison with BPF-Based ApproahesThis Setion enumerates the problems of performing inline high-speed paketproessing using only software and/or hardware approahes based on the popularBPF paket �lter arhiteture [MCanne and Jaobson, 1993℄.In-host BPF, i.e., running the paket proessor on a host, and using the kernelBPF implementation to deide whih pakets reah the proessor and whih do not,is not viable in high-volume environments, as all pakets will reah the host, even ifthey are just forwarded. This means that the host must be able to bear at least twotimes the bitrate of the link it is proessing.Pushing BPF to the NIC, while solving the host bus and memory bottlenek,presents three drawbaks, namely (a) it does not provide enough funtionality, (b) itdoes not sale, and () it is too stati.In some ways, the semanti model of the BPF language is higher than that ofthe shunting arhiteture: While the total number does not exeed a few tens, anyombination of onnetions, addresses, and ports an be spei�ed using the BPFlanguage.

220Shunting provides simpler, �xed semantis with dynami tables. The bene�ts are:
• BPF does not sale. In the in-host BPF ase, a simple �lter omposed of severalhundreds of primitives takes several minutes to ompile, and runs extremelyslowly, as the BPF engine must proess all primitives sequentially. In the shuntdevie, we expet to have almost unlimited spae for the address and port tables,and a very high number of entries for the onnetion table.The shunting arhiteture's goal, on the other hand, is to have tables withmaybe a million onnetion entries.
• BPF �lters are too stati. Adding or deleting an address from the addressblaklist in BPF requires reompiling the full �lter and hanging the full �lterin the period of time between the proessing of two pakets. In the Shuntingarhiteture, it only requires adding or deleting an entry in the address table.
• BPF is a paket apture �lter, and therefore it produes binary deisions (apturea paket or not). Shunting produes multivalued deisions (forward, drop, orshunt).
• BPF is not as �exible as the whole shunt arhiteture, whih uses a generiproessor as the analyzer. As an example, byte-string signature detetion in ane�ient and generi way requires a riher syntax than that of BPF, inludinggeneri inter-paket state availability.

2214.5 Design and ImplementationThis Setion desribes the design of an implementation of Shunting, and itsappliation to arry out network intrusion prevention.This Setion is organized as follows: Setion 4.5.1 desribes our implementationof a NIPS, based on integrating a NIDS with Shunting. Setion 4.5.2 desribes theommuniation between the the shim and the devie, inluding the network API.Setion 4.5.3 desribes the shunt devie. Setion 4.5.4 desribes the ommuniationbetween the analyzer and the shim (the mehanisms and poliies in the analyzer todrive the shim). Setion 4.5.5 introdues the shunt shim, the thin layer that permitsommuniation between the analyzer and the shunt devie. Setion 4.5.6 desribes anexample of the modi�ations required by an analyzer (Bro) to work with the shuntingarhiteture.4.5.1 Implementation DesriptionFigure 4.5 shows the implementation of a NIPS based on integrating a popularNIDS (Bro) and the Shunting arhiteture. Data tra� is shown using solid lines,while ontrol tra� is shown using dotted lines.The Shunting system is omposed of two parts: a simple, hardware front-end(�shunt devie�), and a �exible software omponent (�shunt engine�), whih an runon an o�-the-shelf host. The engine is divided into the analyzer (for whih we usea modi�ed version of Bro [Paxson, 1999℄), and the shunt shim, whih serves as glue

222

PSfrag replaements

shunt engineanalyzer (Bro)
shunt shim
pap
BPF
shunt devieFigure 4.5: Design of an Intrusion Prevention System Using Shunting

223between devie and analyzer.During the normal data operation (solid lines in Figure 4.5), the devie reeivespakets through any of its two network interfaes. These pakets may be forwardedto the opposite interfae, dropped, or shunted. In the last ase, pakets are sent tothe engine, whih aptures them using the standard libpap over BPF mehanism.In the engine, pakets are reeived by the shunt shim and �ltered again. The goalis to take into aount the ase where the shunt devie made a mistake. If the paketgets shunted again, it is sent to the analyzer. Otherwise, it is either reinjeted intothe devie (if the right deision would have been forward), or dropped.The analyzer proesses the paket. This proessing may result in insertion ordeletion of table entries in the shim and devie (see dotted lines in Figure 4.5), forwhih the analyzer has been extended.When the paket proessing �nishes, the analyzer re-injets the paket into theshim. The shunt shim performs a third �ltering, this time to take into aount thease where the analyzer modi�ed a table in a way that hanges the way the paketgets proessed. If the result is again di�erent from drop, the paket is sent bak intothe devie, where it is �nally reinjeted bak into the network.4.5.2 Devie-to-Shim ConnetionIn the urrent implementation, from the two options to make the devie ommuniatewith the shim (PCI bus and Ethernet onnetion), we have seleted the latter for

224this implementation. The reason is twofold: First, during the design and testingphase of the projet, it is easier to simulate the the Ethernet onnetion (by usingvirtual devies) than the PCI bus. Seond, the software devie simulator used fordebugging provides the full hardware devie funtionality (exept the performane),and therefore an be used in ases where the proessed tra� stream is intermediate,meaning high enough as to ause problems to an analyzer apturing pakets diretlyfrom the network, but not as high as to require the real, hardware shunt devie.For the �rst implementation, the Ethernet onnetion used is point-to-point,instead of shared.As the devie and shim ommuniate using a dediated Ethernet onnetion, theyuse network tra� to exhange information. This network tra� an be divided indata pakets and ontrol pakets.Data pakets orrespond to pakets that are shunted (devie to shim) and paketsthat are re-injeted by the devie (shim to devie). Data pakets are attahed tosome information on the deision taken. For example, when the devie sends ashunted paket to the shim, it must attah information on why the paket was shunted(inluding the table that mathed, and sampling information, if it applies), and theinoming network interfae. When the shim sends bak the paket, it must inludethe inoming interfae, so that the paket an be re-injeted in the opposite interfae.Control pakets are sent using a new protool, known as the Shunt InteronnetProtool (SHIP), whih runs over UDP.

225Shunt Interonnet ProtoolFigure 4.6 shows the SHIP paket format. The shaded setion represents thepaket header, and the blank setion represents the paket payload.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

PSfrag replaements

Bytes
0-34-78-1112-1516-1920-23

Bits0 4 8 12 16 20 24 28 31SHIP Protool Identi�ationPaket TypeSHIP Paket Length (inluding the header)Soure Identi�erDestination Identi�erMessage Identi�erSHIP PayloadFigure 4.6: Shunt Interonnet Protool Paket FormatTable 4.2 desribes the 24 byte header �elds.�eld length (bytes) explanationprotool version 4 support for protool versionstype 4 ontrol message typelength 4 SHIP paket length, inluding 24-byte headersoure ID 4 support for multiple engines/deviesdestination ID 4 support for multiple engines/deviesmessage ID 4 identi�er to implement reliabilityTable 4.2: Shunt Interonnet Protool HeaderThe ontrol message types, and the orresponding SHIP payloads, are desribedin Table 4.3. In this table, the �diretion� information states whether the ontrolpaket an be seen in the shim-to-devie diretion (s → d), devie-to-shim diretion(s ← d), or both (s ↔ d). The exat semantis and payload ontents are desribed

226in Setion B.1 of Appendix B.SHIP ReliabilityIf the shim and the devie ommuniate through a network link, we must onsiderthe possibility of paket losses, espeially beause the shared harater of Ethernetpresents issues like ollisions, and physial problems whih inrease the loss rate fromthe hannel Bit Error Rate (BER).Our reliability approah uses a simple sliding window mehanism, and is used onlywith ontrol pakets, where losing a single paket may a�et the shunt proessing.For data pakets, we assume the transport protool in the orresponding onnetionend-hosts will are about reliability, if needed at all.When either the shunt devie or the shunt shim want to send a reliable ontrolpaket, they prepend a unique, onseutive identi�er to the paket, send it, and storeit in a �xed-size bu�er. When either the devie or the shim reeive a paket markedas reliable, they aknowledge it by sending an ACK message bak assoiated to thepaket identi�er.Both sides use timers to ahieve reliability. When sending a reliable paket at time
t, the message sender also sets a retransmission timer at time t + ∆ in the future,where ∆ is a on�gurable, �xed value. On reeiving an aknowledgment paket forthe orresponding identi�er, the bu�er frame where the paket was stored is freed,and the retransmission timer is either aneled or reset. If, on the other hand, the

227

Table 4.3: Shunt Interonnet Protool Payloadontrol message type (diretion) parameters explanationak (s ↔ d) message was reeivedaked_msg_id aked messaged identi�erdevie_ready (s ← d) devie is alivedev_id devie identi�eropen (s → d) initialize the devie�lter_strings forward, drop, and shunt �lters�lter_priority forward, drop, and shunt �lter priorities�lter_sample sampling ratio for the �ltersdefault_sample default sampling ratiofailsafe_mode fail-safe mode (fail-open or fail-lose)apabilities (s ← d) devie apabilitiesversion devie versionnis information on the network adapters the devie listens tolose (s → d) lose the devielose (s ← d) the devie had to losereset (s → d) reset the deviehard whether the reset must be hard or softstats whether the devie must reset its statististables whether the devie must reset its tableserror (s ← d) report an errorode error odestatus_request (s → d) request the devie statuson_o� send status periodiallystatus_response (s ← d) return the devie statusdata devie status (table ontents)statistis_request (s → d) request the devie statistison_o� send statistis periodially Continued on next page

228

ontrol message type (diretion) parameters explanationstatistis_response (s ← d) return the devie statistisdata devie statistis (information on paket/bytesforwarded/dropped/shunted/injeted during lastseond/sine start)assoiate_onn (s → d) insert a tuple in the onnetion tablesr_addr onnetion's soure addresssr_port onnetion's soure portdst_addr onnetion's destination addressdst_port onnetion's destination portforth_ation whether pakets in the forth diretion must beforwarded/dropped/shuntedbak_ation whether pakets in the bak diretion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioassoiate_addr (s → d) insert a tuple in the address tableaddress the addressforth_ation whether pakets in the forth diretion must beforwarded/dropped/shuntedbak_ation whether pakets in the bak diretion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioassoiate_port (s → d) insert a tuple in the port tableport the portforth_ation whether pakets in the forth diretion must beforwarded/dropped/shuntedbak_ation whether pakets in the bak diretion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratio Continued on next page

229

ontrol message type (diretion) parameters explanationdeassoiate_onn (s → d) deassoiate a tuple from the onnetion tablesr_addr onnetion's soure addresssr_port onnetion's soure portdst_addr onnetion's destination addressdst_port onnetion's destination portdeassoiate_addr (s → d) deassoiate a tuple from the address tableaddress the addressdeassoiate_port (s → d) deassoiate a tuple from the port tableport the portevition_onn (s ← d) a tuple was evited from the onnetion tablesr_addr onnetion's soure addresssr_port onnetion's soure portdst_addr onnetion's destination addressdst_port onnetion's destination portevition_addr (s ← d) a tuple was evited from the address tableaddress the addressevition_port (s ← d) a tuple was evited from the port tableport the port

230timer expires before reeiving the orresponding ACK, the paket whose transmissiontime has also expired is retransmitted, and the assoiated timer reinstated.In order to make things as simple as possible for the hardware devie, ACKmessages are individual, not umulative, and they are assumed to be unreliable. Thismeans that retransmissions only our when a paket has not been aknowledgedafter ∆ seonds. On the other hand, an ACK may also be lost. In this ase, the timerorresponding to the unaknowledged paket will expire, and the paket will be sentagain.If, at any time, the number of retransmissions for a single paket sent from thedevie reahes a �xed threshold, or the devie tries to send a reliable paket and thebu�er is full, we assume the devie and the shim have ommuniation problems, andmove the former to fail-safe state. The devie drains ompletely its bu�er, and sendstwo messages to the shim: One to report it had a bu�er error, and the seond toreport it is ready to be initialized again.If, at any time, the shim tries to send a reliable paket, and the bu�er is full, thebu�er is drained and a �full bu�er� error message is sent to the shunt shim. Whenreeiving this message, the shim knows something bad is going on with the devie,and may opt for putting it in fail-safe mode, or resynhronizing the table ontents.Table SynhronizationBoth the shim and the devie have their own opies of the three dynami tables.

231The ontents of the devie tables need not be exatly the same than those of theshim tables. Instead, they will be just a subset of the ontents of the shim tables.The reason of this di�erene is that the shunt devie is implemented in hardware,and therefore its apaity will be limited. In omparison, the shim runs on ano�-the-shelf host, and therefore it may use more resoures for the tables.In some sense, the devie tables work as a ahe of the shim tables: They have lessspae, but in exhange they operate faster. The only requirement is that there areno entries in the devie tables that are not in the orresponding shim table. Defaultshunting ombined with the fat that the devie is obliged to report any table evition,ensures that the limited apaity of the devie tables only a�ets the performane ofthe shunting proess, not the orretness.SHIP SynhronizationSHIP inludes a mehanism to synhronize the tables devie and shim. Thesynhronization mehanism is very simple: it permits sending the full table ontentsto the other side in an e�ient fashion (several tables per paket, instead of one tupleper paket, as in the normal method).The synhronization mehanism uses reliable transmission. In order to avoid usingall the bu�er retransmission spae, only a handful of pakets are sent at the sametime. Further pakets are loked by inoming pakets.Synhronization works in both diretions, i.e., synhronizing the shim with the

232devie, or the devie with the shim.In the �rst ase, the shim sends all the entries in its three tables to the devie,whih uses them to �ll its own tables. This synhronization method is useful afterthe shim moves the devie from fail-safe state to working state. If the shim wants topopulate the devie quikly, using the normal table aess mehanism will implysending one SHIP paket per tuple. Instead of that, the SHIP synhronizationmehanism permits inserting several tuples per paket (as many as �t in a networkpaket).The devie may not be able to �t all the entries in its tables, for example for lakof apaity. In this ase, it may evit the entries that do not �t, provided that itreports the evitions to the shim.In the seond ase, a useful senario onsists of the shim willing to know theontents of the devie tables. This is useful, for example, when the shim and thedevie run on separate plaes, and the former rashes. When it is restarted, it mayask the devie for its table ontents. At the shim request, the devie will respond bysending synhronization pakets with all the tuples in its three tables. On reeivingthe pakets, the shim generates an per-tuple event on the analyzer, whih the latteran use, for example, to populate its shim's tables. An alternate approah would befor the shim to drive the extration proess, so that it an request just subsets of thetables.Note that, in both ases, the proess is initiated by the analyzer. There is a

233spei� all that allows the analyzer to request synhronization in either diretion.Again, the goal is to permit very simple hardware devies.During the synhronization proess, normal operation ontinues. This means that,while the devie is sending its table's entries, the ontents of the tables may hange,either beause the analyzer requested so, or beause there were evitions in the devie.4.5.3 Shunt DevieFigure 4.7 shows the devie struture. The devie aptures and injets tra�from two network taps. It has its a opy of the three tables, whih it uses (alongsidethe stati �lters) to deide whether eah paket should be forwarded to the oppositeinterfae, dropped, or shunted to the shim for further proessing. The devie mayalso reeive pakets from the shim, whih are injeted in the tap opposite to the onefrom whih they were originally aptured.Devie StatesThe shunt devie operates in one of two di�erent states. Figure 4.8 shows thedevie state transition diagram. The normal operation just desribed ours whenthe devie is in �working state�. The operation in �fail-safe� mode is desribed below.

234

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���
���
���
���

���
���
���
���

PSfrag replaements
to shim from shim

onn tableaddr tableport table
stati �lters

from/to tap 1 from/to tap 2
shuntdrop forward

?
?
Figure 4.7: Shunt Devie Struture

PSfrag replaements fail-safe
working

start/send(devie_ready)reeive(lose), networkor bu�er problems/send(error), send(devie_ready) reeive(open)/send(apabilities)
Figure 4.8: Shunt Devie State Transition Diagram

235Devie FilteringFigure 4.9 shows the full devie �ltering algorithm in working state, inludingsampling.1 get a paket2 query 3 tables and 3 stati �lters. Choose the entry with highestpriority, or �default� (shunt) if none mathesdeision = F/D/S (forward,drop,shunt)3 deide whether the paket must be sampled, aording to �ve ations3.1 onnetion tableif there is an entry for the paket onnetion, and the orrespondingtuple sampling ratio (TSR) is non-zero, use it to deidewhether to sample the paket or not3.2 same for the address table3.3 same for the port table3.4 3 stati �ltersif the �lter sampling ratio (FSR) for any of the 3stati �lters is non-zero, use it to deide whether to samplethe paket or not3.5 global sampling ratio GSRif the GSR is non-zero, use it to deide whether to sample thepaket or not4 deide what to do with the paketdeision = deision from step 2if (steps 3.1 to 3.5 ause the paket to be sampled)deision = shuntmark the paket as �sampled by ation(s)�, whereation is eah ation that aused the paket to be sampledFigure 4.9: Shunt Devie Filtering Algorithm

236Layer-2 TransparenyThe shunt devie is transparent at layer 2. I.e., pakets forwarded keep theiroriginal Ethernet addresses. The reason is twofold: First, the goal of the devie isto be unnotied by all endhosts, exept attakers, who should see it as a very lossyhannel. Seond, we want to be able to plug the full system in the middle of a linkwithout the need to take are of any link-layer issue.This deision means that, for data pakets going the shunt path, all layers above(and inluding) layer 2 must be preserved intat. On the other hand, we mentionedin Setion 4.5.2 that data pakets must inlude some per-paket information.Considering that the devie-shim ommuniation is arried out using a point-to-pointEthernet onnetion, there are two alternatives to inlude the information:
• The generi solution is to enapsulate the data pakets into ethernet/IP/UDPpakets. This is �exible, but it may ause problems when the shunted paketis maximum-size itself. In this ase, transmission of the paket must be doneusing very large (jumbo) frames, whih may present transmission problems.
• For the preliminary implementation used in this projet, we have taken advantageof the fat that the devie-shim onnetion is point-to-point, and that, for NIDSpurposes, only a handful of network protools are of interest (namely IP, ARP,and reverse ARP, whih an be spei�ed using only 2 bits). We have remappedthe original 16-bit ethertype �eld, using only the �rst 2 bits, and paked the

237per-paket information in the remaining 14 bits. Setion B.3 in Appendix Bdesribes the remapping.Fail-Safe OperationThe goal of the fail-safe state is to permit the devie to keep operating safelyeven when the engine or any of its parts has rashed. Inline paket-proessingadds stringent requirements to the system reliability: In ase of problems in theshunting system, some network operators will prefer to fail-open, meaning to disablethe shunting system and forward all the tra�. Network operators with di�erentrequirements may prefer to ut the onnetivity of their site before letting tra� passwithout having been passed through the analyzer.If the shim sends a Close message to the devie, or the devie detets it ismalfuntioning, the latter will go into fail-safe mode. In the seond ase, a Closemessage is sent bak to the shim, if possible, aompanied by an Error message, ifneeded.In the devie's fail-safe state, all data pakets reeived are either diretly forwardedto the other network tap (fail-open mode), or dropped (fail-lose mode). The fail-overmode an be set by the analyzer through the shim API.

238Devie ImplementationCurrent network interfae ards do not provide enough funtionality to lassifytra� as the Shunting arhiteture requires. Therefore, we are working on thedevelopment of a spei� piee of hardware that will provide it. Nik Weaver fromthe International Computer Siene Institute is building a hardware devie that willwork as the shunt devie.While we are building the hardware devie, we have written a software simulatorof the devie. This �software devie� implements the full funtionality of the hardwaredevie. It has been written using Clik [Morris et al., 1999℄.The software devie also provides a heap Shunting system for low-bandwidthlinks (100 Mbps or less), and an easy-to-debug testbed.4.5.4 Analyzer-to-Shim APITable 4.4 and Table 4.5 desribe the API exported by the shim to the analyzer.It inludes funtions (messages whih the analyzer uses to program the shim) andevents (alls initiated by the shim to report something to the analyzer). As our �rstimplementation uses Bro, funtions and events are desribed using the Bro sriptlanguage.Note that most of the API funtions have a one-to-one orrespondene in theshim-to-devie API. The only additions are shunt_injet_paket and shunt_drop_paket,that permit expliit forwarding or dropping of a paket at the shim. The exat

239semantis of eah API funtion and event are desribed in Setion B.1 in Appendix B.4.5.5 Shunt ShimFigure 4.10 shows the shim struture. The shim reeives a paket from the devie,and has a opy of the tables to arry out �ltering. If it deides to shunt a paket,it sends the paket to the analyzer, whih proesses it. After the proessing, and ifthe analyzer injets bak the paket, it is �ltered again in the shim, and if �nallyaepted, sent bak to the devie for injetion into the wire.Note that the shim struture is very similar to that of the devie (ompare withFigure 4.7). The devie reeives tra� from two network taps, and �lters it usingits tables. The tables are likely very limited, as the devie may be implemented inhardware with limited resoures, and are ontrolled by SHIP tra� from the shim.Most of the tra� should be diretly forwarded, and therefore injeted in the tapdistint to the one where the paket was reeived. If the deision is to shunt, thetra� is pushed up to the shim.The shim reeives tra� from the devie, and �lters it using its own tables. Theshim tables are unlimited, as the shim typially runs on an o�-the-shelf host, andare ontrolled by the analyzer through the shunt API. Most of the tra� should besent to the analyzer (otherwise the shim is performing badly) and proessed there.If reinjeted by the analyzer, the paket is �ltered again (to take into onsiderationhanges in the tables aused by the proessing of the very same paket), and then

240

Table 4.4: Bro Shunt Aess API (Funtions)funtion parameters explanationshunt_open open the devieshunt_lose lose the devieshunt_reset reset the deviehard whether the reset must be hard or softshunt_injet_paket injet the paket urrently being analyzedshunt_drop_paket drop the paket urrently being analyzedshunt_assoiate_onn insert a tuple in the onnetion tableonn_id onnetion IDforth_ation whether pakets in the forth diretion must beforwarded/dropped/shuntedbak_ation whether pakets in the bak diretion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioshunt_assoiate_addr insert a tuple in the address tableaddress the addressforth_ation whether pakets in the forth diretion must beforwarded/dropped/shuntedbak_ation whether pakets in the bak diretion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratio Continued on next page

241

funtion parameters explanationshunt_assoiate_port insert a tuple in the port tableport the portforth_ation whether pakets in the forth diretion must beforwarded/dropped/shuntedbak_ation whether pakets in the bak diretion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioshunt_deassoiate_onn evit a tuple from the onnetion tableonn_id onnetion IDshunt_deassoiate_addr evit a tuple from the address tableaddress the addressshunt_deassoiate_port evit a tuple from the port tableport the portshunt_get_status request devie statusshunt_get_statistis request devie statistis

242

Table 4.5: Bro Shunt Aess API (Events)event parameters explanationshunt_assoiate_onn_event a tuple was inserted into the onnetion tableonn_id onnetion IDshunt_assoiate_addr_event a tuple was inserted into the address tableaddress the addressshunt_assoiate_port_event a tuple was inserted into the port tableport the portshunt_deassoiate_onn_event a tuple was evited from the onnetion tableonn_id onnetion IDshunt_deassoiate_addr_event a tuple was evited from the address tableaddress the addressshunt_deassoiate_port_event a tuple was evited from the port tableport the portshunt_query_deision_event the shim took a paket deisionpkt_hdr paket headerdeision the deision takenreason rationale behind the deisionshunt_status_event devie status reeivedshunt_statistis_event devie statistis reeived

243sent bak to the devie for injetion in the wire.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

PSfrag replaements
analyzer analyzertap injetionshunt events shunt API

onn tableaddr tableport table
stati �lters

to deviefrom devie
shunt

drop

drop forward?

??

Figure 4.10: Shunt Shim Struture
4.5.6 AnalyzerWe use Bro with some extensions as bak-end software NIPS driving the engine.The list of modi�ations arried out in Bro inlude (a) reading pakets from the shim,instead of the network tap, (b) injeting proessed pakets bak into the shim, ()extending Bro analyzers to ontrol the shunting system, and (d) having diret readaess to the onnetion, address, and port tables by exporting them into Bro. Thelast modi�ation permits aess to the tables from Bro sripts (though read-only),

244and also making the tables persistent.Note that the analyzer extensions are on�gurable. We desribe the ones set bydefault. Those inlude so far the following items:
• Bro portsanning analyzer (san.bro) inludes a funtion that is typially alledwhen the analyzer detets a portsan (drop_address()). We have extendedsuh funtion to inlude an entry in the address table with a drop yield, so thatfurther pakets from the mentioned address are dropped diretly in the shuntdevie.
• Bro's onnetion analyzer (Conn.) inludes SetSkip(), a funtion that analyzersall when they do not need to see more payloads of a given onnetion. It isused, for example, by the SSH, SSL, and login analyzers. We have extended thefuntion to insert a tuple in the onnetion table, with a forward yield.
• Any TCP or UDP onnetion whose protool is not supported by any Broanalyzer is also inserted in the onnetion table, with a forward yield. Therationale is that, if no appliation-layer analyzer is available, then the onlyevents that need be reported are those related to the network and transportlayers, whih are indeed aptured by the shunt stati �lter.
• Multiast tra� auses the orresponding multiast address to be inluded inthe address table with a forward yield.

245
• The SSH analyzer has been extended to set a forward yield in the onnetiontable when it thinks the onnetion is OK.
• Bro's FTP analyzer (ftp.bro) has been on�gured to set a drop entry for FTPdata and ontrol onnetions where bu�er over�ow attaks based on exessive�lenames are deteted; and a forward entry for all other FTP data onnetions.Both passive (PASV and EPSV ommands) and ative FTP data onnetions(PORT and EPRT ommands) are identi�ed from the FTP ontrol onnetions.In both ases, if the FTP analyzer does not see anything strange in the FTPontrol onnetion, an entry orresponding to the data onnetions is set toforward in the devie onnetion table
• The HTTP analyzer has been extended as follows: If the on�guration inludesthe HTTP request analyzer, all the requests are shunted for in-Bro analysis. Ifthe on�guration inludes the HTTP reply analyzer, all the replies are shuntedfor in-Bro analysis. Otherwise the replies are diretly forwarded (even while therequests may still be shunted).If an HTTP onnetion's request is in Bro's list of dangerous (sensitive) URLs,or the ontents of the reply are deemed dangerous, a drop entry is set in thedevie's onnetion table.
• When a TCP onnetion is �nished, Bro's TCP onnetion analyzer (TCP.)raises a onnetion_�nished event. We have extended this event to remove the

246orresponding entry from the onnetion table.
4.6 Evaluation4.6.1 Projet StatusWe have written the shim and extended a well-known NIDS (Bro) to be usedas the engine's analyzer. Note that this transforms the NIDS to a de fato NIPS,allowing Bro to instantly blok attak tra�.We are still working on the implementation of the hardware devie. In orderto be able to analyze the shunt performane, we have written a �software devie�,a program that simulates the funtionality of the hardware shunt devie, inludingthe use of a �xed amount of resoures. The software devie permits us (a) gainingunderstanding of the �ltering e�et of the shunt devie, (b) obtaining a hint on thenet performane bene�ts, and () allowing the running of the Shunt arhiteture bysoftware-only means in low-speed links (sort of a poorman's shunt arhiteture).We have so far extended Bro's SSH, HTTP, FTP, and generi TCP onnetionanalyzer to take advantage of the shunt arhiteture. We are working in extendingmore Bro analyzers, to ensure full use of the shunt apabilities.The ode onsists of 16 K lines, mainly heavily-ommented C++ ode, from whih6.4 K are used in ommon ode (SHIP protool and table implementation), 4.6 K areused for the shunt shim, 2 K for the analyzer extension (inluding some Bro sripts),

247and 3 K lines for the shunt simulator (inluding some lik glue).We have run several experiments to measure the bene�t obtained by the shuntingarhiteture. These experiments over four di�erent aspets:The main bene�t of the shunt arhiteture is that the NIPS has to proess onlya fration of the total tra� being analyzed. Shunting �lters the tra� that theanalyzer reeives, and most of the tra� is diretly proessed in the shunt devie.Setion 4.6.3 quanti�es this bene�t, measured as the �ltering ratio, whih is de�nedas the amount of tra� that a NIPS has to proess when used as the analyzer inthe shunt engine, ompared to what the same NIPS would have to proess if runningwithout shunting.Seond, this shunt �ltering e�et has as natural onsequene an enhanement inthe system performane: If the NIPS running as the analyzer in the shunt engine hasto proess less tra� than when running without shunting, it should also run faster.While it is hard to evaluate this bene�t without a hardware devie, Setion 4.6.4 triesto provide some hints.The third e�et we have investigated is the in�uene of limited tables in the shuntdevie �ltering performane. We want to know how muh we should augment theshunt devie apabilities in order to deal with a real tra� environment. Setion 4.6.5studies the �ltering ratio for several table on�gurations.Finally, Setion 4.6.6 desribes the experiene obtained from running the shuntarhiteture in a live environment.

2484.6.2 Trae DesriptionThis Setion desribes the di�erent traes in whih we have run Bro with shunting.Isolated ExperimentsFirst, and in order to double hek that the shunt is working �ne, we have used 2isolated port traes, namely ssh-1 and www-1 .ssh-1 is a 45 min trae taken at Lawrene Berkeley National Lab (LBL) DMZ onNovember 2004. It onsists of port 22-tra� only, and aounts for 757 onnetions,2 M pakets, or 1 GB (an average of 530 bytes/paket).www-1 is a 25 min trae taken at LBL DMZ in September 2004. It onsists of port80 tra� from or to the LBL web server. The trae aounts for 2320 onnetions,150 K pakets, or 100 MB (an average of 670 bytes/paket).tp-1 Trae DesriptionA more realisti trae (tp-1) was obtained at the LBL DMZ, whose link is 1 Gbps.It onsists of TCP-tra� only, and aounts for 1.2 M onnetions, 127 M pakets,and 113 GB (an average of 892 bytes/paket). The trae was taken during workinghours on a weekday, in September 2005. Its total duration is 2 hours (an averagebitrate of 126 Mbps).

2494.6.3 Shunt Filtering RatioThe most important bene�t of the shunt arhiteture is the redution in theamount of tra� the analyzer must proess. We de�ne the �ltering ratio as theproportion of the analyzed tra� that a NIPS has to really proess when used as theanalyzer in the shunt engine. For example, a �ltering ratio of 10% means that, fromall the tra� in the wire, the analyzer really proesses 10%, and the remaining 90%is proessed in the shunt devie.In order to measure the �ltering ratio, our �rst experiment uses an unlimited-sizeshunt devie simulator. Bro was on�gured to use the shunt apabilities only for thethree Bro analyzers that have been modi�ed to do so (HTTP, SSH, and FTP). Inorder to permit full HTTP payload inspetion, Bro's HTTP analyzer was on�guredso that it requests shunting for all tra� in both the server-to-lient (the pakets thatonform the bulk data transmission) and lient-to-server diretion (the ACKs thatlok the bulk data transmission).Isolated ExperimentsWe ran some introdutory experiments in the ssh-1 and www-1 traes. In the �rstase, the �ltering ratio is extremely small, around 0.2% of the pakets and 0.05% ofthe bytes.In the www-1 ase, the �ltering ratio is 100%: There are no savings at all, as theshunt is instruted to divert all HTTP tra� to the analyzer for proessing.

250tp-1 ResultsFrom the total amount of tra�, all of the 1.2 M onnetions had at least onepaket shunted. The tra� shunted aounted for 30 M pakets and 20 GB, i.e., a�ltering ratio of 24% of the pakets or 18% of the bytes.In order to understand what is being shunted by the devie, Table 4.6 shows thedeomposition of the shunted tra�. perentage on shunted tra�ategory pakets bytes1 �ags 13.7 1.322 AUS 71.6 85.72.1 FTP 0.05 0.012.2 SSH 0.02 0.002.3 HTTP 71.6 85.72.3.1 sr HTTP 43.6 80.12.3.2 dst HTTP 28.0 5.612.3.2.1 HTTP ACKs 24.0 1.572.3.2.2 HTTP GET/POST 4.03 4.043 AAS 14.3 12.993.1 port 25 3.47 4.213.2 port 8000 1.36 0.493.3 port 443 5.55 4.543.4 port 993 2.62 2.443.5 port 995 0.99 1.034 NAN 0.33 0.03Table 4.6: Shunted Tra� Deomposition, tp-1The desription of the di�erent ategories is as follows:1 (�ags) orresponds to TCP �ags (TCP segments with the SYN, FIN, or RST�ag set). This tra� is required in order to monitor transport protools, andto aount for onnetions.

2512 (AUS) orresponds to tra� for whih Bro has an analyzer, and this analyzerhas been modi�ed to take advantage of the shunt. Currently this inludes theHTTP, SSH, and FTP analyzers.2.3.1 orresponds to tra� with port 80 as soure. This HTTP tra� orresponds tothe bulk data being transmitted in HTTP onnetions. Note that this aountsfor lose to 85% of the bytes.2.3.2 orresponds to tra� with port 80 as destination. This is HTTP tra�, andan be further subdivided as:2.3.2.1 orresponds to empty ACKs that the lient users to lok data transmissionsfrom the server.Note that the typial empty ACK is a small paket (43 bytes in average),and therefore any e�ort to redue this tra� ategory will be only importanton pakets, not in bytes.2.3.2.2 orresponds to the HTTP GET/POST lines that the lient uses to requestdata transmissions from the server.3 (AAS) orresponds to ports for whih Bro has an analyzer, but it has not beenmodi�ed to use the shunt. For these ports, all pakets are shunted, so that theorresponding Bro analyzer an proess them.The main soure of AAS tra� is HTTPS (port 443), whih aounts for 4.5% ofthe shunted bytes, and SMTP (port 25), whih aounts for 4.2% of the shunted

252bytes. The HTTPS and SMTP Bro analyzers are the two main andidates tobe instruted to use shunting.4 (NAN) orresponds to ports for whih Bro has no analyzer. Connetions whosedestination port has no analyzer in Bro are shunted as soon as Bro instantiatesthe orresponding per-onnetion data.ConlusionsThe total bitrate that the analyzer reeives gets redued to less than one �fth ofthe original bitstream.Moreover, from this 20% of the total bytes that are shunted, lose to 85% of thebytes are aused by HTTP tra�, inluding 80% by HTTP payloads. Setion 4.7.1proposes a more �ne-grain mehanism to deal with HTTP and other similar protools.4.6.4 Shunt PerformaneThe �ltering ratio provides an idea of the appliability of the approah for di�erentlink bandwidths. On the other hand, this ratio does not neessarily translate into aproportional redution in the amount of resoures used in the analyzer.For one, it seems lear that as the �ltering ratio diminishes and less tra� reahesthe analyzer, this �ltered stream has been seleted for analysis, and therefore is morelikely of interest for the Intrusion Detetion Analyzer. We expet the amount ofanalysis required per paket to be larger in the shunted stream than in the original

253one, and the savings in performane to be smaller than the savings in the shuntedbitstream.Also, it may be the ase that the main fator in the NIDS performane is not thenumber of proessed pakets, but the number of proessed onnetions, whih thestati shunt �lter at the devie ensures that are always seen by the analyzer.In order to hek the savings in resoures, we studied the performane of di�erenton�gurations of Bro and shunt proessing the three experiment traes, measuring therunning (user plus system) time of eah of the on�gurations. The exat on�gurationswere as follows:T1 plain Bro (no shunt) on the original experiment trae, with the following analyzersloaded: san, ssh, ftp, http, http-event, http-request, http-reply, notie, onn,and weird.T4 Bro using shunting on the original experiment trae, without the simulatordevie, and using the same set of Bro analyzers.T5 Bro using shunting on the full trae, with the simulator devie (simdev), andusing the same set of Bro analyzers.T2 Bro using shunting on the �shunted trae�, a redued trae omposed of thetra� that was shunted when running T5 on the original trae. T2 should beapproximately equivalent to running the shunt engine behind a real hardwareshunt devie, whih shunts to the engine the ontents of the shunted trae.

254Table 4.7 shows the results of running the four on�gurations in the three di�erenttraes.trae on�guration time (seonds)
total user systemssh-1 T1 (plain Bro) 5.4 4.2 1.2ssh-1 T4 (Bro+shunt) 12 11 1.0ssh-1 T5 (Bro+shunt+simdev) 20 19 1.0ssh-1 T2 (Bro+shunt on shunted trae) 0.25 0.24 0.01www-1 T1 (plain Bro) 6.5 6.4 0.18www-1 T4 (Bro+shunt) 7.3 7.2 0.18www-1 T5 (Bro+shunt+simdev) 8.6 8.4 0.18www-1 T2 (Bro+shunt on shunted trae) 7.3 7.1 0.16tp-1 T1 (plain Bro) 2750 2500 250tp-1 T4 (Bro+shunt) 3050 2800 250tp-1 T5 (Bro+shunt+simdev) 3450 3200 250tp-1 T2 (Bro+shunt on shunted trae) 2550 2500 50Table 4.7: Shunt Performane ResultsThe bene�t in the SSH trae ase is impressive for the T2 ase. Bro with shuntingruns 22 times faster than the Bro without shunting.The poor performane of the ase T4, whih is two times slower than running Broby itself, states that �ltering tra� in the shim is slow, as ompared to apturing thepaket and just disarding it. From visual inspetion of a pro�le of the running, themain auses of the slowdown of the shim are (a) the stati �lter proessing in theshim (17% of the time is spent there), (b) the management of loal statistis in theshim (15%), and () the ost of using Bro tables so that they are aessible from Brosripts (15%). We believe we an redue these three osts by (a) onsidering that thestati �lter proessing will be done orretly at the devie, and therefore does not

255need being repeated at the shim; (b) optimizing the performane, or disabling loalstatistis; and () exporting the table entries to the analyzer as funtions, instead oftables, whih would allow for a faster implementation.The poor performane of the ase T5, whih is four times slower than running Broby itself, states that the shunt devie implementation is also slow. We also pro�led thisase, and realize that 75% of the proessing time is aused by the table implementationin the devie, whih fouses on saving spae by storing eah entry's key, yield, andvalid bit in the minimum number of possible bits. This has demonstrated to be apoor implementation deision, whih we are urrently �xing.In the www-1 trae, T1 runs 12% faster than T2. This extra ost of T2 (whihanalyzes the same tra�, as all HTTP tra� is shunted to the engine) an beexplained by the �ltering of the tra� in the shim to hek that the devie didits work well.In the tp-1 trae, T2 ran 10% faster than T1. While this number is not impressive,the system time onsumed by T2 was one �fth of the system time onsumed by T1.This makes sense as the size of the shunted trae in the tp-1 ase is approximatelyone �fth of the original trae.We think there is a lot of leeway in the user proessing to make T2 run muhfaster than in T1. Also, the BTL approah desribed in Setion 4.7.1 should be ableto help with a redution in the amount of HTTP tra� that reahes the engine.We also want to move the shunt devie to the kernel, adding is as an in-kernel

256�ltering alongside the BPF �ltering. This is relatively safe, as the size of the tables islimited and well-known beforehand, and the operations available are relatively simple(add or delete entries in the tables). This should provide added savings as the numberof pakets requiring a ontext exhange will be muh smaller.4.6.5 Devie Limited-Size In�ueneThis Setion studies the e�et of the limited size of the shunt devie in the amountof tra� that reahes the analyzer in the engine.A shunt devie is a hardware devie, and therefore the resoures it an use arelimited. We assume the hardware devie used to implement it would have a few MBof fast memory (SRAM), and some more slower memory (DRAM).The tables have been implemented in the shunt devie simulator as ahe tableswith a pseudo-random (ryptographially seure) hash funtion (H3 [Carter andWegman, 1979℄).From the three tables used in the shunting arhiteture, we expet the onnetiontable to be the most useful in �ltering tra�, and at the same time the one requiringmore spae and the most used one. The port table is very minor (an exhaustive tableovering all the possible ports with the mentioned 10 bits/entry requires 80 KB), and[Weaver et al., 2004℄ shows how to trak all external IP addresses of note for a fairlylarge (several thousand hosts) site with a 4 MB table.We therefore fous our e�orts on investigating the e�et of the limited size of the

257onnetion table.We have onsidered a onnetion table with 1 MB, 2 MB, and 4 MB of spae,whih at 16 bytes per entry, �ts 64 K, 128 K, and 256 K entries, respetively. We havealso onsidered three di�erent levels of assoiativity, namely 2-way, 4-way, and 8-wayassoiativity. The three values are small enough as to permit quik read-only paketproessing. The last parameter whose e�et we have studied is the evition poliyin the ahe table. We have onsidered random and Least Reently Used (LRU)evition.For any ombination of the three parameters, the �ltering ratio result is omparedwith the �ltering ratio assuming an in�nite table. What we want to know is how muhtra� will reah the engine for di�erent ahe on�gurations.For all the experiments, we have used the tp-1 trae desribed before. The traeis omposed of 1.2 M onnetions, and the analyzer has a maximum instant demand(the maximum number of entries in the table onnetion that are needed at anygiven time) of 200 K entries. Note that this number is lose to 3 times larger thanthe apaity of the smallest size on�guration.Figure 4.11 shows the number of entries requested by the analyzer (top line), andthe number of entries used for di�erent ombinations of apaity and assoiativity.Results using LRU evition are very similar to those using random evition, andtherefore are not shown.We an see that, in the on�gurations with 64 K and 128 K entries, the analyzer

258reahes the maximum apaity of the table before the end of the experiment. While itan be argued that the 256 K entry on�guration would eventually run into apaityproblems, and therefore its long-term performane annot be understood, this is notthe ase for the 64 K and 128 K entry ones, whih do work in a stable state for alarge part of the experiment.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 1000 2000 3000 4000 5000 6000 7000 8000

PSfrag replaements

tableoupat
ion(entries)

time from start

requested entriesrequested entries per seond (magni�ed x100) random, 8-way, 256 KBlru, 8-way, 256 KB random, 4-way, 256 KBlru, 4-way, 256 KB random, 2-way, 256 KBlru, 2-way, 256 KB random, 8-way, 128 KB
lru, 8-way, 128 KB

random, 4-way, 128 KB
lru, 4-way, 128 KB

random, 2-way, 128 KB
lru, 2-way, 128 KB

random, 8-way, 64 KB
lru, 8-way, 64 KB

random, 4-way, 64 KB

lru, 4-way, 64 KB

random, 2-way, 64 KB

lru, 2-way, 64 KB Figure 4.11: Table Size OupationFigure 4.12 shows, from the total bytes shunted during the experiment, the ratioof these bytes that would have not been shunted if the devie had in�nite apaity.This measures how muh extra tra� is a limited-size devie sending to the shunt, orin other words, whih is the penalty of a limited-size devie.We an see that, in general, LRU auses around one order of magnitude less extra

259inorretly shunted tra� than random evition. Moreover, LRU gets more bene�tfrom higher assoiativity than random evition. This is also expeted, as LRU getsan make better use of a higher assoiativity to optimally evit the tuples.The drawbak of LRU is that every table read operation requires a write operation,in order to aount for the least reently used entry.

 1e-07

 1e-06

 1e-05

 1e-04

 0.001

64k 128k 256k

PSfrag replaements InorretlyS
huntedByte
Rate

ahe size (entries)

random, 8-wayrandom, 4-wayrandom, 2-waylru, 8-waylru, 4-waylru, 2-way

Figure 4.12: Inorretly Shunted Byte RateFigure 4.13 shows, from the total bytes shunted during a given time period(160 se), the perentage of these bytes that would have not been shunted if thedevie had in�nite apaity. This measures how muh extra tra� is a limited-sizedevie sending to the shunt, in other words, whih is the penalty of a limited-sizedevie.

260The Figure only presents results for the 64 K entry table ases (the ases withmore entries have lower perentages of inorretly shunted bytes). The results showthat higher assoiativities and LRU evition perform onsistently better than lowerassoiativities and random evition, respetively. This was expeted as reissuingentries permits LRU evition and a larger assoiativity to optimize the ompositionof the table by trial and error.The most interesting aspet of the experiments, though, is how small the e�etof limited-size devies is. In the worst ase (random evition, 2-way assoiativity,64 K entries), the maximum amount of inorretly shunted data is a meager 0.07%of the total tra�. This is also true when using smaller time periods: The maximumamount of inorretly shunted data in a 10 se period is 0.7% of the total tra�.(The orresponding number for bytes are 0.2% for the 160 se period, and 0.4% forthe 10 se period).The main reason why the perentages are so small is table reissuing. When theshim (whih has in�nite-size tables) detets that a paket shunted by the devie shouldhave been proessed diretly by the devie, it reissues the table entry to the devie.This means that at most one paket would be dealt with inorretly at the devie:After it reahes the shim, the latter reinstates its onnetion table entry.By reissuing entries after eah miss, the shim quikly �nds the ative onnetions.Paket onnetions present a very strong loality of referene, both temporal andspatial: Pakets from the same onnetion are typially lose in time, and there

261

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1000 2000 3000 4000 5000 6000 7000 8000

PSfrag replaements

Perentageo
fBytesInor
retlyShunte
d

time from start

random, 8-way, 256 KBlru, 8-way, 256 KBrandom, 4-way, 256 KBlru, 4-way, 256 KBrandom, 2-way, 256 KBlru, 2-way, 256 KBrandom, 8-way, 128 KBlru, 8-way, 128 KBrandom, 4-way, 128 KBlru, 4-way, 128 KBrandom, 2-way, 128 KBlru, 2-way, 128 KB

random, 8-way, 64 KBlru, 8-way, 64 KBrandom, 4-way, 64 KBlru, 4-way, 64 KBrandom, 2-way, 64 KBlru, 2-way, 64 KB

Figure 4.13: Inorretly Shunted Bytesare not too many ative onnetions present at a given time, ompared to the totalnumber of onnetions ever seen in the wire.There ould be a problem if, in an N -way assoiative ahe, N + 1 onnetionshashing to the same ahe position were ative at the same time (thrashing). Otherwise,either LRU or random will quikly evit the non-ative onnetion (though LRUfaster).Comparing the extra amount of shunted data beause of the limited-apaitydevie with the results in Setion 4.6.3, the main onlusions are that LRU is betterthan random (with higher assoiativity, up to one order of magnitude less extratra�), but that the perentage of extra shunted tra� with a sensible-size table

262(1 MB) is so small, that the extra in-devie aounting needed in order to implementLRU is not worth.4.6.6 Live ShuntingWe have also run Bro with the shunt in a real, low-bandwidth environment, forover 262 hours (11 days). The total tra� proessed was 34 M pakets, or 9.8 GB(36 pkts/se and 83 Kbps, or around 300 bytes/paket).The host used for shunting is a 2-proessor, Pentium (Xeon) at 3 GHz CPU(hyperthreading enabled) with 2 GB of memory running Linux (2.6.9 kernel). Thishost was used to route tra� between the internet and four hosts, inluding someresearher's desktops and laptops.Bro was on�gured to use the software shunt devie, and the shunt apabilitiesonly for the three Bro analyzers that have been modi�ed to do so (HTTP, SSH,and FTP). The HTTP analyzer was on�gured to request forwarding of all tra� inthe server to lient address, so that HTTP entity bodies (but not the HTTP entityheaders) are either forwarded or dropped at the simulator devie, but never shunted.Note that this approah is not the same than the one desribed in Setion 4.7.1, whereall HTTP entity bodies are shunted, independently of their type.From the full tra� proessed at the shunt devie, 8.9% of the pakets and 3.5%of the bytes were shunted. This orresponds to the devie having shunted to theanalyzer an average 3.2 pkts/se, 2.9 Kbps, and 115 bytes/paket. Note that the

263average shunted paket is less than half the size of the average paket seen at thedevie, whih makes sense due to the large perentage of empty TCP pakets in theshunted tra�.The peak amount of tra� shunted to the analyzer in a one-seond interval was750 pkts/se, or 800 Kbps. During this peak, the time used by Bro to analyze thepakets aounted for 16% of the walllok time. The peak happened around oneweek after the experiment was started, so it was not due to old start. No paketlosses were reported by any of the pap devies used to apture tra�.Table 4.8 shows the deomposition of the 3 M pakets (345 MB) shunted.perentage on shunted tra�type pakets bytes1 �ags 26.54 13.622 AUS 51.18 48.742.1 FTP 0.00 0.002.2 SSH 4.68 2.452.3 HTTP 46.50 46.302.3.2 dst HTTP 45.03 45.742.3.2.1 HTTP ACKs 40.94 16.512.3.2.2 HTTP GET/POST 4.10 29.233 AAS 14.68 30.523.3 port 443 4.53 11.313.6 port 139 4.65 14.203.7 port 111 2.51 1.503.8 port 53 2.99 3.504 NAN 7.61 7.12Table 4.8: Shunted Tra� Deomposition, Live Tra�One third of the shunted tra� is omposed of the HTTP entity headers, andone fourth is omposed of tra� orresponding to ports whose orresponding Bro

264analyzer has not yet been modi�ed to take advantage of the shunting arhiteture.
4.7 Future Work4.7.1 Expiring Entries (BTL)Justi�ationThe normal operation for the shunt arhiteture is to shunt the �rst few pakets ofa onnetion, so the analyzer an take a deision on whether it wants to keep reeivingpakets from it or no. One the analyzer takes a deision, we use it to forward/drop(or shunt) any further onnetion tra�.This operation mode works if the life of a onnetion onsists of some appliation-layermetadata and ontrol exhange, followed by a bulk data transfer. This is the asefor SSH, FTP, and non-persistent onnetions in HTTP. But, what happens whenmetadata and data are interleaved in a onnetion?A ase example of this behavior is persistent onnetions in HTTP 1.1 [Fieldinget al., 1999℄. Persistent HTTP onnetions reuse the same TCP onnetion to servemultiple requests, therefore avoiding the overhead of opening a TCP onnetion foreah request.Persistent HTTP onnetions present several advantages: (a) They redue thetotal amount of tra� in the wire, as the TCP onnetion establishment and teardownhandshakes are needed only one per onnetion; (b) they redue the lateny of

265loading all objets but the �rst one, as (again) the TCP onnetion establishmenthandshake is only needed one; and () they inrease the performane of small requesttransfers, as they are arried out in a TCP onnetion outside of slow start [Jaobsonand Karels, 1988℄.Figure 4.14 shows an example of the struture of an HTTP persistent onnetion.In the left olumn, C represents the HTTP lient, and S the HTTP server. The rightolumn shows the ontents of the requests and replies.HTTP Server to Client replies onsist typially of one or several entity transfers[Fielding et al., 1999℄. Eah entity transfer is omposed of an entity body (the datathat is being served by the reply), preeded by an entity header desribing it. Thelatter is omposed of a series of one-line �elds, inluding among others the objettype, its enoding, and its length.Let's onsider the situation where a network operator running Bro wants toanalyze the entity headers in HTTP responses, but not some of the assoiated entitybodies (for example, large binaries). If a onnetion is not persistent, the analyzeran be instruted to hek the entity headers, and if the body being desribed is notof interest, or there is no analyzer available for the media type, instrut the devie toforward all further tra� assoiated to the onnetion.With persistent onnetions, though, the analyzer annot assume that the onnetionused at one moment for sending an uninteresting entity body will not be used later foran interesting one. Current shunt apabilities (onnetion, address, and port table,

266
diretion ontents
C ↔ S [TCP Handshake℄
C → S GET page.html HTTP/1.1\r\nConnetion: KeepAlive\r\nKeep-Alive: · · ·
S → C HTTP/1.1 OK\r\n

· · · header· · · \r\n
\r\n
· · · data· · ·

S → C · · · data for �rst ADU· · ·
C → S GET image1 HTTP/1.1\r\nConnetion: KeepAlive\r\nKeep-Alive: · · ·
S → C HTTP/1.1 OK\r\n

· · · header· · · \r\n
\r\n
· · · data· · ·

S → C · · · data for seond ADU· · ·
C → S GET image2 HTTP/1.1\r\nConnetion: KeepAlive\r\nKeep-Alive: · · ·
S → C HTTP/1.1 OK\r\n

· · · header· · · \r\n
\r\n
· · · data· · ·

S → C · · · data for third ADU· · ·Figure 4.14: HTTP Persistent Connetion Example

267plus stati �lters) do not permit forwarding the entity bodies while at the same timeshunting the entity headers: Both share the same onnetion, and pakets from thesame onnetion are always dealt with in the same manner. All pakets must gothrough the analyzer, and the shunt bene�t for that onnetion gets redued to zero.An added problem is that, in HTTP/1.1, unless either the lient or the serverstate expliitly that they want non-persistent onnetions, onnetions are persistent(Setion 8.1.2 in [Fielding et al., 1999℄). The analyzer only knows that it should notexpet more entities in a onnetion when it sees the FIN segment from the lientthat e�etively loses the TCP onnetion. It must therefore dealt with all HTTP/1.1onnetions as if they were persistent.This means that, in order for the analyzer to aess to the HTTP responses, thedevie must shunt to the analyzer all the pakets orresponding to default onnetions,even if they end up being used as non-persistent.BTL DesriptionThe solution we propose to address HTTP persistent onnetions is to extend theonnetion table yield with an appliation-layer byte ounter, whih we all BTL,or bytes-to-live. The basi idea onsists of the onnetion table still produing anation with a priority, but before doing so, the length of the mathing paket'sappliation-layer ontents is subtrated from the value of the entry's BTL ounter.When the BTL ounter reahes zero, the entry is removed automatially from the

268table.Figure 4.15 shows the operation of the onnetion table under the BTL approah.Times goes from the top to the bottom. The left olumn depits the state of theonnetion table. (The yield shows only the main ation and the BTL ounter.) Theolumn in the middle represents pakets proessed from the highlighted onnetion.The right olumn represents the ation arried out by the devie (we assume neitherthe other two tables nor the stati �lters math any of the three pakets).The �rst paket mathes the highlighted olumn. It is forwarded, and the BTLvalue of the entry is redued in the amount of appliation-layer bytes in the paket(1000 bytes in this ase). The seond paket also mathes the highlighted olumn,and therefore is dealt with the same way. But, when subtrating the total amount ofappliation-layer bytes of the paket, the BTL ounter reahes zero, and the entry isautomatially removed. The third paket does not math any entry in the onnetiontable, and therefore is shunted.The BTL ounter allows the analyzer to speify expiring entries. For example, ifthe analyzer sees an HTTP entity header where the Connetion−Length header statesthat the entity body will oupy 100 KB, it an set a forward entry assoiated to theonnetion, but with a BTL value of 100 KB. The shunt devie will keep forwardingpakets, and disounting the forwarded appliation-layer length from the BTL. Onethe BTL reahes zero, the entry is removed, and further pakets are shunted.Note that this solution will not only work for HTTP persistent onnetions, but

269

PSfrag replaements
kc

kc fwd (BTL=2000)
fwd (BTL=1000)

1000 bytes
1000 bytes
1000 bytes forward

forward
shunttime Figure 4.15: BTL Operation

270also for any other appliation-layer protool where the size of the bulk data transferis obtained from the appliation-layer header (in HTTP this is possible, unless the"hunked" transfer is used),The BTL approah has two main drawbaks: First, it requires a per-paket writefor tra� belonging to a onnetion with a non-zero BTL, whih may be expensive.Seond, if pakets get reordered just near the time when the BTL entry is about toexpire, then some headers for the next hunk (whih the NIDS wanted to see) mightget forwarded, and some data from the urrent hunk (whih the NIDS did not wantto see) might get shunted. This means the NIDS might miss some important headers,whih might ause it to miss attaks. This ould happen either by mishane (networkre-ordering, dupliations, or end-host retransmission) or malie (deliberate evasion).In order to �ght these two drawbaks in TCP tra�, our implementation of BTLresorts to using TCP sequene numbers instead of appliation-layer lengths. Insteadof speifying the maximum amount of tra� that is to be proessed aording tothe entry, the analyzer spei�es the last sequene number that will be proessedaordingly to the entry. This approah solves both BTL drawbaks for TCP tra�.It is not appliable to UDP, where the appliation-layer data order is not identi�edexpliitly.Finally, some senarios will still justify non-expiring entries, and therefore a �xedvalue ould be used to denote them. In a hardware implementation of a devie, it maymake sense for e�ieny reasons to avoid using a full ounter for eah non-expiring

271entry, and therefore to have two onnetion tables, one with BTL, and the otherwithout BTL.EvaluationThis Setion analyzes the e�et of adding a BTL ounter in the proessing of thetp-1 trae disussed previously. We are interested in knowing (a) the distribution ofontent types in the HTTP tra�, to get an idea of whih ones ould be dealt withusing BTL, and whih ones deserve full engine analysis, and (b) the perentage ofHTTP tra� that ould be forwarded diretly when using the BTL approah.Figure 4.16 shows a breakup of the HTTP ontents in tp-1 . The HTTP ontentsinlude all bytes orresponding to HTTP tra� in port 80, exluding network overhead(Ethernet, IP, and TCP headers), but inluding HTTP headers for both queries,replies, and entity headers. The latter aount for 7.9% of the HTTP ontents.The most important ontent types found in our trae are binaries, multimediaontents (JPEG, GIF, Windows Media Video, et.), HTML, and plain text.Figure 4.17 shows the savings in the amount of HTTP tra� shunted when usingthe BTL approah. In order to avoid sending ommands to the devie for very smallentity bodies, we show the perentage of saved bytes as a funtion of the length of thesmallest entity body required to justify a new BTL entry (X axis). This also oversthe e�ets of paketization: The �rst bytes of an HTTP entity body are sent in thesame paket that its entity header, and therefore annot be proessed at the shunt

272

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

other entries

chunked payloads

video/mpeg

text/html

application/x-tar

image/gif

application/pdf

text/plain

video/x-ms-wmv

image/jpeg

application/octet-stream

HTTP Payloads

100

806040200

PSfragreplaements HTTP Payload (MB)
Perentage on HTTP ontents

Figure4.16:HTTPBreakupintraetp−1

273devie.We have been areful to disount HTTP ontents sent using hunked transferoding from the savings [Fielding et al., 1999℄. Chunked transfers are used to senddynamially produed ontent for whih the total length is unknown until the end ofthe transfer. Therefore, there is no Content-Length �eld to use in the BTL �eld.The operation desribed by the experiment is as follows: For a given HTTPonnetion from whih the HTTP reply header is aptured, if (a) the value of theTransfer-Enoding �eld is not hunked, and (b) the value of the Content-Length �eldis bigger than the threshold, then a forward entry is added to BTL-apable onnetiontable in the shunt devie. This entry is set to expire after Content-Length bytes areforwarded.The upper three lines represent, respetively, the total amount of HTTP ontents(inluding HTTP reply, response, and entity headers), the total amount of HTTPpayloads (the transmitted data, disounting the HTTP reply and response headers),and the total amount of HTTP payloads (not inluding those sent using hunkedoding).The �Shunted HTTP Tra�� line shows the bene�t of BTL assuming all non-hunkedpayloads bigger than the threshold are BTLed. If analyzing HTTP payloads is not ofinterest for the analysis, we ould save around 90% of the total HTTP ontents (anda proportional part of the orresponding Ethernet, IP, and TCP headers) by BTLingall payloads whose length is more than 5 KB.

274The �Skippable Shunted HTTP Tra�� line shows the bene�t of BTL assumingthat only a subset of the HTTP non-hunked payloads are skipped using BTL (again,only those bigger than the threshold). The subset of skippable payloads inludesthose payloads where the MIME type in the value of the Content-Type �eld is audio,video, image, appliation. It exludes those payloads where the the MIME type is textor multipart/byteranges, whih are instead shunted. (Payloads with MIME ontenttype equal to multipart/byteranges are not skipped as they an re�et just about anytype.) All other payloads are skipped.This approah would save around 70% of the total HTTP ontents (and a proportionalpart of the orresponding Ethernet, IP, and TCP headers) by BTLing all payloads inthe skippable subset whose length is more than 5 KB.ConlusionsThe results of the BTL state that, from all HTTP ontents, 75% of the bytesan be safely skipped by not shunting audio, image, video, and appliation payloads.If we onsider the results from Setion 4.6.3, where the tra� shunted (20% of thebytes) is 85% HTTP, a shunt devie using BTL ould provide a �ltering ratio of 5%of the bytes.

275

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1000 10000 100000

100

80

60

40

20

0

PSfrag replaementsdrop TotalSaved(
MB)

TotalSaved(
perentage)

Threshold (bytes)

Total HTTP ContentsTotal HTTP PayloadsTotal HTTP non-hunked PayloadsShunted HTTP Tra�Skippable, Shunted HTTP Tra�

Figure 4.17: Bene�t of BTL in HTTP Tra�

2764.7.2 Shunting Other AnalyzersAnother piee of future work is to keep modifying Bro analyzers to take advantageof the shunt apabilities. In the live experiment, for example, the �rst two andidateprotools to be modi�ed this way are HTTPS and Mirosoft NetBIOS, whih aountfor 25% of the shunted bytes. In the tp-1 trae, the �rst two andidate protoolsto be modi�ed this way are HTTPS and SMTP, aounting for 9% of the shuntedtra� before BTL, or 25% when reduing the HTTP tra� that BTL ould proessdiretly at the shunt devie.In the HTTPS ase, the modi�ation should be pretty simple, as the tra� isenrypted after the initial header, and the analyzer annot proess enrypted tra�without the proper key.4.7.3 Evitions and Default ShuntingDefault shunting may, in some rare ases, produe inorret results. For example,onsider a paket that is mathed by entries in two tables. In one of the tables (T1), ahigh priority entry (E1) states that the paket must be forwarded. In the other table(T2), a lower priority entry (E2) states that the paket must be dropped. If bothE1 and E2 exists, and assuming no other table or stati �lter have a higher-priorityentry, the paket should be forwarded. Now, had E1 been evited from T1, the paketwould be dropped, instead of forwarded.Note that, in order for this to be a problem, several fats must hold: (a) We expet

277E1 to orrespond to the onnetion table. The reason is that it is the table with alarger domain spae, and therefore the most prone to evitions beause of table spaeonerns. This means that E2 will be an entry in either the port or the address table.(b) E2 must request the paket to be forwarded or dropped. If E2 requests the paketto be shunted, then the shim will reeive the paket, realize that an ative entry (E1)was evited, and reissue it. () E2 must have been issued after E1. Otherwise, thepaket that aused E1 would have been forwarded or dropped beause of E2, insteadof reahing the analyzer, and E1 would have never been issued. (d) E1 and E2 musthave been di�erent yields.An example of an error of this type would happen when E1 desribes a onnetionthat the analyzer wants shunted. Eventually, one of the hosts in the onnetiongets blaklisted/whitelisted (E2). Later, E1 is evited for apaity reasons. At thismoment, the analyzer loses visibility of the onnetion.We believe that the right approah in the shunting arhiteture is to provide amehanism to address it, and let the analyzer set the right poliy. To address possibleinonsistenies beause of probabilisti devie implementations, we provide the deviewith a mehanism to report to the analyzer when it deides to evit a table entry.In order to prevent rae onditions (the analyzer realizing that E1 was evitedand reissuing it, but only after E2 has dropped some paket), we plan to add a newevition resolution message in the SHIP protool. On reeiving a request to add anew entry that would ause an evition in one of its tables, the devie will send bak

278to the analyzer an evition resolution request. This request will inlude a list of theandidate entries for evition. The analyzer will reeive an event, and will answerstating whih entry in the devie should be evited.
4.8 ConlusionsWe have desribed a novel arhiteture to perform inline tra� proessing inhigh-speed links using an o�-the-shelf omputer and a simple, speial-purpose hardwaredevie. The ore of the arhiteture is the �shunt devie,� a network element thatperforms very simple paket proessing (basially forwarding, dropping, or shuntingpakets to a software analyzer) at a very high speed.Shunting provides �ne-grained semantis to the analyzer using it, namely per-onnetion,per-address, and per-port proessing. The goal of the arhiteture is that most paketsare proessed diretly by the shunt devie (either forwarded or dropped), while a smallpart are diverted through the intrusion-detetion analyzer.An added advantage of shunting is that, by default, all tra� is diverted to theanalyzer. This allows the latter to perform intrusion prevention, bloking attaktra� before it an ause any harm.We believe Shunting is an appealing arhiteture beause it provides a largeperformane enhanement in return for a minimal additional mehanism. While themehanisms are simple, they provide enough leverage for a NIPS to proess high-speedlinks.

279We have applied shunting to the intrusion detetion arena, researhed its performanebene�ts, and operated it in a real environment in order to understand its e�ets. Wefound that, when using shunting, the amount of tra� that the analyzer has toproess gets redued to one �fth in a real trae, and to 8% when onsidering BTLand a sensible on�guration.Shunting works speially well with some protools, as SSH and FTP, reduing theost of proessing them to up to a fator of 20. It also opens the door to the analysisof similar protools that pervade very high-speed links, as do Grids [Thain and Livny,2003℄ in sienti� laboratories.In other protools, as HTTP, the bene�t of Shunting is ompelling in the amountof �ltered tra�, but the savings in resoures are still poor. On the other hand,being able to perform full analysis in the HTTP tra� by just proessing a 20% ofthe total tra�, plus the ability to take per-onnetion deisions in the hardwaredevie, opens the door to �ne-grained parallel approahes, where several NIDS sharethe responsibility of proessing the shunt workload generated by a single devie.

280
Bibliography
Aboba, B. (2001). Pros and ons of upper layer network aess.Agarwal, D., Gonzalez, J. M., Jin, G. and Tierney, B. (2003). An infrastruture forpassive network monitoring of appliation data streams, Proeedings of the Passiveand Ative Measurement Conferene.Arramreddy, S. and Riley, D. (2002). PCI-X 2.0 white paper, Tehnial report,ServerWorks, Compaq.Azar, Y., Broder, A., Karlin, A. and Upfal, E. (2000). Balaned alloations, SIAMJournal on Computing 29(1): 180�200.Bailey, M., Gopal, B., Pagels, M., Peterson, L. and Sarkar, P. (1994). Path�nder:A pattern-based paket lassi�er, Operating Systems Design and Implementation,pp. 115�123.Begel, A., MCanne, S. and Graham, S. L. (1999). BPF+: exploiting global data-�owoptimization in a generalized paket �lter arhiteture, Proeedings of the Con-

281ferene on Appliations, Tehnologies, Arhitetures, and Protools for ComputerCommuniation, ACM Press, pp. 123�134.Bellovin, S. M. (2002). A tehnique for ounting natted hosts, IMW '02: Proeedingsof the 2nd ACM SIGCOMM Workshop on Internet Measurement, ACM Press,pp. 267�272.Bernashi, M., Gabrielli, E. and Manini, L. V. (2000). Operating systemenhanements to prevent the misuse of system alls, CCS '00: Proeedings of the7th ACM Conferene on Computer and Communiations Seurity, ACM Press,New York, NY, USA, pp. 174�183.Bloom, B. H. (1970). Spae/time trade-o�s in hash oding with allowable errors,Communiations of the ACM 13(7): 422�426.Bos, H., de Bruijn, W., Cristea, M., Nguyen, T. and Portokalidis, G. (2004). FFPF:Fairly fast paket �lters, Proeedings of OSDI'04.Braden, R. T. (1989). RFC 1122: Requirements for Internet hosts � ommuniationlayers.Brewer, J. and Sekel, J. (2004). PCI express tehnology, Tehnial report, Dell.Carter, J. and Wegman, M. (1979). Universal lasses of hash funtions, Journal ofComputer and Systems Sienes, Vol. 18.

282Cla�y, K. C., Polyzos, G. C. and Braun, H.-W. (1993). Appliation of samplingmethodologies to network tra� haraterization, Conferene Proeedings on Com-muniations Arhitetures, Protools and Appliations, ACM Press, pp. 194�203.Clark, D., Jaobson, V., Romkey, J. and Salwen, H. (1989). An analysis of tpproessing overheads, IEEE Communiation Magazine 27(2): 23�29.Cleary, J., Donnelly, S., Graham, I., MGregor, A. and Pearson, M. (2000). Designpriniples for aurate passive measurement, Proeedings of the Passive and AtiveMeasurement Conferene.Compaq (1999). PCI-X: An evolution of the pi bus, Tehnial report, Compaq.Coppens, J., den Berghe, S. V., Bos, H., Markatos, E., Turk, F. D., Oslebo, A. andUbik, S. (2003). Sampi - a saleable and programmable arhiteture for monitoringgigabit networks, Proeedings of E2EMON Workshop.Coppens, J., Markatos, E., Novotny, J., Polyhronakis, M., Smotlaha, V. and Ubik,S. (2004). Sampi - a saleable monitoring platform for the internet, Proeedingsof the 2nd International Workshop on Inter-Domain Performane and Simulation(IPS 2004).Cristea, M. and Bos, H. (2004). A ompiler for paket �lters, Proeedings of ASCI'04.Cristea, M., de Bruijn, W. and Bos, H. (2005). Fpl-3: towards language support fordistributed paket proessing, Proeedings of IFIP Networking.

283Crosby, S. and Wallah, D. (2003). Denial of servie via algorithmi omplexityattaks, Proeedings of the 12th USENIX Seurity Symposium, pp. 29�44.Crovella, M. (2001). Performane evaluation with heavy tailed distributions, JSSPP'01: Revised Papers from the 7th International Workshop on Job Sheduling Strate-gies for Parallel Proessing, Springer-Verlag, London, UK, pp. 1�10.Crovella, M. and Bestavros, A. (1996). Self-Similarity in World Wide Web Tra�:Evidene and Possible Causes, Proeedings of SIGMETRICS'96: The ACM In-ternational Conferene on Measurement and Modeling of Computer Systems.,Philadelphia, Pennsylvania. Also, in Performane evaluation review, May 1996,24(1):160-169.Currid, A. (2004). TCP o�oad to the resue, Queue 2(3): 58�65.Degioanni, L. and Varenni, G. (2004). Introduing salability in networkmeasurement: Toward 10 Gbps with ommodity hardware, IMC '04: Proeedingsof the 4th ACM SIGCOMM Conferene on Internet Measurement, ACM Press,New York, NY, USA, pp. 233�238.Denning, D. E. (1987). An intrusion-detetion model, IEEE/ACM Transations onSoftware Engineering 13(2): 222�232.Deri, L. (2003). Passively monitoring networks at gigabit speeds using ommodity

284hardware and open soure software, Proeedings of the Passive and Ative Mea-surement Conferene.Dreger, H. (2004). Personal ommuniation.Dreger, H., Feldmann, A., Paxson, V. and Sommer, R. (2004). Operationalexperienes with high-volume network intrusion detetion, Proeedings of CCS.Du�eld, N., Lund, C. and Thorup, M. (2002). Properties and predition of �owstatistis from sampled paket streams, Proeedings of the 2nd ACM SIGCOMMWorkshop on Internet Measurement, ACM Press, pp. 159�171.Du�eld, N., Lund, C. and Thorup, M. (2003). Estimating �ow distributions fromsampled �ow statistis, Proeedings of the 2003 Conferene on Appliations, Teh-nologies, Arhitetures, and Protools for Computer Communiations, ACM Press,pp. 325�336.Dykstra, P. (1999). Gigabit ethernet jumbo frames. and why you should are. WhitePaper.Engler, D. R. and Kaashoek, M. F. (1996). DPF: Fast, �exible message demultiplexingusing dynami ode generation, SIGCOMM, pp. 53�59.Estan, C. and Varghese, G. (2002). New diretions in tra� measurement andaounting, Proeedings of the 2002 Conferene on Appliations, Tehnologies, Ar-hitetures, and Protools for Computer Communiations, ACM Press, pp. 323�336.

285Estan, C., Savage, S. and Varghese, G. (2003). Automatially inferring patterns ofresoure onsumption in network tra�, Proeedings of the 2003 Conferene onAppliations, Tehnologies, Arhitetures, and Protools for Computer Communi-ations, ACM Press, pp. 137�148.Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leah, P. andBerners-Lee, T. (1999). RFC 2616: Hypertext transfer protool � HTTP/1.1.Status: INFORMATIONAL.Forrest, S., Hofmeyr, S. A., Somayaji, A. and Longsta�, T. A. (1996). A sense ofself for Unix proesses, Proeedinges of the 1996 IEEE Symposium on Researh inSeurity and Privay, IEEE Computer Soiety Press, pp. 120�128.Gar�nkel, T. and Rosenblum, M. (2003). A virtual mahine introspetion basedarhiteture for intrusion detetion, Proeedings of the Network and DistributedSystems Seurity Symposium.Gil, T. M. and Poletto, M. (2001). MULTOPS: A Data-Struture for bandwidthattak detetion, Proeedings of the 10th USENIX Seurity Symposium, pp. 23�38.Gilder, G. (2000). TELECOSM: How In�nite Bandwidth will Revolutionize OurWorld, Free Press.Giovanni, C. (2001). Fun with pakets: Designing a stik, Tehnial report, EndeavorSystems.

286Handley, M., Kreibih, C. and Paxson, V. (2001). Network intrusion detetion:Evasion, tra� normalization, end end-to-end protool semantis, Proeedings ofthe 9th USENIX Seurity Symposium.Iannaone, G., Diot, C., Graham, I. and MKeown, N. (2001). Monitoring veryhigh speed links, IMW '01: Proeedings of the 1st ACM SIGCOMM Workshop onInternet Measurement, pp. 267�271.Intel (2005). Intel(r) network infrastruture proessors: Extending intelligene in thenetwork.Ioannidis, S., Anagnostakis, K., Ioannidis, J. and Keromytis, A. (2002). xpf: paket�ltering for lowost network monitoring, Proeedings of the IEEE Workshop onHigh-Performane Swithing and Routing (HPSR), pp. 121�126.Jaobson, V. and Karels, M. J. (1988). Congestion avoidane and ontrol, ACMComputer Communiation Review; Proeedings of the SIGCOMM '88 Symposiumin Stanford, CA, August, 1988 18, 4: 314�329.Jaobson, V., Braden, R. and Borman, D. (1992). RFC 1323: TCP extensions forhigh performane.Jelena, P. and Greg, M. (2002). Attaking DDoS at the soure, ICNP '02: Proeedingsof the 10th IEEE International Conferene on Network Protools, IEEE ComputerSoiety, Washington, DC, USA, pp. 312�321.

287Karagiannis, T., Broido, A., Faloutsos, M. and Cla�y, K. (2004). Transport layeridenti�ation of p2p tra�, IMC '04: Proeedings of the 4th ACM SIGCOMMonferene on Internet measurement, pp. 121�134.Karp, R. M., Luby, M. and auf der Heide, F. M. (1992). E�ient PRAM simulationon a distributed memory mahine, pp. 318�326.Kay, J. and Pasquale, J. (1993). The importane of non-data touhing proessingoverheads in tp/ip, SIGCOMM '93: Conferene Proeedings on Communia-tions Arhitetures, Protools and Appliations, ACM Press, New York, NY, USA,pp. 259�268.Kleinpaste, K., Steenkiste, P. and Zill, B. (1995). Software support for outboardbu�ering and heksumming, SIGCOMM '95: Proeedings of the Conferene onAppliations, Tehnologies, Arhitetures, and Protools for Computer Communi-ation, ACM Press, New York, NY, USA, pp. 87�98.Ko, C., Rushitzka, M. and Levitt, K. (1997). Exeution monitoring ofseurity-ritial programs in distributed systems: a spei�ation-based approah,SP '97: Proeedings of the 1997 IEEE Symposium on Seurity and Privay, IEEEComputer Soiety, Washington, DC, USA, p. 175.Kreibih, C., War�eld, A., Crowroft, J., Hand, S. and Pratt, I. (2005). Using paketsymmetry to urtail maliious tra�, Proeedings of the Fourth Workshop on HotTopis in Networks (HotNets-IV) (to appear), ACM SIGCOMM.

288Kruegel, C., Valeur, F., Vigna, G. and Kemmerer, R. (2002). Stateful intrusiondetetion for high-speed networks, Proeedings of the IEEE Symposium on Seurityand Privay, pp. 285�294.Kumar, A., Paxson, V. and Weaver, N. (2005). Exploiting underlying struture fordetailed reonstrution of an internet-sale event, Proeedings of the ACM InternetMeasurement Conferene.Lee, J., Gunter, D., Tierney, B., Allok, B., Bester, J., Bresnahan, J. and Tueke,S. (2001). Applied tehniques for high bandwidth data transfers aross wide areanetworks, Proeedings of International Conferene on Computing in High Energyand Nulear Physis.Lee, W., Cabrera, J., Thomas, A., Balwalli, N., Saluja, S. and Zhang, Y.(2002). Performane adaptation in real-time intrusion detetion systems, RAID,pp. 252�273.Linhart, C., Klein, A., Heled, R. and Orrin, S. (2005). HTTP request smuggling,Tehnial report, Wath�re.Lohr, S. (1999). Sampling: Design & Analysis, Thomson Learning.Markatos, E. (2005). Sampi detailed arhiteture design.MCanne, S. and Jaobson, V. (1993). The BSD paket �lter: A new arhiteturefor user-level paket apture, USENIX Winter, pp. 259�270.

289Medina, A., Fraleigh, C., Taft, N., Bhattaharyya, S. and Diot, C. (2002). ATaxonomy of IP Tra� Matries, SPIE ITCOM: Salability and Tra� Controlin IP Networks II, Boston.Mills, C., Hirsh, D. and Ruth, G. R. (1991). RFC 1272: Internet aounting:Bakground.Mitzenmaher, M. and Upfal, E. (2005). Probability and Computing: RandomizedAlgorithms and Probabilisti Analysis, Cambridge University Press.Mogul, J. (1990). E�ient use of workstations for passive monitoring of loal areanetworks, Proeedings of the ACM Symposium on Communiations Arhitetures& Protools, ACM Press, pp. 253�263.Mogul, J. C. (2003). Tp o�oad is a dumb idea whose time has ome., HotOS,pp. 25�30.Mogul, J. C. and Deering, S. E. (1990). RFC 1191: Path MTU disovery.Mogul, J. C. and Ramakrishnan, K. K. (1997). Eliminating reeive livelok in aninterrupt-driven kernel, ACM Transations on Computer Systems 15(3): 217�252.Mogul, J., Rashid, R. and Aetta, M. (1987). The paket �lter: An e�ientmehanism for user-level network ode, Proeedings of the 11th ACM Symposiumon Operating Systems Priniples (SOSP), Vol. 21, pp. 39�51.

290Moore, A., Hall, J., Kreibih, C., Harris, E. and Pratt, I. (2003a). Arhiteture of anetwork monitor, Proeedings of the Passive and Ative Measurement Conferene.Moore, D. and Shannon, C. (2004). The spread of the witty worm, IEEE Seurityand Privay 2(4): 46�50.Moore, D., Paxson, V., Savage, S., Shannon, C., Staniford, S. and Weaver, N. (2003b).Inside the slammer worm, IEEE Seurity and Privay 1(4): 33�39.Morris, R., Kohler, E., Jannotti, J. and Kaashoek, M. F. (1999). The lik modularrouter, Symposium on Operating Systems Priniples, pp. 217�231.Morrison, J. (1985). EA IFF 85: Standard for interhange format �les, Tehnialreport, Eletroni Arts.Mukherjee, B., Heberlein, L. and Levitt, K. (1994). Network intrusion detetion,IEEE Network pp. 26�41.Nguyen, T., Cristea, M., de Bruijn, W. and Bos, H. (2004). Salable network monitorsfor high-speed links: A bottom-up approah, Proeedings of IPOM'04.Park, S. K. and Miller, K. W. (1988). Random number generators: good ones arehard to �nd, Communiations of the ACM 31(10): 1192�1201.Patterson, D. A. and Hennessy, J. (2004). Computer Organization and Design,Morgan Kaufmann Publishers In., San Franiso, CA, USA.

291Patterson, D., Anderson, T., Cardwell, N., Fromm, R., Keeton, K., Kozyrakis, C.,Thomas, R. and Yelik, K. (1997). A ase for intelligent RAM, IEEE Miro17(2): 34�44.Patton, S., Yurik, W. and Doss, D. (2001). An ahilles' heel in signature-based IDS:Squealing false positives in SNORT, RAID.Paxson, V. (1994). Empirially derived analyti models of wide-area TCPonnetions, IEEE/ACM Transations on Networking 2(4): 316�336.Paxson, V. (1999). Bro: A system for deteting network intruders in real-time,Computer Networks (Amsterdam, Netherlands: 1999) 31(23�24): 2435�2463.Paxson, V. and Floyd, S. (1995). Wide area tra�: The failure of poisson modeling,IEEE/ACM Transations on Networking 3(3): 226�244.Pennington, A., Strunk, J., Gri�n, J., Soules, C., Goodson, G. and Ganger, G.(2003). Storage-based intrusion detetion: Wathing storage ativity for suspiiousbehavior, Proeedings of the USENIX Seurity Symposium.Postel, J. (1981a). RFC 791: Internet Protool.Postel, J. (1981b). RFC 793: Transmission ontrol protool.Postel, J. and Reynolds, J. (1985). RFC 959: File transfer protool.Ptaek, T. H. and Newsham, T. N. (1998). Insertion, evasion, and denial of

292servie: Eluding network intrusion detetion, Tehnial report, Seure Networks,In., Calgary, Alberta, Canada.Rivest, R. (1992). RFC 1321: The MD5 message-digest algorithm. Status:INFORMATIONAL.Roesh, M. (1999). Snort: Lightweight intrusion detetion for networks, Proeedingsof the 13th USENIX Conferene on System Administration, USENIX Assoiation,pp. 229�238.Shneider, F. (2004). Analyse der leistung von BPF und libpap in Gigabit-EthernetUmgebungen, Tehnial report, Tehnishe Universitat Munhen.Shneier, B. (1995). Applied Cryptography: Protools, Algorithms, and Soure Codein C, John Wiley & Sons, In., New York, NY, USA.Shankar, U. and Paxson, V. (2003). Ative mapping: Resisting NIDS evasion withoutaltering tra�, Proeedings of the 2003 IEEE Symposium on Seurity and Privay,IEEE Computer Soiety, p. 44.Shannon, C., Moore, D. and Cla�y, K. C. (2002). Beyond folklore: Observations onfragmented tra�, IEEE/ACM Transations on Networking 10(6): 709�720.Sommer, R. and Paxson, V. (2005). Exploiting independent state for networkintrusion detetion, The IEEE Annual Computer Seurity Appliations Conferene(ACSAC'05).

293Song, D. (2001). Fragroute soure ode, Tehnial report, www.monkey.org.Staniford, S., Hoagland, J. A. and MAlerney, J. M. (2002a). Pratial automateddetetion of stealthy portsans, Journal of Computer Seurity 10(1-2): 105�136.Staniford, S., Paxson, V. and Weaver, N. (2002b). How to 0wn the internet in yourspare time, Proeedings of the 11th USENIX Seurity Symposium.Thain, D. and Livny, M. (2003). The Grid: Blueprint for a New Computing Infras-truture, Morgan Kaufmann.van der Merwe, J., Caeres, R., Chu, Y. and Sreenan, C. (2000). mmdump: a toolfor monitoring internet multimedia tra�, SIGCOMM Computer CommuniationsReview, Vol. 30, pp. 48�59.Wagner, D. and Dean, D. (2001). Intrusion detetion via stati analysis, Proeedingsof the IEEE Symposium on Seurity and Privay, pp. 156�169.Weaver, N., Ellis, D., Staniford, S. and Paxson, V. (2004). Worms vs. perimeters: Thease for hard-LANs, 12th Annual Proeedings of IEEE Hot Interonnets (HotI-12),Stanford, CA.Wood, P. (2004). libpap-mmap: Available at http://publi.lanl.gov/pw/.Xu, K., Zhang, Z.-L. and Bhattaharyya, S. (2005). Pro�ling internet bakbone tra�:Behavior models and appliations, SIGCOMM '05: Proeedings of the 2005 Con-

294ferene on Appliations, Tehnologies, Arhitetures, and Protools for ComputerCommuniations, ACM Press, New York, NY, USA, pp. 169�180.Ylonen, T. (1996). SSH � Seure Login Connetions over the Internet, Proeedings ofthe 6th USENIX Seurity Symposium, San Jose, CA, USA, pp. 37�42.Yuhara, M., Bershad, B. N., Maeda, C. and Moss, J. E. B. (1994). E�ientpaket demultiplexing for multiple endpoints and large messages, USENIX Winter,pp. 153�165.Zhang, Y. and Paxson, V. (2000a). Deteting bakdoors, Proeedings of the 9thUSENIX Seurity Symposium, pp. 157�170.Zhang, Y. and Paxson, V. (2000b). Deteting stepping stones, Proeedings of the 9thUSENIX Seurity Symposium, pp. 171�184.

295
Appendix A
Seondary Path Details
A.1 Generi Algorithm for Deteting Interative Bak-doorsThis Setion desribes the implementation of the Generi Algorithm for DetetingInterative Bakdoors desribed in [Zhang and Paxson, 2000a℄ using the SeondaryPath.Figure A.1 shows the generi analyzer ode.Note that the �lter we propose is slightly di�erent from the one suggested by [Zhangand Paxson, 2000a℄. We got rid of the pakets with zero-length payload, whihorrespond to mahine-driven transport-layer aknowlegments, but are ommon enoughas to a�et signi�antly the performane of the Seondary Path-based solution.

296global generi_sig_�lter ="tp and((ip[2:2℄ - ((ip[0℄&0x0f)<<2) - (tp[12℄>>2)) <= 20) and((ip[2:2℄ - ((ip[0℄&0x0f)<<2) - (tp[12℄>>2)) > 0)";onst interonn_min_num_pkts = 10 &redef; # min num of pkts sentonst interonn_min_alpha = 0.2 &redef; # minimum required alphaonst interonn_min_gamma = 0.2 &redef; # minimum required gammafuntion omp_gamma(s: onn_info): double{return s$N >= interonn_min_num_pkts ?(1.0 * (s$S - s$G - 1)) / s$N : 0.0;}funtion omp_alpha(s: onn_info) : double{return (s$short_intervals > 0) ?(1.0 * s$large_intervals / s$short_intervals) : 0.0;}funtion is_interative_endp(s: onn_info): bool{# Criteria 1: num_pkts >= interonn_min_num_pkts.if (s$N < interonn_min_num_pkts)return F;# Criteria 2: gamma >= interonn_min_gamma.if (omp_gamma(s) < interonn_min_gamma)return F;# Criteria 3: alpha >= interonn_min_alpha.if (omp_alpha(s) < interonn_min_alpha)return F;return T;} Figure A.1: Generi Bakdoor Detetor Implementation

297funtion estimate_gap(gap: ount): ount{return (gap + interonn_default_pkt_size - 1) / interonn_default_pkt_size;}funtion interval_is_short(t: interval): bool{return (interonn_min_interarrival <= t) && (t <= interonn_max_interarrival);}event bakdoor_generi_sig(�lter: string, pkt: pkt_hdr){# get rid of tra� in well-known portsif (interonn_ignore_standard_ports &&(pkttpsport in interonn_standard_ports ||pkttpdport in interonn_standard_ports)){return;}# reate the onnetion idloal id = [$orig_h = pkt$ip$sr, $orig_p = pkt$tp$sport,$resp_h = pktipdst, $resp_p = pkt$tp$dport℄;loal payload_length = pktiplen - pktiphl - pkttphl;loal seq = pkttpseq + payload_length;# if inexistent onnetion => reate blank entryif (id !in interonn_onns){interonn_onns[id℄ = [$S = 1,$N = 1,$G = 0,$top_seq = seq,$last_ts = network_time(),$short_intervals = 0,$large_intervals = 0,$interative = INTERCONN_UNKNOWN℄;} Figure A.2: Generi Bakdoor Detetor Implementation (ont.)

298
else{# we got a (small) paket++interonn_onns[id℄$S;++interonn_onns[id℄$N;loal top_seq = interonn_onns[id℄$top_seq + payload_length;if (top_seq != 0 && top_seq < seq){# there's been a gap in this onnetion++interonn_onns[id℄$G;#interonn_onns[id℄$N += estimate_gap(seq - top_seq);interonn_onns[id℄$N = interonn_onns[id℄$N + estimate_gap(seq - top_seq);}interonn_onns[id℄$top_seq = seq;if (interval_is_short(network_time() - interonn_onns[id℄$last_ts))++interonn_onns[id℄$short_intervals;else++interonn_onns[id℄$large_intervals;interonn_onns[id℄$last_ts = network_time();}if (! is_interative_endp(interonn_onns[id℄))return;log_interonn(id);}redef seondary_�lters += {[generi_sig_�lter℄ = bakdoor_generi_sig,}; Figure A.3: Generi Bakdoor Detetor Implementation (ont.)

299
Appendix B
Shunt Details
B.1 Shunt Interonnet Protool (SHIP) DetailsThis Setion desribes in detail eah of the SHIP messages.For the ontrol message type, SHIP uses 4-byte identi�ers with a human readablesequene. For example, the type �eld for the OPEN message is 0x4f50454e, whoseASCII translation is the string �OPEN�.For the ontrol message payloads, SHIP uses two di�erent strutures: Messageswith �xed ontents use a �xed struture, while messages with variable ontents dividetheir payload in hunks, eah omposed of a 4-byte identi�er, a 4-byte data size(always a multiple of 4 for alignment reasons), and the data itself. The 4 byte identi�eris again a human readable sequene of four haraters, suh as �FILE� or �VERS�.Figure B.1 shows an example of a variable-ontent SHIP payload. The payload

300is omposed of two (variable) �elds, one ontaining a 4-byte integer with a �lterpriority, and the other ontaining a 10-byte long string (plus 2 bytes of padding) withthe expression to be used for the stati forward �lter.Note that this struture is very similar to the one used in some generi �le formats,as the Interhange File Format Morrison [1985℄.

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

PSfrag replaements

Bytes
0-34-78-1112-1516-1920-2324-2728-31

Bits0 4 8 12 16 20 24 28 31type (�lter priority)length (4 bytes)ontents (priority=3)type (stati forward �lter expression)length (10 bytes)ontents (expression = �tp or udp�)Figure B.1: Shunt Interonnet Protool Variable Payload Example
B.1.1 ACK MessagesACK messages just aknowledge a paket sent from the other side. Their onlyparameter is the message identi�er of the aknowledged paket. Its payload is �xed,just 4 bytes with the suh message identi�er.

301B.1.2 Devie-Ready MessagesDevie-Ready messages are sent from the devie to the shim to report it is aliveand waiting for initialization. The only parameter is a unique devie identi�er. Itspayload is �xed, 4 bytes with the devie identi�er.B.1.3 Open MessagesOpen messages are sent from the shim to the devie to put the devie in workingmode. Its payload is variable, inluding some or all of the items in Table B.1.�eld type explanation�lter string(forward) string tpdump expression to be used as statiforward �lter�lter string(drop) string tpdump expression to be used as stati drop�lter�lter string(shunt) string tpdump expression to be used as statishunt �lter�lter priority(forward) integer priority of the stati forward �lter�lter priority(drop) integer priority of the stati drop �lter�lter priority(shunt) integer priority of the stati shunt �lter�lter sample 3 bits sampling ratio of the three stati �ltersdefault sample 3 bits default sampling ratiofailsafe mode Boolean fail-safe mode (fail-open or fail-lose)Table B.1: SHIP Open Variable Contents
B.1.4 Capabilities MessagesDevie Capabilities messages are sent from the devie to the shim on reeptionof a Open Message. Its payload is variable, inluding some or all of the items inTable B.2.

302B.1.5 Close MessagesClose messages are sent from the shim to the devie to put it bak into fail-safemode, or from the devie to the shim to report that an internal problem is tooimportant to keep in working mode, and that therefore the devie is moving intofail-safe state. The payload is �xed, and there are no arguments.B.1.6 Reset MessagesReset messages are sent from the shim to the devie to instrut it to reset all itstables and/or aounting information. The payload is �xed, and it onsists of three4-byte values, eah representing a Boolean. The �rst Boolean states whether thedevie must arry out a hard reset, whih removes all the table entries, resets all thedevie statistis, and leans up the retransmission bu�er. The seond Boolean stateswhether the devie must reset all its statistis. The third Boolean states whether thedevie must remove all the table entries.B.1.7 Error MessagesError messages are sent from the devie to the shim to report of an error. Thepayload is �xed, and it onsists of a 4-byte integer with a human readable sequene�eld type explanationversion integer devie version identi�ernis integer list unique identi�ers for eah of the devie's network tapsTable B.2: SHIP Devie Capabilities Variable Contents

303of four haraters that expresses the error that happened in the devie. There are novalid values de�ned so far.B.1.8 Status-Request MessagesStatus-Request messages are sent from the shim to the devie to request theontents of the devie's tables. The payload is �xed, and it onsists of a 4-byte valuerepresenting a Boolean that states whether the status response must our just oneor be �red periodially.Status-Request and Status-Response messages are used in the synhronizationmethod desribed in Setion 4.5.2.B.1.9 Status-Response MessagesStatus-Response messages inlude a dump of the ontents of the sender's (devieor shim) tables. They may be sent (a) from the devie to the shim as a response toa Status-Request message, or (b) from the shim to the devie in order to populatethe latter's tables. The payload is variable, and it onsists of a set of hunks, eahomposed of a 4-byte table identi�er, a 4-byte data size (again a multiple of 4 foralignment reasons), and the entry's index and yield. There are 4 di�erent tableidenti�ers, as desribed in Table B.3.Figure B.2 shows an example of the enoding of an entry in a SHIP Status-Responsemessage. Note that the bits are not enoding for e�ieny (for example, the forth

304and bak forward and shunt �elds use 32 bits eah, while there is only one bit beingused).
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

PSfrag replaements

Bytes
0-34-78-1112-1516-1920-2324-2728-3132-35

Bits0 4 8 12 16 20 24 28 31table identi�er (ADDR)length (28 bytes)address (1.2.3.4)forth forwardforth shuntbak forwardbak shuntprioritysampling ratioFigure B.2: SHIP Status Response Entry Example
B.1.10 Statistis-Request MessagesStatistis-Request messages are sent from the shim to the devie to request thedevie's operation statistis. These statistis inlude the amount of paket and bytes,forwarded, shunted, or dropped, for di�erent reasons: onnetion ID mathing theonnetion table, soure or destination address mathing the address table, soure oridenti�er explanationCONN an entry in the onnetion tableADDR an entry in the address tablePORT an entry in the port tableDONE last paket in the synhronization proessTable B.3: SHIP Status Response Table Types

305destination port mathing the port table, paket mathing any of the 3 stati �lters,or default shunting.The request payload is �xed, and it onsists of a 4-byte value representing aBoolean that states whether the statistis response must our just one or be �redperiodially.B.1.11 Statistis-Response MessagesStatistis-Response messages inlude a dump of the ontents of the devie's operationstatistis.The payload is �xed, and it onsists of a the values mentioned in Setion B.1.10.B.1.12 Assoiate Connetion MessagesAssoiate Connetion messages are sent from the shim to the devie to add a newentry in the devie's onnetion table.The payload is �xed, and it onsists of a 20-byte value representing a 104-bitonnetion identi�er (soure and destination address and port, plus transport port),followed by a 28-byte value representing the 10-bit yield. The latter is omposed of1 bit for the forward deision in the forth diretion, 1 bit for the forward deision inthe bak diretion, 1 bit for the shunt deision in the forth diretion, 1 bit for theshunt deision in the bak diretion, 3 bits for the entry priority, and 3 bits for thesampling ratio.

306B.1.13 Deassoiate Connetion MessagesDeassoiate Connetion messages are sent from the shim to the devie to removean entry from the devie's onnetion table, or from the devie to the shim to reportan entry being evited from the onnetion table.The payload is �xed, and it onsists of a 20-byte value representing a 104-bitonnetion identi�er (soure and destination address and port, plus transport port),followed by a 4-byte value representing the reason why the entry was evited (thisvalue is unused when the message is sent from the shim to the devie).B.1.14 Assoiate Address MessagesAssoiate Address messages are sent from the shim to the devie to add a newentry in the devie's address table.The payload is �xed, and it onsists of a 4-byte value representing an IP address,followed by a 28-byte value representing the 10-bit yield. The latter is omposed of1 bit for the forward deision in the forth diretion, 1 bit for the forward deision inthe bak diretion, 1 bit for the shunt deision in the forth diretion, 1 bit for theshunt deision in the bak diretion, 3 bits for the entry priority, and 3 bits for thesampling ratio.

307B.1.15 Deassoiate Address MessagesDeassoiate Address messages are sent from the shim to the devie to remove anentry from the devie's address table, or from the devie to the shim to report anentry being evited from the address table.The payload is �xed, and it onsists of a 4-byte value representing an IP address,followed by a 4-byte value representing the reason why the entry was evited (thisvalue is unused when the message is sent from the shim to the devie).B.1.16 Assoiate Port MessagesAssoiate Port messages are sent from the shim to the devie to add a new entryin the devie's port table.The payload is �xed, and it onsists of an 8-byte value representing a transport-layerprotool and port, followed by a 28-byte value representing the 10-bit yield. The latteris omposed of 1 bit for the forward deision in the forth diretion, 1 bit for the forwarddeision in the bak diretion, 1 bit for the shunt deision in the forth diretion, 1 bitfor the shunt deision in the bak diretion, 3 bits for the entry priority, and 3 bitsfor the sampling ratio.B.1.17 Deassoiate Port MessagesDeassoiate Port messages are sent from the shim to the devie to remove an entryfrom the devie's port table, or from the devie to the shim to report an entry being

308evited from the port table.The payload is �xed, and it onsists of an 8-byte value representing a transport-layerprotool and port, followed by a 4-byte value representing the reason why the entrywas evited (this value is unused when the message is sent from the shim to thedevie).
B.2 Shim Appliation Programming InterfaeThis Setion desribes in detail the Shunting API, as exported to Bro.B.2.1 shunt_open() FuntionThe shunt_open() funtion an be used by the analyzer to request the shim toopen the devie. It has no parameters.B.2.2 shunt_lose() FuntionThe shunt_lose() funtion an be used by the analyzer to request the shim tolose the devie. It has no parameters.B.2.3 shunt_reset() FuntionThe shunt_reset() funtion an be used by the analyzer to request the shim toreset the devie. It has three Boolean parameters: The �rst Boolean states whether

309the devie must arry out a hard reset, whih removes all the table entries, resets allthe devie statistis, and leans up the retransmission bu�er. The seond Booleanstates whether the devie must reset all its statistis. The third Boolean stateswhether the devie must remove all the table entries.B.2.4 shunt_drop_paket() FuntionThe shunt_drop_paket() funtion an be used by the analyzer to request that thepaket urrently being analyzer be dropped after injetion, without further �ltering.B.2.5 shunt_injet_paket() FuntionThe shunt_injet_paket() funtion an be used by the analyzer to request thatthe paket urrently being analyzer be injeted bak into the wire, without further�ltering.B.2.6 shunt_get_status() FuntionThe shunt_get_status() funtion an be used by the analyzer to request to startthe table synhronization mehanism, so that the devie table ontents are sent tothe shim.

310B.2.7 shunt_status_event() EventThe shunt_status_event() event is �red in the analyzer for every entry omingfrom the devie that is reeived by the shim during synhronization.B.2.8 shunt_get_statistis() FuntionThe shunt_get_statistis() funtion an be used by the analyzer to request thatthe shim obtains the devie's operation statistis.B.2.9 shunt_statistis_event() EventThe shunt_statistis_event() event is �red in the analyzer one it has reeivedthe devie operation statistis.B.2.10 shunt_assoiate_onn() FuntionThe shunt_assoiate_onn() funtion an be used by the analyzer to add an entryin the onnetion table (both at the shim and at the devie). The funtion parametersare the onnetion identi�er (soure and destination IP addresses and transport-layerports, plus the transport protool), the forth ation (forward , drop, shunt , or �forwardand shunt�), the bak ation (same possibilities), the priority of the entry, and thesampling ratio.

311B.2.11 shunt_deassoiate_onn() FuntionThe shunt_deassoiate_onn() funtion an be used by the analyzer to remove anentry from the onnetion table (both at the shim and at the devie). The funtionparameter onsists of the onnetion identi�er (soure and destination IP addressesand transport-layer ports).B.2.12 shunt_assoiate_addr() FuntionThe shunt_assoiate_addr() funtion an be used by the analyzer to add an entryin the address table (both at the shim and at the devie). The funtion parametersare the IP address, the forth ation (forward , drop, shunt , or �forward and shunt�),the bak ation (same possibilities), the priority of the entry, and the sampling ratio.B.2.13 shunt_deassoiate_addr() FuntionThe shunt_deassoiate_addr() funtion an be used by the analyzer to removean entry from the address table (both at the shim and at the devie). The funtionparameter onsists of the IP address.B.2.14 shunt_assoiate_port() FuntionThe shunt_assoiate_port() funtion an be used by the analyzer to add an entryin the port table (both at the shim and at the devie). The funtion parameters arethe transport-layer port, the transport protool, the forth ation (forward , drop,

312shunt , or �forward and shunt�), the bak ation (same possibilities), the priority ofthe entry, and the sampling ratio.B.2.15 shunt_deassoiate_port() FuntionThe shunt_deassoiate_port() funtion an be used by the analyzer to removean entry from the port table (both at the shim and at the devie). The funtionparameter onsists of the transport-layer port and the transport protool.B.2.16 shunt_evit_onn_event() EventThe shunt_evit_onn_event() event is �red by the shim every time it reeivesa report from the shim stating that it had to evit an entry in the onnetion table.The event parameter onsists of the onnetion identi�er (soure and destinationIP addresses and transport-layer ports, plus the transport protool).B.2.17 shunt_evit_addr_event() EventThe shunt_evit_addr_event() event is �red by the shim every time it reeivesa report from the shim stating that it had to evit an entry in the address table.The event parameter onsists of the entry's IP address.

313B.2.18 shunt_evit_port_event() EventThe shunt_evit_port_event() event is �red by the shim every time it reeives areport from the shim stating that it had to evit an entry in the port table.The event parameter onsists of the entry's transport protool and the transport-layerport.B.2.19 shunt_inonsistent_onn_event() EventThe shunt_inonsistent_onn_event() event is �red by the shim every time itreeives a shunted paket that was proessed inorretly at the devie beause of aonnetion table entry. A typial ase is when, for spae reasons, the devie musthave removed an entry in its onnetion table, and a paket that should have beenforwarded is instead shunted. As soon as the shim reeives the paket, it proessesthe paket through its tables and stati �lters. If it �nds that the paket should havebeen dealt with di�erently in the devie beause of a onnetion table entry, thisevent is issued.The analyzer response may be, for example, to reissue the entry again. Note thatreissuing the onnetion entry must ause yet another table evition, whih eventuallymay ause another shunt_inonsistent_onn_event() event. If the number of ativeonnetions �ghting for the same devie table frames is too large, there would bethrashing. It is the analyzer's responsibility to detet thrashing and reat adequately.The only event parameter is the onnetion identi�er (soure and destination IP

314addresses and transport-layer ports, plus the transport protool).B.2.20 shunt_inonsistent_addr_event() EventThe shunt_inonsistent_addr_event() event is �red by the shim every time itreeives a shunted paket that was proessed inorretly at the devie beause of anaddress table entry.The only event parameter is the IP address.B.2.21 shunt_inonsistent_port_event() EventThe shunt_inonsistent_port_event() event is �red by the shim every time itreeives a shunted paket that was proessed inorretly at the devie beause of anport table entry.The event parameters onsist of the entry's transport protool and the transport-layerport.
B.3 Ethertype Field Information PakingThis Setion desribes the remapping of the Ethernet Type (ethertype) �eld usedin order to pak per-shunted paket information in data messages sent between shimand devie, and desribed in Setion 4.5.3.Figure B.3 shows the remapping of the 16 bit Ethernet Header's Type Field.

315
��
��
��
��
��

��
��
��
��
��

PSfrag replaements
Bits0 2 4 5 8 15ET MD RO RE SA UUFigure B.3: 16 bit Ethernet Header Type Field RemappingTable B.4 desribes the remapping in depth.ode size(bits) explanationET 2 Real Ethernet Type EnodingPossible values are 00 (invalid)1, 01 (IP), 10 (ARP), and 11 (ReverseARP)MD 2 Main DeisionPossible values are 00 (invalid), 01 (paket was forwarded), 10(paket was dropped), 11 (paket was shunted)2RO 1 Routing InformationPossible values are 0 and 1, depending on whether the paket wasoriginally reeived in the devie's �rst or seond network interfae,respetivelyRE 3 Reason Why the Paket Was Marked as MDPossible values are 000 (invalid), 001 (math in onnetion table),010 (math in address table for the soure address), 011 (math inaddress table for the destination address), 100 (math in port tablefor the soure port), 101 (math in port table for the destinationport), 110 (math in any of the three stati �lters), or 111 (defaultdeision)SA 7 Sampling InformationEvery one of the bits represents whether the sampling deision wastriggered by eah of the seven sample soures or not, namely theonnetion table (�rst bit), the address table as soure address (se-ond bit), the address table as destination address (third bit), theport table as soure port (fourth bit), the port table as destinationport (�fth bit), the stati �lter sampling ratio (sixth bit), and/orthe default sampling ratio (seventh bit)UU 1 UnusedThis bit is unused, and should always be 1Table B.4: Remapping of the 16 bit Ethernet Header's Protool Field

316Note that the urrent enoding does not permit proessing IPv6 tra�.

1The rationale of assoiating the 00 ode for invalid paket is to ensure that the normal odesfor the ethertypes we support are invalid odes in our system. This way, a shim an detet easilythat there is no devie at the other side of the link, without waiting for a timeout after it sent theOPEN message.
2Note that a paket reahing the shim implies of ourse that it has been shunted. The MD�eld refers to the deision before sampling is taken into onsideration. MD is therefore used todi�erentiate between two ases: (a) the devie deision was really to shunt, and (b) the deision wasto drop or to forward, but sampling implied a opy was sent to the engine. In the latter ase, thepaket has also been forwarded or dropped by the devie, and therefore the shim must not try toreinjet it bak into the devie. Note also that a paket may have been shunted and sampled at thesame time. The shim knows the di�erene by heking the SA �eld.

