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1Abstra
t
E�
ient Filtering Support for High-Speed Network Intrusion Dete
tionbyJosé María GonzálezDo
tor of Philosophy in Computer S
ien
eUniversity of California, BerkeleyProfessor David Wagner, ChairNetwork Intrusion Prevention Systems (NIPS ) are a key element in defending net-works against all kinds of malware (worms, virus, et
.). This investigation addressessome fun
tionality and performan
e issues related to running su
h systems in veryhigh-speed networks (1 Gbps or faster).The traditional approa
h to 
arry out sound intrusion prevention is the use ofsoftware-based approa
hes, as only they provide the �exibility and dynami
 fun
tion-ality that is required to dete
t rapidly-evolving malware.The main obsta
le for the deployment of software-based NIPS in high-volumeenvironments is performan
e, in terms of the amount of tra�
 the NIPS is able topro
ess. NIPS present a double 
hallenge to system performan
e, namely pro
essingload and internal state storage management.



2We argue that any approa
h that intends to run NIPS in high-speed links mustrely on e�
ient �ltering, i.e., allow the NIPS to de
ide whi
h tra�
 it is interested inanalyzing and whi
h it is not, in an e�
ient fashion.The �rst 
ontribution of this thesis work is the development of �ltering te
hniques
ru
ial for the operation of network intrusion dete
tion and prevention in high-volumeenvironments. In the �rst part of the dissertation we dis
uss new �ltering models. Weintrodu
e innovative ways to take advantage of tra�
 �ltered using traditional pa
ket�lter 
apabilities, and new me
hanisms to extend pa
ket �lter 
apabilities with new�ne-grained abstra
tions.In the se
ond part of this dissertation, we go a step further with one of the newabstra
tions dis
ussed earlier, and dis
uss a pa
ket pro
essing ar
hite
ture based onimplementing the abstra
tion in a hardware devi
e. The key insight of the approa
his that some pa
ket pro
essing tools, in
luding NIPS, 
an bene�t enormously fromthe addition of a redu
ed set of very simple operations oriented to performing fast
lassi�
ation of tra�
. These operations are simple enough as to permit an extremelyfast hardware implementation. We illustrate the performan
e of the ar
hite
ture bydes
ribing a prototype, and our experien
e with its usage.
Professor David WagnerDissertation Committee Chair
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Chapter 1
Introdu
tion
1.1 MotivationThe popularization of the Internet at the end of last 
entury has produ
ed a toolof immense utility, but also the advent of a multitude of malware. Malware 
anbe de�ned as software designed spe
i�
ally to damage or disrupt a system, and itin
ludes su
h software as viruses, worms, and Trojan horses.The 
osts of malware in
lude lost produ
tivity, 
leaning up the malware, stoleninformation, data destru
tion, and loss in 
ustomer 
on�den
e. While hard to quan-tify with exa
titude, they are believed to be in the order of several billion dollars pervirus.Malware, a bragging a
tivity in its beginnings, has turned today into a lu
rativeindustry, with more sophisti
ated and motivated atta
kers laun
hing both targeted



2and generi
 atta
ks. With the deeper relian
e of advan
ed so
ieties in the networkinfrastru
ture, and the di�
ulty to tra
k the atta
kers, the problem is only posed toget worse, and to involve more so
ial and politi
al issues: the Na
hi worm 
aused AirCanada to delay �ights by overwhelming its reservation systems, and the Slammer onemanaged to 
ripple some ma
hines monitoring the Ohio Davis-Besse nu
lear plant.A key element in defending networks against all kinds of malware is NetworkIntrusion Prevention Systems (NIPS ). The basi
 idea of a NIPS is to monitor all tra�
ex
hanged between the network being defended and the Internet, dete
t se
urityproblems, and blo
k the malware transmissions.The traditional approa
h to 
arry out sound intrusion prevention is to use software-based approa
hes: Malware is extremely adaptive, and mutates 
onstantly in orderto take advantage of new exploits, to add new payloads, to generate polymorphi
versions of the same malware, et
. Some malware just resort to go undete
ted, hidingthemselves inside benign tra�
. Any sensible dete
tion approa
h must rely on �exibleand dynami
 fun
tionality, whi
h only software-based approa
hes 
an provide.Other malware just resort to brute for
e, trying to infe
t the largest possiblenumber of vi
tims before defenses 
an be raised. It is understood that, due to the
apa
ity of worms to spread at very fast speeds, only �exible and automati
 defensesare useful against worms [Moore et al., 2003b; Staniford et al., 2002b℄. This, again,makes the 
ase for software-based approa
hes.The main obsta
le for the deployment of software-based NIPS in high-volume



3environments is performan
e, in terms of the amount of tra�
 the NIPS is able topro
ess. NIPS present a double 
hallenge to system performan
e, namely pro
essingload and internal state storage management.The �rst 
hallenge is pro
essing load: While parsing a pa
ket is in most 
ases alight task, the amount of tra�
 in a high-speed link easily ex
eeds the 
apa
ity of thesystem's pro
essing resour
es [Dreger et al., 2004℄.The se
ond 
hallenge is internal state storage management. In order to soundlyanalyze network tra�
 at the network-, transport-, and appli
ation-layers, NIPS po-tentially need to store all the tra�
 going ba
k and forth between the two 
onne
tionpeers. This may a

ount for a very large amount of data even in a relatively slow
onne
tion. How to manage all this information be
omes a 
hallenge for the system.To mitigate both problems, a straightforward approa
h to permit running NIPS inhigh-speed links is e�
ient �ltering. The main idea is to permit the NIPS to spe
ifyin a �ne-grained way the exa
t subset of tra�
 it needs to analyze. This redu
esthe amount of tra�
 it must deal with, in ex
hange of skipping tra�
 that it is notinterested in.This dissertation explores e�
ient �ltering support for NIPS in high-speed net-works. It des
ribes new �ltering models using traditional pa
ket �lter 
apabilities,and new me
hanisms to extend su
h pa
ket �lter 
apabilities with new, e�
ient, more�ne-grained abstra
tions.



41.2 Dissertation overviewThis dissertation is divided into three 
hapters and two appendi
es.Chapter 2 des
ribes the integration of sampling and �ltering into intrusion de-te
tion. We propose to augment and enri
h the main pro
essing path in statefulNetwork Intrusion Dete
tion Systems (NIDS ) by the addition of a parallel, state-less (
onne
tion-less) pa
ket-�ltering path. We des
ribe several examples on usingthe new pa
ket-�ltering path, and evaluate their advantages, namely simpli
ity andperforman
e.Chapter 3 proposes the addition of e�
ient support for high-speed intrusion de-te
tion in pa
ket �lters. We propose to extend the widely-used BPF pa
ket �lter withtwo new pa
ket �lter me
hanisms, namely in-kernel, pa
ket-based random sampling,and in-kernel, �xed-size, generi
-purpose, persistent, asso
iative tables. We 
ompareboth additions to the 
urrent 
apabilities, and study their bene�ts.Chapter 4 justi�es and des
ribes Shunting, a novel ar
hite
ture that permits high-speed, extensive (non-sampled and in-depth), stateful, inline tra�
 pro
essing by in-tegrating a simple, a
tive, hardware devi
e with a 
omplex, software, de
ision engine.We present a prototype implementation of the Shunting ar
hite
ture, and the modi�-
ation of a popular NIDS in order to serve as its engine. We evaluate its performan
e,and suggest other �elds di�erent from intrusion dete
tion where it 
an be used.
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Chapter 2
Integration of Sampling and Filteringinto Intrusion Dete
tion
2.1 Abstra
tThis Chapter des
ribes the integration of sampling and �ltering into networkintrusion dete
tion. We propose to augment and enri
h the main pro
essing path instateful Network Intrusion Dete
tion Systems (NIDS) by the addition of a �Se
ondaryPath,� a parallel, stateless (
onne
tion-less) pa
ket-�ltering path.In a stateful NIDS, the main pa
ket-
apture path (Main Path) performs network-and transport-layer analysis, and provides a framework for appli
ation 
ontents analy-sis. It re
eives the raw tra�
 and analyzes the lower 
ommuni
ation layers. After thisanalysis, the appli
ation 
ontents are dispat
hed to the 
orresponding appli
ation-



6layer analyzer, whi
h performs its spe
i�
 analysis.The Se
ondary Path is an alternate 
hannel for a
quiring pa
kets. It providesa network-layer framework for tra�
 analysis. In other words, the tra�
 is serveddire
tly to the analyzers, without any previous analysis.The main bene�t of using the Se
ondary Path is that analyzers that use it maytake advantage of �exible �ltering and sampling, while at the same time avoiding the
ost asso
iated to the Main Path performing full 
onne
tion-oriented analysis. Whilea simple addition, we 
laim that, in some s
enarios, this alternate tra�
 pro
essing
an provide useful information that 
an 
omplement or disambiguate the informationobtained by the Main Path.We introdu
e the Se
ondary Path, justify it, and present an implementation on apopular stateful NIDS. We also show several examples of its use.
2.2 Introdu
tionMonitoring network tra�
 from a se
urity perspe
tive is required to manage to-day's networks. Mali
ious a
tivity, from ports
anning or denial of servi
e atta
ks toviruses and worms, is a 
ontinuous presen
e in 
ommuni
ation networks, and presentsserious 
hallenges to their day-to-day operation.In order to prevent or dete
t the presen
e of mali
ious a
tivity, one of the maintools available are Network Intrusion Dete
tion Systems (NIDS ). NIDS are systemsthat dete
t mali
ious network a
tivity by monitoring network tra�
 [Mukherjee et



7al., 1994℄.NIDS work by 
apturing pa
kets from the network and analyzing them. Di�erentanalyzers 
he
k the 
orre
tness of the various proto
ol layers, and produ
e eventswhen observing anomalies. While not all NIDS do a
tually parse all the di�erentproto
ol layers, it is well understood in the resear
h 
ommunity that only full proto
olanalysis, from the network layer up to the appli
ation layer, provides a sensible defenseagainst atta
ks to operative networks. This is known in the literature as �deep pa
ketanalysis.�Moreover, NIDS analysis must be stateful. Sound appli
ation-layer proto
ol anal-ysis may require a

ess to the full appli
ation-layer 
ontents (the �Appli
ation-layerData Unit,� or ADU ). ADU 
ontents may be spread along di�erent pa
kets, andtherefore pa
kets 
an be pro
essed only by 
onsidering them in the 
ontext of their
onne
tion.When re
eiving a new pa
ket, a NIDS must 
onsider it in the 
ontext of existing in-formation on the pa
ket's 
onne
tion. This 
ontext is obtained from already-re
eivedpa
kets from the same 
onne
tion, whi
h the NIDS must have stored. Conne
tion-oriented dependen
ies not only extend to the past, but also to the future: The NIDSmay not be able to 
omplete the pro
essing of the pa
ket until it re
eives furthertra�
 from the 
onne
tion.A stateful NIDS may therefore need to store an inde�nite amount of per-
onne
tiondata for an inde�nite amount of time. This data in
ludes ADU 
ontents, per the nor-



8mal pa
ketization issues just dis
ussed. It may also in
lude network- and transport-layer 
ontents, in order to be resilient to atta
ks based on ambiguities [Pta
ek andNewsham, 1998℄.Deep, stateful per-pa
ket monitoring of a high-speed link to dete
t se
urity intru-sions is a resour
e-intensive task. Ea
h pa
ket must be 
aptured and analyzed, and insome 
ases, stored. The analysis part, i.e., de
iding whether a pa
ket poses a se
uritythreat or not, may require a 
onsiderably 
omplex pro
essing e�ort. The storage partmay require a 
onsiderably expensive bus and memory a

ess e�ort. Operational usein a high-volume environment intensi�es the problem by in
reasing the amount oftra�
 that must be pro
essed.This problem is magni�ed by two other e�e
ts, namely tra�
 diversity and statemanagement. First, as the amount of tra�
 in
reases, the tra�
 diversity and the
rud in the link also in
rease, whi
h produ
es not only more false alarms, but alsomore diverse ones [Dreger et al., 2004℄.Se
ond, the amount of state needed to produ
e a good snapshot of the networkstate in stateful NIDS grows with the amount of tra�
 pro
essed. This 
reates anenormous state management problem.This Chapter proposes the use of two pa
ket-
apture paths with di�erent servi
esin the 
ontext of network intrusion. While a NIDS traditional path (deep and state-ful) is a must for some analyzers, others may be willing to tradeo� isolated-pa
ketpro
essing in ex
hange of e�
ien
y. The latter is a
hieved by redu
ing the amount



9of tra�
 re
eived using �ltering and/or sampling.Our idea is developed in the �Se
ondary Path,� a lightweight, stateless, pa
ket-
apture path that 
omplements a NIDS traditional, deep, stateful pa
ket-
apture path(whi
h we name the �Main Path�). We des
ribe an implementation of the Se
ondaryPath on Bro [Paxson, 1999℄, a popular, stateful, open-sour
e NIDS. We also presentseveral appli
ations that use it, in
luding large 
onne
tion, ba
kdoor, and P2P tra�
dete
tion.To our knowledge, this is the �rst time that pa
ket paths with di�erentiatedservi
es have been proposed in the 
ontext of intrusion dete
tion. We are not awareof any NIDS that 
ombines a stateful path with a stateless one.The rest of the 
hapter is organized as follows: Se
tion 2.3 introdu
es relatedwork. Se
tion 2.4 presents the Se
ondary Path, an implementation, its operation,and how to use it. Se
tion 2.5 dis
usses several appli
ations of the Se
ondary Pathin a stateful NIDS. Se
tion 2.6 
on
ludes.
2.3 Related WorkThe goal of Network Intrusion Dete
tion Systems is to dete
t atta
ks on 
omput-ers, espe
ially those 
arried out over the network. Se
tion 4.3.1 in Chapter 4 dis
ussesrelated work on NIDS.The Chapter des
ribes the integration of sampling and �ltering into network in-trusion dete
tion. The main basis of �ltering is Pa
ket Filters. A Pa
ket Filter is



10a me
hanism to sele
t pa
kets from a pa
ket stream using a programmable 
riterion(the �lter). Related work on Pa
ket Filter models is presented in Se
tion 3.3.1 inChapter 3.The other integration idea is sampling. Se
tion 3.3.3 in Chapter 3 dis
usses relatedwork in sampling.The resear
h work related to the parti
ular appli
ations implemented on the Se
-ondary Path is des
ribed in the 
ontext of Se
tion appli
ationsWork related to the parti
ular appli
ations being implemented on the Se
ondaryPath is des
ribed in the 
ontext of the appli
ations themselves.
2.4 Se
ondary Path2.4.1 Main PathThe operation of a typi
al stateful NIDS 
onsists of (a) 
apturing tra�
 from oneor several pa
ket-
apture devi
es, (b) 
he
king network- and transport-layer 
ontents,(
) reassembling the appli
ation-layer 
ontents, and (d) handing them out to the
orresponding analyzer. We 
all this me
hanism to pro
ess tra�
 the �Main Path.�The Main Path provides a framework for appli
ation-layer tra�
 analysis: It isused by analyzers that perform 
onne
tion-oriented, ADU analysis.The 
onne
tion-oriented nature of the Main Path permits hiding the details of thereassembling from the appli
ation-layer analyzers. The Main Path reassembles the



11appli
ation-layer payloads of di�erent pa
kets, and dispat
hes them to the analyzers.The latter are provided with full appli
ation-layer payloads for deep analysis, plussome 
onne
tion information.The main drawba
k of providing full appli
ation-layer analysis is that the tra�
pro
essed by the Main Path must be 
omposed of full 
onne
tions. This limits sub-stantially the usage of input-volume 
ontrol te
hniques (sampling or �ltering), whi
hare needed for performan
e reasons.For example, �ltering 
an be based solely in the �ve �elds that 
ompose the 
on-ne
tion tuple (sour
e and destination address and port, plus transport-layer proto
ol).A well-known, e�
ient operation mode for NIDS 
onsists of limiting the amount oftra�
 they must pro
ess by fo
using in just a subset of the proto
ols (port-based�ltering), instead of parsing all the tra�
 in the wire.Sampling 
an only be 
onne
tion-based, whi
h is not available in 
urrent pa
ket-�lters and has di�erent properties than pa
ket-based sampling. 1We believe that, while full-payload analysis is required for sensible deep, statefulanalysis, there are some 
ases where 
omplementary information 
an be obtained moree�
iently from analysis of isolated pa
kets. The information obtained in su
h a wayis independent of the obtained from the Main Path, and 
an be used to 
omplementor disambiguate the latter.
1Chapter 3 of this thesis dis
usses 
onne
tion- based sampling in the 
ontext of a popular pa
ket-�lter, BPF.



122.4.2 Se
ondary Path Des
riptionThe Se
ondary Path is an alternate 
hannel for a
quiring pa
kets. It works by
apturing pa
kets from one or several pa
ket-
apture devi
es, and handing them outto the 
orresponding analyzer, without any previous analysis.It is very important to remark that the Se
ondary Path is an alternate 
hannel:It provides a stateful NIDS with a means to obtain information about the monitoredtra�
 whose generation using the Main Path is either ine�
ient or ambiguous. Itdoes not substitute the Main Path. Instead, it 
omplements it.The Se
ondary Path is simpler than the Main Path: Analyzers are served withisolated pa
kets, instead of full 
onne
tions. No reassembling is 
arried out, andtherefore no state must be kept. A pa
ket is re
eived, dispat
hed to the interestedanalyzers, and then dis
arded.The 
onsequen
e of not performing pa
ket reassemble are that analysis throughthe Se
ondary Path is sus
eptible to evasion. In other words, it is easy for an atta
kerto avoid a Se
ondary Path analyzer by fragmenting her tra�
 adequately [Pta
ek andNewsham, 1998℄.Note, however, that while the Se
ondary Path is stateless per se, analyzers thatuse it may be stateful, by relying in the NIDS state 
apabilities.The Se
ondary Path provides a framework for network-layer pa
ket analysis. An-alyzers re
eive network-layer headers and payloads, whi
h are the only ones that areguaranteed sensible in the absen
e of 
onne
tion 
ontext.



13Analyzers based on the Se
ondary Path must be 
areful when using transport- orappli
ation-layer 
ontents. Both may be divided among several pa
kets, whi
h mayarrive to the destination out of order, or even dupli
ated.Figure 2.1 
ompares the Main and Se
ondary Path. The Main Path re
eives traf-�
, and performs network- and transport-layer analysis, and hands pro
essed 
ontents(ADUs) to the analyzers. The Se
ondary Path just dispat
hes pa
kets to the ana-lyzers. Its typi
al use is the monitoring of low-bandwidth, 
onne
tion-less pa
ketsubsets.The main advantage of the Se
ondary Path is e�
ien
y. While the same informa-tion that 
an be obtained with the Se
ondary Path 
an also be obtained with the MainFilter by analyzing the whole tra�
, the latter performs network- and transport-layeranalysis. We present some examples where this analysis is unneeded.FilteringThe other main advantage of the Se
ondary Path is that it allows analyzers tomake extensive use of �ltering and/or sampling. As a 
onsequen
e, it diminishes theamount of tra�
 the NIDS must pro
ess, whi
h helps it to operate in high-speedenvironments.It is often possible to extra
t useful information from a pa
ket stream by analyzinga small subset of the tra�
. This subset 
an be de�ned by spe
ifying a stati
, simplepa
ket-�lter expression. This expression may be based in network- and/or transport-
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15layer headers, whi
h are easily a

essible using standard expressions. Note that thetransport-layer based �ltering 
ase is less reliable, as TCP or UDP 
ontents may bedivided among several IP pa
kets. On the other hand, if there is no evasion, thisis relatively un
ommon and, what is more, typi
ally restri
ted to a small subset ofproto
ols [Shannon et al., 2002℄.Filtering may also in
lude appli
ation-layer 
ontents. While pa
ket-based �lteringis limited to mat
hing bytes lo
ated in �xed pa
ket positions, modern appli
ation-layer proto
ols sometimes use headers with distin
tive 
ontents in �xed positions [Zhangand Paxson, 2000a℄.For example, HTTP request headers start with one of 7 di�erent method string(�GET�, �POST�, et
.), and HTTP response headers start always with the string�HTTP/� [Fielding et al., 1999℄. In the same way, SSH 
onne
tions always transmitthe SSH 
lient and server version by sending a pa
ket with the strings �SSH−1� or�SSH−2� [Ylonen, 1996℄.An analyzer that re
eives pa
kets from the Se
ondary Path, and that uses as�lter that the �rst 5 bytes of the pa
ket payload are �HTTP/�, a

ess one and onlyone pa
ket per HTTP 
onne
tion, with high probability. With persistent HTTP
onne
tions, the analyzer will likely re
eive one pa
ket per entity, as entity headersare typi
ally sent in a di�erent pa
ket than the previous entity body. The analyzerwill also be able to a

ess to HTTP responses in non-standard ports.Creating a pa
ket-�lter expression that 
aptures SSH 
onne
tions or HTTP re-



16quests is just slightly more 
ompli
ated.Due to the �xed-lo
ation limitation of pa
ket �ltering, and the stateless 
onditionof the Se
ondary Path, appli
ation-layer 
ontents provide less leverage than network-or transport-layer 
ontents.For example, if she wants to avoid an HTTP 
onne
tion being dete
ted, she mayjust fragment the �rst 5 bytes in two di�erent pa
kets. If she wants to in
rease thetra�
 re
eived by a NIDS trying to dete
t HTTP tra�
, she may just forge fakedpa
kets starting with the mentioned 5 bytes.SamplingThe se
ond me
hanism that permits thinning the amount of tra�
 analyzed bythe NIDS is pa
ket-based sampling. Pa
ket-based sampling generates a 
ompletelyunstru
tured tra�
 stream, whose main properties are related to those of the originalstream [Du�eld et al., 2002, 2003℄.A 
ase example of sampling is identifying heavy hitters, i.e., 
onne
tions or hoststhat a

ount for large subsets of all the tra�
. If the sampling is unbiased, a heavyhitter in the total tra�
 is very likely a heavy hitter in the sampled tra�
.Drawba
ksThe �rst drawba
k of the Se
ondary Path is that is sus
eptible to evasion. It iseasy for an atta
ker to avoid a Se
ondary Path analyzer by fragmenting her tra�




17adequately [Pta
ek and Newsham, 1998℄.The Se
ondary Path is not intended for analyzers that require full appli
ation-layer 
ontent a

ess. While the analyzer may write a �lter that provides a

ess to thefull 
onne
tion, and then reassemble the 
ontents itself, this is very ine�
ient, andbetter suited for the Main Path.Last, �ltering always implies a tradeo�, as information that 
ould be used to re�nea 
on
lusion has often been �ltered out. Moreover, an atta
ker knowledge of the �lter
an be used to either evade or overwhelm the dete
tor.Table 2.1 summarizes the main di�eren
es between the Main Path and the Se
-ondary Path. Main Path Se
ondary Pathpro
essing o�ered L7 analysis L3, and some L4 and L7analysispro
essing 
arried out L3, L4 analysis noneL4 reassemble yes nomemory stateful stateless�ltering �exibility poor (port-oriented) ri
her when 
oupled withstateful BPF (see Se
-tion 3.7)sampling stati
, 
onne
tion-orientedonly ri
her when 
oupled withrandomness in BPF (seeSe
tion 3.4)Table 2.1: List of Di�eren
es between the Main and Se
ondary PathsNew Filtering ModelsWe think there are enough opportunities for leverage sampling and �ltering usingthe Se
ondary Path. Among other, we expe
t the Se
ondary Path to be useful for



18analyzers that 
an make do with a small, easily-de�nable subset of the tra�
, namely:
• pseudo-random sampling. For example, the heavy hitters dete
tor des
ribed inSe
tion 2.5.3 uses a random-sampling �lter, for example �random(1000)�.
• deterministi
 sampling. Se
tion 2.5.2 introdu
es a �large 
onne
tion dete
tor�based on a �lter whose fun
tionality is �t
p.seq inside a series �xed ranges�.
• network- and transport-layer headers. Se
tion 2.5.4 dis
usses a generi
 ba
kdoordete
tor based on TCP header 
ontents.
• appli
ation-layer 
ontent signatures easily expressible with BPF. Se
tion 2.5.4presents a payload-based ba
kdoor dete
tor.2.4.3 OperationThe operation of the Se
ondary Path is fairly simple: Analyzers provide a pa
ket-�lter expression that de�nes the tra�
 subset for whi
h they are interested in per-forming isolated pa
ket analysis.The Se
ondary Path 
reates a �lter resulting from the union of all the analyzer�lters (Se
ondary Filter), and opens a pa
ket-�lter devi
e with it.When a pa
ket mat
hes the 
ommon �lter, the Se
ondary Path runs ea
h parti
-ular analyzer �lter against the pa
ket, and dispat
hes the latter to those analyzerswhose �lter mat
hes the pa
ket.



19Note that, during the Se
ondary Path operation, ea
h analyzer �lter is a
tuallyrun twi
e: �rst as a part of the full Se
ondary Filter, and se
ond as the analyzer'sparti
ular �lter. This does not present problems with the BPF pa
ket �lter, as BPF�lters are idempotent: running a �lter F over a set of pa
kets already �ltered by Fdoes not 
ause the reje
tion of any pa
ket.On the other hand, when adding state or randomness to BPF (see Chapter 3),�lters are not anymore idempotent, and the Se
ondary Path's double �ltering maynot produ
e the expe
ted results for analyzers using �lters based in pseudo-randomsampling. A qui
k solution is to identify those �lters using pseudo-random �ltering,and set a separate pa
ket-�lter devi
e for ea
h of them.2.4.4 ImplementationWe have implemented the Se
ondary Path in a stateful NIDS, namely Bro [Paxson,1999℄.The implementation of the Se
ondary Path is fairly simple: Analyzers asso
iateto the Se
ondary Path a tuple formed by a pa
ket �lter expression, and a Bro event.In order to do so, the appli
ation adds an item to the global table se
ondary_�lters,asso
iating a string index (the pa
ket �lter expression) with an event yield (the eventthat will be raised when a pa
ket mat
hes the expression).The interfa
e(s) being monitored is open twi
e, one for the Main Path, and anotherfor the Se
ondary Path. The expression used for the Se
ondary Path pa
ket �lter is



20the OR'ed juxtaposition of all 
lient rede�nitions to the se
ondary_�lters table. Inparti
ular, the Main and Se
ondary Path expressions are independent, and ea
h opensits own pa
ket-�lter devi
e.Whenever a pa
ket mat
hes the Se
ondary Path, every �lter asso
iated to it isrun against the pa
ket. For those �lters that mat
h the pa
ket, the 
orrespondingevent is �red with the pa
ket as one of the arguments.Figure 2.2 shows how to use the Se
ondary Path. The 
ode will 
ause Broto invoke the event SFR_�ag_event for every pa
ket that mat
hes the expression�t
p[13℄ & 7 <> 0�, i.e., every time there is a TCP pa
ket with any of the SYN, FIN,or RST �ags set.Note that the event interfa
e provides only the network- and transport- headers,but not the appli
ation-layer payloads. The reason is that Bro's s
ript language makesa

ess to binary 
ontents 
lumsy, and so far, none of the dete
tors we have writtenhas needed the appli
ation-layer 
ontents.In the 
urrent implementation, analyzers are provided only with network- andtransport-layer headers of pa
kets mat
hing their �lters. While we 
ould make thepayload available, this presents some implementation problems, as the Bro s
riptlanguage is not well-suited to support binary payload a

ess. Moreover, we have notyet seen any 
ase where a

ess to the appli
ation-layer 
ontents is required to do theanalysis.



21redef se
ondary_�lters += { ["t
p[13℄ & 7 != 0"℄ = SFR_�ag_event}type t
p_hdr: re
ord {sport: port; # sour
e portdport: port; # destination portseq: 
ount; # sequen
e numbera
k: 
ount; # a
knowledgment numberhl: 
ount; # header length (in bytes)dl: 
ount; # data length (xxx: not in original t
phdr!)�ags: 
ount; # �agswin: 
ount; # window};type udp_hdr: re
ord {sport: port; # sour
e portdport: port; # destination portulen: 
ount; # udp length};type i
mp_hdr: re
ord {i
mp_type: 
ount; # type of message};type pkt_hdr: re
ord {ip: ip_hdr;t
p: t
p_hdr &optional;udp: udp_hdr &optional;i
mp: i
mp_hdr &optional;};event SFR_�ag_event_event(�lter: string, pkt: pkt_hdr){} Figure 2.2: Se
ondary Path Use Example2.4.5 ExampleAn example of the usage of the Se
ondary Path to obtain 
omplementary informationis ba
kdoor dete
tion (see Se
tion 2.5.4). [Zhang and Paxson, 2000a℄ suggests several



22me
hanisms to dete
t intera
tivity in 
onne
tions. These me
hanisms do not requirefull analysis of ea
h 
onne
tion. For example, in the �Generi
 Algorithm for Dete
tingIntera
tive Ba
kdoors,� only the timing and the frequen
y of the small pa
kets isrequired to dete
t intera
tive tra�
. On the other hand, the analysis 
annot belimited to just a subset of the ports: A ba
kdoor, by de�nition, normally runs on anon-standard port, so that it 
an hide itself from se
urity monitoring.An example of the usage of the Se
ondary Path to disambiguate informationobtained in the Main Path is large 
onne
tion dete
tion (see Se
tion 2.5.2). A
ommon, 
heap approa
h to monitor TCP 
onne
tion sizes 
onsists of subtra
tingthe TCP sequen
e number �eld at the end of the 
onne
tion from the same �eld atthe beginning of the 
onne
tion. Unfortunately, this me
hanism produ
es 
ompletelywrong results with extremely large 
onne
tions that wrap up the sequen
e numberspa
e, or when dealing with broken TCP implementations.2.4.6 Performan
eExperiments Con�gurationUnless otherwise noted, all experiments des
ribed in this Chapter have been
arried out in a single-pro
essor, Intel Xeon (Pentium) CPU running at at 3.4 GHz,with 512 KB 
a
he and 2 GB of total memory. The host operating system wasFreeBSD 4.10.All times reported are the addition of the user and system times, as reported by



23the Operating System. All experiments have been run in an idle host.Experiments were run 100 times, and the standard deviation 
al
ulated. In all
ases the standard deviation was negligible 
ompared to the average times.Empty Event Performan
eThe �rst interesting feature of the Se
ondary Path is its 
ost. In order to measurethis 
ost, we have used the Se
ondary Filter to run an empty event, i.e., an eventthat does not 
arry out any work, and returns as soon as it is raised.This 
ost depends not only on the number of pa
kets that raise the Se
ondaryPath event, but also on the number of pa
kets than do not raise the Se
ondary Pathevent, but must be read by the kernel and eventually dis
arded by the Se
ondaryFilter.Figure 2.3 shows the performan
e of the Se
ondary Path using an empty event.Note that both s
ales are logarithmi
.The thi
k line represents the 
ost of reje
ting pa
kets with the Se
ondary Filter.It was obtained by running the Se
ondary Path with just one dete
tor whose �ltermat
hes no pa
kets. (The experiment was run for several tra
es of di�erent sizes.)We 
all this 
ost ��xed�, as it is independent of the number of pa
kets a

eptedby the Se
ondary Filter. It is the sum of two e�e
ts, namely (a) the �xed 
ost ofrunning Bro, and (b) the 
ost of a

essing all the pa
kets in the stream and �lterthem (even if they are all reje
ted). It is 
lear that the �rst e�e
t is more important



24PSfrag repla
ements �xed, per-tra
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apture 1:1 pa
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apture 1:10 pa
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0.001 tra
e pa
kets100 1 k 10 k 100 k 1 M 10 MFigure 2.3: Performan
e of the Se
ondary Path with an Empty Eventwith small tra
es (this is the �at part to the left of the 10 K pa
ket mark), while these
ond e�e
t is more important with large tra
es (
ost in
rease to the right of the1 M pa
ket mark).The dashed and dotted lines show the 
ost of an empty dete
tor (a dete
tor whoseevent returns immediately), when a given ratio of the pa
kets mat
h the �lter. We
all this 
ost �variable�, as it depends on the ratio of pa
kets rea
hing the Se
ondaryFilter event. We have subtra
ted the �xed per-tra
e 
ost in order to separate the�xed and variable (per-mat
hing pa
ket) 
osts.There are two interesting insights in Figure 2.3.First, the variable 
ost is proportional to the ratio of pa
kets mat
hing the �lter.In other words, the variable 
ost of sampling, say, 1 in 10 pa
kets is 10 times larger



25than the variable 
ost of sampling 1 in 100 pa
kets.Se
ond, the �xed 
ost of running the Se
ondary Path with a very simple eventis similar to the variable 
ost of 
apturing 1 in 100 pa
kets. This means that, if theSe
ondary Path event pro
essing is simple, whether the dete
tor's �lter mat
hes 1 in
1000 pa
kets or 1 in 10000 pa
kets does not a�e
t the Se
ondary Path overhead. Itis when the ratio gets 
lose to 1 in 100 pa
kets that the Se
ondary Path 
ost startsbeing a�e
ted by the ratio of 
aptured pa
kets.
2.5 Appli
ationsWe have 
reated 3 examples of tools that take advantage of the Se
ondary Pathte
hnique to augment the rea
h of the Main Path.Se
tion 2.5.1 dis
usses the tra
e used for most appli
ation experiments.Se
tion 2.5.2 introdu
es a Large Conne
tion Dete
tor. The goal of this dete
tor isto disambiguate large 
onne
tion information. It uses a low-bandwidth, deterministi
�lter (a series of equidistant stripes in the TCP sequen
e number range).Se
tion 2.5.3 des
ribes a Heavy Hitters Dete
tor. The goal of this dete
tor is todis
over heavy tra�
 patterns. It uses a low-bandwidth, pseudo-random sampling�lter.Se
tion 2.5.4 presents an implementation of the Ba
kdoor Dete
tion algorithmspresented by [Zhang and Paxson, 2000a℄. The goal is to dete
t intera
tive tra�
in non-standard ports, whi
h is often asso
iated to ba
kdoors. It uses a series of



26low-bandwidth, deterministi
 �lters.2.5.1 Tra
eThe tra
e used for most experiments (named t
p-1 ) was obtained at the Lawren
eBerkeley National Laboratory (LBL) DMZ, whose link is 1 Gbps. It 
onsists ofTCP-tra�
 only, and a

ounts for 1.2 M 
onne
tions, 127 M pa
kets, and 113 GB(an average of 892 bytes/pa
ket). The tra
e was taken on a weekday's working hour,in September 2005. Its total duration is 2 hours (an average bitrate of 126 Mbps).2.5.2 Large Conne
tion Dete
tionRationaleThe �rst example of �ltering is a large TCP 
onne
tion dete
tor. This is anexample of stati
 tra�
 
hara
terization.Related WorkThe goal of tra�
 
hara
terization is to summarize the tra�
 in a link by des
ribingthe quantitative importan
e of several 
ategories. These 
ategories may be de�nedby using one or several 
riteria alongside multiple dimensions.An appli
ation of tra�
 
hara
terization is getting the largest 
onne
tions in alink. The 
riterion used to 
ategorize the tra�
 is the traditional 5-tuple (104-bit)
onne
tion de�nition.



27A related appli
ation is tra�
 matri
es, in whi
h the 
ategories are ea
h of the
ombination of 2 nodes ex
hanging tra�
 [Medina et al., 2002℄. Tra�
 matri
esare used for several purposes, in
luding designing network topologies, planning link
apa
ities, and 
on�guring network routing poli
ies. Note that �nodes� may be IPaddresses or subnetworks.Note that both appli
ations are examples of stati
 tra�
 
hara
terization: theexa
t 
riterion used to 
ategorize the tra�
 is de�ned a priori. The analysis isrelatively simple: Every time there is a new pa
ket, its 
orresponding 
ategories areidenti�ed and their size updated.The main issue in stati
 tra�
 
hara
terization is performan
e: In high-speedlinks, the amount of pa
kets that need be pro
essed may be large enough as to limitthe per-pa
ket pro
essing budget to just a few operations per pa
ket (pro
essing
on
ern). At the same time, the number of 
onne
tions may be large enough as topre
lude keeping information about ea
h 
onne
tion in fast, small memory (memory
on
ern).The traditional resear
h in stati
 tra�
 
hara
terization 
onsists of proposingme
hanisms that permit spending the redu
ed resour
e budget only in the large
ategories, whi
h are the ones being measured anyway.For example, [Mitzenma
her and Upfal, 2005℄ proposes the use of 
ount-min �ltersto 
ount large 
onne
tions. Count-min �lters work by setting a 2-dimensional arrayof 
ounters (k groups of m/k 
ounters ea
h, totaling m 
ounters), whose initial values



28are zero, and whi
h should be big enough as to �t the total amount of tra�
 beingmeasured.When a pa
ket arrives, its 
onne
tion identi�er (the 5-tuple 
omposed by thesour
e and destination address and port, plus the transport-layer proto
ol) is hashedusing k Universal Hash Fun
tions (�UHF�). UHFs sele
t one 
ounter per group, whi
his in
remented by the pa
ket size.In order to 
al
ulate the size of a 
onne
tion, its 
onne
tion identi�er is hashedagain using the k UHFs. From the k sele
ted 
ounters, the one with the smallest
ounter is sele
ted as the size of the 
onne
tion.The authors show that the smallest 
ounter asso
iated with a 
onne
tion is anupper bound in its real size, and with bounded probability, it is o� by no more than
ǫ times the total number of pa
kets pro
essed, where ǫ 
an be obtained by solvingEquation 2.1

( k

mǫ

)k

= e−mǫ/e (2.1)The authors also propose the use of 
onservative update, where from the k 
ounterssele
ted by the UHFs, only the one with the smallest 
ount is always updated. Forthe remaining ones, it is ensured that no 
ounter ends up with a smaller value thanthe previously-updated smallest 
ount.



29[Estan and Varghese, 2002℄ proposes the use of �sample and hold� and multistage�lters to e�
iently estimate statisti
s of large �ows. �Sample and hold� is a te
hniqueto measure the tra�
 in
urred by the largest tra�
 �ows in high-speed environmentsby using a relatively-small SRAM 
a
he (the �
onne
tion 
a
he�). The idea 
onsistsof storing per-
onne
tion information in the 
onne
tion 
a
he. Pa
kets re
eived areonly a

ounted for if their 
onne
tion is already in the 
onne
tion 
a
he, or if theyare randomly 
hosen to o

upy a new entry in the 
onne
tion 
a
he.Multistage Filters has the same large-
onne
tion a

ounting goal. In this 
ase,the idea is to hash the 
onne
tion tuple, and when the 
orresponding entry ex
eedsa given threshold, add its information to the �ow 
a
he. Multistage Filters are proneto false positives, as several small �ows may hash to the same entry. In order to avoidthem, the authors propose to use several stages using independent hash fun
tions.Large-Conne
tions Dete
tor Des
riptionA 
heap me
hanism that is often used to 
al
ulate the amount of tra�
 in a stateful(TCP) 
onne
tion 
onsists of 
omparing the sequen
e numbers at the beginning andat the end of the 
onne
tion, and subtra
t them. Unfortunately, this is not veryreliable in (a) 
onne
tions that do not terminate or for whi
h the NIDS misses theirestablishment, (b) very large (greater than 4 GB) 
onne
tions that end up wrappingaround the TCP sequen
e number (note that this is allowed in TCP while there isno ambiguity on what a pa
ket's sequen
e number means, due to its use of a window



30smaller than 2 GB in size), and (
) broken TCP sta
ks that 
ause in
orre
t sequen
enumbers, espe
ially at the RST segment.OperationThe large 
onne
tion dete
tor works by �ltering for several thin, equidistant,randomly-lo
ated stripes in the sequen
e number spa
e. A truly large �ow will passthrough the stripes in an orderly fashion, maybe several times. The dete
tor willkeep tra
k of all pa
kets that pass through any of the stripes, 
ounting the numberof times a pa
ket from a given �ow passes through 
onse
utive regions (K).For example, if we lay down 4 stripes separated 1 GB in the 4 GB-long TCPsequen
e number range, and we see a 
onne
tion passing through 2 
onse
utive stripes(K = 1), we know that the 
onne
tion has likely a

ounted for at least 1 GB.It is important that the �rst stripe is lo
ated randomly, i.e., that the lo
ation �eldof the dete
tor mask is 
hosen randomly. This way, an atta
ker 
annot predi
t whi
hse
tions of the sequen
e spa
e are being monitored. Thus, she 
annot overwhelm thedete
tor by sending lots of pa
kets in the stripes.Note that the dete
tor returns always two guesses, an upper limit on the amountof tra�
, and a lower limit. If a 
onne
tion has been seen in two 
onse
utive stripes,the estimated size may be as large as the distan
e between 4 
onse
utive stripes, oras small as the distan
e between 2 
onse
utive stripes. In the previous example, weknow that the 
onne
tion has likely a

ounts for at most 3 GB of tra�
.



31Figure 2.4 shows an example with 4 stripes. The 4 horizontal stripes, named
sA, sB, sC , and sD, respe
tively, represent the parts of the TCP sequen
e numberrange where the dete
tor is �listening� for pa
kets. The thi
k diagonal lines depi
tthe time and TCP sequen
e number of the pa
kets of a given TCP 
onne
tion. Thedotted, verti
al lines represent events in the Se
ondary Path. Note that we 
ould usea di�erent number of lines, and lines with di�erent width. This is dis
ussed in thenext Se
tion.

PSfrag repla
ements
4 GB

sA

sB

sC

sD

0 time

seq number

Figure 2.4: Large Conne
tion Dete
tor ExampleThe �rst stripe is lo
ated randomly in the sequen
e spa
e. The remaining onesare lo
ated at a �xed distan
e from the �rst, whi
h divides the TCP sequen
e numberrange in equidistant zones.



32For the dete
tor implementation, the main di�
ulty is to 
al
ulate the t
pdumpexpression that will identify TCP pa
kets falling in any of the stripes. This expressionis always of the form �seq & mask == value�, where seq is the pa
ket's sequen
enumber, mask is a 
on�guration mask, and value is �xed.Figure 2.5 shows the stru
ture of a generi
 large 
onne
tion dete
tor expression.
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PSfrag repla
ements
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0 · · · 00 · · · 0 111 · · · 1

Figure 2.5: Large Conne
tion Dete
tor ExpressionThe expression is 
al
ulated by dividing the 32 bit TCP sequen
e number �eld inthree parts, a pre�x, a lo
ation, and a su�x.The pre�x represents the number of stripes the dete
tor is using. Its lengthis the logarithm in base 2 of the number of stripes. In our example, therefore,its length would be 2 bits. As the dete
tor must 
apture pa
kets whose sequen
enumber is lo
ated in any of the stripes, the expression must a

ept any value in the
orresponding TCP sequen
e number bits. The 
orresponding bits in the mask are



33therefore reset. Note that by lo
ating the stripe index as a pre�x, we manage to laythe stripes in an equidistant fashion.The su�x represents the stripe size, and its size is the logarithm in base 2 of thestripe size (in bytes). In the example, its length would be log
2
(2048) = 11 bits. Asthe dete
tor must 
apture pa
kets whose TCP sequen
e number falls in any pla
eof a given stripe, the expression must a

ept any value in the 
orresponding TCPsequen
e number bits. The 
orresponding bits in the mask are therefore reset.The lo
ation �eld states the exa
t lo
ation of the stripes. It o

upies the remainingbits between the pre�x and the su�x. The dete
tor must only 
apture pa
kets whoseTCP sequen
e number falls in a given set of stripes, i.e., whose lo
ation �eld has a�xed value. Therefore, the 
orresponding bits in the mask are set to one. In theexample, the bits not used for pre�x or su�x (19) are used to set the lo
ation. In this
ase, the �nal mask will be 00 1111111111111111111 00000000000, or 0x3FFFF800in hexade
imal.Let's assume we 
hoose as the lo
ation �eld of the �xed value lo
ation the binarynumber 0101010101010101010. Therefore, the �nal �xed value will be will be 00

0101010101010101010 00000000000, or 0x15555000 in hexade
imal. The �nal t
pdumpexpression will be �(t
p [4:4℄ & 0x3FFFF800) == 0x15555000�.The 
onne
tion depi
ted in Figure 2.4 is a truly large 
onne
tion, wrapping aroundthe TCP sequen
e range 4 times. It is therefore seen 16 times by the dete
tor. Thesize will be estimated in 16 GB.



34Tra�
 In
oheren
esAn important 
ase on the dete
tor operation is the existen
e of in
oheren
es.We de�ne a transition as the 
apture of two 
onse
utive pa
kets of the same
onne
tion in di�erent stripes2. For example, if two 
onse
utive pa
kets for a given
onne
tion are seen in stripes X and Y , where X 6= Y , we say that the dete
tor sawa transition (X,Y ) for the 
onne
tion.We say a transition (X,Y ) is valid when Y = X + 1. In other words, when thetwo 
aptured pa
kets fall in two 
onse
utive stripes. Otherwise, the transition is saidto be invalid, and the 
onne
tion is said to have an in
oheren
e. In
oheren
es are dueto bogus 
onne
tions, but also to network and sta
k e�e
ts su
h as pa
ket reordering,losses, or retransmissions.For every new pa
ket 
aptured in a stripe, the dete
tor's 
urrent operation followsthree steps: First, if the transition is valid, it adds one to the 
onne
tion's K 
ounter.Se
ond, if the transition is invalid, it adds one to the 
onne
tion's invalid transition
ounter. Third, the stripe identi�er of the last pa
ket is re
orded.As an example, seeing the 
onne
tion 
onse
utively in stripes 7, 8, 9, 10, and
11 implies the dete
tor 
ounts 4 valid transitions, namely (7, 8), (8, 9), (9, 10), and
(10, 11). After all the transitions, K = 4.The main advantages of this approa
h is that it is 
heap, simple to implement,and reje
ts bogus 
onne
tions. Tra
king a 
onne
tion requires only three 
ounters of

2When two 
onse
utive pa
kets of the same 
onne
tion are seen in the same stripe, the dete
torjust ignores the se
ond one.



35dete
tor state, namely the identi�er of the last stripe in whi
h the 
onne
tion wasseen, K, and the number of in
oheren
es 
aused by the 
onne
tion. Pro
essing apa
ket is a simple three-step task. Bogus 
onne
tions will appear in few or no stripes,and will only in
rease their number of in
oheren
es.The main drawba
k is that in
oheren
es 
aused by pathologies in the network(retransmissions or reordering) will 
ause the dete
tor to underestimate the real sizeof the 
onne
tion.Consider a 
onne
tion where pa
ket retransmissions o

ur. Assume the dete
torsees the 
onne
tion 
onse
utively in stripes 7, 8, 7, 9, 10, and 11. In this 
ase,transitions (8, 7), and (7, 9) are invalid, and the 
onne
tion's K is not in
remented.The remaining transitions are valid, and therefore the �nal value of K will be 3.Consider a 
onne
tion where pa
ket reordering o

urs. Assume the dete
tor seesthe 
onne
tion 
onse
utively in stripes 7, 9, 8, 10, and 11. In this 
ase, transitions
(7, 9), (9, 8), and (8, 10) are invalid, and the 
orresponding K is not in
rementedfor them. The �nal value of K will therefore be 1 (
orresponding to the only validtransition, (10, 11)).Note that in
oheren
es 
aused by network pathologies are mu
h more likely too

ur when the stripes are 
loser, i.e., when the number of stripes is large.



36Dete
tor TuningThe large 
onne
tion dete
tor 
an be tuned by setting the number of stripes orthe stripe width.First, the dete
tor permits in
reasing the de�nition of the returned information,by in
reasing the number of stripes. This trades o� pro
essing, as more pa
kets willbe �ltered in, in ex
hange of de�nition.We know that the TCP sequen
e range is 4 GB. If the number of stripes is S, weknow that the distan
e between stripes is D = 4 GB / S. The size of a 
onne
tionseen in K 
onse
utive stripes will be reported as (K − 1)D < size < (K + 1)D. Itfollows that the absolute error for either the upper limit or the lower limit will neverbe larger than than ǫ = 2D. By operating in the middle of both limits, the maximumerror of the size estimate is ǫ / 2 = DFor example, in the 
ase of 4 stripes, we know D = 1 GB, and a 
onne
tion seenin two 
onse
utive stripes will be larger than 1 GB, but smaller than 3 GB. By using2 GB as the average value, we would never be o� by more than 1 GB.The se
ond tuning parameter is the stripe size, W . Assuming the Se
ondaryPath produ
es no pa
ket drops, the stripes need be wide enough to ensure that, ina sequen
e of maximum-size pa
kets, at least one of them is 
aptured by the �lter.This means stripes need only be as large as the maximum network pa
ket size, whi
his usually 1500 bytes (or 2 KB to make for an easier operation). 3
3The appearan
e of jumbo frames (9 KB) in 
urrent networks is very small [Dykstra, 1999℄.



37When the Se
ondary Path su�ers pa
ket drops, the dete
tor may not see thepassing of a 
onne
tion through a stripe, and wrongly assume that the 
onne
tion ismisbehaving. Wider stripes ensure that pa
kets drops will not a�e
t the reliability ofthe dete
tor, and therefore make the dete
tor more a

urate. The 
ost of using widerstripes is, again, that more pa
kets will be �ltered in, and therefore more pro
essingwill be needed.Let's show an example: Assuming the Se
ondary Path sees no pa
ket drops, thestripes need only be W = 2 KB wide. If we want to dete
t large TCP �ows with amaximum error of ǫ = 4 MB, we know that D = 2 MB, and therefore S = 4 GB /
D = 2 K stripes. The total spa
e being monitored in the TCP sequen
e range willbe SW = 4 MB, whi
h, 
onsidering the full range (4 GB), means that an average of1 in 1024 pa
kets will be 
aptured.ResultsWe ran the Large Conne
tion Dete
tor in the tra
e des
ribed in Se
tion 2.5.1. Wetried several values for the number (S) and the width (W ) of the stripes.Figure 2.6 shows, for the largest 
onne
tion in the tra
e (3.5 GB appli
ation-layerpayload), its real size, the upper and lower estimations reported by the dete
tor,and the average of the last two (the average estimation), for di�erent number ofstripes, and for 2 KB-wide stripes. The stripe width does not a�e
t signi�
antly the
orre
tness of the dete
tor, whi
h makes sense as the experiment was done o�-line,



38and therefore there were no pa
ket drops.
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Figure 2.6: Dete
tor Estimation for a Large Conne
tionIn order to show the overall performan
e of the dete
tor, and the in�uen
e ofnetwork pathologies, Figure 2.7 shows, for the largest 50 
onne
tions in t
p-1 , theaverage of the dete
tor's average estimation absolute error (thi
k line), and 
omparesthis error with the average number of in
oheren
es for the same set of 
onne
tions(dashed line). We use absolute instead of relative errors be
ause the dete
tor's errordepends on the number of stripes S, but not on the size of the 
onne
tions.The left side of Figure 2.7 (up to 256 stripes) shows a signi�
ant de
rease in theaverage absolute error. There are almost no in
oheren
es reported, and reportederrors are both positive (overestimation) and negative (underestimation).The right side of Figure 2.7 (more than 2K stripes) shows a stabilization of the



39absolute error around 6 MB, and a signi�
ant in
rease in the number of in
oheren
es.Almost all errors are negative. As expe
ted, 
loser stripes implies a higher probabilitythat the dete
tor gets 
onfused by network pathologies (in
reasing number of in
oheren
es),whi
h 
auses systemati
 underestimation of the 
onne
tion's real size.
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Figure 2.7: Dete
tor Corre
tness for the Largest Conne
tionsFigure 2.8 shows the performan
e of the large 
onne
tion dete
tor. In order toseparate the 
ost of the Se
ondary Path to that of the Main Path, we ran Bro with theMain Path disabled. For 
omparison purposes, we also run the Main Path withoutthe Se
ondary Path, and no appli
ation-layer analyzers. The total time required torun the tra
e was 890 se
.When the number of stripes is smaller than S = 1024, the dete
tor's runtime isbasi
ally 
onstant (280 se
onds), and only a small part of the time needed by the
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Figure 2.8: Large Conne
tion Dete
tor Performan
eMain Path to reje
t all pa
kets from the tra
e (890 se
onds). Moreover, most of thetime is used to to a

ess to the tra
e (75% of the reported time is system time).When the number of stripes is larger than S = 1024, the running time startsgrowing signi�
antly, as the amount of tra�
 pro
essed by the dete
tor grows linearly.(Note that both the x- and y-axis in the �gure are logarithmi
.)2.5.3 Heavy HittersRationaleThe goal of the heavy hitters (HH ) dete
tor is to dis
over heavy tra�
 patternsusing a low-bandwidth, pseudo-random sampling �lter on the Se
ondary Path.



41Related WorkThe goal of dynami
 tra�
 
hara
terization is to summarize the tra�
 in a linkby des
ribing the quantitative importan
e of several 
ategories, while at the sametime automati
ally de�ning su
h 
ategories.Dynami
 tra�
 
hara
terization deals with a slightly di�erent problem than stati
tra�
 
hara
terization. In the former, there is an inde�nite amount of overlapping
ategories. A 
ategory is interesting if it is large enough in relative terms, and if thereare no more spe
i�
 
ategories that are just slightly smaller.In dynami
 tra�
 
hara
terization, the goal is to produ
e hybrid tra�
 summaries,in whi
h several overlapping 
riteria are 
onsidered together. The results are �lteredso that only the most-spe
i�
 and signi�
ative 
ategories are reported [Estan et al.,2003℄.For example, the tra�
 originated by a host will be interesting, not only if it islarge enough, but also if there is not a single 
onne
tion that a

ounts for most of itstra�
. In the latter 
ase, the interesting item is the tra�
 from the single 
onne
tion,whi
h is more spe
i�
 than the tra�
 originated by the host.Autofo
us is a tool that automati
ally 
hara
terizes network tra�
 based on 5dimensions, namely sour
e and destination address and port, and IP proto
ol [Estanet al., 2003℄. Autofo
us starts by 
omputing the most-spe
i�
 information possible,using the 5 dimensions, whi
h is a
tually equivalent to per-
onne
tion a

ounting.Then, it sele
ts the 
ategories that ex
eed some threshold. Last, it 
ompresses



42the sele
ted 
ategories by introdu
ing more generi
 
ategories, and keeping thosesigni�
antly larger than the more-spe
i�
 ones that they 
omprise.[Xu et al., 2005℄ proposes data-mining and information-theoreti
 te
hniques toautomati
ally dis
over signi�
ant behavior patterns. Their idea is to start with 4tra�
 dimensions (sour
e and destination address and port) and �x one of them(the sour
e address). Then, the tra�
 is 
lustered by �xing two of the remainingdimensions, and 
al
ulating the un
ertainty (entropy) of the fourth. The authorsshow that the tra�
 is typi
ally 
lustered in the extremes (
omplete un
ertainty orno un
ertainty at all).This te
hnique permits 
reating a behavioral 
hara
terization of tra�
 based onstru
tural models of tra�
, simple enough as to permit monitoring of su
h 
ategoriesas they 
hange over a period of time.Heavy-Hitters Dete
tor Des
riptionThe goal of HH is to a
hieve e�
ient dete
tion of large pseudo�ows. We de�ne apseudo�ow as a set of pa
kets that share some of the �elds in the traditional 5-tuple
onne
tion de�nition (IP sour
e and destination addresses, transport-layer sour
eand destination ports, and transport proto
ol). Note that this de�nition in
ludes the
onne
tion (pa
kets sharing the 5 �elds), but also other 
ases, as a host being �ooded(all pa
kets sharing the same IP destination address �eld), a busy appli
ation server(all pa
kets sharing a 
ommon IP address and port value), et
.



43The basi
 idea of the HH dete
tor is very similar to that of Autofo
us [Estan et al.,2003℄. HH a

ounts for a tra�
 stream using the most spe
i�
 
ounting 
riterion, the
5-tuple 
onne
tion de�nition, and then tries to 
ompress the information about small
onne
tions into more-generi
 
ategories. The latter are obtained by the addition ofdata alongside one or more of the 5 
ategories. For example, a host s
anning a networkmay not have any large 
onne
tion, but the addition of all the data 
orresponding toall its 
onne
tions may be important enough as to deserve reporting.HH 
aptures tra�
 using the Se
ondary Path, whi
h may be expensive to runin full tra
es. Therefore, the input of the dete
tor is typi
ally a low-bandwidth,pseudo-random sample of the tra�
 being monitored.HH presents several advantages over the large 
onne
tion dete
tor dis
ussed inSe
tion 2.5.2. First, HH a

ounts not only for TCP tra�
, but also for any UDP andICMP. Se
ond, HH is able to dis
over heavy tra�
 patterns di�erent from 
onne
tions.OperationThe Heavy Hitters dete
tor works by obtaining a pseudo-random sample of thetra�
 monitored, and then 
lustering all pa
kets that share several network- andtransport-layer 
hara
teristi
s together in pseudo�ows. These pseudo�ows are 
he
kedperiodi
ally, and when the amount of tra�
 in any of them is large enough, thedete
tor reports it immediately.In the normal operation, HH keeps 7 tables with data from 
onne
tions, as



44des
ribed in Table 2.2. The spe
i�
ity �eld is used to order the tables from morespe
i�
 to more generi
. Every time a new pa
ket is re
eived by the dete
tor, the
orresponding 
ounter in every one of the tables is updated.table name spe
i�
ity des
riptionsaspdadp 4 
onne
tion (traditional 5-tuple de�nition)saspda__ 3 tra�
 between a host and a host:port pairsa__da__ 2 tra�
 between two hostssasp____ 2 tra�
 from or to a host:port pairsa____dp 2 tra�
 between a host and a remote portsa______ 1 tra�
 from or to a host__sp____ 1 tra�
 from or to a portTable 2.2: Tables Used by the Heavy Hitters Dete
torThe user may de�ne a series of warning levels. When any of the tra�
 tablesrea
hes a warning level, an alert is �red. After the alert, all less spe
i�
 tables areinstru
ted not to 
onsider the data that 
aused the alert in a future alert.Note that more spe
i�
 tables (the most spe
i�
 being the 
onne
tion table) havelower warnings levels than more generi
 ones. Therefore, a very large 
onne
tion willappear �rst as an alert in the 
onne
tion table, and the alerted 
ontents will not be
onsidered for an alert in any of the more generi
 tables.We use Bro's state managing 
apabilities to 
ontrol the amount of state. All ofthe 7 tables use self-expiring entries, whi
h are removed when no a
tivity (read orwrite) has been dete
ted in a �xed amount of time.



45Performan
eTable 2.3 shows an example of a report from the Heavy Hitters Dete
tor. The �rst5 lines are produ
ed in realtime (the time �eld represents the timestamp when theyare produ
ed). The remaining lines are produ
ed after the pro
essing has ended (thisonly happens in tra
es). All addresses are anonymized. The �ags �eld states whetherthe reported host belongs to the list of hosts belonging to the internal network beingmonitored (a user-
on�gurable parameter).Conne
tion Health Statisti
sAlongside the basi
 pseudo�ow a
tivity 
ounters (pa
kets and bytes), we havede�ned several pseudo�ow �
onne
tion health� statisti
s for tra�
, in
luding (a) TCPsymmetry [Kreibi
h et al., 2005℄, (b) ratio of 
ontrol TCP segments (i.e., segmentswith their SYN, FIN, or RST �ags on) to data (non-
ontrol) ones, and (
) ratioof pa
kets to 
onne
tions. These statisti
s are used to di�erentiate legitimate fromill-formed pseudo�ows. The �rst two apply only to TCP tra�
, while the latter appliesto any type of tra�
. Tra�
 is 
onsidered bogus if any of the three 
onne
tion healthstatisti
s falls outside of user-de�ned 
orre
tness bounds.The �rst statisti
 used is symmetry, de�ned as the ratio of pa
kets in the forwarddire
tion of a 
onne
tion to pa
kets in the reverse dire
tion of the same 
onne
tion.The intuition behind this statisti
 is that a well-formed TCP 
onne
tion must havetra�
 in both dire
tions. Even if the appli
ation-layer transfer of data is unidire
tional,
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Table 2.3: Example Report From Heavy Hitters Dete
tortime pseudo�ow id pkts bytes event �ags1130965527 164.254.132.227:* <-> *:* 986 k 823 MB large sr
 internal1130969123 *:* <-> 164.254.133.198:80/t
p 1.07 M 654 MB large dst internal1130990210 *:* <-> 164.254.133.194:* 1.12 M 357 MB large dst internal1130992153 54.75.124.72:19150/t
p <-> 164.254.133.146:* 977 k 79 MB large �ow1130999627 164.254.132.247:80/t
p <-> *:* 1.02 M 781 MB large sr
 internal164.254.132.227:* <-> *:* 1.90 M 1.47 GB large sr
 internal164.254.133.198:80/t
p <-> *:* 1.84 M 1.22 GB large sr
 internal164.254.132.247:80/t
p <-> *:* 1.21 M 968 MB large sr
 internal71.213.72.252:80/t
p <-> 164.254.133.56:* 498 k 522 MB large �ow*:80/t
p <-> 164.254.132.88:* 459 k 479 MB large dst internal*:* <-> 164.254.133.194:* 1.35 M 427 MB large dst internal



47the re
eiver should be sending ba
k ACK segments to 
lo
k the transmitter.Due to the widespread use of delayed ACKs ([Braden, 1989℄, Se
tion 4.2.3.2),we expe
t the symmetry in well-formed TCP 
onne
tions to be between 0.5 and 2.Considering the e�e
t of pa
ket losses and sampling artifa
ts, we expe
t the limitswhi
h will 
ause an alarm event to be more en
ompassing. [Kreibi
h et al., 2005℄proposes a 8:1 ratio as sensible limit, but they use non-sampled tra�
, whi
h produ
esmore a

urate symmetry ratios.Note that this statisti
 would apply to the 7 tables mentioned, and not only tothe 
onne
tion one. The reason is that all the tables are non-dire
tional, i.e., theya

ount for information about both sides of a 
onne
tion in the same table entry.The se
ond statisti
 is 
ontrol/data, de�ned as the ratio of TCP 
ontrol segments(those with the SYN, FIN, or RST �ag set) to TCP non-
ontrol (data) segments.The intuition behind this statisti
 is that 
ontrol segments are signaling tra�
, andtherefore a large stream of legitimate TCP tra�
 should be 
omposed of mu
h moredata segments than 
ontrol ones. A very large ratio of 
ontrol segments 
omparedwith data segments is 
onsidered a signal of bogus tra�
.The third statisti
 is pa
ket/
onne
tion, de�ned as the ratio of number of pa
ketsto the number of 
onne
tions. Note that this statisti
 does not apply to the 
onne
tiontable (where the number of 
onne
tions is always one), but does apply to non-TCPtra�
.The intuition behind the pa
ket/
onne
tion statisti
 is that a high-volume pseudo�ow



48will be 
omposed of a small number of 
onne
tions when 
ompared to the number ofpa
kets. If a pseudo�ow has a number of 
onne
tions 
omparable to its number ofpa
kets, we 
onsider this as a signal of a bad behavior.Using the tables and the three 
onne
tion health statisti
s, we de�ne some heuristi
sthat di�erentiate pseudo�ows in the following 
ategories:
• Flooders and Floodees.We de�ne a �ood as a high-volume host, host:port pair, or host:remote portpair, for whi
h the tra�
 is bogus. Floods o

ur typi
ally be
ause of atta
ks orbroken proto
ols.An example of a �ood is a �SYN �ood,� where lots of TCP segments with theSYN bit set are seen by the NIDS. A that uses SYN segments as signals of new
onne
tions, and rea
ts to them by 
reating per-
onne
tion state, 
an be easilystressed by a SYN �ood4.A SYN �ood dire
ted to a given host will be seen by the NIDS as a large entryof bogus tra�
 (the 
ontrol/data ratio will be unusually large) in the host table.Flood events 
an be used to �ght �oodings behavior, by dete
ting �ooders inreal-time, and then using this information to avoid 
reating state in the NIDSasso
iated to the �ooders. A straightforward de
ision is to bla
klist �ooders.

4[Dreger et al., 2004℄ states that Bro 
reates up to 240 bytes of state per SYN segment, and that asigni�
ant part of these state 
hunks 
orrespond to SYN segments never answered (e.g. s
ans). Theauthors show how a 
onne
tion 
ompressor permits deferring the instantiation of a full 
onne
tionstate until both sides of the 
onne
tion have shown a
tivity.



49Note that this s
heme dete
ts both �ooders and ��oodees� (hosts being subje
tedto �oods). This helps to limit the event produ
tion in the NIDS. For example,if several atta
kers are �ooding a given host, we want to generate a �host being�ooded� that en
ompasses all the pa
kets 
orresponding to the distributed �ood.
• High-VolumersWe de�ne a high-volumer as a host that is generating or re
eiving a very largeamount of legitimate (non-bogus) tra�
.
• Big Conne
tionsWe de�ne a big 
onne
tion as an entry in the 
onne
tion table with an unusualamount of tra�
. An example is a large FTP transfer.
• Big Appli
ation SessionsWe de�ne a big appli
ation session as a large entry in �host and a host:port pair�or host:host tables with legitimate tra�
. A big appli
ation session 
orrespondsto a high-volume transfer (the session) splitted among several 
onne
tions. Thisis often used, for example, to avoid the problems of TCP 
ongestion 
ontrol invery fast links [Lee et al., 2001℄.
• Non-Symmetri
 TCP Conne
tionsWe de�ne a non-symmetri
 TCP 
onne
tion as a entry in the 
onne
tion or thehost:host tables whose symmetry statisti
 is too di�erent from 1.We are still working on tuning the values for the three statisti
s that di�erentiate



50bogus tra�
 from valid tra�
.2.5.4 Ba
kdoor Dete
tionAnother appli
ation well-suited for implementation using the Se
ondary Path isZhang and Paxson's work on how to use pa
ket �lters to e�
iently dete
t ba
kdoors[Zhang and Paxson, 2000a℄. The authors de�ne ba
kdoors as 
onne
tions not runningin their well-known port, preferentially intera
tive, and propose several �lters todete
t them.[Zhang and Paxson, 2000a℄ proposes two di�erent me
hanisms to dete
t ba
kdoors:The �rst one 
onsists of looking for tra
es of intera
tive tra�
 behavior by analyzingthe timing 
hara
teristi
s of small (less than 20 bytes of payload) pa
kets. Theintuition behind it is that intera
tive 
onne
tions will be 
hara
terized by shortkeystrokes (large proportion of small pa
kets) 
aused by human responses (largeproportion of large intervals between ea
h two small pa
kets).The se
ond one 
onsists of extra
ting some signatures of parti
ular proto
ols (SSH,FTP, Gnutella, et
.), and using them to analyze tra�
 in ea
h proto
ol's standardport. Finding a server for a given proto
ol running in a port other than the standardone may indi
ate the presen
e of a ba
kdoor.We have added both approa
hes to Bro using our Se
ondary Path model. Doingso is simple, and provides a ni
e operational 
apability, namely the ability to dete
tuse of these proto
ols in a very e�
ient fashion. It also permits to integrate the



51results into further analysis, this time using the Main Path.Signature-Based Ba
kdoor Dete
torsThe �rst addition for ba
kdoor dete
tion are the 8 signature-based ba
kdoordete
tors proposed by [Zhang and Paxson, 2000a℄. From them, we dis
arded therlogin and telnet ones be
ause they are too broad. In the generi
 tra
e used for ourexperiments, 50 K pa
kets mat
h the rlogin signature, and 92 mat
h the telnet one.This 
oin
ides with operational experien
e running the original ba
kdoor dete
tors inLBL.In the telnet 
ase, visual inspe
tion of some pa
kets mat
hing the telnet signatureshows pa
kets 
orresponding to bulk data transferen
es (SSH, HTTP, and otherproto
ols) whose �rst 2 bytes of payload happen to be 0x� and 0xfa-0x�, respe
tively.ImplementationThe main advantage of implementing the dete
tors using the Se
ondary Path isease in adding them. Figure 2.9 shows the SSH analyzer 
ode. ba
kdoor_ignore_portsis a set of ports where intera
tive tra�
 is expe
ted, in
luding FTP, SMTP, SSH,rlogin, telnet, and others.The se
ond advantage is that, when 
oupled with BPF state tables (see Se
tion 3.7)or with Shunting (see Chapter 4), it permits a
tivating the Main Path when aba
kdoor uses a proto
ol that the NIDS knows how to analyze. For example, if the



52global ssh_sig_�lter = "t
p[(t
p[12℄>>2):4℄ = 0x5353482D and(t
p[((t
p[12℄>>2)+4):2℄ = 0x312e or t
p[((t
p[12℄>>2)+4):2℄ = 0x322e)";event ba
kdoor_ssh_sig(�lter: string, pkt: pkt_hdr){# get rid of tra�
 in well-known portsif ( ["ssh-sig", pkt$t
p$sport℄ in ba
kdoor_ignore_ports )return;if ( ["ssh-sig", pkt$t
p$dport℄ in ba
kdoor_ignore_ports )return;print fmt("%s ba
kdoor_ssh_sig,, %s:%s -> %s:%s", network_time(),pkt$ip$sr
, pkt$t
p$sport, pkt$ip$dst, pkt$t
p$dport);}redef se
ondary_�lters += {[ssh_sig_�lter℄ = ba
kdoor_ssh_sig,}; Figure 2.9: SSH Ba
kdoor Dete
tor Exampleanalyzer dete
ts an SSH 
onne
tion in a non-standard port, it 
an add a new entryin the BPF table that 
aptures pa
ket from the 
onne
tion, and label the tra�
a

ordingly so that the Main Path knows it must use its SSH analyzer to pro
esstra�
 from that 
onne
tion.EvaluationIn the evaluation side, we have just fo
used on the performan
e, instead of the
orre
tness of the me
hanism. The latter is already dis
ussed by [Zhang and Paxson,2000a℄.We ran four di�erent experiments on the t
p-1 tra
e:



53approa
h explanation time
A Main Path, no analyzers 890 se

B Main Path-based ba
kdoor analyzer 1659 se

C Main Path, Se
. Path-based ba
kdoor analyzer 1064 se

D Se
. Path-based ba
kdoor analyzer 327 se
Table 2.4: Performan
e of Signature-Based Ba
kdoor Dete
tor

A Bro using no appli
ation-layer analyzers
B The original implementation of the ba
kdoor 
ode, whi
h is �red by Bro events,and is not �lter-based
C The new ba
kdoor 
ode using the Se
ondary Path
D The new ba
kdoor 
ode using the Se
ondary Path, after disabling Bro's MainPathIn all 
ases, we ran all the dete
tors but the telnet and rlogin one.Table 2.4 shows the performan
e of the original and Se
ondary Path-based dete
tors.The extra 
ost 
aused by the original, Bro-event based, ba
kdoor dete
tor implementationis 769 se
 (B - A).In 
omparison, the extra 
ost of running the same dete
tors using the Se
ondaryPath is just 174 se
 (C - A). The 
ode is basi
ally several pie
es of the form depi
tedin Figure 2.9.
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 AnalyzerWe also wrote the Generi
 Algorithm for Dete
ting Intera
tive Ba
kdoors des
ribedby [Zhang and Paxson, 2000a℄ using the Se
ondary Path. The 
ode is very similarto the 
urrent Bro version of the dete
tor, but being �red by the Se
ondary Path,instead of Bro events.The two main advantages of implementing the dete
tor using the Se
ondaryPath are ease and performan
e. Se
tion A.1 in Appendix A des
ribes the dete
torimplementation.Corre
tnessThe 
orre
tness of the approa
h is dis
ussed in the original paper [Zhang andPaxson, 2000a℄. We 
ompared the results of the original dete
tor and the one basedon the Se
ondary Path. As the used tra
e (des
ribed in Se
tion 2.5.1) had almost noba
kdoor-like tra�
 (just some AOL Instant Messenger, or AIM, tra�
), we de
idedto 
he
k how good was the dete
tor for dis
overing the tra
e's only well-knownintera
tive 
onne
tions, namely SSH tra�
. In order to do so, we took SSH outfrom the list of well-known ports where the dete
tor does not 
arry any pro
essing.Performan
eWe ran four di�erent approa
hes on the t
p-1 tra
e:
A Bro using no appli
ation-layer analyzers
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F The original implementation of the generi
 ba
kdoor 
ode, whi
h is �red by Broevents, and is not �lter-based
G The new generi
 ba
kdoor 
ode using the Se
ondary Path
H The new generi
 ba
kdoor 
ode using the Se
ondary Path, after disabling Bro'sMain PathTable 2.5 shows the performan
e of the four di�erent approa
hes.approa
h explanation time

A Main Path, no analyzers 890 se

F Main Path-based generi
 ba
kdoor analyzer 1296 se

G Main Path, SP-based generi
 ba
kdoor analyzer 1179 se

H SP-based generi
 ba
kdoor analyzer 284 se
Table 2.5: Performan
e of Generi
 Ba
kdoor Dete
torIn this 
ase, the extra time in
urred by the original dete
tor is 406 se
onds, whilethe extra time in
urred by the SP-based version is 289 se
onds.

2.6 Con
lusionsWe have des
ribed the Se
ondary Path, an alternate 
hannel for a
quiring pa
ketsin intrusion dete
tion and monitoring environments. The Se
ondary Path supportsanalyzers interested in isolated pa
ket, network-layer (
onne
tion-less) based pro
essing.This is in 
omparison with analyzers that prefer using the appli
ation-layer basedpro
essing environment provided by the Main Path.



56The Se
ondary Path rationale is that, in some s
enarios, alternate tra�
 pro
essingbased on isolated pa
ket analysis 
an provide useful information that 
omplementsor disambiguates the information obtained from the Main Path.The Se
ondary Path permits new �ltering models based on pa
ket �ltering andsampling. We present several examples, and show how all of them 
an be easilyimplemented using a very small amount of 
ode. An added advantage is performan
e:Se
ondary-Path dete
tors run sensibly faster than their Main Path-based 
ounterparts.
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Chapter 3
Pa
ket Filter Augmentation
3.1 Abstra
tThis Chapter des
ribes two new pa
ket �lter me
hanisms that provide ri
her,�ne-grained, dynami
 
ontrol of the pa
ket �ltering pro
ess.These me
hanisms are designed with the goal of keeping the simpli
ity thatde�nes the popular BPF pa
ket �lter, while allowing the �lter to both 
apture tra�
at high-speed rates, and perform e�
ient validation of the �lters for se
urity andrunning-time bounding purposes.The �rst me
hanism provides in-kernel, pa
ket-based random sampling, introdu
ingrandomness as a �rst-
lass obje
t in both the human-readable language where userswrite their �lters, and the low-level, assembler syntax-like language that is e�e
tivelyrun in the kernel.



58The se
ond me
hanism provides in-kernel, �xed-size, generi
-purpose, persistent,asso
iative tables plus a set of hash fun
tions to index them. The main goals of thisaddition are to provide easily-available 
onne
tion-based random sampling, and topermit implementing the Shunting devi
e (see Chapter 4) in the kernel, without theneed of spe
ial-purpose hardware.
3.2 Introdu
tionThe traditional de�nition of a pa
ket �lter is a �kernel-resident, proto
ol-independentpa
ket demultiplexer.� [Mogul et al., 1987℄ A pa
ket �lter is a system that re
eivesnetwork tra�
, and sends some of the pa
kets to a set of pro
esses that register inthe pa
ket �lter. Whether ea
h pro
ess re
eives the pa
kets or not, depends on a
riterion (the �lter) that ea
h pro
ess de�nes. For example, an appli
ation may bejust interested in all web tra�
, while another just wants to see ICMP pings.When a user-level pro
ess wants to re
eive a subset of the tra�
 arriving to a host,one option is to re
eive all the tra�
, and then de
ide whi
h pa
kets are interesting.This me
hanism is very �exible, but it for
es ea
h pa
ket into 
rossing the kernel-userboundary, even if it is not needed by the appli
ation. If the a
tual number of pa
ketsof interest for the user-level pro
ess is low, the approa
h results in a large systemoverhead.A key idea in pa
ket-�lter systems is the �lter. A �lter is an appli
ation-spe
i�
program that, when run against a pa
ket, returns a Boolean value that states whether



59the pa
ket is interesting to the appli
ation or not (this is also known as whether the�lter a

epts or reje
ts the pa
ket). Instead of the appli
ations re
eiving all pa
ketsand then pi
king the ones they are interested, appli
ations 
an provide the kernelwith a �lter that lets the kernel take the same de
ision, therefore only dispat
hinginteresting pa
kets.The fa
t that �lters are run on the appli
ation's behalf by the kernel permits thatpa
kets that are not wanted by any appli
ation never 
ross the kernel-user boundary.In some s
enarios, this results in a large performan
e savings.Running user-provided �lters in the kernel presents two tradeo�s, namely se
urityand unbounded running times. Mali
ious or broken programs may obtain a

ess toprivileged resour
es, 
ause mayhem in the hosts where they are running, or just runforever, e�e
tively hogging the host resour
es. The kernel must therefore be able tovalidate the �lter safety, i.e., that the program will not do anything that it is notsupposed to do, and to bound the total amount of time a �lter may run.The traditional approa
h to address both issues 
onsists of a) writing the �ltersin a spe
ial-purpose, low-level language limited to performing pa
ket �ltering; thislanguage is normally simple enough so as to permit fast �lter running, 
heap validationof the �lter safety, and e�
ient 
al
ulation of a bound in the running time; and b)running the �lter a virtual pro
essor with very limited resour
e a

ess.Running pa
ket �lters in high-speed environments stresses the performan
e issuesin the pa
ket �lter. Any added me
hanisms must follow the general prin
iple of



60minimizing the amount of per-pa
ket work 
arried out. This normally translates intosimpli
ity. At the same time, this e�
ien
y 
on
ern 
annot be dealt with without
onsider the impa
t on se
urity.In this Chapter we dis
uss the justi�
ation, implementation, and performan
e ofnew pa
ket �ltering models, based on two abstra
tions that augment 
urrent pa
ket�lters. These abstra
tions are randomness and persistent state, and they are designedwith the e�
ien
y and se
urity 
on
erns in mind.The proposed additions intend to provide the following new �ltering models:
• sampling: a primary need in network monitoring is sampling, both pa
ket- and
onne
tion-based. Sampling permits sound analysis of tra�
 streams withoutthe requirement of parsing them in full. This is useful in s
enarios where fullanalysis is impossible or too expensive. For example, a 
lient may be interestedin studying a set of network pa
kets, so large that its full analysis is out ofrea
h. If the properties being studied remain 
onstant for a sample of the set,then analyzing the set may provide similar answers. Randomness is therefore a
ru
ial need.
• persistent state: the se
ond addition provides the 
apability to keep statebetween di�erent pa
kets in the pa
ket �lter. We provide persistent-statemanagement fa
ilities that are a) se
ure, as they limit the amount of stateavailable to ea
h user pro
ess, its a

ess to privileged resour
es, and guaranteeeasily-provable bounds on the running time; b) simple enough to permit fast



61implementation; and 
) generi
 enough to support the addition of other new�ltering models of whi
h we are not aware.Our persistent-state management me
hanisms also permits the use of �lters thatmodify their persistent state themselves1, without the need for their appli
ationsto request the 
hanges expli
itly. This feature permits managing �lter statewithout the need to 
ross the kernel-userlevel boundary.
• ri
her �lter 
ontrol: the last augmentation 
onsists of having ri
her 
ontrol ofthe pa
ket �ltering pro
ess. We provide an e�
ient me
hanism that enablesdynami
, �ne-grained 
ontrol of the �lter program. This is translated in two�ltering models.First, support of e�
ient management of in
remental �lters where statefulparsing of appli
ation-layer tra�
 is required to re�ne the �lter spe
i�
ation.For example, if you want to 
apture all FTP tra�
 in a link, 
apturing allpa
kets that 
orrespond to the standard FTP port just 
aptures 
ontrol 
onne
tions[Postel and Reynolds, 1985℄. Data 
onne
tions often use negotiated, randomports di�erent from the standard FTP 
ontrol port. Therefore, they will notbe 
apture by a �lter that fo
us on the latter. On the other hand, it is possible tomonitor the negotiation in the 
ontrol 
onne
tions, therefore obtaining informationthat uniquely identi�es the data 
onne
tions. It is easy for an appli
ation to

1This does not imply self-modifying �lters, whi
h is a hard problem from a se
urity point of view,and whose usefulness is not 
lear. Filters may modify their state, but not their program.



62parse the 
ontrol 
onne
tions, and when it dete
ts the negotiation of a data
onne
tion, to add it to the �lter. We support this by providing e�
ient a

essto the �lter persistent state.Other examples of proto
ols where the bulk-data 
onne
tions are dynami
allynegotiated in 
ontrol 
onne
tions in
lude multimedia session 
ontrol proto
ols[van der Merwe et al., 2000℄ and p2p proto
ols [Karagiannis et al., 2004℄.The se
ond �ltering model in
ludes 
onne
tion-based sampling. Conne
tion-basedsampling has di�erent properties than pa
ket-based sampling [Du�eld et al.,2002℄, and may be useful depending on the use the samples will have.An outline of this Chapter is as follows: Se
tion 3.3 dis
usses related work.Se
tion 3.4 introdu
es a simple random pa
ket-sampling me
hanism, and dis
usses itsimplementation. Se
tion 3.5 
ompares our pseudo-random sampling approa
h witha simple, 
heap solution used to imitate it, so that the strengths and weaknesses ofthe latter 
an be understood. Se
tion 3.6 shows some results from pseudo-randomsampling. Se
tion 3.7 introdu
es inter-pa
ket state in pa
ket �lters. Finally, Se
tion 3.8summarizes the 
hapter.
3.3 Related WorkThis Se
tion 
lassi�es related work in three di�erent 
ategories, namely pa
ket�lters (Se
tion 3.3.1), pa
ket 
lassi�ers (Se
tion 3.3.2), and sampling (Se
tion 3.3.3).



633.3.1 Pa
ket FiltersA Pa
ket Filter is a me
hanism to sele
t pa
kets from a pa
ket stream using aprogrammable 
riterion (the �lter).OperationTraditional pa
ket-�lter implementations use a simple pro
essor (often virtual)operated by a redu
ed, spe
ial-purpose Instru
tion Set Ar
hite
ture (ISA). Thissimple pro
essor, whi
h typi
ally resides inside the kernel, has full a

ess to the pa
ketbeing �ltered, whi
h is mapped into the pro
essor memory.Pa
ket �lters operate as follows: Appli
ations register a �lter with the pa
ket �lter.When the pa
ket �lter re
eives a new pa
ket, it runs every registered �lter against thepa
ket. Every �lter that a

epts the pa
ket 
auses the pa
ket to be dispat
hed to the
orresponding appli
ation. This operation mode enables several 
lient appli
ationswith registered �lters at the same time.Appli
ations express their �lter needs using a high-level language, whi
h is 
ompiledinto a lower-level language (the ISA language) that 
an be run in the pa
ket-�lterpro
essor. The rationale for the two-tier language system is threefold. First, appli
ations
an write �lters using a human-readable language 
onsisting of pa
ket-�ltering spe
i�
primitives 
ombined with Boolean operators. This high-level language syntax permits�exible expression of 
ompli
ated �lters. Se
ond, the pa
ket-�lter pro
essor re
eives�lters written in a low-level language whi
h is simple enough to be run fast, enables



64validation of the �lter safety (whi
h is important for both mali
ious and broken �lters),and permits bounding the �lter's running time. Third, this two-tier system permits
ode optimization in the 
ompilation pro
ess between the high-level and the low-levellanguages.CSPFCSPF [Mogul, 1990; Mogul et al., 1987℄ proposed the idea of putting a pseudo-ma
hinelanguage interpreter in the kernel, whi
h avoids �ltered-out pa
kets 
rossing prote
tionboundaries. CSPF parses a high-level �lter des
ription into a Boolean expression tree,whi
h then is run through ea
h pa
ket using an operand sta
k-based interpreter. Both
onstant values and bytes obtained from the pa
ket are pushed into the sta
k. A setof arithmeti
 and logi
al operations pop the top two words from the sta
k, and thenpush ba
k the result. After evaluating a program, if the top of the sta
k is not zero,or the sta
k is empty, the pa
ket is a

epted. Otherwise it is reje
ted.CSPF presents several short
omings. First, an operand sta
k is not the usual CPUmodel. Therefore, it must be simulated, whi
h is quite ine�
ient as it requires a lotof memory a

esses. Se
ond, the en
apsulated nature of network proto
ols makesthe tree model inherently ine�
ient, as it 
annot express proto
ol dependen
ies. Andthird, CSPF 
annot parse variable pa
ket headers, as there is no indire
tion operation.



65BPFIn order to address these short
omings, BPF proposes substituting the Booleanexpression tree with a dire
ted a
y
li
 Control Flow Graph (CFG), and the sta
k-basedinterpreter with a register-based virtual ma
hine [M
Canne and Ja
obson, 1993℄.BPF is the most 
ommon pa
ket-�lter ar
hite
ture today, and is used as thedevelopment framework for most pa
ket-�lter resear
h, in
luding this Chapter. Therefore,we des
ribe it in depth.BPF �lters are written using a high-level language (
alled expressions) 
omposedof pa
ket-related primitives linked by Boolean operators. Primitives usually 
onsistof an identi�er (name or number) pre
eded by one or more quali�ers. There are threedi�erent kinds of quali�ers, namely type, dir, and proto. Type quali�ers sele
t whatthe identi�er refers to. There are three types of type quali�ers, namely �host�, �net�,and �port�. Dir quali�ers spe
ify the transfer dire
tion to/from the identi�er. Thereare two types, � sr
� and �dst�. Proto quali�ers spe
ify a parti
ular proto
ol. Thereare several proto quali�ers, in
luding �t
p�, �udp�, � ip�, and others. Valid Booleanoperators are �and�, �or�, �not�.As an example, the expression � sr
 port 80� mat
hes all pa
kets whose sour
eport is 80. The expression � ip [2:2℄ = 60� mat
hes all IP pa
kets where the result of
on
atenating the se
ond and third IP bytes (the IP length �eld) produ
es the value60. High-level expressions are a
tually 
ompiled into low-level language programs,



66whi
h are then run in the BPF virtual ma
hine. This ma
hine 
onsists of a bu�erwith the pa
ket 
ontents, two registers (A and X), a small s
rat
h memory (denotedM[℄), and an impli
it program 
ounter.Low-level language programs are based on a redu
ed instru
tion set. The BPFISA follows an �assembler syntax� 
omposed of six di�erent instru
tion types:1. load instru
tions: 
opy a value into either A or X. Addressing modes (where thevalue 
omes from) in
lude immediate, dire
t (�xed o�set) fromM[℄ or the pa
ketbu�er, indire
t from M[℄ using X, and the pa
ket length. Load instru
tionsin
lude ld (load word, or 32 bits), ldh (load halfword, or 16 bits), ldb (loadbyte, or 8 bits), whi
h load the 
orresponding pa
ket data into A; and ldx (loadword), whi
h loads the 
orresponding pa
ket word into X.2. store instru
tions: 
opy either A or X into M[℄. Load instru
tions in
lude st(store word), whi
h stores the word in A into M[℄; and stx (store word), whi
hstores the word in X into M[℄. Both store instru
tions operate using indire
taddressing with a 
onstant value.3. ALU instru
tions: this 
ategory in
ludes both arithmeti
 and logi
 instru
tionsthat get its operands from A and either X or a 
onstant, and put the resultba
k into A. ALU instru
tions in
lude add, sub, mul, div, and, or, lsh, and rsh.4. bran
h instru
tions: alter the program 
ounter depending on the result of a
omparison test between A and either X or a 
onstant. Note that bran
h



67o�sets are always positive values, so only forward bran
hes are allowed. Bran
hinstru
tions in
lude jmp, jeq, jgt, jge, and jset (the latter performs a 
onditionalbit test).5. return instru
tions: terminate the �lter and indi
ate how many bytes of thepa
ket to dispat
h to the appli
ations. (Length zero means the pa
ket isreje
ted.) The only return instru
tion is ret.6. other instru
tions: the original implementation in
ludes just transferen
es betweenA and X in this 
ategory. This in
ludes tax and txa.Inter-Pa
ket and Inter-Filter StateAn interesting detail in BPF is all runs of a pa
ket over a �lter are 
ompletelyindependent of ea
h other. Every pa
ket �lter uses its own s
rat
h memory (denotedM[℄), so two di�erent �lters do not a�e
t ea
h other. We 
all this property �inter-�lterindependen
e.�Also, BPF has no persistent state. The s
rat
h memory is zeroed every timethere is a new pa
ket, so the pro
essing of a pa
ket in a �lter does not a�e
t thepro
essing of further pa
kets in the same �lter. We 
all this property �inter-pa
ketindependen
e.�BPF is inter-�lter and inter-pa
ket independent.



68MPFMPF [Yuhara et al., 1994℄ des
ribes two modi�
ations to BPF to make it moree�
ient when used for 
arrying out network- and transport-layer proto
ol pro
essingin mi
rokernels.The �rst modi�
ation introdu
es sharing of some pro
essing in the same pa
ketamong several �lters. For e�
ien
y reasons, proto
ol pro
essing in mi
rokernels is
arried out outside the kernel. This means that ea
h 
onne
tion requires registeringa �lter in the pa
ket �lter. Given that ea
h pa
ket must be run with every registered�lter, plain proto
ol pro
essing 
auses a large overhead in the mi
rokernel.As all proto
ol sta
ks use very similar �lters, of the form �get all pa
kets that
orrespond to the {TCP/UDP, remote address, remote port, lo
al address, lo
al port}tuple�, MPF adds to BPF an asso
iative mat
h fun
tion that permits 
ombiningtogether all sta
k �lters. This way, all sta
k �lters are run using a single �lter,that eventually dispat
hes to a single 
orresponding appli
ation (the sta
k that mustre
eive the tra�
).The se
ond modi�
ation a�e
ts the way IP fragments are pro
essed. One of themain problems of pa
ket �lters is how to pro
ess IP fragments. IP fragments do notin
lude transport-layer headers, and therefore its sour
e and destination ports areunknown. When a fragment arrives to a mi
rokernel, it must be dispat
hed to all
onne
tions whose remote address is the pa
ket's sour
e address, independent of thesour
e port. It is the responsibility of the user-level proto
ol sta
k to dete
t whether



69the fragment 
orresponds to its remote port or a di�erent one before a

epting ordropping it.MPF proposes the addition of per-�lter, persistent memory to link fragmentinformation (the IP ID �eld) to the transport-layer information (the sour
e anddestination ports). It was the �rst to suggest the use of inter-pa
ket dependen
ies.xPFxPF [Ioannidis et al., 2002℄ proposes taking BPF's idea of pushing pa
ket pro
essingto the kernel to a deeper level. xPF's goal is for the pa
ket �lter to be not only ame
hanism for demultiplexing appli
ations to user-spa
e, but also an engine to fullyexe
ute monitoring appli
ations.While keeping the BPFmodel, xPF proposes two main additions to it: a) persistentmemory: The authors propose to add inter-pa
ket persistent memory, whi
h 
an beread and written by the 
ompiled �lter and the user-spa
e appli
ation. It also proposesadding indexed load and store instru
tions, whi
h requires 
areful 
he
king for everyinstru
tion and every running of the engine. b) eliminating engine restri
tions: Inorder to provide a ri
her exe
ution environment, xPF proposes eliminating BPF'srequirement of forward-only bran
hes. This introdu
es a potential starvation problem(a user-spe
i�ed �lter getting into an in�nite loop, for either mali
ious or bad-programmingreasons), whi
h the authors ta
kle by limiting the number of BPF instru
tions any�lter 
an run. If a �lter goes beyond its assigned instru
tion budget, xPF runs



70a user-spe
i�ed ex
eption handler, whi
h retains the original forward-only bran
hrequirement.mmdumpmmdump is a t
pdump-like tool that is able to e�
iently 
apture multimedia-session
onne
tions [van der Merwe et al., 2000℄. The main problem in 
apturing multimediastreaming �ows (RTSP, H.323) using plain BPF is that the ports used to send thebulk data are not �xed. Instead, they are dynami
ally negotiated during the session
ontrol 
onne
tion, whi
h does use a �xed, well-known port.A multimedia-session 
onne
tion 
apturer must therefore listen to session 
ontrol
onne
tions, parse their 
ontents, and dynami
ally modify the kernel �lter to add anynew, negotiated data 
onne
tion.In order to 
apture the data sessions, mmdump adds two new features to BPF.The �rst one is dynami
 modi�
ation of �lters. Whenever information from a newdata session is distilled from a session 
ontrol 
onne
tion, it must be added to the
ompiled BPF �lter that already resides in the kernel. The straightforward approa
hof 
hanging the t
pdump �lter every time there is an addition, then re
ompiling andinstalling it, is very expensive, ine�
ient, and does not s
ale with the number oftra
ked sessions. Instead, the authors take advantage of the similarity and simpli
ityof all data session des
riptions (�host A and port B�), generating a new BPF subtreeper session des
ription, and grafting it to the overall kernel �lter.



71The se
ond new feature is persistent state. While it is not ne
essarily required inorder to 
apture the data sessions, mmdump uses per-session state to a) keep sessionstatisti
s (whi
h are reported on session teardown), and b) bu�er the full session
ontrol data before sending it to the 
orresponding proto
ol parser.Lastly, mmdump uses a resour
e s
ar
ity dete
tor to for
e the evi
tion of persistent,per-session state.FPLFPL [Cristea and Bos, 2004; Cristea et al., 2005℄ is a new pa
ket-�lter languageintended to run, among others, in the FFPF network monitoring framework [Boset al., 2004; Nguyen et al., 2004℄. While FFPF 
an run several other pa
ket-�lterlanguages (in
luding BPF), FPL is designed to exploit all of FFPF features.FPL is based on registers and persistent memory. It uses a new, generi
 (in
ludingfor loops, if/then/else operations, and a native hash fun
tion), fully fun
tional, extensiblelanguage as the high-level language. It uses the pro
essor native language as thelow-level one. The latter means that it 
an be run natively in the kernel, but alsoin spe
ial-purpose hardware, as network pro
essors or dedi
ated ASIC boards. Thisshould provide an important performan
e boost, as 
ompared to generi
 boards. Onthe other hand, implementing a generi
 language in dedi
ated hardware introdu
esperforman
e 
on
erns related to e�
ient pipelined implementations.FPL deals with se
urity issues at both language levels. When 
ompiling a high-level



72language program, FPL limits the number of times a for loop 
an be run. This isdone in order to ensure bounds on the number of instru
tions run by a �lter. Whenthey �nish 
ompiling a �lter, trusted FPL 
ompilers add an MD5 signature to the�lter. This should ensure that the FPL pro
essor only runs low-level (native) languageprograms produ
ed using a trusted 
ompiler.E�
ient Pa
ket Filter CompilationA related part of work on pa
ket �lters 
on
erns the optimization of the �lteringpro
ess.DPF [Engler and Kaashoek, 1996℄, among other 
ode optimizations, proposesthe generation of dynami
 
ode from the �lter des
ription, so that the �lter 
an be
ompiled and run instead of interpreted.BPF+ [Begel et al., 1999℄ enhan
es the optimization of the �ltering by dete
tingand eliminating redundant predi
ates and 
omputation, and by looking for opportunitiesto use lookup tables when 
arrying out several 
omparisons related to the same �eld.BPF+ also permits 
ompiling the high-level �lter spe
i�
ation into native 
ode, byusing just-in-time 
ompilation, and 
he
ks the se
urity of the natively 
ompiled �lterby using a 
ode veri�er.



733.3.2 Pa
ket Classi�ersClosely related to pa
ket �lters are pa
ket 
lassi�ers. A pa
ket 
lassi�er is ame
hanism that inspe
ts pa
kets from a pa
ket stream, and determines how to pro
essthem. The pro
essing a
tion 
an be where to dispat
h a pa
ket, whi
h resour
es (e.g.priority) to assign to a pa
ket in an OS, or how to route a pa
ket in a router.Pa
ket 
lassi�ers work by assigning a tag to ea
h pa
ket, and an a
tion to ea
hdi�erent tag. Compared to pa
ket �lters, pa
ket 
lassi�ers asso
iate pa
kets withri
her semanti
s than just ��lter in� or ��lter out�. On the other hand, their de
isionsare typi
ally limited to parsing a group of sele
ted �elds.Pa
ket 
lassi�ers are typi
ally spe
i�ed using de
larative a
tions, known as �rules�.Pa
ket 
lassi�ers are normally programmed by de
laring a set of rules, whi
h mappatterns to tags. When a pa
ket is re
eived, it is mat
hed against all the patterns,and the mat
hing one is used to sele
t the tag. By 
omparison, pa
ket �lters arespe
i�ed using imperative 
ode.The non-ex
lusive nature of pa
ket 
lassi�er rules poses the problem of 
on�i
tdete
tion and resolution, in other words, what to do with a pa
ket that mat
hesseveral patterns. Pa
ket 
lassi�ers solve it by sele
ting always the longest pre�x thatmat
hes.Another di�eren
e between pa
ket �lters and pa
ket 
lassi�ers is that the latterare 
omposed of a very large set of rules, in some 
ases more than several tens ofthousands rules. Pa
ket �lters, on the other hand, tend to work with more 
on
ise



74rules.In order to support 
lassifying tra�
 in high-speed networks, PathFinder [Baileyet al., 1994℄ proposes a design to express pattern-mat
hing spe
i�
ations. PathFindersupports fragmentation by storing information on how to pro
ess a pa
ket from the�rst fragment, and out-of-order fragments by postponing their pro
essing. PathFinderdes
ribes two implementations, one in software and one in hardware. It proposes theimplementation of a subset of the 
lassi�er rules in hardware. The network adapterruns a subset of the rules against the pa
ket. If the pa
ket mat
hes any, it is (qui
kly)
lassi�ed and pro
essed without ever rea
hing the host. Otherwise, it is sent to thehost for 
omplete pro
essing.3.3.3 SamplingAnother large pie
e of related work is pa
ket and 
onne
tion sampling. Cla�yet al. [Cla�y et al., 1993℄ dis
uss three pa
ket sampling methods, namely systemati
sampling, strati�ed random sampling, and simple random sampling, and study theire�e
ts in the distribution of pa
ket sizes and pa
ket interarrival times.In (simple random) pa
ket sampling, the sampler makes a random de
ision onwhether to sample ea
h pa
ket or not. Pa
kets are 
lassi�ed in 
onne
tions, whi
h
an also be sampled. In 
onne
tion sampling, the sampler only takes a randomde
ision for the �rst pa
ket of the 
onne
tion. After that, all pa
kets 
orrespondingto the same 
onne
tion follow the same de
ision.



75Note that, assuming the same sampling ratio, a pa
ket has the same probabilityof being sampled whether using pa
ket or 
onne
tion sampling.Pa
ket sampling is easier to implement than 
onne
tion sampling, as the latterrequires the sampler remembering the de
ision on whether pa
kets from a given
onne
tion must be sampled or not. On the other hand, it is not possible, in general, toobtain 
onne
tion statisti
s from pa
ket sampled tra
es, as pa
ket sampling removessome of the �ow information present in the unsampled stream.Du�eld et al. [Du�eld et al., 2002, 2003℄ dis
uss how to determine 
onne
tionstatisti
s from pa
ket-sampled tra
es, and whi
h 
onne
tion properties from theoriginal stream 
an be inferred from pa
ket-sampled 
onne
tion statisti
s.Estan and Varghese [Estan and Varghese, 2002℄ propose the use of �sample andhold� and multistage �lters to e�
iently estimate statisti
s of large �ows. Estan etal. [Estan et al., 2003℄ show a method to automati
ally 
luster tra�
: Their idea isto start with exhaustive (ex
ept in the 
ase of IP addresses) information about thetra�
 in the leaves of a tree, and keep 
ompressing the tree upwards until they rea
ha given threshold.
3.4 Random SamplingThe �rst modi�
ation is the introdu
tion of randomness, and as a 
onsequen
e,random sampling. We 
onsider pseudo-random sampling a major ne
essity in kernelpa
ket �lters. Pseudo-random sampling is not available in BPF.



76Random pa
ket-sampling is a relatively straight-forward addition to pa
ket �lters.We provide a new instru
tion that provides 
lients a Pseudo-Random Number Generation(PRNG), that 
an be instru
ted to provide a number in a user-provided range. ThePRNG also permits the user to seed it dire
tly. This 
an also be used to enfor
edeterministi
 behavior, whi
h is useful for debugging purposes.3.4.1 ImplementationA new Pseudo-Random Number Generator (PRNG) has been written as an extensionto BPF. It produ
es pseudo-random, uniformly-distributed values in the range 0 to
232 − 1.The t
pdump expression syntax (see Se
tion 3.3.1) has been extended with a newtype quali�er, �random�, that generates a load instru
tion with random addressingmode. For example, the result of running the primitive �random(x)� is a randomnumber between 0 and x − 1. The expression �random(3) = 0� returns the Booleantrue value randomly, with probability 1 in 3.The BPF ISA (see Se
tion 3.3.1) has been extended with a new load 
ommand,namely ldr. ldr is implemented as a new addressing mode for the BPF load instru
tion.When a load instru
tion with the addressing mode set to random is run, the BPFengine loads into the sele
ted register a random value between 0 and the value of theinstru
tion immediate value (k �eld).



77Randomness Sour
eRandomness is produ
ed using two di�erent PRNGs, in
luding a) a popular LinearCongruential Generator [Park and Miller, 1988℄, and b) a less-popular, but strongerrandom number generator based on the RC4 algorithm [S
hneier, 1995℄.The main advantage of the LCG generator is that it is widely available. We wantedto know whether performan
e was an issue. We ran a simple experiment, in whi
hpa
kets from a large tra
e were sampled with a very low sampling rate, using a simple�lter �random(x) = 0�. The rationale of this setup 
an be justi�ed as follows: First,we used a large tra
e and a very simple �lter that 
onsumed one random number fromthe PRNG per pa
ket. This maximizes the number of times the random generatoris 
alled. Se
ond, the t
pdump expression produ
ed a very low sampling rate. Thisminimizes the in�uen
e of the inherent per-pa
ket pro
essing in the BPF engine.The performan
e di�eren
es between pro
essing the full tra
e with the LCG-basedgenerator versus the RC4-based generator were negligible (around 0.1%).In any 
ase, it is not 
lear how an atta
ker 
ould break the LCG generator: it
annot a

ess its internal state (neither the seed nor whether a given pa
ket is sampledor not), and the pa
ket-�lter 
apturing pro
ess does not produ
e any outgoing a
tivitythat 
an be used to sense its state [Kumar et al., 2005℄.



78Random SeedingAnother feature of the PRNG is that the user is able to spe
ify the seed, so they
an have added 
ontrol over the randomness (say, to thwart atta
kers from guessingthe state). We have implemented this in BPF by adding two new methods in thestandard devi
e/so
ket 
ontrol me
hanism ( io
tl /setso
kopt).Table 3.1 shows the 
odes for a

ess to the random seed in the io
tl 
ase.
ommand explanationBIOCSRNDSEED set the random seedBIOCGRNDSEED get the 
urrent random seedTable 3.1: io
tl API to Con�guring PRNGWe 
onsidered adding random seeding as a new expression primitive that is runonly on
e. The idea was to prepend a primitive like �random_seed(0xdeadbeef)� infront of the primitive using the randomness (e.g., � ip and random(10) = 0�). Whenthe kernel pro
essed the expression for the �rst time, it would noti
e the run-on
e�random_seed� primitive, run it (e�e
tively seeding the PRNG), and then remove itfrom the per-pa
ket �lter program.The main advantage of this approa
h is easy portability. Random seeding isrequested using the already-existent 
ontrol me
hanism (i.e., the expression). Itsimplementation only requires modi�
ations on the expression parser (so that the newprimitive is re
ognized as a valid one), and the BPF engine (so that the seedingis a
tually 
arried out, and then removed from the �lter). Both modi�
ations are
ommon to all pa
ket �lter implementations. In parti
ular, it does not require adding



79a new 
ontrol 
hannel to the kernel (the io
tl /setso
kopt 
alls des
ribed above).The idea of the initialization, run-only-on
e primitives 
ould also be extended to
reate a model that supports other generi
 one-time initializations, su
h as a privatekey for the hashing operands (see Se
tion 3.7).We found dynami
 �lter adjusting to be too 
umbersome. First, BPF is too rigidfor this. For example, BPF does not re
ognize numbers bigger than 4 bytes. Thisis a problem to some of the initializations we have in mind, as for example wheninitializing an HMAC key, whi
h is 16-bytes long.Se
ond, we want to be able to reuse an already-
ompiled �lter with a di�erentseed.Finally, the redu
ed BPF instru
tion spa
e seems the wrong 
hoi
e to supportpotentially inde�nite 
on�guration options.Optimizer IssuesThe main implementation di�
ulties are related to the BPF optimizer. First, BPF
onsiders itself free to arbitrarily reorder primitives, whi
h may 
hange the expressionsemanti
s.For example, this means an expression like �port telnet or (port ftp and random(3)= 0)�, whi
h means "get any telnet tra�
, or any ftp tra�
 with 1/3 probability",might get reordered to "get any telnet tra�
, or with probability 1/3 look to see ifit's FTP, and if so 
apture it", whi
h has very di�erent sampling properties.



80Se
ond, BPF is keen to 
ollapse two equal instru
tions with no dependen
ies. Forexample, if the t
pdump �lter reads twi
e the same IP �eld, the optimizer will usethe value of the �rst reading in both uses. This is wrong for PRNG, as two 
allsto �random(x)� with the same value of x should produ
e independent result. Thesolution is to make any 2 random instru
tions di�erent to the optimizer eyes. We dothis by marking ea
h instru
tion with the address of the memory used to store theinstru
tion itself.3.4.2 Random Sampling BehaviorThis Se
tion 
ontains results of a very simple experiment to 
he
k the 
orre
tnessof the random sampling addition (rnd) in a 
ontrolled environment. Just to makesure the addition works, we run the �lter �random(x)�, for di�erent values of x, on apa
ket tra
e, and 
ounted the number of pa
kets 
aptured as a fun
tion of the pa
ketbeing pro
essed.Figure 3.1 shows the number of pa
kets 
aptured by rnd as a fun
tion to thepa
ket being pro
essed. We report results for three di�erent sampling rates, namely
10, 1000, and 4096 to 1. Both the x and y-axis are in a logarithmi
 s
ale.We 
an see in all the 
ases how rnd 
aptures the expe
ted ratio of tra�
 rapidly.
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Figure 3.1: Pa
kets Captured by rnd3.5 Random Sampling Dis
ussionIn this Se
tion, we 
ompare the pseudo-random sampling approa
h, rnd, with asimple, 
urrently-available approa
h, samp.The samp approa
h tries to leverage on the inherent entropy of IP headers to 
arryout unbiased sampling. samp assumes the IP 
he
ksum �eld to be approximately arandom number. Sampling is 
arried out by masking the IP 
he
ksum �eld, and
omparing the result to a �xed number. As an example, if you want to sample 1 in 4pa
kets, you 
ould use the t
pdump expression � ip[10:2℄ & 3 == 0�. This expressiongets the last 2 bits of the 11th IP header bit (i.e., the last 2 bits of the IP 
he
ksumless signi�
ant byte), and returns true if their value is zero.



82The main bene�t from samp is portability. It 
an be used in any BPF-basedpa
ket �lter. Users need not modify the Operating System kernel to sample a pa
ketstream.Note that 
ost is not really an issue. Masking and 
omparing two numbers is notthat di�erent from generating a random number using only integer operations (forexample, an LCG-based PRNG requires an integer multipli
ation and division perrandom number). In a simple experiment, the di�eren
es in the time taken to runsamp versus rnd on the same tra
e, and with the same 
apture ratio, where lessthan 1%.This Se
tion 
ompares both approa
hes, assuming rnd produ
es a sample withstatisti
al properties 
omparable to that of a true random sample. We want to knowin whi
h s
enarios is samp OK, and in whi
h ones samp is wrong.The remainder of this Se
tion is stru
tured as follows: Se
tion 3.5.1 dis
ussesthe entropy present in IP headers. Se
tion 3.5.2 lists the approa
hes that di�erentOperating Systems take in order to manage the value of the IP ID �eld, and Se
tion 3.5.3studies the 
onsequen
es of ea
h of these approa
hes in the �randomness� of the IP
he
ksum �eld values, and therefore the quirks shown by samp when 
apturing tra�
from ea
h of the approa
hes. Se
tion 3.6.1 provides eviden
e of su
h quirks by runningboth rnd and samp in some isolated, unsampled tra
es. Se
tion 3.6.2 des
ribes a
omparison of the performan
e of rnd to samp in a real environment for a largeamount of time. Se
tion 3.6.3 
on
ludes.



833.5.1 On IP Header EntropyFigure 3.2 depi
ts the �elds in an IP header.
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Figure 3.2: IP Header FormatThe IP 
he
ksum �eld (bytes in positions 10 and 11) is produ
ed as a linear
ombination of all other IP header �elds (a
tually, as the negation of the 1's 
omplementsum of all the other �elds [Postel, 1981a℄). Assuming there is enough entropy in anyof the remaining IP header �elds, samp should produ
e relatively good samplings.How good is su
h an assumption? Let's 
onsider the main pa
ket aggregationunit, i.e., the 
onne
tion. All pa
kets from a 
onne
tion share the same sour
e anddestination addresses, proto
ol, and typi
ally TTL �elds. Moreover, IP options arevery rare, whi
h means the header length �eld almost always has the same value. TheTOS/Di�serv/ECN �eld 
urrently goes unused most of the time, or with the samevalue for every sour
e host.



84The pa
ket length is a better sour
e of entropy, but not good enough. A large
onne
tion is likely to be used to transfer bulk data (e.g., a large �le) or live multimedia
ontents (e.g., a VoIP 
onversation). In the �rst 
ase, the pa
ket size is likely to bealways the maximum transmission unit (MTU) in the data transfer dire
tion, andthe minimum transport proto
ol size in the opposite (a
knowledgment) dire
tion. Aless-
ommon use of large 
onne
tions is sending multimedia 
ontent. In this 
ase, wemust di�erentiate Variable Bit Rate (VBR) en
oders from Constant Bit Rate (CBR)ones. The latter will most likely use 
onstant-sized pa
kets.The IP pa
ket length is a better sour
e of entropy for small 
onne
tions, with oneex
eption: TCP 
ontrol segments usually are the same size for all pa
kets between thesame two hosts. The reason is that TCP 
ontrol pa
kets do not 
arry TCP payload,and the number of TCP options is typi
ally the same in all pa
kets between the sametwo hosts.Fragmentation 
ould be another sour
e, but in our tra
es is very un
ommon: lessthan 0.2% of our pa
kets are fragments. Other resear
hers report similar numbers [Shannonet al., 2002℄.Therefore, the prin
ipal sour
e of entropy when 
al
ulating the IP 
he
ksum �eldis the IP ID �eld.



853.5.2 IP ID FieldThe IP Identi�
ation (IP ID) �eld is a 16-bit long �eld used to implement IPfragmentation [Postel, 1981a℄. It is used to �distinguish the fragments of one datagramfrom those of another.� [Postel, 1981a℄ The only requirement for setting the IP ID�eld is to �set (it) to a value that must be unique for that sour
e-destination pairand proto
ol for the time the datagram will be a
tive in the internet system.� [Postel,1981a℄As fragmentation is un
ommon, the �eld is typi
ally unneeded. Its value, though,varies depending on the IP sta
k implementation. We have seen at least the followingbehaviors in a signi�
ant number of hosts. (Note that the approa
hes do not ne
essarilyex
lude ea
h other.)
• CONSECUTIVE: One per-host 
ounter, in
reased by one in ea
h pa
ket. Thisis the most 
ommon approa
h, as it is the one used by Windows hosts.A variation of this approa
h in some little-endian pro
essors does the in
rementin network order, so the a
tual in
rease is 256 (as is the 
ase in some oldWindows hosts). This does not a�e
t the rest of the dis
ussion, so we will
onsider both 
ases together under the same label.Another variation in
ludes one per-�ow 
ounter, in
reased by one in ea
h newpa
ket. A ��ow� is de�ned as all the pa
kets between the same endhost pair.Note that the variation in
ludes per-�ow 
ounters, instead of per-
onne
tion
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ounters. The reason is that the IP ID �eld 
an only depend on other IP �elds.Ports are transport-layer �elds, and fragments (ex
ept the �rst one) do not
arry transport headers. This variation is preferred by several Unix �avors (e.g.Linux 2.4.21.).
• ZERO: In some 
ases, hosts set the IP ID �eld to zero for some pa
ket subset,and using other approa
hes for the remaining pa
kets (e.g. CONSECUTIVE ).The most 
ommon variation of this approa
h 
onsists of using the CONSEC-UTIVE approa
h for all pa
kets but the TCP SYN/ACK segments. Thesesegments are always sent with the IP ID �eld set to zero.The goal of setting SYN/ACK segments to zero is to avoid leaking informationon the number of pa
kets a host sends, whi
h 
an represent a priva
y problem[Bellovin, 2002℄. Some �avors of Linux 2.4 and 2.6 follow this behavior.In order to set the IP ID to zero, the sour
e end-host needs to ensure that pa
ketswill not be fragmented in their path to the destination. Note that setting theDF (�Don't Fragment�) bit in the IP header is not enough: If a middleboxre
eives a DF pa
ket so large that it 
annot be forwarded, the middlebox willdis
ard the pa
ket [Postel, 1981a℄.Methods to ensure no fragmentation will o

ur fall into two 
ategories: First,some hosts set the IP ID �eld to zero only in pa
kets that are small enough toavoid fragmentation. This variation is followed by some older Linux (2.4) and



87FreeBSD versions (5.2-RC2). Se
ond, other hosts use Path MTU to dis
overthe maximum transmission unit (MTU) along the path [Mogul and Deering,1990℄, and then set the IP ID �eld to zero in pa
kets whose size is smaller thanthe MTU.Sending SYN/ACK segments with zero IP ID �elds is an example of the �rst
ategory: these segments are always very small pa
kets (typi
ally 40 bytes plusthe TCP options), and it is very unlikely that they will need fragmentation.Other hosts a
tually set the IP ID �elds to zero in TCP segments with the RSTor FIN �ags set, as they do not 
arry payload, and therefore are limited to theIP and TCP header size.Note that setting the IP ID to zero is a bad idea. Some middleboxes (routers,load balan
ers, �rewalls, et
.) illegally remove the DF along the path (e.g.Cis
o DSL/L2TP re
ommends avoiding this in its trouble shooting se
tion forbroadband a

ess via DSL/L2TP, where the MTU is lower than 1500 be
auseof the tunneling overhead).
• RANDOM: Some OpenBSD and FreeBSD �avors have the option of makingthe IP ID �eld random for se
urity reasons. FreeBSD assumes that gettinga random 
ounter per new 
onne
tion is an expensive task 
ompared to theimportan
e of the information leakage, and therefore it is disabled by default.



883.5.3 In�uen
e of the IP ID Field Behavior in samp FeaturesThe existen
e of di�erent approa
hes to IP ID management will produ
e threemain e�e
ts in the tra�
 sampled by the samp approa
h.E�e
t 1: Be
ause of the prevalen
e of CONSECUTIVE sta
ks, most large
onne
tions are sampled systemati
ally, instead of randomly.Let's 
onsider a large 
onne
tion using CONSECUTIVE. As we mentioned already,almost all pa
kets from that 
onne
tion will have the same IP header �eld values.The only �eld that therefore 
hanges between pa
kets in the same large 
onne
tion,and therefore its only sour
e of entropy when 
al
ulating the IP 
he
ksum, is the IPID. This �eld is in
reased just by one on ea
h 
onse
utive pa
ket.samp only 
aptures a pa
ket when the pa
ket's 
he
ksum mat
hes a given mask.In other words, when its value is in a �xed set of values, whi
h we will 
all the�
he
ksum set�. As the fun
tion used to 
al
ulate the IP 
he
ksum is a
tually linear[Postel, 1981a℄, the �
he
ksum set� will have a 
orresponding �IP ID set� of valuesthat will 
ause a pa
ket to be sampled by samp.If the IP ID always 
hanges by +1, this means that samp will not sample pa
ketspseudo-randomly. Instead, samp will sample pa
kets systemati
ally, pi
king onepa
ket of every R = 1/p, where p is the sampling ratio.Systemati
 sampling has di�erent properties than random sampling [Lohr, 1999℄.Let's 
onsider a �ow i, 
omposed of ni pa
kets, and 
aptured using a p sampling



89ratio. If the �ow is 
aptured with the rnd approa
h, the 
apture of ea
h pa
ketis a Bernoulli pro
ess, and therefore the total number of pa
kets 
aptured follows aBinomial distribution with parameters ni, p. The average and varian
e of the numberof 
aptured pa
kets are shown in Equations 3.1 and 3.2.
µi,random = nip (3.1)
σ2

i,random = nip(1 − p) (3.2)What is the aggregated e�e
t of random sampling? Let's assume the stream is
omposed of F �ows, named f1, f2, · · · , fF , ea
h 
omposed of ni pa
kets, and where
N =

∑F ni. The sampling of �ow i is independent of the sampling of �ow j, where
j 6= i. Therefore, the average and varian
e of the aggregated number of pa
ketssampled from the full stream are show in Equations 3.3 and 3.4.

µT,random =
F

∑

µi,random =
F

∑

nip = pN (3.3)
σ2

T,random =
F

∑

σ2

i,random =
F

∑

nip(1 − p) = Np(1 − p) (3.4)Now let's try to get the same statisti
s for samp, whi
h does systemati
 sampling.Let's assume the number of pa
kets in the ith �ow is ni = kiR + ǫi, where ki and
ǫi are integers, and 0 ≤ ǫi < R. A systemati
 sampler will 
apture ki pa
kets with



90probability ǫi/R, and ki + 1 pa
kets with probability (R − ǫi)/R. The average andvarian
e of the number of 
aptured pa
kets for �ow i are shown in Equations 3.5and 3.6.
µi,systematic =

F
∑

xipi = (ki + 1)
ǫi

R
+ ki

(R − ǫi)

R
= ki + ǫip = nip = µi,random (3.5)

σ2

i,systematic =
F

∑

(xi − µ2

i,systematic)pi = (ki + 1 − nip)2
ǫi

R
+ (ki − nip)2

(R − ǫi)

R
=

= (1 − ǫip)ǫip (3.6)Note that the varian
e σ2

i,systematic is bounded between 0 and 1/4. As 0 ≤ ǫi/R =

ǫip < 1, the varian
e σ2

i,systematic = (1 − ǫip)ǫip will be 0 ≤ σ2

i,systematic ≤ 1/4.What is the aggregated e�e
t of systemati
 sampling? Let's 
onsider the samestream as before. The sampling of ea
h �ow in the stream is independent of ea
hother. Therefore, the aggregate number of pa
kets sampled from the full streamis µT,systematic =
∑F µi,systematic =

∑F nip = pN on average. The varian
e will be
σ2

T,systematic =
∑F σ2

i,systematic =
∑F (1−ǫip)ǫip, whi
h is bounded by 0 ≤ σ2

T,systematic ≤

F/4, where F is the number of �ows.A per-�ow 
omparison shows that the average number of pa
kets 
aptured byboth samp and rnd is the same (µi,systematic = µi,random). This also applies to theaggregated results (µT,systematic = µT,random).The per-�ow varian
e is smaller in the samp 
ase than in the rnd 
ase. In e�e
t,



91applying ni = kiR + ǫi, 0 ≤ ǫi < ni, and being ǫi an integer, ǫi = 0 or ǫi ≥ 1, andtherefore ǫip ≥ p. If ǫi = 0, then σ2

i,systematic = 0 < σ2

i,random. If ǫi ≥ 1, then ǫip ≥ pimplies 1 − ǫip ≤ 1 − p, and therefore σ2

i,systematic < σ2

i,random (see Equation 3.7.)
σ2

i,systematic

σ2

i,random

=
(1 − ǫip)ǫip

nip(1 − p)
=

(1 − ǫip)

1 − p

ǫi

ni

< 1 (3.7)As the per-�ow varian
e is smaller, σ2

T,systematic =
∑F σ2

i,systematic <
∑F σ2

i,random =

σ2

T,random, and therefore the aggregated varian
e is also smaller in the samp 
ase thanin the rnd 
aseIn summary, the aggregate results of samp will be equal to the results of rnd onaverage, but with a smaller varian
e (a
tually bounded in the samp 
ase).Another 
onsequen
e of sampling being systemati
 instead of random is thatpa
ket inter-timings are biased. Therefore, s
aling down inter-pa
ket timings fromsampled tra
es to estimate unsampled inter-pa
ket timings should be avoided.Considering that most hosts today run some Windows �avor, we should expe
tthe CONSECUTIVE approa
h to manage IP IDs to be almost ubiquitous.E�e
t 2: Be
ause of the existen
e of ZERO sta
ks, some subsets of tra�
are aliased.The ZERO approa
h 
onsists of setting the IP ID �eld always to zero. If a hostfollows the ZERO approa
h, the only sour
e of entropy for the pa
kets it sends to a



92given destination (a ��ow�) is the IP length.The IP length is not a good sour
e of entropy. As we mentioned in Se
tion 3.5.1,large 
onne
tions are likely to have a 
onstant pa
ket size. Therefore, pa
kets from a�ow originating at a ZERO host will always have the same IP headers, in
luding theIP 
he
ksum �eld.If the �ow's IP 
he
ksum value happens to be one that mat
hes samp's mask, allpa
kets from the �ow will be 
aptured. Otherwise, no pa
ket from the �ow will everbe 
aptured.Aliasing is 
ommonly de�ned as a sampling e�e
t that 
auses two di�erent signalsto be
ome indistinguishable when sampled. In our 
ase, the signals are the totalnumber of pa
kets per 
onne
tion, and the sampled signal is the number of per-
onne
tionpa
kets 
aptured by the sampling method.Let's assume a sampling ratio of 1 in R pa
kets, and two 
onne
tions. The �rst oneis 
omposed of n pa
kets, and its IP ID �eld follows the CONSECUTIVE approa
h.As we have seen before, the average number of 
aptured pa
kets will be n/R = m.The se
ond 
onne
tion is R times smaller, i.e., 
omposed of m = n/R pa
kets.Its IP ID �eld follows the ZERO approa
h, and its (
onstant) IP 
he
ksum �eld ispart of the �
he
ksum set� of values that are 
aptured by the sampling me
hanism.Therefore, all of its m pa
kets will be 
aptured.The sampling me
hanism 
aptures approximately the same number of pa
kets forboth 
onne
tions (m), and therefore the estimation for the original size is approximately



93the same in both 
ases, namely mR = n. For the �rst 
onne
tion the estimation is�ne, but in the se
ond 
ase is 
ompletely wrong. We say that the se
ond 
onne
tionis aliased. More 
on
retely, we say that the 
onne
tion is aliased positively.If the se
ond 
onne
tion had a (
onstant) IP 
he
ksum �eld not part of the�
he
ksum set,� no pa
kets from this 
onne
tion would have been 
aptured. Thesampling method would estimate the size of the 
onne
tion as zero. We say the
onne
tion is aliased negatively.In relative terms, the negative versus positive aliasing ratio would be a fun
tionof the sampling ratio, p. Let's assume samp is sampling 1 in R pa
kets, where
R = 1/p. If a �ow is aliased, whether it is positively aliased or negatively aliaseddepends on the mask 
hosen for samp. The mask is mat
hed proportionally to p.If we 
onsider R ZERO �ows, we will expe
t 1 to be aliased positively, and theremaining (R − 1) to be aliased negatively. This means that, from all aliased �ows,the ratio of negatively-aliased �ows will be q = (R − 1)/R = 1 − p, and the ratio ofpositively-aliased �ows will be 1 − q = p.What is the e�e
t of ea
h type of aliasing on samp? When samp is used to
apture a negatively-aliased, n pa
ket-long �ow, it will 
apture no pa
kets from it.This means n pa
kets will not be seen by samp. When samp is used to 
apturea positively-aliased, n pa
ket-long �ow, it will 
apture the whole n pa
kets from it.After s
aling ba
k the sampling ratio, samp would report that it 
aptured n pa
ketsfrom a n/p = nR pa
ket-long �ow.



94What is the aggregated e�e
t of aliasing? A �ow is aliased or not independent ofwhether other �ows are aliased.If a �ow is aliased, it will be negatively-aliased with probability q (and thereforenot 
aptured at all), and positively-aliased with probability 1 − q (
aptured in full).Therefore, the average number of pa
kets 
aptured will be as shown in Equations 3.8and 3.9.
µaliasing =

∑

xipi = 0q + n(1 − q) = np (3.8)
σ2

aliasing =
∑

(xi − µ2

aliasing)pi = (0 − np)2q + (n − np)2p =

= n2p(1 − p) = nσ2

random (3.9)The aggregated e�e
t of negative and positive aliasing in samp is a
tually zero onaverage terms. On the other hand, the varian
e of the number of 
aptured pa
kets bysamp is n times bigger than the same varian
e when pa
kets are 
aptured by rnd,where n is the size of the unsampled �ow. Therefore, the standard deviation of thenumber of pa
kets in aliased �ows 
aptured by samp will be √
n times bigger thanwhen 
aptured by rnd.The larger varian
e means that the total number of pa
kets from ZERO sta
ksthat samp 
aptures will be �noisier� than the total number 
aptured by rnd.Operating Systems that use ZERO are un
ommon, so the overall e�e
t should



95be small in absolute terms. Moreover, we expe
t that, in general, R will be a largenumber, so that the number of positively-aliased �ows will be a small fra
tion ofthe number of negatively-aliased ones. Negative aliasing will be un
ommon, andwill slightly de
rease the amount of tra�
 
aptured by samp. Positive aliasingwill be extremely un
ommon, but its existen
e may bias the sampling results verysigni�
antly, in
reasing the total amount of 
aptured tra�
 in a signi�
ant way.A possible solution to avoid aliasing is to further re�ne samp, ex
luding anypa
kets with zero IP ID. We 
all this approa
h nidz. By �ltering out pa
kets withzero IP ID, nidz should get rid of positively aliased �ows, therefore avoiding biasingthe total amount of 
aptured tra�
 in a signi�
ant way.As a separate fa
t, we note that aliasing will be, in general, an asymmetri
 e�e
t.Aliasing depends just on the sender end-host, whi
h is the one that sets the IP header�elds. Therefore, �ows 
an be aliased in one dire
tion, the reverse, or in both.E�e
t 3: Be
ause of the sele
tive use of ZERO sta
ks, sampling of somesubsets of the tra�
 is biased.Let's 
onsider a sour
e host that uses CONSECUTIVE to set the IP ID �eld forall the pa
kets but for TCP SYN/ACK segments, where it uses ZERO.When sending a SYN/ACK segment to a given host, all the IP header �elds will bealways the same, and therefore they will have the same IP 
he
ksum. This 
auses analiasing e�e
t, in whi
h, depending on the exa
t value used in the samp 
omparison,



96either all the SYN/ACK segments to a given host, or none, are 
aptured. In otherwords, the samp approa
h is 
ompletely biased against some IP pairs, and 
ompletelybiased toward other IP pairs.As we will see later, the prevalen
e of this approa
h, at least in the tra
es we areusing, is important enough that, when 
apturing SYN/ACK segments, the results ofthe samp or nidz approa
hes are too biased to permit drawing valid 
on
lusions fromTCP SYN/ACK segment analysis.
3.6 Random Sampling Experiments3.6.1 Isolated Tra
e AnalysisThis Se
tion shows the three e�e
ts in a 
ontrolled s
enario. The main dataset for this study is a tra
e taken at the International Computer S
ien
e Institute onNovember 2004. The tra
e is around 45 minutes long, and adds up to 757 
onne
tions,1.9 M pa
kets, and 968 MB (509 bytes/pa
ket on average). The tra
e is 
omposed ofSSH tra�
 only.We sampled the tra
e using both rnd and samp. In both 
ases, the samplingratio was 1 in 4096 pa
kets.



97E�e
t 1: Be
ause of the prevalen
e of CONSECUTIVE sta
ks, most large
onne
tions are sampled systemati
ally, instead of randomly.Figure 3.3 shows the life of the biggest 
onne
tion in the tra
e. The top �gureshows the rnd-
aptured 
onne
tion, while the bottom �gure shows the same 
onne
tion,but 
aptured by samp.Every point in the tra
e represents a pa
ket, with the x axis showing its IP ID,and the y axis representing its timestamp. The line stit
hing all the points togetheris stri
tly in
reasing in the y axis. In other words, it is a time line. We 
an see thestrong systemati
 1-in-N e�e
t in the samp-
aptured 
onne
tion. Almost all pa
ketsin both graphs are 1500-byte long.Figure 3.4 shows the same systemati
 sampling e�e
t as Figure 3.3, but for thereverse path. Large data transmissions tend to be asymmetri
, as one of the hostssends data to the other, whi
h just keeps a
knowledging it. Pure ACKs normally arethe same size, a

ounting for just the IP and TCP headers. While the use of TCPoptions is 
ommon, all pa
kets from the same 
onne
tion that 
ome from the samehost typi
ally have the same number of TCP options. This means all the reverse-pathpa
kets have the same size (e.g., 40 bytes when no TCP options are used), andtherefore the same systemati
 1-in-N sampling e�e
t 
an be seen in the reverse path.Almost all pa
kets in both graphs are 52-byte long (TCP options a

ount for 12 bytesper pa
ket).Using both samp and rnd, we sampled the largest 
onne
tion, whi
h is 
omposed
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100of 465203 pa
kets and 441 MB (24% and 45.6% of the respe
tive totals). In both
ases the sampling ratio was p = 1/4096, and the experiment was repeated 100 times.Results are shown in Table 3.2, where Ȳ represents the sample mean, S2 the samplevarian
e, and SE(Ȳ ) the standard error of the sample mean.approa
h Ȳ S2 SE(Ȳ )samp 113.51 6.111 0.247rnd 113.44 121.18 1.101Table 3.2: Pa
kets Captured from the Largest FlowNote that, while the sample means are very similar, the sample varian
e of thesystemati
 approa
h is 19 times smaller than the sample varian
e of the randomapproa
h.Using both samp and rnd, we sampled the full tra
e. In both 
ases the samplingratio was p = 1/4096, and the experiment was repeated 100 times. Results are shownin Table 3.3. approa
h Ȳ S2 SE(Ȳ )samp 469.13 250.17 1.582rnd 472.44 506.75 2.251Table 3.3: Pa
kets Captured from the Full Tra
eNote that the sample means are again very similar. On the other hand, the samplevarian
e of the systemati
 approa
h is only 2 times smaller than the sample varian
eof the random one.Note also that, 
omparing the pa
kets 
aptured from the largest �ow and thepa
kets 
aptured for the full tra
e, the sample varian
e for the rnd approa
h gets



101multiplied by 4. This makes sense, as the ratio between the total number of pa
ketsin the full tra
e and the total number of pa
kets in the largest �ow is also 4. On theother hand, the same sample varian
e for the samp 
ase gets multiplied by 41. Flowaggregation in the samp 
ase in
reases the �noise� of the 
apturing pro
ess.E�e
t 2: Be
ause of the existen
e of ZERO sta
ks, some subsets of tra�
are aliased.Our tra
e does not show any negatively- nor positively-aliased �ows. We will lookfor eviden
e of su
h �ows in the larger tra
es experiments.E�e
t 3: Be
ause of the sele
tive use of ZERO sta
ks, sampling of somesubsets of the tra�
 is biased.In our SSH tra
e, there are 779 TCP pa
kets with the SYN and ACK �ags setboth to one. From those pa
kets, 669 (86%) have IP ID set to zero, and thereforethey have no sour
e of entropy. Their 
he
ksum is only a fun
tion of the sour
e anddestination host. Therefore, the results of sampling TCP SYN/ACK segments usingsamp will be biased toward some IP address pairs, and biased against all the others.



1023.6.2 Long-Term Tra
esDes
riptionData sets for this study were 
olle
ted from a GigEthernet link at Lawren
eBerkeley National Laboratory (LBNL). For both the rnd and the samp samplingapproa
hes, we used an o�-the-shelf FreeBSD host. For samp, we 
aptured thetra�
 running plain t
pdump/libp
ap/BPF. For rnd, we 
aptured the tra�
 usingour modi�ed version of the same 
apture suite. In both 
ases, the sampling ratio was1 in 4096 pa
kets.The data sets 
over the LBNL DMZ for almost the full year of 2004 and the �rsttwo weeks of 2005. Just about all tra
es are 86,400 se
onds (1 day) long, though afew are shorter due to reboots.Figure 3.5 shows the total amount of tra�
 
aptured by rnd 2. The top �gureshows the daily results in pa
kets, and the bottom one shows the daily results inbytes. The daily average is 340 K pa
kets (300 MB) per day, whi
h after 
onsideringthe 1:4096 sampling, produ
es an average number of 16 K pa
kets/se
 (114 Mbps).Total Di�eren
esFigure 3.6 shows a) the di�eren
e between the amount of tra�
 
aptured by sampand the amount of tra�
 
aptured by rnd, and b) the di�eren
e between the amountof tra�
 
aptured by nidz and the amount of tra�
 
aptured by rnd. The y axis
2Note that for the tra
e des
ription we fo
us on rnd, instead of samp, be
ause our approa
h
onsiders rnd to be the 
orre
t measurement unit against whi
h samp's 
orre
tness will be 
ompared.
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104shows this di�eren
e as a per
entage of the rnd tra�
. The top �gure measuresthe tra�
 in pa
kets, while the middle and bottom ones do the same in bytes andbytes/pa
ket, respe
tively. A 5% value in the top graph, for example, means that forthe given day, either samp or nidz 
aptured 5% more pa
kets than rnd.Just 
onsidering the total tra�
 
aptured, samp performs quite well. On average,it 
aptures around 1% fewer pa
kets than rnd, and approximately the same numberof bytes. The di�eren
e in the number of pa
kets is between ±5% at any time ex
eptduring the �rst two weeks of Mar
h, when the di�eren
e in
reases up to 20% (03/06tra
e). The di�eren
e in the number of bytes is always between ±10%.While the amount of tra�
 is very similar, the tra�
 being 
aptured is not.Partial Di�eren
es with sampThe most obvious di�eren
e between rnd and samp is the 20% extra pa
kets
aptured by samp during the �rst two weeks of Mar
h. Even more interesting, thedi�eren
e in bytes during the same period is almost imper
eptible, and therefore theaverage pa
ket size is up to 15% smaller (03/06 tra
e). samp is not only 
apturingmore pa
kets, but it's 
apturing di�erent pa
kets. This is eviden
e that samp isbiased toward some types of tra�
.What is 
ausing up to a 20% in
rease in pa
kets during the �rst two weeks ofMar
h? Based on a visual inspe
tion, we noti
ed that the ex
ess tra�
 
aptured bysamp, as 
ompared with rnd (up to 28,000 pa
kets/day) 
an be 
ompletely attributed
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106to a group of TCP SYN/ACK segments sharing exa
tly the same IP headers, in
ludinga zero IP ID. In 
omparison, the tra
e of the same day as 
aptured by rnd only shows�ve pa
kets with the same 
hara
teristi
s.This is a 
ase of positive aliasing (E�e
t 2). The in
rease in tra�
, as seen bysamp, during the �rst two weeks of Mar
h, 
an be explained by positive, asymmetri
aliasing of an IP-pair �ow where the sour
e host follows the ZERO approa
h forsome subset of the tra�
. Be
ause all SYN/ACK segments between this IP pairshare the same IP headers, they all have the same IP 
he
ksum �eld, and thereforesamp 
aptures all of them, instead of a 1:4096 sample.Corre
ting Aliasing With nidzSe
tion 3.5.3 introdu
ed nidz, a re�ned version of samp in whi
h pa
kets withzero IP ID are �ltered out.The main advantages of nidz are (1) it is as simple as samp (it just requiresadding �and not ip[4:2℄ = 0� to the �lter used to 
apture tra�
), and (2) it avoidspositive aliasing by getting rid of pa
kets with zero IP ID. The main disadvantage isthat it keeps biasing against some hosts and some subsets of tra�
.Figure 3.6 shows the e�e
t of 
apturing tra�
 using nidz. Considering the numberof 
aptured pa
kets, nidz 
aptures on average 2% fewer pa
kets than rnd. Its resultsare, nevertheless, less noisy than those of samp. The number of pa
kets 
apturedby nidz never di�ers from the number 
aptured by rnd by more than 5% (
ompare



107with 20% in the 
ase of samp and rnd).Considering 
aptured bytes, nidz follows very 
losely the results of rnd. Themain ex
eption is an 8% de
rease in total bytes 
aptured in the 05/01 tra
e.By analyzing that tra
e, we 
an see that 78% of the pa
ket di�eren
e and 95%of the byte di�eren
e 
an be explained by UDP pa
kets between a given host and 23others, all with the same IP headers (1500 bytes length, zero IP ID, and DF bit set).This is a 
ase of negative aliasing (E�e
t 2). The de
rease in tra�
, as seen bysamp, in the 05/01 tra
e, 
an be explained by negative, symmetri
 aliasing of tra�
between a given host and 23 others, where the 24 hosts follow the ZERO approa
hfor some subset of the tra�
.Note also that nidz does not 
ombat negative aliasing, only the positive one.Bias Measurement on Tra�
 SubsetsThe long-term tra
es also present eviden
e of bias in the sampling of some subsetsof the tra�
 (E�e
t 3). In order to show this bias, we have de�ned some subsetsof the tra�
, and then measured the per
entage of pa
kets that have zero IP ID onthem.Figure 3.7 shows the per
entage of pa
kets with zero IP ID for three di�erentsubsets of tra�
, namely (1) TCP SYN/ACK segments, (2) TCP RST or TCP FINsegments, and (3) Other pa
kets (any pa
ket not in
luded in (1) or (2)). The top�gure shows the results for tra�
 
aptured by rnd, and the bottom �gure shows the



108results for tra�
 
aptured by samp.Note the strong dis
repan
ies between the results returned by samp and rnd,espe
ially in subset (1). This indi
ates that, for this subset of tra�
, the resultsreturned by samp are 
ompletely biased, and do not represent a sample of the totalpopulation. Note that, in this 
ase, using nidz does not enhan
e the sampling quality,as no zero IP ID pa
kets are 
aptured. nidz is therefore 
ompletely biased againstsubset (1) of the tra�
.Moreover, from the top �gure, we 
an see that, on average, 33% of TCP SYN/ACKsegments have zero IP ID. Assuming that, for pure CONSECUTIVE hosts, theprobability that a TCP SYN/ACK segment has zero IP ID is negligible (1/65536),then this means that, in 33% of the TCP 
onne
tions, the responder (the serverin a 
lient-server 
onne
tion) uses the ZERO approa
h to set pa
ket IP IDs. Thisapproa
h 
an be either full (i.e., all pa
kets have zero IP ID), or just limited to theTCP SYN/ACK segments. As the per
entage of "Other Pa
kets" (subset (3)) thathave zero IP ID is negligible, we know that this 33% of the servers use ZERO justfor the TCP SYN/ACK segments.As would be expe
ted from the low popularity of hosts running Operating Systemsthat use it, the pure ZERO approa
h is marginal. Its in�uen
e in the aggregatedsampling numbers is minimal. On the other hand, an startling third of all the serversuse a variation of ZERO in whi
h the IP ID of TCP SYN/ACK segments is set tozero.
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110Another subset of the tra�
 where there is a high per
entage of pa
kets with zeroIP ID is UDP. Of all UDP pa
kets, on average 23% have zero IP ID. This meansthat the results obtained from sampling UDP tra�
 with samp are strongly biased.When using nidz, we will not see 23% of the total UDP tra�
.Note that UDP is the main sour
e of IP ID tra�
: 78% of all pa
kets with zeroIP ID are UDP.Systemati
 SamplingThe long-term tra
es also present eviden
e of systemati
 sampling (E�e
t 1).Figure 3.8 (top) shows an histogram of the pa
ket IP IDs for the tra�
 
apturedby rnd. The distribution of IP IDs is uniform, with the ex
eption of the IP ID =0 point, due to the existen
e of diverse ZERO sta
ks. The bottom �gure shows thesame histogram, but for the 
orresponding samp tra
e.We 
an see a strong bias in several values. Every verti
al, standing-out �line�of values 
orresponds to a series of pa
kets from the same (large) 
onne
tion. Thereason of having 16 equidistant lines is that our sampling rate is 1:4096, whi
h in65,536 values implies 16 sampled ones.The same systemati
 sampling e�e
t 
an be seen in a di�erent way. Figure 3.9shows the life of a given large 
onne
tion (a
tually the biggest one in its tra
e). Thetop �gure shows the 
onne
tion as sampled by rnd, while the bottom �gure showsthe same 
onne
tion as sampled by samp.
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112Every point in the tra
e represents a pa
ket, with the x axis showing its IP ID,and the y axis representing its timestamp. The line stit
hing all the points togetheris stri
tly in
reasing in the y axis. In other words, it is a time line. We 
an see thestrong systemati
 1 in N e�e
t in the samp-
aptured 
onne
tion. Almost all pa
ketsin both graphs are 1500-byte long.As an interesting side e�e
t, the same systemati
 sampling bias 
an be seen in thereverse path. In this 
ase, all reverse-path pa
kets are 40-bytes long.Figure 3.10 shows the same e�e
t as Figure 3.9, but for the reverse path.Finally, this aliasing produ
es aliasing in the time domain. We analyzed theinterpa
ket timing for the same 
onne
tion (Figures not shown). While the timingdistribution in the 
ase of pa
kets 
aptured by rnd is 
entered very 
lose to zero, thedistribution in the 
ase of pa
kets 
aptured by samp is bimodal, with one mode inzero and the other 
lose to 0.5 se
onds. This re�e
ts the fa
t that 1 pa
ket in 4096 isbeing systemati
ally sampled, so therefore the 
onne
tion bandwidth is 
lose to 8192pa
kets per se
ond.3.6.3 Con
lusionsThe main 
on
lusions on 
omparing rnd and samp or nidz are:
• E�e
t 1: Be
ause of the prevalen
e of CONSECUTIVE sta
ks, most large
onne
tions are sampled systemati
ally by samp, instead of randomly. Systemati
sampling redu
es the varian
e on the amount of tra�
 
aptured by samp,
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115introdu
es intertiming bias, and may present problems when the property beingmeasured is periodi
, and the sampling ratio is near its period [Lohr, 1999℄.Systemati
 sampling is typi
ally symmetri
, a�e
ting both dire
tions of a �ow.
• E�e
t 2: Be
ause of the existen
e of ZERO sta
ks, some subsets of tra�
 arealiased by samp. This aliasing 
an be positive (all the pa
kets in the subsetare 
aptured by samp), or negative (no pa
kets in the subset are 
aptured bysamp).As the sampling ratios used are normally very small, negative aliasing is un
ommonand its e�e
t steady but not very important (samp 
aptures slightly less tra�
than what it should). Positive aliasing is extremely un
ommon, but whenit happens, its e�e
t 
an 
hange signi�
antly the amount and pro�le of the
aptured tra�
.Positive aliasing 
an be �xed by using nidz instead of samp.Aliasing may be asymmetri
: One should use 
aution when drawing 
on
lusionsbased on a single 
onne
tion.
• E�e
t 3: Be
ause of the sele
tive use of ZERO sta
ks, sampling of some subsetsof the tra�
 is biased. This in
ludes at least TCP 
ontrol segments and UDPtra�
.These three e�e
ts are not a risk, but a reality. From experiments in a realenvironment, we 
an 
on
lude how well samp and nidz perform, and where they 
an



116be trusted and where not.The bene�ts of using samp and nidz are:
• The total amount of 
aptured tra�
 by samp is very similar to rnd, just1% lower [All per
entages refer to pa
kets. Byte di�eren
es are typi
ally evensmaller.℄ The total amount of tra�
 
aptured by nidz is also very similar, just2% lower.
• nidz (samp plus eliminating all pa
kets with zero IP ID) does a good job of�xing positive aliasing problems. Negative aliasing problems 
annot be �xed.The drawba
ks of using samp and nidz are:
• TCP SYN/ACK sampling (and to a small degree TCP FIN or RST sampling)is �awed. One should not draw 
on
lusions based on TCP 
ontrol segments.
• UDP sampling is �awed. One should not draw 
on
lusions based on UDP tra�
.
• Using nidz biases against some Operating Systems that set the IP ID to zeroin 
ertain environments.
• Pa
ket inter-timing is �awed. (This is probably irrelevant in sampled tra�
anyway.)



1173.7 State AdditionThe se
ond modi�
ation 
onsists of the introdu
tion of state in the pa
ket �lter.We extend the pa
ket �lter pseudo-ma
hine ar
hite
ture to in
lude a persistent memoryunit, whi
h permits storing and re
overing information between di�erent pa
kets.We provide �ne-grained a

ess to this memory unit, using both BPF pa
ket-�lterprograms, and the standard devi
e 
ontrol interfa
e.3.7.1 Related WorkThe idea of adding some sort of persistent (inter-pa
ket) state to BPF is not new.Our approa
h di�ers from previous work in the generality of the persistent-statemanagement 
apabilities.MPF and mmdump are ad-ho
 solutions to spe
i�
 problems. MPF uses persistentstate to mat
h fragments to �ows, and therefore dispat
h fragments only to interestedappli
ations [Yuhara et al., 1994℄. mmdump uses persistent state to keep multimediasession statisti
s [van der Merwe et al., 2000℄.xPF [Ioannidis et al., 2002℄ and FPL [Cristea and Bos, 2004℄, on the other hand,provide generi
 memory a

ess (read and write). xPF keeps the BPF ISA, augmentingit. Its goal, nevertheless, is to provide a generi
 engine for exe
uting monitoringappli
ations, and therefore it provides a di�erent, more generi
 high-level language toexpress �lters. One of the e�e
ts of the added generality is that bran
h restri
tions areeliminated, and therefore the �lter exe
ution time is not impli
itly bounded anymore



118by the �lter program length.FPL 
hanges both the high- and low-level �lter languages, instead using generi
-purposelanguages. Considering that the operation of pa
ket �lters 
onsists of the kernelrunning user-provided 
ode, FPL introdu
es se
urity- and performan
e-related issues(Se
tion 3.3.1).3.7.2 Persistent State AdditionOur approa
h keeps both the BPF ISA and the high-level language (t
pdumpexpressions). We keep the same t
pdump expression language, whose programmingmodel is easy to understand, popular, and at the same time well-suited for the pa
ket�ltering operation. We extend both languages, by adding primitives that permita

ess to the persistent memory.Asso
iative ArraysThe most 
ommon requirements for persistent memory in the 
ontext of pa
ket�ltering are the storage and retrieval of information asso
iated with a subset of thepa
ket �elds. We believe these requirements 
an be ful�lled by providing a set ofasso
iative arrays, whi
h 
an be a

essed using a subset of the pa
ket �elds as thekeys.An asso
iative array (also known as map, lookup table, or di
tionary) is a datastru
ture that asso
iates keys with values. Operations available in asso
iative arrays



119in
lude (a) lookup, whi
h returns the value asso
iated with a key, if present; (b)insert, whi
h adds a {key,value} tuple to the table; and (
) delete, whi
h erases thetuple asso
iated with a key, if present.Asso
iative Array Usage ExamplesLet's des
ribe some examples of pa
ket-�lter programs taking advantage of asso
iativearrays.The �rst 
ase is 
onne
tion �ltering. Appli
ations may want to manage informationon a per-
onne
tion basis. A 
ommon 
ase is performing 
onne
tion sampling, wherethe de
ision to sample a pa
ket or not is the same for all pa
kets belonging to thesame 
onne
tion.Conne
tion sampling 
an be implemented using an asso
iative array whose keyis the 5-tuple (104-bit) that de�nes a 
onne
tion (sour
e and destination addresses,transport-layer proto
ol, and sour
e and destination ports), and whose value is a 1-bitlong quantity that, when interpreted as a Boolean value, de
ides whether pa
kets fromsu
h 
onne
tions must be 
aptured.The operation of su
h implementation of 
onne
tion sampling is simple. Onre
eiving a pa
ket, the pa
ket �lter 
he
ks the 
onne
tion-sampling asso
iative array.Then, it reads the bit value, and depending on the value, de
ides to �lter in the pa
ketor not.Fragment �ltering 
an also be implemented using asso
iative arrays. The problem



120with �ltering fragments is that those that are not the �rst one in a fragment series donot 
arry transport headers. Therefore, any �ltering that relies in transport headerinformation 
annot be applied to them.A possible solution is to store the transport header of the �rst fragment in a series(or at least some of its �elds, for example both the sour
e and the destination port)in a fragment table, indexed by the sour
e address, destination address, and IP ID�eld. When re
eiving the �rst fragment in a series, its sour
e and destination portare stored in the table, indexed by the pa
ket's sour
e and destination address andIP ID �eld. When re
eiving a fragment di�erent from the �rst one in a series (i.e.,without transport header), the pa
ket �lter will get both ports by querying the table.This table does not help in the 
ase of out-of-order fragments. In this 
ase, the�ltering de
ision 
an be moved from the pa
ket �lter to the appli
ation itself.Another example of the usage of asso
iative arrays is IP address tables. Thesetables 
an be used, for example, to implement lists of interesting (whitelists) anduninteresting (bla
klists) hosts in an e�
ient and dynami
 fashion. On re
eiving apa
ket, the pa
ket-�lter 
he
ks the pa
ket address in the whitelist and bla
klist hoststable. If the host address is in the �rst table, the pa
ket is 
aptured. If the hostaddress is in the se
ond table, the pa
ket is reje
ted.



121Why Not Generi
 BPF?Note that generi
 BPF has the required fun
tionality to implement the threeexamples mentioned before. As an example, let us 
onsider the address whitelistexample. It is possible in BPF to implement a host whitelist by using as a �lter thedisjun
tion of several � (host = host_address)� primitives (one for every host in thelist).There are two problems with this approa
h, namely e�
ien
y and dynami
 a

ess.The e�
ien
y problem is due to the sequential nature of the operation of BPF �lters.In order to run a plain BPF �lter storing primitives for N host addresses, the BPFengine must run the N primitives in sequential order, until it �nds a mat
h or it�nishes. Therefore, its running time is O(N).The dynami
 a

ess problem relates to the stati
 nature of BPF �lters. If anappli
ation needs to make any 
hange to its �lter (either add a new primitive ordelete an existing one), it must 
reate the new �lter from s
rat
h: write the t
pdumpexpression, 
ompile and optimize it, and then send it to the kernel, so that the latter
he
ks and installs it. This 
an take a long time when the number of primitives islarge.Both problems mean that BPF does not s
ale to more than a few hundreds ofprimitives. In 
omparison, looking up an address in a di
tionary takes O(1) time,and there is no 
ompile 
ost to add or delete a new address.
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iative Array RequirementsThe examples above introdu
e several requirements for the fun
tionality of theasso
iative arrays:
• arbitrary-length values: As shown in the examples, the values stored in thedi
tionary may have di�erent sizes. In some 
ases, appli
ations need only ade
ision on whether the pa
ket will be a

epted or not. This requires just 1 bitper value. In the fragment dispat
hing 
ase, appli
ations need two transport-layerports, whi
h require a 32-bit value.
• arbitrary-length keys: Keys used to query the di
tionaries may also have di�erentlengths. In our examples, we have seen 
ases from 32 bits, in the 
ase of IPaddresses, to 104 bits, in the 
ase of per-
onne
tion �ltering.
• multipli
ity: Appli
ations may need several di
tionaries, with di�erent key andvalue widths. A one-size-�ts-all di
tionary using the largest key and valuewidths would be too ine�
ient.
• arbitrary-length size: The kernel must keep state for all the di
tionaries of apa
ket-�lter appli
ation. Appli
ations should be able to de
ide the size of theirdi
tionaries.



1233.7.3 Persistent State DesignOur extension to add state to BPF 
onsists of in
luding a number of set-asso
iativehash tables. We add to every BPF devi
e a set of 
hunks of memory, whose size isdetermined on initialization by the user, and whi
h are a

essible as hash tablesthrough some basi
 primitives.Design Spa
e and Appli
abilityThe design spa
e of the hash tables presents several alternatives that in�uen
ethe appli
ability of the persistent state addition to di�erent s
enarios.The �rst issue is whether the size of the tables must be fully dynami
 (growingwith ea
h new entry), �xed, or �xed but resizable. Dynami
-sized tables are de�nitelymore �exible, but they introdu
e potential se
urity hazards. For example, 
onsiderthat the hash tables are used by a se
urity monitoring appli
ation (e.g., a NetworkIntrusion Dete
tion System, or NIDS ), whi
h 
reates state for every 
onne
tion itsees. As the size of the memory allo
ated by the NIDS grows as a fun
tion of networktra�
 (the number of 
onne
tion seen), this 
an be used by an atta
ker to in
reasethe NIDS footprint, 
ausing it to eventually 
rash. This is 
ompli
ated by the fa
tthat, in order to run e�
iently, BPF must be run in privileged (kernel) mode. Thismeans that an atta
ker 
ould 
rash not only the NIDS, but also the host in whi
hthe NIDS runs.An intermediate approa
h is to used �xed-size tables, but with the possibility of



124on-demand resizing. This is, for example, the approa
h used by Bro [Paxson, 1999℄.Bro dynami
ally resizes its internal hash tables when their hash bu
ket 
hains ex
eeda 
ertain average length [Dreger et al., 2004℄. Resizing a table requires to 
opy allpointers from the old table to the new one, whi
h 
an take hundreds of millise
ondsfor large tables. Bro resizes its tables in
rementally, keeping both tables for a while,and 
opying only a few pointers per new pa
ket [Dreger et al., 2004℄.The se
ond issue is whether false false negatives are allowed. False negatives areby-produ
ts of the limitation in table sizes. If the hash table size is �xed, on
e it isfull, the only way to deal with new insert requests is by evi
ting old entries. Thismay 
reate false negatives, for example, when information on a given 
onne
tion hasbeen evi
ted from the tables be
ause of 
apa
ity 
on
erns.For example, let's 
onsider a table used to tra
k suspi
ious 
onne
tions. Anatta
ker 
ould take advantage of the table �xed size by 
reating multiple fake 
onne
tions,in
reasing the table o

upation until its has to evi
t entries. If she manages to 
ausethe table to evi
t the entry 
orresponding to the 
onne
tion she does not want to betra
ked (the 
ulprit 
onne
tion), she is in e�e
t hiding the 
ulprit from monitoring.The problem is made worse if �nding whi
h entries 
ause the evi
tion of a givenentry is an easy task. This means that the number of fake 
onne
tions the atta
kerneeds to 
reate in order to evi
t the 
ulprit entry is the table asso
iativity [Crosbyand Walla
h, 2003℄.A better approa
h involves the use of strong hash fun
tions in the table layout.



125If it is not possible to know whi
h entries will 
ause the 
ulprit entry to be evi
ted,the only approa
h left for the atta
ker is brute for
e, i.e., adding a number of entries
omparable to the table 
apa
ity, with the hope that the 
ulprit one will be eventuallyevi
ted. Combined with a random evi
tion me
hanism, this ensures the atta
ker isnot able to deterministi
ally 
ontrol the 
ontents of our tables.The last issue refers to false positives. In order to maximize the use of the thespa
e allo
ated for the tables, and espe
ially if the key used is large (e.g., the 104 bitsused by the traditional 5-tuple 
onne
tion de�nition), there is the possibility of storinga hash of the key, instead of the full key. For example, instead of the 104 bits, we
ould store a 32 bit hash of it.This works �ne as long as the o

upation of the original key spa
e is sparse (whi
his the 
ase, for example, of the 104 bit 
onne
tion de�nition). If the hash fun
tionis strong enough, it ensures that the probability of 2 
onne
tion keys hashing tothe same 32 bit value (a false positive, in whi
h a 
onne
tion is dealt with as if itwere another) is marginal. Another disadvantage of storing the hash value is that we
annot know the real key of the table entries, just its hashed value.Our approa
h is to use �xed-size tables, and to give the user full 
ontrol overwhether the original keys or a hashed version of them are stored as table entry keys.Note that, in any 
ase, the interfa
e (API) provided by the BPF state additionskeeps the same. A possible addition is to add on-demand resizing. This 
ould beeasily added by relying in the 
urrent table size io
tl fun
tion (see Table 3.5).



126The reason to 
hoose hash tables between the di�erent asso
iative array stru
turesavailable, and this parti
ular design spa
e point, is that the tables have O(1) averagelookup time, regardless of the number of obje
ts in the table.3 Moreover, this lookuptime is not a�e
ted by resizing.We expe
t that some of the tables will have a very large number of tuples, whi
hmakes average lookup time an important metri
.Hash tables provide 4 di�erent a

ess fun
tions:
• �lookup: {table, key} → T/F�: lookup a key in a given table.
• �retrieve: {table, key} → value�: retrieve the value asso
iated with a key in agiven table.
• �insert: {table, key, value}�: insert the {key,value} tuple in a given table.
• �delete: {table, key}�: delete the tuple asso
iated with a key in a given table.In our pa
ket-�ltering s
enario, we expe
t lookup to be the most 
ommon of thefour operations.Probabilisti
 Collision ResolutionOne of the main issues when designing hash tables is 
ollision resolution. In a hashtable, a �
ollision� is de�ned as the 
ase where the keys of two inserted {key,value}tuples hash to the same position in the table.

3In 
omparison, for example, self-balan
ing binary sear
h trees have O(log n) average lookuptime.



127As a generi
 hash table does not know the keys in advan
e, perfe
t hashing isnot possible, and 
ollisions may o

ur. From the di�erent approa
hes used to solve
ollisions, we have 
hosen probabilisti
 set-asso
iative hash tables over 
haining oropen addressing.Chaining (asso
iating with ea
h position a list of slots where tuples are stored) hastwo main drawba
ks. First, it requires a memory allo
ator that is driven indire
tlyby a user appli
ation (tra�
 dire
ted to the appli
ation), and that 
auses the liststo grow, potentially unbounded. This presents se
urity 
on
erns, as the tables arelo
ated in the kernel. Se
ond, worst-
ase performan
e is O(n) instead of O(1). Notethat this is an e�
ien
y 
on
ern, but also a se
urity one: Worst-
ase behavior maybe due to either degenerated workloads or algorithm 
omplexity atta
ks [Crosby andWalla
h, 2003℄.Open addressing (resolving 
ollisions by setting a me
hanism to look in alternatelo
ations of the table for a given key) has two main e�
ien
y drawba
ks. First,deleting elements may be very 
ostly, as it 
ould require reorganizing the full table.Se
ond, worst-
ase performan
e is also O(n) instead of O(1).Probabilisti
 hashing resolves 
ollisions by evi
ting tuples. In the simplest 
ase,a given tuple 
an be lo
ated in just one position in the hash table. This means thattwo tuples {Ka,Va} and {Kb,Vb} that 
ollide 
annot be in the table at the same time.If we want to insert {Ka,Va} in the table, an {Kb,Vb} is already inserted, we must�rst evi
t the latter in order to make spa
e for the former.
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 hashing does not require a memory allo
ator, has a �xed bound in thesize of the stored data, and keeps an O(1) worst-
ase behavior. It 
ompletely avoidsthe se
urity 
on
erns asso
iated with unbounded table sizes by �xing the amount ofmemory used by ea
h pa
ket �lter.The main tradeo� of probabilisti
 hash tables is that they may produ
e falsenegatives. In the previous 
ase, if we lookup the tuple {Kb,Vb} after it has beenevi
ted, it will not be found.In order to limit the amount of evi
ted tuples, we introdu
e asso
iativity into thehash table. In a w-way asso
iative hash table, the table entries are 
lustered in groupsof w 
onse
utive positions. A tuple is inserted in the emptiest entry of the group towhi
h it hashes (ties are broken arbitrarily).Asso
iativity de
reases the probability that a 
ollision 
auses an evi
tion, as the
w entries in a group must be full before there is an evi
tion. On the other hand, thelookup fun
tion must 
he
k all the entries in every group, and therefore the lookupperforman
e is O(w) instead of O(1).Bloom FiltersThe se
ond issue is spa
e use, and therefore relates only to e�
ien
y. Hash tablesused in pa
ket �ltering pro
esses typi
ally have keys wider than the values they index.This means most of the hash table data bu�er must be used to keep the keys. Forexample, 
onne
tion sampling tables require 104 bits of key spa
e for every bit of



129value spa
e.A related issue is the fa
t that the 
urrent BPF Virtual Ma
hine registry is
omposed of only two 32-bit registers, whi
h makes it very hard to implement operationsthat involve more than 32 bit items.To address both issues, our solution proposes a more e�
ient approa
h, whi
hsaves spa
e by keeping a hash value of the key instead of the full key. This is a spe
ial
ase of a Bloom �lter [Bloom, 1970℄, where a) the number of hash fun
tions is k = 1,and b) we use an array of 2v di�erent values (where v is the width of the values)instead of an array of bits. Note that the latter is possible be
ause k = 1.This data stru
ture may result in false positives, i.e., returning a result when thequeried key is not in the array. Consider two keys Ka and Kb, mapped to the values
Va and Vb respe
tively, whi
h hash to the same hash value Ha. Consider also that thetuple {Ha, Va} is stored in the table. A lookup query for Kb will return Va instead of
Vb. The operation of the �nal data stru
ture is shown in Figure 3.11. The originaltuple {Ka, Va} is transformed into a narrower tuple {Ha, Va}, where Ha = h1(Ka).The redu
ed tuple is inserted into a probabilisti
 hash table using a se
ond hashfun
tion, h2().Note that, in order to avoid 
lustering e�e
ts in the hash table, it is enough forthe �rst hash fun
tion (h1()) to 
ause as few 
ollisions as possible. For the se
ondhash fun
tion, h2(), we use a simple mod fun
tion.
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Ka HaVa Va

h1 h2

Ha Va

Figure 3.11: Data Stru
ture Used as Asso
iative ArrayHash Fun
tionsFor the �rst hash fun
tion, h1(), we provide three options:1. Linear Congruential Generator (LCG): LCG is a simple hash fun
tion. Thereason for providing this hash fun
tion instead of permitting the appli
ationto build it by itself is the la
k of the modulus operator in BPF. On the otherhand, it is prone to to worst-
ase behavior with either degenerated workloadsor algorithm 
omplexity atta
ks [Crosby and Walla
h, 2003℄.2. Message Digest (MD5 ) [Rivest, 1992℄: MD5 is a 
ryptographi
 hash fun
tion. Itis slower than the LCG-based fun
tion, but it provides pseudo-random values.3. Universal Hash Fun
tions (UHASH ) [Carter and Wegman, 1979℄: UniversalHash Fun
tions provide less strong guarantees than 
ryptographi
 hash fun
tions,but are mu
h faster.



131Programming ModelWe provide two methods to a

ess to the memory unit, namely the standarddevi
e/so
ket 
ontrol me
hanism, and dire
t a

ess via BPF pa
ket-�lter primitives.The �rst method is fairly straight-forward. The user appli
ation makes requeststo the kernel by 
alling the io
tl fun
tion in the BPF devi
e des
riptor (setso
kopt inthe so
ket �lter when the Operating System uses the so
ket API to implement BPF,as in the Linux So
ket Filter 
ase). The kernel 
aptures su
h requests, and honorsthem.Tables 3.4 and 3.5 show the io
tl list for 
on�guring and a

essing the hashfun
tions and the hash tables, respe
tively. (Note that BIOCSHTSIZET 
an only beused at initialization time.)
ommand explanationBIOCSHFLCGSEED set the LCG hash fun
tion seedBIOCGHFLCGSEED get the LCG hash fun
tion seedBIOCGHFLCG get the LCG hash value of a keyBIOCSHFMD5SEED set the MD5 hash fun
tion seedBIOCGHFMD5SEED get the MD5 hash fun
tion seedBIOCGHFMD5 get the MD5 hash value of a keyTable 3.4: io
tl API to the Hash Fun
tionsThe se
ond method permits dire
t a

ess to the hash fun
tions and tables fromthe BPF program itself.To a

ess the hash fun
tions, we provide two new t
pdump primitives, namelyhash_l
g and hash_md5. Both of them a

ept a variable number of arguments, andreturn the hashed value of the 
on
atenation of all the arguments. The �rst one uses



132the LCG hash fun
tion, and the se
ond one uses the MD5 hash fun
tion.To a

ess the tables, we provide four new t
pdump primitives, namely lookup,retrieve , insert , and delete. They implement the hash tables fun
tions of the samenames.The two query-only primitives are relatively easy to integrate in a 
omplex pa
ket�lter. For example, the following �lter 
an be used to perform TCP 
onne
tionsampling.(lookup(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄))) or(lookup(0, hash_l
g(ip[16:4℄, ip[12:4℄, t
p[2:2℄, t
p[0:2℄)))This �lter 
al
ulates the hashed value of the key formed by the 104-bit TCP
ommand explanationBIOCSHTNUMBER set the number of tablesBIOCGHTNUMBER get the number of tablesBIOCSHTID set the working hash tableBIOCGHTID get the working hash tableBIOCSHTSIZET set the table size (bytes)BIOCGHTSIZET get the table size (bytes)BIOCSHTSIZEA set the asso
iativityBIOCGHTSIZEA get the asso
iativityBIOCSHTSIZEK set the key size (bits)BIOCGHTSIZEK get the key size (bits)BIOCSHTSIZEV set the value size (bits)BIOCGHTSIZEV get the value size (bits)BIOCSHTDEFAULT set default value when non-existent entryBIOCGHTDEFAULT get default value when non-existent entryBIOCSHTPUT insert a {hashed key,value} tupleBIOCGHTGET lookup a hashed key, and return the 
orresponding valueBIOCSHTREM mark the entry asso
iated with a hashed key as invalidTable 3.5: io
tl API to the Hash Tables
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onne
tion tuple (note that the IP proto
ol in this 
ase is set to the TCP number),and uses it as the key to lookup the 
orresponding value in table 0.The other two primitives (insert and delete) are harder to integrate in useful �lters:they modify the tables, and typi
ally they must be run only in a small per
entageof the pa
ket �lter runs, when some 
ondition holds. For example, in 
onne
tionsampling, an insert operation may only be 
arried out when the �rst pa
ket of a new
onne
tion is seen. Conversely, a delete operation will only be 
arried out when thelast pa
ket of a new 
onne
tion is seen.Note that this works provided that t
pdump expressions are evaluated left-to-right.This may not be always the 
ase, as the BPF optimizer that translates the high level�lters into BPF programs has 
omplete freedom to reorder the former [M
Canne andJa
obson, 1993℄. Our approa
h depends therefore on limiting the reordering �exibilityof the optimizer.On
e primitive reordering has been forbidden, t
pdump expressions provide alimited form of �ow 
ontrol by 
onsidering the left-to-right evaluation order of �lters.The way to a
hieve 
onditional evaluation of a primitive is by setting a �lter 
omposedof the 
onjun
tion of the 
ondition and table a

ess primitives, in this exa
t order.If the 
ondition primitive is not true, the 
onjun
tion is also false, and therefore these
ond primitive need not be evaluated. If the 
ondition is true, the 
onjun
tion istrue or false depending on the se
ond primitive (the state-modifying primitive).As an example, the following �lter performs random 
onne
tion sampling, so that



134all the pa
kets in one in four 
onne
tions are 
aptured.(lookup(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄))) or(lookup(0, hash_l
g(ip[16:4℄, ip[12:4℄, t
p[2:2℄, t
p[0:2℄))) or( (t
p[13℄ & 18 = 2) and(random(4) = 1) and(insert(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄),1)) )The �rst two primitives 
he
k whether the 
onne
tion tuple is already in the
onne
tion table. The last primitive de
ides whether pa
kets from a 
onne
tion areto be sampled or not. It is 
omposed of three sub-primitives, from whi
h the �rstone 
he
ks for SYN segments (beginning of a 
onne
tion). If it does not hold, thefull primitive is false, independently of the other two sub-primitives, and therefore,the latter are not evaluated. In the same manner, the se
ond sub-primitive takes arandom de
ision, whi
h is true one in four times. If the �rst and se
ond sub-primitivesare true, then the third one is evaluated, and the tuple information is stored in table
0. As another example, the following �lter 
ounts TCP per-
onne
tion bytes.1 (lookup(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄)) and2 insert(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄),3 ip[2:2℄ +4 retrieve(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄)))) or



1355 (lookup(0, hash_l
g(ip[16:4℄, ip[12:4℄, t
p[2:2℄, t
p[0:2℄)) and6 insert(0, hash_l
g(ip[16:4℄, ip[12:4℄, t
p[2:2℄, t
p[0:2℄),7 ip[2:2℄ +8 retrieve(0, hash_l
g(ip[16:4℄, ip[12:4℄, t
p[2:2℄, t
p[0:2℄)))) or9 insert(0, hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄, t
p[2:2℄), ip[2:2℄)While looking slightly more 
ompli
ated than the previous ones, the �lter is easyto understand: Lines 1-4 
he
k for the 
onne
tion in the forward dire
tion (lookupprimitive). If the 
onne
tion is found there, the 
urrent length in bytes is retrievedfrom the table (retrieve primitive), added to the 
urrent pa
ket size (ip[2:2℄ primitive),and then reinserted in the table (insert primitive). Lines 5-8 do the same pro
ess butin the ba
kwards dire
tion. Line 9 is run if none of the previous primitives are true.It 
reates a new entry for the pa
ket's 
onne
tion, and inserts the size of the pa
ket.4Finally, we want to remark that this �lter 
an be installed in the kernel, and runwithout the need for kernel boundary 
rossings.3.7.4 Implementation of Hash A

ess Using BPF PrimitivesHash Fun
tionsThe implementation of the hash fun
tions is relatively straightforward. Themain di�
ulty is that both hash_l
g and hash_md5 may have a variable number of
4We are interested in adding more idioms or keywords in order to make for easier �lter 
on-stru
tion. For example, we 
ould use hash_t
p_fwd to obtain hash_l
g(ip[12:4℄, ip[16:4℄, t
p[0:2℄,t
p[2:2℄).



136arguments. We add 3 new ALU operation modes to the BPF ISA, namely BPF_HBEG,BPF_HUPD, and BPF_HEND.A BPF_HBEG ALU operation is generated at the beginning of a hash fun
tion.This operation stores the seed in the A register (for the LCG 
ase), or resets an MD5internal bu�er (for the MD5 hash 
ase).A BPF_HUPD operation is generated for every argument in the hash fun
tion,ex
ept the last one. In the LCG hash 
ase, this operation stores into the register Athe result of applying the LCG operation to the bitwise ex
lusive OR of A and thevalue of the argument. In the MD5 
ase, it just appends the new argument to theMD5 internal bu�er.A BPF_HEND operation is generated for the last argument in the hash operation.In the LCG 
ase, the result is the same as the previous operation. In the MD5operation, the last argument is appended to the MD5 internal bu�er, and then theMD5 hash operation is 
arried out. The �rst 32 bits of the result are 
opied into theregister A.Hash operations are not re-entrant.Hash TablesThe implementation of the hash tables relies in adding BPF_HASH, a newaddressing mode to the load (BPF_LD) and store (BPF_ST) operations. Withthe new addressing mode, the 
urrent hash table is a

essed using register X as the



137hashed key, and, in the 
ase of the insert operation, register A as the tuple value.3.7.5 ResultsPerforman
eWe are interested in 
omparing the performan
e of running a �lter using our hashtable approa
h to running the same �lter implemented using plain BPF.The tra
e used for the experiments is 
omposed of 3 M pa
kets, adding up to345 MB. It 
onsists of generi
 tra�
 generated by a small set of desktops and laptops(half of the tra�
 is HTTP) at the International Computer S
ien
e Institute (ICSI).Figure 3.12 
ompares the performan
e of stateful BPF to (original) BPF. In theexperiment, we have set both BPF and stateful BPF to 
apture only those pa
ketswhose sour
e or destination address are in a given list (whitelist). The number ofhosts in the list is shown in the x axis. The time taken to pro
ess ea
h pa
ket isshown in the y axis. The error bars in the BPF 
ase show 95% 
on�den
e intervals.The whitelist implementation in the BPF 
ase 
onsists of setting one primitive ofthe form �or host hostname� for ea
h host. The implementation in the stateful BPF
ase uses one of the hash tables. The average time to a

ess one element in the hashtable is 1.827 us.If the whitelist 
ontains 12 hosts or more, the stateful BPF approa
h is fasterthan original BPF. In operational environments, bla
klists with more than hundredsor thousands of addresses are not un
ommon.
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Figure 3.12: Performan
e of Stateful BPF versus BPFFigure 3.13 shows the time required to 
ompile a whitelist �lter in the BPF 
ase.Compiling a full �lter is required every time a new host is added to or deleted fromthe list. The 
ost does not exist in the stateful BPF 
ase.Asso
iativityWe are interested in understanding and measuring the in�uen
e of asso
iativityin the probability of false negatives.Consider a table 
omposed of N entries. In this table, we insert m items (tuples),in the order they arrive. When an item arrives, the entry where it will be insertedis de
ided randomly. If another item was already o

upying the frame, it is evi
ted.This is the traditional �balls-and-bins� problem.
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Figure 3.13: Time Required to Compile a New Whitelist Filter in BPFIn order to add asso
iativity to the problem, we in
lude a third parameter to theproblem, w, whi
h is the asso
iativity of the table. The operation des
ribed above
orresponds to the 
ase w = 1.When w > 1, the N frames in the table are asso
iated in N/w groups of size wea
h. When an item arrives, one of the groups of frames is 
hosen randomly.We want to know, for a given N , m, and w, a) the average number of evi
tions,and b) the probability that there will be an evi
tion.We know that, for a given N , m, and w, we have N/w groups. Consider the jthgroup. We de�ne the random variable Xj to be the number of items in frame j afterthe experiment. We know that Xj ∼ Bin(m, p), where p = w/N .We assume that the distribution of the number of items in a given group is Xj ∼
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Poisson(λ), where λ = mp = mw/N . This way we 
an treat the group loads asindependent, identi
ally-distributed (IID) random variables.5We know that E[Xj] = λ.We de�ne the random variable Nj to be the number of evi
tions in Xj. We knowthat:

Nj =































































0 if Xj ≤ w

1 if Xj = w + 1

2 if Xj = w + 2

...

m − w if Xj = mThe number of items evi
ted in the jth frame is Nj = Xj − w, ex
ept:
• when Xj = 0, Nj = (Xj − w) + w,
• when Xj = 1, Nj = (Xj − w) + w − 1,
• when Xj = 2, Nj = (Xj − w) + w − 2,
• · · ·

• when Xj = w − 1, Nj = (Xj − w) + 1,
5Note that Xj are de�nitely not IID. For example, if we know the value of all the random variablesbut the last one, the last one is 
ompletely determined. [Mitzenma
her and Upfal, 2005℄ dis
ussesthe appli
ability of this approximation.



141Therefore, the average number evi
ted items in the jth frame is:
E[Nj] = (E[Xj] − w) + wP (Xj = 0) + (w − 1)P (Xj = 1) + (w − 2)P (Xj = 2) + · · · +

+1P (Xj = w − 1)

= λ − w +
w

∑

i=0

(w − i)P (Xj = i) = λ − w + eλ

w
∑

i=0

(w − i)
λi

i!We de�ne the random variable M to be the total number of items evi
ted. Weknow that M =
∑N/w

j=0
Nj, and therefore:
E[Nj] =

N

w
λ − n + eλ

w
∑

i=0

(w − i)
λi

i!Table 3.6 shows some values of E[M] for small values of w.
w E[M]
1 λ − 1 + eλ

2 λ − 2 + eλ(2 + λ)
4 λ − 4 + eλ(4 + 3λ + 2λ2/2 + λ3/6)Table 3.6: Average Number of Evi
tions for Small Values of wFigure 3.14 shows the number of evi
tions for a table with N = 100 and N = 10000entries, for di�erent values of w and m. The solid lines 
orrespond to the theoreti
alresults. The non-solid lines show the experimental results.If the table is lightly loaded, we are also interested in the value of the table
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upan
y (m/N) when evi
tions start happening.It 
an be shown that:
P (no evi
tion) =

[

e−λ

w
∑

0

λw

w!

]N/w

The average number of tuples required to start having 
ollisions 
orresponds tothe median m̄, i.e., the value of m that 
auses P (no evi
tion) = 1/2. Unfortunately,the expression is not easily simpli�ed. We have instead run some experiments forsome values of N , m, and w.Figure 3.15 shows the experimental probability of at least an evi
tion happen, fora table with N = 100 and N = 10000 entries, for di�erent values of w and m.3.7.6 Appli
ationsWe envision several uses for this extension. First, we 
an implement Shuntingwithout the need of a hardware devi
e (see Chapter 4).Se
ond, we are interested in providing the ability of whitelisting and bla
klistinghosts in very large numbers (thousands) whi
h, as we have seen in Se
tion 3.7.2, isnot possible to do e�
iently in 
urrent BPF.Another main use is TCP 
onne
tion sampling. We want to provide appli
ationswith the ability to randomly sample TCP 
onne
tions, i.e., to sample all pa
kets from
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145a random sample of 
onne
tions.Some resear
hers propose to perform 
onne
tion or IP-pair sampling by relyingonly in plain BPF 
apabilities [Dreger, 2004℄. The idea is to use as �lter somethinglike �(ip[12:4℄ xor ip[16:4℄ xor t
p[0:4℄) mod P = R�.6[Moore et al., 2003a℄ des
ribes a similar idea in a di�erent s
enario: load-balan
ingtra�
 between several network monitors. The authors propose (a) to use only thesour
e and destination IP addresses, and (b) to hash the result of the xor using a
P -valued hash fun
tion.This �lter 
on
atenates the 104-bit 
onne
tion using the xor operation (the IPproto
ol is set to the TCP number), 
al
ulates the modulus with a prime number (Pin this 
ase), and then pi
ks one of the residues (R). The prime number is the inverseof the sampling ratio.The main appeal of this approa
h is simpli
ity. As in the 
ase of the sampapproa
h to pa
ket random sampling, it 
an be run in any BPF-based ar
hite
ture.The main drawba
ks of this approa
h are, �rst, stati
 behavior: Appli
ations mustde
ide whi
h 
onne
tions will be sampled when installing the �lter. Se
ond, a la
kof �exibility: Appli
ations 
annot pi
k spe
i�
 
onne
tions to be sampled. Third,potential existen
e of bias: The sampling is neither random nor uniform. The residuede
ides whi
h 
onne
tions will be �ltered in, so this is a
tually deterministi
 sampling.Moreover, [Dreger, 2004℄ does not deal with fragments, while [Moore et al., 2003a℄

6Note that this is the logi
al �lter. The real �lter is slightly more 
ompli
ated, as BPF has noxor, mod, or bitwise negation operations, and as 
onne
tion sampling must in
lude pa
kets going inboth forward and ba
kward dire
tions.



146presents a strong aliasing, as all 
onne
tions between two hosts are sampled the sameway.Other uses for the stateful approa
h in
lude:
• In-kernel 
ount of bytes per 
onne
tion (already suggested).
• Capture of tra�
 from proto
ols that use 
ontrol and data 
onne
tions. Atraditional operation mode in this type of proto
ol 
reates a 
ontrol 
onne
tion,whi
h is spe
i�ed by sele
ting a standard port, and one or more data 
onne
tions,whi
h are negotiated dynami
ally in the 
ontrol 
onne
tion. Therefore, data
onne
tions 
annot be spe
i�ed in advan
e. This is the 
ase, for example, forFTP [Postel and Reynolds, 1985℄ and some multimedia proto
ols [van der Merweet al., 2000℄.The 
ase-example is FTP transmissions. If an appli
ation is interested inexpli
itly 
apturing FTP data 
onne
tions, it may do so by 
apturing all pa
kets
orresponding to the standard FTP 
ontrol port, or whose 
onne
tion has beeninserted into a hash table.The appli
ation requests and analyzes the 
ontrol 
onne
tion 
ontents. As soonas it gets an FTP 
ontrol pa
ket that spe
i�es an FTP data 
onne
tion, itadds this 
onne
tion to the hash table. Pa
kets from the data 
onne
tion willsubsequently be 
aptured.Note that this me
hanism may 
reate ra
e 
onditions between re
ognizing the



147negotiation and modifying the hash table.Note also that this me
hanism 
an also be applied to expli
itly reje
t data
onne
tions. This 
an be useful for operational purposes. An example ismonitoring systems fo
used on 
ontrol 
onne
tions where re
eiving the 
ontentsof data 
onne
tions may impose an overwhelming load on the appli
ation.
• Dynami
 �lter 
ontrol. We 
an use generi
 tables to use information that willbe read for ea
h �lter run. The 
ontents of su
h tables are updated by the user,whi
h produ
es an arbitrary state BPF.An example of dynami
 �lter 
ontrol is dynami
 random sampling. Considerthe 
ase of an appli
ation that is randomly sampling 1 in 5 pa
kets, using theprimitive �random(5) = 0�. At some moment, the appli
ation de
ides that it istoo busy, and that it wants to move to sampling 1 in 50 pa
kets. We want theappli
ation to be able to 
hange the �lter without �ushing the state.This 
an be implemented by setting one of the hash tables with spa
e only forone tuple with a 1-bit key and a 32-bit tuple. The sampling primitive will be�random(retrieve(id, 0)) = 0�. This primitive will retrieve the value in positionzero at the hash table with identi�er id, and use it to 
al
ulate a random numberbetween 0 and the value. We initialize the table by inserting the tuple {0, 5}.If we want to 
hange the sampling ratio to 1 in 50, we just need to insert thetuple {0, 50} in the same table.



1483.7.7 Future WorkIn order to redu
e the number of 
ollisions and the probability that a givenamount of tuples 
ause a 
ollision, we are interested in adding 2-
hoi
e hashing forthe management of hash tables. 2-
hoi
e hashing [Azar et al., 2000; Karp et al., 1992℄
onsists of inserting tuples in a table by hashing with 2 hash fun
tions, instead of only1. The tuple is put in the emptiest entry in the table (ties are broken arbitrarily).The main advantage of 2-
hoi
e hashing is that the tuples are distributed moreevenly among the table entries. In fa
t, the number of tuples in the fullest entry ina 2-
hoi
e hash table has exponentially less tuples than the fullest entry in a normalhash table with the same 
apa
ity [Azar et al., 2000℄.Adding more than 2 
hoi
es to the algorithm improves the e�e
t of 2-
hoi
ehashing by only a 
onstant fa
tor [Azar et al., 2000℄. Therefore, we will not 
onsiderit. The main drawba
k of 2-
hoi
e hashing is that lookups get penalized in two ways.First, 2 hash values must be 
al
ulated. Se
ond, 2 positions in the hash table must be
he
ked, instead of one. The se
ond penalty should be 
omparable to that in 2-wayset-asso
iative hash tables.We have run some experiments for the number of evi
tions and probability ofthe �rst entry evi
tion for some 
ombinations of set-asso
iative hashing and 2-
hoi
ehashing.Figure 3.16 shows the number of evi
tions for a table with N = 100 and N = 10000



149entries, for di�erent values of w and m, and for both 1- (i.e., normal 1-fun
tionhashing) and 2-
hoi
e hashing. Note that lines are laydown top-to-bottom, so theupper line is the one with more 
ollisions.Figure 3.17 shows the experimental probability of at least an evi
tion happen, fora table with N = 100 and N = 10000 entries, for di�erent values of w and m, and 1-and 2-
hoi
e hashing.The graphi
s show 2-
hoi
e hashing as a promising alternative: The e�e
t of
2-
hoi
e, 2-way set-asso
iative hashing is similar to that of 8-way set-asso
iativehashing. The 
ost is running 2 hash fun
tions, and 
he
king 4 entries in the 2-
hoi
ehash table. Compare to 
he
king 8 entries in the 8-way set-asso
iative hash table.
3.8 SummaryCurrent stateless �ltering abstra
tions are very limited for the purpose of bothpa
ket- and 
onne
tion-based sampling. This is most unfortunate in an IDS s
enario.We have developed two new me
hanisms, random pa
ket-sampling and statemanagement, to the popular pa
ket 
apture library (libp
ap) running on BerkeleyPa
ket Filter (BPF )-based ma
hines [M
Canne and Ja
obson, 1993℄. The main goalis to keep the simpli
ity (and therefore the performan
e) of traditional pa
ket �lterswhile in
reasing its �exibility.The �rst addition is random sampling. While the implementation is extremelysimple, we want to understand how other approa
hes that simulate random sampling
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152perform 
ompared to true pseudo-random sampling. A 
ommon approa
h is to assumeuniform randomness in IP 
he
ksum �elds, and sample pa
kets by masking these�elds. We have run some experiments to evaluate the strengths and weaknesses ofthis sampling method.We have found that, after solving a main weakness, it works �ne in most s
enarios.This weakness is the sour
e of randomness in IP headers. The main sour
e is the IPID �eld. This means 
onne
tions where one of the end hosts uses a zero IP ID (e.g.,some Linux hosts) are normally aliased (either positively or negatively). Even after�ltering out those hosts, we have still found some aliasing e�e
ts in the 
ompositionof the sampled tra�
.The se
ond addition is inter-pa
ket persistent state. We provide a set of probabilisti
,Bloom-�lter based, set-asso
iative hash tables that permit e�
ient a

ess to a �xed
hunk of memory. This a

ess 
an be 
arried out through the standard devi
e/so
ket
ontrol me
hanism, or dire
tly using the BPF �lter.The main advantages of the state addition programmingmodel are, �rst, simpli
ity:We keep the t
pdump expression model, and just add di
tionaries for inter-pa
ketstate. This keeps the implementation simple, and therefore we do not need to resortto eliminating bran
h restri
tions. Se
ond, spa
e e�
ien
y: This 
omes at the 
ostof a small probability of both false positives and false negatives. Third, performan
ee�
ien
y: Our modi�
ations permit stateful pa
ket pro
essing (for example, random
onne
tion sampling) without ever 
rossing the kernel-user boundary.



153Both approa
hes introdu
e a series of new �lter me
hanisms, whi
h provide ri
her,�ne-grained 
ontrol and new abstra
tions to the �ltering pro
ess.As an example of the power of these abstra
tions, we show a se
ure and e�
ientpa
ket pro
essing me
hanism to 
ount per-
onne
tion bytes that never sends a pa
ketfrom kernel spa
e to user spa
e.

�Beware the Ides of Mar
h.�� WILLIAM SHAKESPEARE, Julius Cesar (I, ii, 33) (1599)
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Chapter 4
Shunting
4.1 Abstra
tThis Chapter des
ribes and motivates a novel ar
hite
ture that permits high-speed,extensive (non-sampled and in-depth), stateful, inline tra�
 pro
essing by integratinga simple, a
tive, hardware devi
e with a 
omplex, software, de
ision engine. The basi
idea is that the hardware devi
e provides simple me
hanisms to pro
ess pa
kets,whi
h are leveraged by the software de
ision engine to o�oad work into it. By takingadvantage of the heavy-tailed nature of the pro
essed tra�
, a limited-size hardwaredevi
e 
an pro
ess most of the pa
kets, whi
h never rea
h the software de
ision engine.This way, the software de
ision engine task gets limited to performing per-pa
ketanalysis on just a small subset of the tra�
, and to setting the poli
y that drives thehardware devi
e me
hanisms.



155We present an appli
ation of the Shunting te
hnique to monitoring network intrusion.Our implementation permits full, in-depth network intrusion dete
tion and preventionin Gigabit links. We use a modi�ed version of a Network Intrusion Dete
tion Systemas the basis of the software de
ision engine. We provide an evaluation of the behaviorand performan
e of our implementation. We also des
ribe the operational experien
eresulting from running su
h implementation in a real environment.While we use the Shunting ar
hite
ture to 
arry out intrusion monitoring, weargue that its usefulness is not limited to network se
urity. We suggest other possibleuses, in
luding tra�
 a

ounting, tra�
 routing, and in general any other pa
ket
lassi�
ation pro
ess based on 
onne
tions, and whi
h 
an take advantage of thear
hite
ture's simple, generi
 me
hanisms to 
lassify tra�
.
4.2 Introdu
tionThis Chapter des
ribes Shunting. Shunting is a novel ar
hite
ture to performhigh-speed, extensive (non-sampled and in-depth), stateful, inline tra�
 pro
essing.We will frame Shunting in the 
ontext of 
arrying out Network Intrusion Preventionin high-speed links (1 Gbps and above).Network Intrusion Dete
tion System (NIDS ) and Network Intrusion PreventionSystem (NIPS ) are systems that dete
t mali
ious network a
tivity (denial of servi
eatta
ks, port-s
ans, et
.) by monitoring network tra�
 [Mukherjee et al., 1994℄.The main di�eren
e between NIDS and NIPS is their rea
tion to the dete
tion of



156su
h mali
ious a
tivity. While NIDS are passive systems that �re alerts and logatta
ks, NIPS are rea
tive systems: They respond by blo
king atta
ks, droppingpa
kets deemed hostile while letting inno
uous pa
kets go through.NIPS and NIDS are typi
ally used to defend an organization network from externalatta
ks. This means they are typi
ally lo
ated in the link that 
onne
ts su
h anorganization to the Internet.1 This also means they do not provide any defenseagainst atta
ks against lo
al hosts initiated by other lo
al hosts.Inline, ri
h per-pa
ket monitoring of a high-speed link to dete
t se
urity intrusionsis a resour
e-intensive task. Ea
h pa
ket must be 
aptured, analyzed, and forwardedif deemed inno
uous. The analysis part, i.e., de
iding whether a pa
ket poses ase
urity threat or not, may require a 
onsiderably 
omplex e�ort. Operational use in ahigh-volume environment intensi�es the problem by introdu
ing performan
e-related
ompli
ations.The straightforward system troubles 
aused in NIDS by an in
rease in the amountof tra�
 are magni�ed by two other e�e
ts, namely tra�
 diversity and state explosion.First, as the amount of tra�
 in
reases, the tra�
 diversity and the 
rud in thelink also in
rease, whi
h produ
es not only more false alarms, but also more diverseones [Dreger et al., 2004℄.Se
ond, NIDS that want to understand the tra�
 they are seeing need use state.When re
eiving a new pa
ket, a NIDS must 
onsider it in the 
ontext of existing
1This zone is typi
ally known as the DMZ, from �DeMilitarized Zone,� a military term thatdes
ribes a bu�er area between two enemies.



157information on the pa
ket's 
onne
tion. This 
ontext is obtained from already-re
eivedpa
kets from the same 
onne
tion, whi
h the NIDS must have stored. Conne
tion-orienteddependen
ies not only extend to the past, but also to the future: The NIDS may notbe able to 
omplete the pro
essing of a pa
ket until it re
eives further tra�
 fromthe 
onne
tion. This statefulness requirement gets exa
erbated by the existen
e ofatta
ks based on sta
k or topology ambiguities [Pta
ek and Newsham, 1998℄.In stateful NIDS, the amount of state needed to produ
e a good snapshot of thenetwork state is proportional to the amount of tra�
. This 
reates an enormous stateexplosion problem.4.2.1 Shunting in a NutshellTo address this problem, we introdu
e Shunting. Shunting is a new pa
ket pro
essingar
hite
ture that provides a software analyzer with a tool to pro
ess tra�
 at veryhigh speeds. The pro
essing Shunting o�ers is based in tables, whi
h while simplehave three main advantages: They 
an be implemented in fast hardware, they 
an beprogrammed dynami
ally, and they provide the right granularity the analyzer needsto pro
ess tra�
 (namely 
onne
tions, addresses, and ports).The basi
 idea of Shunting is to have a simple-but-fast hardware devi
e thatperforms table lookups as the front-end of a 
omplex-but-slow tra�
 analyzer. Tra�
is pro
essed �rst by the hardware devi
e, whi
h looks up the pa
ket in its tables, andtakes a very simple de
ision, namely whether the pa
ket has to be forwarded dire
tly,



158dropped, or diverted to the analyzer (shunt the pa
ket).The analyzer re
eives the shunted tra�
, pro
esses it, and maybe reinje
ts it ba
kto the devi
e. The analyzer also updates the 
ontents of the devi
e tables, thereforedriving the devi
e poli
y.In order for Shunting to be e�e
tive, the pro
essing must be su
h that most of thetra�
 ends up being pro
essed only by the hardware devi
e (forwarded or dropped,but not shunted) . This implies that the analyzer physi
ally re
eives a mu
h smallerstream than the one it is pro
essing.By making the hardware-devi
e de
ision me
hanism as simple as a table lookupwith a handful of possible yields, we are trading o� simpli
ity in ex
hange of temporaland spatial e�
ien
y, in other words, being able to do very fast lookups, and providingvery large tables, �tting millions of entries.Shunting permits extensive, stateful, inline tra�
 pro
essing in several pa
ketpro
essing s
enarios, in
luding intrusion dete
tion. The pro
essing that Shuntingpermits has three properties: First, it is extensive. Shunting does not resort tosampling (unless spe
i�
ally requested by the user), and permits in-depth, ri
h per-pa
ketanalysis. Se
ond, it is stateful. The analyzer may store state from the pro
essedpa
kets. Last, it is inline. Therefore, it allows performing intrusion prevention (�bumpin the wire� pro
essing).Shunting is 
arried out using 
ommodity PC hardware, and a simple, spe
ial-purposehardware devi
e.



159Shunting is based on a simple observation: Pa
ket pro
essing engines may have toperform an intensive analysis to de
ide how to pro
ess a single pa
ket, but they areoften able to dynami
ally de
ide that a subset of all future tra�
 
an be pro
essedwith minimal, simple analysis. This analysis is automated into a simple, hardwaredevi
e, where the engine 
an o�oad work out of itself. This produ
es the e�e
tof limiting the resour
e 
onsumption of the engine without redu
ing the amount oftra�
 pro
essed.An example of the aforementioned observation 
an be drawn from the intrusiondete
tion world. Let's assume a NIDS is monitoring the appli
ation-layer payloads ofan SSH 
onne
tion.The NIDS is the de
ision engine in the Shunting model. It pro
esses pa
kets, andde
ides what to do with them. For the NIDS, however, appli
ation-layer 
ontents areonly useful until the 
onne
tion gets en
rypted. If, at that point, the NIDS is ableto label the 
onne
tion as mali
ious, the pro
essing of all the remaining 
onne
tiontra�
 is as easy as �drop any pa
ket 
orresponding to this 
onne
tion.� Otherwise, asany further tra�
 is en
rypted, analyzing it is useless for intrusion dete
tion purposes.The best way to pro
ess all the remaining 
onne
tion pa
kets is �forward any pa
ket
orresponding to this 
onne
tion.�The rest of the 
hapter is organized as follows: Se
tion 4.3 introdu
es the intrusiondete
tion problem through a related-work dis
ussion. Se
tion 4.4 presents Shunting inan in-depth fashion, and justi�es its rationale. It also dis
usses several appli
ations,



160in
luding intrusion dete
tion. Se
tion 4.5 des
ribes the Shunting design, in
ludinga preliminary implementation for 
arrying out intrusion dete
tion on a high-speedlink. Se
tions 4.6 presents an evaluation of the Shunting ar
hite
ture. Se
tions 4.7dis
usses some future work, and Se
tions 4.8 
on
ludes.
4.3 Related WorkThis Se
tion is stru
tured as follows: Se
tion 4.3.1 introdu
es Intrusion Dete
tionSystems, both Host-Based and Network-Based. Shunting is an ar
hite
ture orientedto the se
ond type, for whi
h Se
tion 4.3.2 provides a taxonomy, and Se
tion 4.3.3 ades
ription of some examples, in
luding Bro, where we have implemented Shunting.Se
tion 4.3.4 des
ribes a fundamental problem in NIDS, namely the existen
eof ambiguities. A 
onsequen
e of the me
hanisms used to deal with ambiguities,espe
ially in high-speed networks, is the need to manage resour
e exhaustion, des
ribedin Se
tion 4.3.5. Shunting is a te
hnique to help manage resour
e exhaustion in NIDS.Se
tion 4.3.6 des
ribes resear
h in NIDS parallelization, whi
h has a strong in�uen
ein our work. Se
tion 4.3.7 des
ribe the use of hardware support for fast pa
ketpro
essing, from whi
h Shunting draws heavily. Se
tion 4.3.8 des
ribe the �ne-tuningof the software side of network adapters, whi
h is 
omplementary to the previouslymentioned resear
h.Se
tion 4.3.9 
ompares the Shunting �ltering model with those of traditionalpa
ket �ltering models.



161Se
tion 4.3.10 dis
usses resear
h in heavy-tailed eviden
es in network tra�
, andhow it justi�es our 
hoi
e of the shunting a
tions.4.3.1 Intrusion Dete
tion SystemsThe goal of Intrusion Dete
tion Systems (IDS ) is to dete
t atta
ks on 
omputers.There are two main types of IDS, namely Host-based Intrusion Dete
tion Systemsand Network-based Intrusion Dete
tion Systems.Host-based Intrusion Dete
tion SystemsThe �rst well-known approa
h for dete
ting atta
kers is Host-based IntrusionDete
tion Systems (HIDS ) [Denning, 1987℄. HIDS run on the end-hosts they areprote
ting, monitoring su
h a
tivities as session logins [Denning, 1987℄, system 
alls[Bernas
hi et al., 2000; Forrest et al., 1996℄, program exe
ution [Denning, 1987℄,�le a

ess [Denning, 1987; Pennington et al., 2003℄, et
., sear
hing for anomalousbehavior. A user, program, or system behavior is 
onsidered �anomalous� when itdi�ers substantially from a �normal� behavior model. The latter 
an be generatedmanually [Bernas
hi et al., 2000℄ or automati
ally [Denning, 1987; Forrest et al., 1996℄,in
luding through stati
 analysis of the program sour
e [Wagner and Dean, 2001℄.In a seminal work proposing the idea of HIDS, Denning des
ribed IDEA, a modelof a real-time intrusion dete
tion expert systems [Denning, 1987℄. Denning's idea
onsists of a set of tools that �rst 
reates a statisti
al model of the users' behavior



162(session logins, program exe
ution, and �le a

ess), and then tries to dete
t anomaliesin the a
tual behavior. Su
h anomalies are 
onsidered a signal of 
omputer abuse.The HIDS idea is related to the notion of 
omputer introspe
tion, in whi
h asystem or a program develops a model of what it should be doing and/or what itshould not, and tries to identify the latter.Network-based Intrusion Dete
tion SystemsNetwork Intrusion Dete
tion Systems (NIDS ), on the other hand, try to dete
tatta
ks on 
omputers by monitoring the network [Mukherjee et al., 1994℄. A NIDStypi
ally operates by observing the tra�
 pa
kets or 
onne
tions as they �ow throughthe network, trying to dete
t mali
ious network a
tivity, su
h as servi
e atta
ks orport s
ans.The best advantage of HIDS, as 
ompared to NIDS, is that their lo
ation in themonitored host makes them resilient to evasion te
hniques based on ambiguities atthe network, transport, and espe
ially appli
ation proto
ol [Paxson, 1999; Pta
ek andNewsham, 1998℄. In that sense, HIDS enjoy better and broader visibility of the atta
kthan NIDS: They 
an see the atta
k at di�erent sta
k levels, and therefore resolvethe ambiguities the same way the host does. Finally, their workload is mu
h smallerthan that of NIDS.HIDS present two main 
ons. First, they run on the same host they are trying todefend, so the defender (HIDS) is not independent of the defended one (the host). This



163implies that HIDS are, at most, as resistant as the host they defend. Crash or subvertthe host, and the HIDS will be
ome 
ompletely useless. To 
ombat this problem,some resear
hers propose running HIDS as a Virtual Ma
hine Monitor (VMM ), sothat the HIDS will be isolated from an atta
k on the monitored host [Gar�nkel andRosenblum, 2003℄.Se
ond, you must install one HIDS for every host you want to defend, whi
h notonly is 
umbersome, but also may in
lude porting the NIDS to a wide variety of hosts.In 
omparison, a single NIDS 
an be used to monitor networks 
omposed of severalthousand, heterogeneous, diversely-administered hosts.4.3.2 NIDS TypesThere are three prin
ipal types of NIDS: anomaly-based, spe
i�
ation-based, andsignature-based NIDS.
• Anomaly-based NIDS (A-NIDS ) look for unusual behavior in the network a
tivity[Gil and Poletto, 2001; Jelena and Greg, 2002℄. They use a database of normalbehavior pro�les, usually adapted to the network they are prote
ting, plusa set of statisti
al methods to dete
t unusual behavior in new tra�
. Su
hunusual behavior is 
onsidered a signal of mali
iousness. A-NIDS typi
allylearn what normal behavior is in an automati
 fashion, by being trained withnormal network a
tivity. Inferring automati
ally what is normal behavior is afundamental feature of A-NIDS.
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• Spe
i�
ation-based NIDS (Spe
-NIDS ) are provided with an spe
i�
ation ofwhat is legal behavior, and therefore allowed [Ko et al., 1997℄. In some sense,Spe
-NIDS are manual A-NIDS. What is allowed or not is not inferred fromseeing normal tra�
, but dire
tly spe
i�ed by the user. This makes Spe
-NIDSmore reliable than A-NIDS, at the 
ost of being more labor-intensive. (Thespe
i�
ations must be en
oded.) The main advantage of Spe
NIDS is that theyare able to dete
t zero-day atta
ks.
• Signature-based NIDS (S-NIDS ), on the other hand, look for known patterns ofatta
ks (known as signatures) inside the tra�
 they are monitoring. They arealso known as misuse dete
tors, pattern dete
tors, or pa
ket greppers. S-NIDSuse a database of atta
k signatures, expressed as 
onne
tion or pa
ket 
ontents.Tra�
 is 
ompared to the database, and if any mat
hes, it is 
onsidered a signalof mali
iousness.The three NIDS �avors must deal with a tradeo� 
on
erning the tightness oftheir atta
k de�nitions (normal behavior pro�les in A-NIDS and Spe
-NIDS, atta
ksignatures in S-NIDS). Tighter de�nitions risk missing slight variations of a well-knownatta
k (false negatives), or misinterpreting slight variations of good-behaved tra�
(false positives). Looser de�nitions risk mat
hing perfe
tly valid or mali
ious tra�
,therefore in
reasing the amount of false positives or false negatives.S-NIDS are typi
ally more pre
ise than Spe
-NIDS and A-NIDS. The reason isthat S-NIDS work with signatures, i.e., expli
it information of how an atta
k looks



165like. Assuming the signatures are distin
tive enough, a mat
h implies strong eviden
eof an atta
k. Spe
-NIDS and A-NIDS, on the other hand, use deviations of normalbehavior as a proof of mali
e. This means they may produ
e false positives when thebehavior of some perfe
tly valid tra�
 is unusual enough.S-NIDS are more limited in s
ope and more stati
 than the other two. S-NIDShave no means to dete
t novel atta
ks, or variations of previously-known atta
ks, asthey la
k a signature for the atta
ks. Spe
-NIDS and A-NIDS, on the other hand,may dete
t some previously unknown atta
ks, provided the atta
k behavior is unusualenough.S-NIDS are more 
ooperation-friendly. S-NIDS signatures 
an be des
ribed in asimple form, whi
h makes it easy to share them among di�erent NIDS.The last di�eren
e between the three types of NIDS is the type of informationde
isions are based on. While S-NIDS' tight de�nition of atta
ks typi
ally limitsthem to pa
ket-
ontent or 
onne
tion-
ontent grepping, A-NIDS and Spe
-NIDS'adaptable de�nition of normality permits them to use more information sour
es thanjust 
ontents, su
h as inter-pa
ket timing and size [Zhang and Paxson, 2000a℄, address
orrelation [Zhang and Paxson, 2000b℄, tra�
 meaningfulness [Staniford et al., 2002a℄,host �promis
uity�, �ow rates [Jelena and Greg, 2002℄, �ow rate asymmetry [Gil andPoletto, 2001℄, et
.



1664.3.3 NIDS ExamplesTwo well-known open-sour
e (and therefore suitable for study) NIDS are Snort[Roes
h, 1999℄ and Bro [Paxson, 1999℄.Snort [Roes
h, 1999℄ is a popular, open-sour
e, Signature-based NIDS. Snort isbasi
ally t
pdump with pattern mat
hing. It 
aptures a subset of the tra�
 usinglibp
ap, and then 
ompares it to a set of pattern-mat
hing rules. When any of thepatterns is mat
hed, Snort raises an alert or logs an event, depending on the rulede�nition.Snort permits spe
ifying unused hosts and ports, and will report a
tivity on any ofthem. Snort also supports IP fragmentation reassembly, via the frag2 prepro
essor,and TCP segment reassembly.Finally, Snort supports state timeout poli
ies to avoid atta
ks based on statea

umulation.Bro [Paxson, 1999℄ is another well-known open-sour
e NIDS. It is of spe
ial importan
efor this thesis, as we are using it as the network analyzer that drives the Shuntingsystem.Bro is a mixture of Anomaly-based, Spe
i�
ation-based, and Signature-basedNIDS. Bro generates events the re�e
t the a
tivity in the network, whi
h are usedby intrusion dete
tion-oriented analyzers. In some sense, Bro is a me
hanism wheredi�erent poli
ies (analysis types) 
an be performed.Bro's basi
 model 
onsists of three layers: pa
ket �ltering, event engine, and poli
y



167s
ript interpreter.The �rst step is pa
ket �ltering: Bro uses libp
ap to spe
ify whi
h tra�
 it knowsand wants to analyze, and therefore separate it from the remaining tra�
.The se
ond step is the event engine. The event engine performs analysis of tra�
at network-, transport-, and analysis-layer proto
ol, in
luding IP defragmentation,and 
he
king that the pa
kets are well-formed. Upon analyzing the tra�
, the eventengine generates a set of events, established at di�erent semanti
 levels.Table 4.1 shows a list of sele
ted Bro events.layer event name raise for every · · ·network new_pa
ket new IP pa
kettransport 
onne
tion_established new full TCP handshaketransport 
onne
tion_attempt TCP 
onne
tion where the origin SYNhas not been followed by a SYN/ACKtransport 
onne
tion_timeout TCP 
onne
tion for whi
h somerequired a
tivity has not been seentransport udp_request UDP pa
ket whose port has noappli
ation-layer analyzer asso
iatedappli
ation http_request new HTTP requestappli
ation http_reply new HTTP responseappli
ation ftp_request new FTP 
ommandappli
ation ftp_reply new FTP replyTable 4.1: Sele
ted Bro EventsThe idea of the event engine is to provide a NIDS framework, i.e., a generi
me
hanism where NIDS poli
ies 
an be implemented. In that sense, the event engine ispoli
y neutral, and it 
annot be quali�ed as neither Signature-based, Spe
i�
ation-based,or Anomaly-based NIDS. It supports the three of them. Of 
ourse, the de�nition ofthe events (the me
hanism itself) introdu
es a great deal of shaping in the poli
y



168possibilities.The last step is the poli
y s
ript interpreter. Bro de�nes a NIDS-oriented languagethat permits users to spe
ify poli
ies on what the NIDS should do to respond to anevent. The poli
y s
ript writer 
an make use of ri
h data types, persistent state,timers, and external appli
ations. This way she 
an in
orporate as mu
h 
ontext asshe needs in order to de
ide how to rea
t to the event, whi
h 
an in
lude updatingthe state or generating alerts.4.3.4 Ambiguities and Evasion Te
hniquesA fundamental problem for passive NIDS is the existen
e of ambiguities in thetra�
 stream [Handley et al., 2001℄, whi
h make un
lear how to interpret it. Ambiguitiesoriginate be
ause of three di�erent 
auses [Handley et al., 2001; Pta
ek and Newsham,1998℄:
• In
omplete NIDS: A NIDS must be able to analyze the 
omplete range of optionsfor every proto
ol.An example of this type of ambiguities is dealing with IP fragmentation. Thisis a 
umbersome pro
ess, as it requires storing and reassembling fragments inthe NIDS. As a 
onsequen
e, some NIDS do not 
orre
tly reassemble fragments[Pta
ek and Newsham, 1998℄.An example of network-layer, in
omplete-NIDS ambiguity is dealing with IPfragmentation. Some NIDS are unable to reassemble IP fragments, or to reorder



169out-of-order IP fragments. Fragmented or out-of-order fragments are thereforepro
essed in
orre
tly by the NIDS.An example of transport-layer, in
omplete-NIDS ambiguity is dealing withTCP segment reordering: Some NIDS are unable to reorder out-of-order TCPsegments. Out-of-order TCP segments are pro
essed in
orre
tly by this type ofNIDS.
• Sta
k-based ambiguities: Some proto
ols spe
i�
ations do not spe
ify theirbehavior exhaustively. As a 
onsequen
e, di�erent end hosts behave di�erently.This get 
ompli
ated by wrong or in
omplete implementations of su
h proto
ols.The network and transport proto
ols are the most 
ommon targets, althoughappli
ation proto
ols (Layer 7) 
an also be atta
ked.An example of network-layer, sta
k-based ambiguity is in
onsisten
ies in IPfragments. The IP spe
i�
ation [Postel, 1981a℄ does not state what the re
eivingside should do when 
onfronted with two overlapping fragments whose 
ontentsare in
onsistent. Some sta
ks use the ��rst byte ever� prin
iple, some use the�last byte ever� prin
iple, and others use a mix. An example of ambiguityrelates to the use of un
ommon TCP-�ag 
ombinations. When 
onfronted with asegment with some spe
i�
 TCP-�ag 
ombinations, some sta
k implementationsdrop the segment, while others a

ept it.Some examples of transport-layer, sta
k-based ambiguities in
lude: (a) TCP



170segmentation in
onsisten
y: The TCP RFC [Postel, 1981b℄ does not state whatthe re
eiving side should do when 
onfronted with two overlapping segmentswhose 
ontents are in
onsistent. Some sta
ks use the ��rst byte ever� prin
iple,some use the �last byte ever� prin
iple, and others use a mix. (b) TCP options:Another sour
e of ambiguities is the use of TCP options, whi
h are not mandatedby the TCP spe
i�
ation [Postel, 1981b℄. A 
ase example is the use of PAWS(Prote
tion Against Wrapped Sequen
e Numbers) [Ja
obson et al., 1992℄. ThePAWS TCP option is a me
hanism to reje
t old dupli
ate segments that might
orrupt an open TCP 
onne
tion. If the vi
tim interprets PAWS and the NIDSdoes not (or vi
e versa), a 
arefully 
rafted segment will be reje
ted by thevi
tim, while a

epted by the NIDS.An example of L7 sta
k-based te
hniques is HTTP Request Smuggling (HRS),where di�erent and/or wrong implementations of HTTP persistent 
onne
tionsare used to 
ause di�erent HTTP tra�
 views at the end-host and diversemiddleboxes (web 
a
he, web proxy, �rewall, et
.) [Linhart et al., 2005℄. HRS
an be used to poison web 
a
hes, evade IDSs, and, when 
ombined with as
ript vulnerability in the server, request hija
king at a proxy server.
• Topology-based ambiguities: In some 
ases, it is the fundamental operation ofan e�
ient networking proto
ol whi
h 
auses the ambiguities.An example is TTL-based ambiguities. The TTL �eld in an IP pa
ket states



171how many more hops the pa
ket 
an be forwarded before being dis
arded. Theobje
tive of this �eld is to avoid that routing in
onsisten
ies or mis
on�gurationsforward pa
kets around in the network inde�nitely. Routers de
rement by onethe TTL �eld of any pa
ket they forward. If the TTL �eld rea
hes zero, thepa
ket is dropped, instead of forwarded.TTL-based ambiguities o

ur when the NIDS sees a pa
ket whose TTL is smallenough that it may or may not rea
h the end host.Other topology-based ambiguities relate to (a) path MTU: If the path MTUnarrows between the NIDS and the end host, pa
kets sent with the �Don'tFragment� bit set to 1 may not rea
h the end host (it depends on whetherthe pa
ket size is big enough that it does not �t in the narrower path). (b)bandwidth: If there is a slow and 
ongested link between the NIDS and thevi
tim, low-priority pa
kets will be dropped in the path between the NIDS andthe end host.Note that, while in
omplete NIDS ambiguities 
an be solved by 
reating betterNIDS, sta
k-based and topology-based ambiguities are fundamental, and NIDS 
annot get away from them by using pure passive analysis.Evasion Te
hniquesA problem fa
ed by NIDS is atta
ks that expli
itly target the NIDS. These atta
ks
an be as harsh as overloading or even 
rashing the NIDS (e.g., Denial of Servi
e



172atta
ks), and as subtle as Evasion [Pta
ek and Newsham, 1998℄. Evasion is basedon taking advantage of ambiguities. It 
onsists of an atta
ker forging data tra�
with the expli
it purpose of duping and/or atta
king the NIDS to evade its dete
tion.Evasion is today a reality [Song, 2001℄.Evasion te
hniques take advantage of the fa
t that ambiguities in 
ommuni
ationproto
ols may 
ause the NIDS and a vi
tim end-host to rea
t to the same tra�
 indi�erent ways.Evasion te
hniques 
ome in two �avors, insertion and evasion. An Insertion atta
k
onsists of fooling the NIDS into a

epting data the vi
tim end-host will reje
t.Evasion is based on the opposite idea: the NIDS is fooled into reje
ting data that thevi
tim end-host will a

ept. The obje
tive in both 
ases is the same: The atta
kerwill 
reate a view on the 
onne
tion data at the NIDS di�erent from that at thevi
tim.Note that both te
hniques 
an often be used to 
reate the other. For example, ifan atta
ker 
an insert a pa
ket into the NIDS that the vi
tim host will not see, she
an use it to insert a forged RST segment. The NIDS will think that the 
onne
tionhas been torn down. For the NIDS, any further segment from the same 
onne
tion isspurious, and therefore will be not 
onsidered. In the vi
tim's eyes, further segmentsare perfe
tly valid. Therefore, further 
onne
tion pa
kets are evaded from the NIDS,and inserted into the vi
tim.The same approa
h may often be used to turn evasion into insertion. By evading



173an RST segment from the NIDS, an atta
ker will make the vi
tim end-host de
larethe 
onne
tion 
losed. The vi
tim will drop any further pa
ket from that 
onne
tion,whi
h the NIDS will a

ept.Interestingly enough, the te
hniques that permit evasion te
hniques 
an be usedfor �ngerprinting. Sta
k-based te
hniques are routinely used to �ngerprint hosts(nmap), Topology-based te
hniques are used to �ngerprint networks (tra
eroute).Fighting AmbiguitiesAssuming that it implements all required proto
ol spe
i�
ations, there are severalapproa
hes to 
ombat ambiguities:
• Normalization [Handley et al., 2001℄ 
onsists of introdu
ing an inline networkelement to pat
h up (normalize) the pa
ket stream in order to remove potentialambiguities. As dis
ussed by [Handley et al., 2001℄, there are several issues withnormalization.First, normalizing tra�
 modi�es the end-to-end semanti
s of a 
onne
tion.While some modi�
ations are probably harmless (dropping in
onsistent, overlappingfragments), some a�e
t perfe
tly legal, useful tra�
 (low TTLs are the basis oftra
eroute).Se
ond, normalizing tra�
 
an a�e
t the end-to-end performan
e of a 
onne
tion.For example, removing the TCP window s
ale option de
reases the performan
eof a TCP transferen
e.



174Third, the view from a normalizer 
an be fundamentally in
omplete to dete
tan atta
k. For example, the semanti
s of TCP urgent pointers depend on theappli
ation. If an atta
ker sends a segment with the text �robot,� with the URGpointer pointing to the 'b' 
hara
ter, the re
eiving end appli
ation will re
eive�robot� or �root� depending on whi
h options were used to open the so
ket.Last, normalizing tra�
 requires keeping state to dete
t some of the ambiguities.This means an atta
ker may try to 
rash the normalizer by instantiating lotsof state. An example is to send multiple, in
onsistent IP fragments, but never
ompleting a full pa
ket.Shunting 
an a
t as a generi
 inline pa
ket pro
essor, and therefore serve asa framework for normalization, if the NIDS driving the Shunting ar
hite
turesupports it.
• A
tive-Mapping [Shankar and Paxson, 2003℄ 
onsists of gathering informationon the hosts 
omprising the intranet being monitored, and using this informationto solve ambiguities. A
tive mapping assumes that the monitored intranetis relatively stable. It generates a pro�le of the way all internal hosts solvesta
k ambiguities, and the internal network topology (hop 
ounts and pathbandwidths).When re
eiving an ambiguous pa
ket, the a
tive mapper 
he
ks the pro�le ofthe target host, and then de
ides the exa
t meaning of the pa
ket. Shankar



175and Paxson report being able to map a single host in 35 se
onds with 19 KB oftra�
, using just 100 bytes of spa
e per host.
• Exhaustive Analysis, also known as bifur
ating analysis, 
onsists of storingall the ambiguous data, and analyzing the tra�
 following all the reasonable
ombinations of the di�erent ambiguity resolutions. This presents an importantpro
essing problem, as the analysis may grow exponentially with ea
h newambiguity. It also presents a storage problem, as the state may grow proportionallyto the amount of data in every 
onne
tion.4.3.5 Resour
e Exhaustion ManagementOne of the main problems with sophisti
ated NIDS is resour
e exhaustion [Dregeret al., 2004℄. The problem is two-fold: for stateless NIDS, the main problem is CPUload. For stateful NIDS, the problem is state explosion.This problem is made worse when operating NIDS in high-speed environments.Dreger et al. provide some operational experien
e when running Bro in Gigabitnetworks [Dreger et al., 2004℄.Two 
ommon solutions to run NIDS on high-speed environments are state managementand input-volume 
ontrol te
hniques [Dreger et al., 2004℄. They are 
omplementary:Input-volume 
ontrol te
hniques limit the amount of tra�
 that the NIDS mustpro
ess, while state management te
hniques manage the state 
reated by the pro
essedtra�
.



176State ManagementState-management te
hniques are intended to limit the amount of state kept bythe NIDS [Dreger et al., 2004; Paxson, 1999℄. This in
ludes using timeouts, �xed-sizebu�ers, 
ompressing state, and 
he
kpointing.The goal of timeouts is to perform impli
it state removal. Some transport proto
ols,su
h as TCP, signal the end of a 
onne
tion expli
itly in the wire. Therefore, the NIDS
an take advantage of a TCP 
onne
tion FIN/RST handshake to safely remove allthe information related to that 
onne
tion. In other words, the NIDS 
an expli
itlyerase the state asso
iated to the 
onne
tion. Other transport proto
ols, as UDP, donot signal the end of a session in the wire. Therefore, there is no generi
 way forthe NIDS to realize an UDP 
onne
tion is terminated, ex
ept for the absen
e of newdatagrams. The idea of timeouts is to delete state 
orresponding to 
onne
tions thathave not shown a
tivity for a while. This also 
overs TCP 
onne
tions where theRST/FIN segments have been lost.The rationale behind �xed-size bu�ers is similar to that of timeouts: Old state isless valuable than new state, and therefore the NIDS may dispose of it easily. Thedi�eren
e is that �xed-size bu�ers only evi
t state when needed. In the �xed-sizebu�ers te
hnique, the NIDS allo
ates a �xed 
hunk of storage for all the state.Removal of state o

urs only when a new pie
e of state must be 
reated, but thetotal storage 
hunk is full. In this 
ase, an old pie
e of state is sele
ted for removal.(FIFO is a sensible approa
h.) The main advantage of �xed-size bu�ers is that there



177is a guaranteed hard limit in the amount of state the NIDS requires, namely thestorage 
hunk size. The main disadvantage is that �xed-size bu�ers evi
t state whenthey need to, not when the state it old or unused (and therefore probably less useful).This means underestimating the amount of allo
ated storage may 
ause thrashing,while overestimating it may limit the bene�t of the state limitation te
hnique (theNIDS may end up keeping very old information, as there is no need to evi
t it).Compressing state takes a similar approa
h, fo
using on avoiding state 
reationwhenever possible. For example, Bro only 
reates full per-
onne
tion state when itsees a
tivity (a pa
ket) from both endpoints of a 
onne
tion. This way, it avoids
reating a 
onne
tion state entry for every unanswered 
onne
tion attempt, whi
hdiminishes the probability of being overwhelmed by state during �ooding atta
ks,large worm events, or simple ports
ans.Related to state management, [Sommer and Paxson, 2005℄ proposes the use ofindependent state in NIDS. The goal of independent state is to provide the abilityof extra
ting the NIDS state out of the pro
ess it exists into. This permits thestate being shared between 
on
urrent instan
es of NIDS (spatially independentstate), and 
ontinuing to exist after the pro
ess terminates (temporally independentstate) [Sommer and Paxson, 2005℄. Independent state 
an also be used to helpparallelize NIDS pro
essing among several NIDS instan
es (see Se
tion 4.3.6).A similar pie
e of work in state management is 
he
kpointing [Paxson, 1999;Sommer and Paxson, 2005℄. NIDS stability tends to diminish with time, as more



178state is kept. The idea of 
he
kpointing is basi
ally restarting the NIDS periodi
ally,resetting the state, and giving the NIDS a fresh start. It is a very 
oarse-grainedapproa
h.Input-Volume Control Te
hniquesInput-Volume 
ontrol te
hniques work by redu
ing the amount of tra�
 the NIDSpro
esses, limiting the analysis to only part of the tra�
. This limitation 
an be stati
or dynami
.The stati
 limitation is quite simple: The NIDS 
on�gures the pa
ket �lter sothat it gets fed only with a subset of the tra�
. This subset may in
lude what theNIDS is interested in, or what it a
tually 
an pro
ess. For example, a NIDS shouldonly request re
eiving tra�
 from those ports whose standard servi
es it knows howto pro
ess.Another stati
 approa
h 
onsists of sampling the input stream, either in a pa
ket-or a 
onne
tion- basis. (Some analysis require a

essing to full 
onne
tions.)A more powerful tool to redu
e state is being able to set the pa
ket �lter dynami
ally.Two me
hanisms that dynami
ally limit the NIDS input volume are load-levels [Dregeret al., 2004; Lee et al., 2002℄ and �ood dete
tors [Dreger et al., 2004℄.The idea of load-levels is to extend the NIDS with a set of ordered pa
ket �lters.Ea
h �lter is more restri
tive that the previous one, therefore providing a smallerinput volume. The NIDS senses its workload, swit
hing to a more restri
tive �lter



179when it feels overwhelmed, and to a less restri
tive �lter when it feels idle.A �ood dete
tor tries just to shun from the NIDS all the tra�
 related to Denialof Servi
e �oods dire
ted to a single host. This te
hnique 
onsists of dete
ting the�ooders, and shunning them from the NIDS. It leverages the fa
t that �ooding hasno other meaning than overwhelming a resour
e, and therefore further analysis is notrequired.Shunting is an example of dynami
 input-volume 
ontrol te
hnique. Shuntingpermits NIDS to spe
ify the tra�
 they want to analyze in a very �ne grained way.It does so using per-
onne
tion, address, and port tables. It is a more dynami
and �ne-grained approa
h than load levels. The address table permits the e�
ientimplementation of the �ood dete
tor.The resour
e exhaustion problem gets exa
erbated in inline pa
ket pro
essors (asShunting), as pa
ket drops are a harder problem here: If an (o�ine) NIDS dropspa
kets, it will only have a blurrier/more limited vision of the tra�
. Assuming thatthe amount of mali
ious tra�
 is a small fra
tion of the whole tra�
, and that theatta
k tra�
 is not 
orrelated with the drops2(i.e., that the probability that a pa
ketis dropped does not depend on whether it is mali
ious or not), the probability thatit misses an atta
k is low, and even if it happens, it merely 
auses a false negative.A NIPS, by de�nition, is an inline element. If a NIPS drops pa
kets, it will resultin a pa
ket loss in a 
onne
tion. This will 
ause throughput loss, not only be
ause of
2Of spe
ial importan
e in this 
ase is that the atta
ker herself is not able to 
orrelate her tra�
with the drops.



180the 
onsequent retransmissions, but also, and espe
ially, be
ause of the interferen
ewith transport-proto
ol 
ongestion-avoidan
e me
hanisms.4.3.6 NIDS ParallelizationYet another idea to avoid resour
e exhaustion is to implement the NIDS as severalhosts running in parallel, and divide the work among them.Kruegel et al. implement a high-performan
e, signature-based NIDS by 
ollo
atingseveral NIDS in parallel [Kruegel et al., 2002℄. The authors propose a 4-step pro
essthat manages to provide ea
h NIDS with a subset of the total tra�
 that 
onformsto a small superset of the tra�
 it needs to dete
t an atta
k.1. Input tra�
 is plugged �rst into a fast, simple pie
e of hardware (�s
atterer�),whi
h divides the tra�
 evenly (round-robin) among a group of 
lassi�ers (�sli
ers�).2. Every sli
er has a 
omplete list of all the signatures supported by the system.Sli
ers 
he
k every pa
ket, identify suspi
ious ones, and forward them to the
orresponding reassembler. Note that, if a pa
ket mat
hes more than onesignature, it may end up being forwarded to several reassemblers.3. Reassemblers �x the pa
ket stream (they may re
eive out-of-order pa
kets, iftwo pa
kets are dispat
hed by di�erent sli
ers) before it is passed to the di�erentNIDS engines.4. Sensors are the NIDS engines. They are assigned a portion of the signatures,



181and they re
eive a subset of the total tra�
, on whi
h they run the signaturemat
hing.Shunting 
an be used to parallelize the intrusion dete
tion work among severalinstan
es of NIDS. The granularity o�ered to divide tasks is 
onne
tions, addresses,and ports. In 
omparison, the granularity o�ered by [Kruegel et al., 2002℄ is stringmat
hing. As a 
onsequen
e, Shunting is not limited only to Signature-Based NIDS,and 
an be also used in Anomaly- and Spe
i�
ation-Based NIDS.4.3.7 Hardware Support for Pa
ket Pro
essingIn order to pro
ess tra�
 at high-speed links, a traditional solution is to use somehardware support. This is 
ommonly known as �pushing pro
essing to the networkadapter.�Shunting also uses hardware support, whi
h we term the �hardware devi
e.� Ourhardware devi
e is used to perform fast table-based �ltering. A similar idea hasbeen suggested to perform passive pa
ket 
apture (see Se
tion 4.3.7) and to o�oadtransport-proto
ol work (see Se
tion 4.3.7).Pushing Pro
essing to the Network Performan
e CardThere are several network adapters that perform 
omplex pa
ket pro
essing, thereforepermitting the host in whi
h they are lo
ated to a
hieve high-speed pa
ket pro
essingby pushing pro
essing to the adapter.



182Juniper routers permit �ltering pa
kets based on (at least) sour
e and destinationIP address and port, pa
ket type, proto
ol, length, ICMP type and 
ode, VLAN ID,TCP �ags, and fragments [Markatos, 2005℄.Deri proposes to perform high-speed passive pa
ket monitoring using a router(Juniper M-series, whi
h allows for tra�
 �ltering based on header �elds) that a
tsas a smart Network Interfa
e Card (NIC ), performing generi
 tra�
 a

ounting andsimple pa
ket �ltering and sampling, and sending the �ltered/sampled stream to aLinux host [Deri, 2003℄.The Intel IXP family of �network pro
essors� provides a framework to performin-NIC pa
ket-pro
essing [Intel, 2005℄. The IXP1200 series is 
omposed of six RISCpro
essors (aka mi
roengines) that operate in parallel, and a StrongARM 
ontrolpro
essor running Linux. Ea
h mi
roengine has 1 KB of instru
tion storage, someregisters, and four 
ontexts. There is also a shared 4 KB s
rat
h spa
e [Markatos,2005℄.Enda
e's DAG 
ards are PCI-based network adapters spe
ialized in passive monitoringof high-speed links [Cleary et al., 2000℄. While they are able to 
apture full pa
kets,the 
ommon approa
h used to make DAG 
ards 
apture high-speed tra�
 is toinstru
t them to 
apture only the �rst few bytes (the network- and transport-layerheaders) of every pa
ket [Markatos, 2005℄. This approa
h is 
ommonly known as�pushing the snaplen into the network adapter,� and while it is �ne in some s
enarios,it is una

eptable in NIDS.



183A DAG 
ard 
onsists of (a) a programmable FPGA, whi
h generates high-pre
isiontimestamps (possibly 
oming from a GPS devi
e), parallelizes physi
al layer bytes into32-bits words, �lters out unwanted data, bu�ers pa
kets in a FIFO before sendingthem to the host, and 
ounts dropped pa
kets; (b) an ARM based CPU (ARM7 inDAG 2 
ards, StrongARM in DAG 3 ones); and (
) a PCI interfa
e to 
ommuni
atewith the host PC.Using Enda
e's DAG 4 
ards, Ianna
onne et al. show a network adapter thatmay permits passive monitoring of OC-192 links (10 Gbps) [Ianna

one et al., 2001℄.The authors' idea is to use a spe
ialized pie
e of hardware (the DAG 
ard's on-boardFPGA) to 
ompress the snaplen-redu
ed pa
kets into �ow tra
es, and only send those�ow tra
es to the PC host. The authors use a hashed, limited-size 
onne
tion tableto store the �ow tra
es, and 
laim what, with the help of fast PCI buses (64 bits,66 MHz), it is possible to monitor IP, TCP, and UDP headers (throwing the rest ofthe pa
kets) in 10 Gbps links.The SCAMPI proje
t proposes using a smart network adapter to limit the amountof tra�
 that rea
hes the host in pa
ket 
apture s
enarios [Coppens et al., 2003, 2004℄.SCAMPI runs on several di�erent ar
hite
tures, in
luding Intel IXP family of networkpro
essors, Enda
e's DAG 
ards, and their own network adapter, 
alled �COMBO.�COMBO adapters perform systemati
 (deterministi
) and probabilisti
 1-in-N sampling,address- and port-based sampling, payload string sear
hing, generi
 �ow-state a

ountingand reporting, and pa
ket �ltering using FPL-2 (an extended, BPF-like language).



184In 
omparison with all the mentioned approa
hes, Shunting is mu
h simpler, onlypermitting �ltering based on the three aforementioned tables. The main bene�ts ofsimpli
ity are spa
e and e�
ien
y. Simple lookup-based pro
essing permits very-largetables, whi
h mat
h the requirements of large-s
ale 
onne
tion-based pro
essing, andeasy parallelization of the pro
essing, whi
h 
auses an in
rease in pa
ket pro
essingthroughput.NIC O�oading Pro
essingThe idea of o�oading work to the network adapter has also been proposed inthe 
ontext of network proto
ol implementation, a �eld related to pa
ket pro
essing.The idea is also known as �Proto
ols in Sili
on [Clark et al., 1989℄,� and 
onsists ofinstrumenting the interfa
e 
ard to do part of the network or transport proto
ol sta
kpro
essing for the CPU. The whole set of te
hniques to o�oad network sta
k workto the NIC are also known as �TCP O�oad Engines [Currid, 2004; Mogul, 2003℄,� orTOE.Proto
ol sta
k o�oading has been proposed in several forms. One is �interrupt
oales
ing,� where the interfa
e 
ard is instrumented to wait some amount of timeafter a pa
ket arrives, with the hope that the 
ard 
an serve many pa
kets with justone interrupt.Another TOE te
hnique, and probably the most popular, is �Che
ksum O�oading,�in whi
h the interfa
e 
ard 
he
ks the network and transport 
he
ksums of in
oming



185pa
kets, and 
al
ulates the network and transport 
he
ksums of outgoing pa
kets[Kleinpaste et al., 1995℄.Other TOE te
hniques in
lude moving to the NIC the updating of sta
k state(TCP sequen
e and a
knowledge numbers), timers, segmenting and reassembling,bu�er management, s
attered 
opies, et
.4.3.8 Software Support for Pa
ket Pro
essingSome resear
hers have fo
used on optimizing the software side of the pa
ketpro
essing tools.The traditional approa
h to pa
ket 
apture is the use of interrupt-driven systems.In su
h systems, when a pa
ket arrives, the NIC interrupts the CPU. The 
orrespondinginterrupt servi
e routing (ISR), whi
h we will name the �hardware ISR,� does someinitial pa
ket pro
essing, pla
es the pa
ket on a queue, and �nally generates a softwareinterrupt. Some time later, the 
orresponding ISR (the �software ISR�) is dispat
hed.It pro
esses the pa
ket in full, in
luding �ltering, if 
aptured through a pa
ket �lter.When running at high speeds, interrupt-based pa
ket 
apture systems may su�er�re
eive livelo
k� [Mogul and Ramakrishnan, 1997℄. For histori
al reasons3 the softwareinterrupt has less priority than the hardware one. In high-speed s
enarios, the re
eiverservi
es the hardware ISR, and before it manages to servi
e the software one, anotherpa
ket interrupts it. The ba
klog of software ISR keeps in
reasing, until the driver
3Old NICs had little bu�er memory, and therefore it was 
ru
ial to move pa
kets as fast aspossible out of the NIC and into memory.



186bu�ers get full. When the hardware ISR �nds the driver bu�ers full, it just dropsthe pa
ket. Therefore, the re
eiver spends all its time pro
essing interrupts, and nopa
kets are ever delivered to the user appli
ation. The resulting throughput is zero.[Mogul and Ramakrishnan, 1997℄ proposes some solutions to avoid re
eive livelo
k:(a) interrupt 
oales
ing: It 
onsists on bat
hing several interrupts, so that severalpa
kets are pro
essed with the help of just one interrupt; (b) limiting the interruptrate: If the system dete
ts too many hardware interrupts, it disables them temporarily;and (
) avoiding preemption of the software ISR by the hardware ISR.A modern approa
h to pa
ket 
apture is the use of devi
e polling [Mogul andRamakrishnan, 1997; Morris et al., 1999℄. In su
h a system, the kernel polls thedevi
e's re
eive DMA queue periodi
ally, in 
ase there is a newly arrived pa
ket. Thetraditional argument against polling is that it 
auses a large overhead when no tra�
is re
eived. [Mogul and Ramakrishnan, 1997℄ proposes to use a 
ombination of both,so interrupts are used during low loads, and polling during high loads. [Morris etal., 1999℄, on the other hand, proposes a pure polling approa
h, arguing that �eveninfrequent PC interrupts are simply too expensive� in modern PCs.Another related approa
h to enhan
e the performan
e of software pa
ket-
apturesystems is to minimize the number of 
opies of pa
ket bu�ers. A suggested approa
his to share bu�ers between the appli
ation �nally pro
essing the pa
kets and thekernel [Wood, 2004℄. A bolder approa
h is to give appli
ations full 
ontrol over theNIC, in
luding the 
ard registers, so the appli
ations 
an do the polling themselves



187[Cleary et al., 2000℄. This introdu
es several problems related to syn
hronizationwhen there are multiple readers [Degioanni and Varenni, 2004℄.Optimizing the software side of pa
ket pro
essing tools is 
omplementary to Shunting.The goal of Shunting is to be narrow the stream that rea
hes the analyzer, andtherefore the amount of job that the NIC must perform. Still, the narrowed streammay be big enough as to require software tuning in the pa
ket 
apture pro
essing.4.3.9 Filtering ModelsAnother related pie
e of work is resear
h in �ltering models. Se
tion 3.3 inChapter 3 des
ribes previous work in pa
ket �ltering, fo
using on BPF, the most
ommon pa
ket �lter.Shunting provides a mu
h simpler �ltering model than traditional pa
ket �lters.Instead of providing a generi
, virtual pro
essor with most of the operations availablein normal pro
essors, shunting o�ers a very simple, stateful, dynami
ally-programmabletable lookup me
hanism based on three simple tables.Shunting renoun
es to the �exibility existent in traditional pa
ket �ltering models,in ex
hange of being able to leverage very fast, parallel table lookups in a hardwaredevi
e.



1884.3.10 Network Tra�
 Heavy-Tailed Eviden
eThe last pie
e of related resear
h is the multiple eviden
es of the self-similarity innetwork tra�
 [Crovella, 2001℄. In parti
ular, 
onne
tion sizes have shown to followa heavy-tailed (power-law) distribution [Crovella and Bestavros, 1996; Paxson, 1994;Paxson and Floyd, 1995℄, with the heavy-tailed distribution of data obje
t sizes beingsuggested as the underlying 
ause of it [Crovella and Bestavros, 1996℄.4Figure 4.1 shows the bytes in the t
p-1 tra
e as a fun
tion of fra
tion of smallest
onne
tions. Less to 0.4% of the 
onne
tions a

ount for more than 90% of the bytes.
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Figure 4.1: Tra
e Bytes as a Fun
tion of the Smallest Conne
tionsAn interesting property of heavy-tailed distributions is the mass-
ount disparityproperty. The intuition behind this property is that, when the size of pro
essed
4More pre
isely, a random variable X is 
onsidered heavy-tailed when its 
umulative distributionfun
tion FX(x) is FX(x) ∼ 1 − cx−α, where 0 < α < 2.



189obje
ts follows a heavy-tailed distribution, a large fra
tion of the bytes 
an be servedby just taking 
are of a small fra
tion of the subsets [Crovella, 2001℄.Shunting works as long as it is able to pro
ess most of the tra�
 in the hardware
omponent. While the analyzer poli
y is the one that spe
i�es tra�
 subsets, andhow ea
h one must be pro
essed, the me
hanism (the hardware 
omponent) must beable to pro
ess most of the tra�
 with a limited storage unit.The key insight behind shunting is that a very large proportion of the tra�
in a link is 
omposed by a spe
i�
 tra�
 subset, namely the set of high-volume
onne
tions. Moreover, from these 
onne
tions, intrusion dete
tion is interested onlyin their 
ontext, and not in the bulk data transmission.
4.4 ShuntingInline tra�
 pro
essing is a demanding a
tivity. A passive pa
ket-pro
essingengine that drops pa
kets just gets a redu
ed view of the tra�
 �ow. While pa
ketdrops remain a small per
entage of the total amount of pa
kets, most pa
ket-pro
essingengines 
an bear dropping tra�
 without too many problems.In 
omparison, inline pa
ket-pro
essing engines must inje
t ba
k in the wire anypa
ket that they 
apture. This provides an extremely powerful tool, as no pa
ketpasses the inline pro
essing element without the element permitting it. On the otherhand, the inline element dropping pa
kets a�e
ts the quality of unreliable 
onne
tions,and the throughput and laten
y of reliable 
onne
tions. This e�e
t is magni�ed by the



190fa
t that pa
ket losses are interpreted by TCP endhost sta
ks as 
ongestion signals.The remainder of this Se
tion is stru
tured as follows: Se
tion 4.4.1 des
ribesbottlene
ks when pro
essing high-speed tra�
 with o�-the-shelf hosts. Se
tion 4.4.2presents the Shunting ar
hite
ture, and Se
tion 4.4.3 its rationale. Se
tion 4.4.4introdu
es the main pro
essing me
hanisms. Se
tions 4.4.5 and Se
tion 4.4.6 dis
ussthe ar
hite
ture in depth. Se
tion 4.4.7 des
ribes some appli
ations of Shunting.Finally, Se
tion 4.4.8 
ompares Shunting to BPF-based approa
hes.4.4.1 Inline Pro
essing Bottlene
kA fully-used Gigabit link 
reates too large a workload for a 
ommodity PC to doinline pro
ess. The problem presents di�erent edges, depending on whether the NIDSis stateless or stateful. The former typi
ally su�er be
ause of the load imposed in theCPU, and the latter be
ause of the state volume impa
t on memory and host businterfa
e bandwidth [Dreger et al., 2004℄.Some ba
k-of-the-envelope numbers may provide an idea of the magnitude of thebus 
apa
ity problem. NIDS need at least to (a) transfer the pa
ket from the networkinterfa
e to the host memory, (b) pro
ess the pa
ket, and (
) inje
t it ba
k to theinterfa
e.In some 
ases, the pa
ket may not be inje
ted ba
k into the network. This is the
ase, for example, in network intrusion prevention, when a pa
ket is deemed mali
ious.In any 
ase, in any network intrusion s
enario, we expe
t mali
ious pa
kets to be a



191very small fra
tion of the total tra�
, so the ratio of pa
kets dropped should benegligible.Moving the tra�
 from the network interfa
e to the CPU and then ba
k to thenetwork interfa
e for inje
tion would a

ount for 2 
opies per pa
ket, whi
h assuminga (bidire
tional) 1 Gbps link (2 Gbps of tra�
), implies 4 Gbps of peripheral busand memory bus tra�
, 
onsidering no other tra�
 
ompetes for the resour
es, andthat the interrupt overhead on the bus does not limit the number of transa
tions perse
ond.If the NIDS is being run in userland, this means at least two extra data 
opies, topass the pa
ket from the kernel to userland, and ba
k to the kernel. (Some OperatingSystems add extra 
opies [S
hneider, 2004℄.) This would means 2 more data 
opies,or another 4 Gbps in the memory bus.Bus and memory are pro
essing bottlene
ks in stateful NIDS. A fast, 
onventionalPCI (2.1) bus works at 66 MHz and has a 64 bit wide bus. Therefore, its maximumtheoreti
al transfer rate is approximately the 4 Gbps. On the other hand, PCI isa shared bus, and transa
tion overhead (s
heduling, addressing, and routing) plus
ontention and 
ollisions typi
ally redu
e the e�e
tive bandwidth to one third ofthis [Arramreddy and Riley, 2002; Cleary et al., 2000℄, far away from the needed4 Gbps.This is 
hanging fast. New parallel host bus ar
hite
tures (PCI-X) are faster(PCI-X 2.0 at 533 MHz reports a 34 Gbps peak rate) and more e�
ient than the



192previous models: Depending on the blo
k size transmitted, PCI-X is able to providebetween 66% and 85% of the theoreti
al bus bandwidth [Arramreddy and Riley,2002; Compaq, 1999℄. At the same time, high-speed serial interfa
es su
h as PCIExpress provide s
alable, e�
ient performan
e (PCIe lines operating at 2.5 GHz havea maximum theoreti
al transfer rate of 3.2 Gbps per line) [Brewer and Sekel, 2004℄.This is not the 
ase for memory, however. Copying data between memory andthe network adapter for a 1 Gbps link is already a di�
ult task, for both bandwidthand laten
y reasons. Problems are only expe
ted to grow when pro
essing pa
kets inhigher speed links (10 Gbps and 40 Gbps), as the memory gap keeps widening.5On the other hand, these approa
hes still leave small headroom for the NIDSanalysis, espe
ially when 
onsidering (a) we have not 
onsidered the overhead 
ausedby non-data tou
hing pro
essing [Kay and Pasquale, 1993℄, and (b) we want NIDSmonitoring 10 Gbps or 40 Gbps links. The goal is for Shunting to provide NIDS withample headroom to perform extensive analysis, instead of running on the edge andhaving to sa
ri�
e it.4.4.2 Shunting PresentationShunting is an ar
hite
ture to perform pa
ket pro
essing on high-speed links.Figure 4.2 shows the Shunting ar
hite
ture: A Shunt 
onsists of two elements, a
5A

ording to Gilder's Law [Aboba, 2001; Gilder, 2000℄, we should expe
t networking 
apa
itiesto grow at least three times faster than CPU pro
essing power (doubling every 9-12 months, as
ompared to every 18 months for CPU power, following Moore's Law). The �memory gap� is evenbigger: Memory laten
y (in
reases only at 10% per year) and bandwidth in
rease even slower thanCPU pro
essing power [Patterson and Hennessy, 2004; Patterson et al., 1997℄.



193software pa
ket pro
essing engine (the shunt engine), and a hardware a
tive element(the shunt devi
e). The shunt devi
e elements 
an be thought of as a smart NIC.The shunt engine is the de
ision me
hanism, and is 
omposed of two parts, namelyan external analyzer that pro
esses the tra�
 (for example, a NIDS), and a thin layerthat sits in the middle and knows how to make analyzer and devi
e intera
t (theshunt shim).
PSfrag repla
ements

shunt engineanalyzer
shunt shimshunt devi
e(a) forward(b) drop(
) shunt
(
.1) inje
t(
.2) drop

Figure 4.2: Shunting Main Ar
hite
tureWhen a pa
ket arrives to the devi
e, the latter has three possibilities: It 
an(a) forward the pa
ket to the opposite interfa
e (thi
k, solid line), (b) drop it (thin,dashed line), or (
) send it to the analyzer (thin, dotted line). The latter is alsoknown as to shunt the pa
ket.In the intrusion dete
tion s
enario, for example, the three options 
an be mapped



194to the devi
e's judgment on the pa
ket's goodness, namely whether the pa
ket isinno
uous (forward the pa
ket), mali
ious (drop it), or none of the above (shunt it).The latter in
lude pa
kets 
ataloged as suspi
ious, or for whi
h the devi
e has noopinion.Pa
kets neither dropped nor forwarded are sent to the analyzer, where they 
an bepro
essed more 
arefully. After this pro
essing, the analyzer takes another de
isionabout the pa
ket's fate: It 
an (
.1) inje
t ba
k the pa
ket to the network interfa
e,or (
.2) drop it. In the intrusion dete
tion s
enario, again, the analyzer 
an be aheavy-weight Intrusion Dete
tion System, whi
h makes another judgment on whetherthe pa
ket is mali
ious (drop it) or inno
uous (inje
t it ba
k to the network interfa
e).There are several interesting points worth noting:
• Shunting is just a me
hanism. The poli
y is de
ided by an external analyzer,whi
h takes advantage of Shunting. In that sense, Shunting is poli
y neutral.
• The Shunting me
hanism is extremely simple. The goal is to permit a very fasthardware implementation with lots of spa
e for table entries.
• In normal operation, we should expe
t the large majority of tra�
 to be forwardedby the devi
e, and therefore never rea
h the engine. This will permit to run theanalyzer in 
ommodity hardware.
• A shunted pa
ket is delayed and pro
essed by the analyzer. If the analyzer �ndsthe pa
ket 
orre
t, it forwards it. In the intrusion s
enario, it means the devi
e
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ataloged it as suspi
ious, but the analyzer later a
quitted it.
• Every pa
ket is shunted by default, so it is the analyzer's obligation to instru
tthe devi
e on whi
h pa
kets to forward, drop, or shunt. In the intrusiondete
tion world, all pa
kets are suspi
ious unless otherwise proven.
• Unlike the devi
e, the analyzer need not take a de
ision as soon as it sees apa
ket. Instead, it 
an queue it, and pro
ess it later. In the intrusion dete
tions
enario, if the pa
ket is still suspi
ious, it 
an be stored until more informationis available.
• Another possibility is �
a
he and shunt�. The idea is that the devi
e would
a
he the pa
ket, map it to a unique identi�er, and send a 
opy to the enginealongside the identi�er. The latter would take a de
ision, and 
ommuni
ate it tothe devi
e as a {identi�er, de
ision} tuple. This would save memory bandwidthin the engine to devi
e path, as a pa
ket inje
tion would 
ause the engine tosend just an identi�er to the devi
e, instead of the full pa
ket 
ontents.We 
hose not to implement this idea for simpli
ity's sake. One of the main goalsof Shunting is to be able to implement the shunt devi
e using fast hardware,where memory is a s
ar
e resour
e. Holding pa
kets in a hardware 
omponentwould imply redu
ing the spa
e for table entries. We therefore 
hose not to addit.
• We 
onsidered, but 
hose not to in
lude, the possibility of the devi
e reassembling



196fragments before sending them to the analyzer. We de
ided against this idea,for the same reason as in the previous point (memory is a s
ar
e resour
e in ahardware devi
e.)
• There is an extra possibility we are studying, namely �forward and shunt�: Thedevi
e would forward the pa
ket into the wire, and at the same time send a
opy to the analyzer for pro
essing. The latter would not need to reinje
tthe pa
ket ba
k into the link, therefore saving bandwidth. In the intrusionprevention world, for example, this 
ould be useful to monitor 
onne
tionsdeemed non-mali
ious (for example, to know when they �nish so that theirasso
iated state 
an be freed).4.4.3 RationaleIn order to justify Shunting, we �rst make three simple observations that hold forsome inline pa
ket-pro
essing appli
ations, in
luding intrusion prevention:The �rst observation is that, while the per-pa
ket pro
essing may be very intensive(in
luding deep analysis of the pa
ket and others it is related to), the �nal de
isionon what to do with the pa
ket is very simple: whether the pa
ket must be forwardedor not.This observation implies that only a generi
 host (the analyzer) is �exible enoughto perform the potentially intensive work that permits de
iding how to pro
ess apa
ket.



197The se
ond observation is that appli
ations are often able to easily spe
ify somesubsets of the tra�
 for whi
h (a) no analysis at all is required, and (b) the de
isionon what to do with a pa
ket is the same for all the subset pa
kets. These subsetsin
lude, for example, all pa
kets from the same 
onne
tion, and may be spe
i�ed inadvan
e or dynami
ally (i.e., as a 
onsequen
e of the pa
ket pro
essing itself).This observation implies that, on
e the generi
 pro
essor is able to spe
ify aneasily pro
essable subset of the tra�
, pro
essing that subset 
an be pushed into aspe
ialized hardware element (the devi
e).The third observation relates to the heavy-tailed nature of network tra�
 (seeSe
tion 4.3.10). The number of bytes per 
onne
tion has been shown to follow aheavy-tailed distribution [Crovella and Bestavros, 1996; Paxson, 1994; Paxson andFloyd, 1995℄. We believe that the analyzer is able to take a de
ision on how topro
ess the 
onne
tions in the distribution tail (the very large ones) early in the
onne
tion life. Therefore, most of the 
onne
tion 
ontents will be pro
essed onlybu the hardware devi
e. By fo
using on the large 
onne
tions, a limited number ofentries in the hardware 
omponent are enough to pro
ess a large part of the bytes inthe wire.From these three observations, we draw the following hypothesis: In some s
enarios,as intrusion dete
tion, it is possible to do useful pa
ket pro
essing by dynami
allyspe
ifying subsets of the tra�
 that (a) 
ompose most of the tra�
, (b) 
an bepro
essed using simple, table-lookup operations implementable using a hardware
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omponent.Let's illustrate the hypothesis with an example.Consider a NIDS monitoring a link. Every time it re
eives a pa
ket, the NIDSmust take a simple de
ision on what to do with it: either let it pass, or drop it.While the de
ision is simple, taking it may require an intensive task, in
luding deepinspe
tion of the pa
ket, and querying information about previous pa
kets from thesame 
onne
tion. On the other hand, sometimes the intrusion dete
tion system isable to de
ide that any future pa
kets from the same 
onne
tion will be forwarded,without previous analysis. Then, it 
an instru
t a hardware 
omponent to pro
essthose pa
kets by itself.4.4.4 A
tionsShunting works as long as most of the pa
kets are pro
essed only at the devi
e,and the devi
e operations remain simple enough to be e�
iently implementable inhardware. The question is, therefore, whi
h operations must be in
luded in the devi
e.Some examples of useful operations in the intrusion dete
tion s
enario in
ludedropping all pa
kets related to hosts found to 
arry out atta
ks or port-s
ans, orforwarding all pa
kets related to 
onne
tions known to be safe.Another example 
an be drawn from an a

ounting s
enario, where the goal is toquantify the amount of tra�
 used by ea
h 
onne
tion [Mills et al., 1991℄. In this 
ase,relatively reliable a

ounting of TCP 
onne
tions may be 
arried out by just shunting
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onne
tion-establishment and 
onne
tion-teardown handshakes, and forwardingall the remaining tra�
.6In order to provide a 
ommon framework where di�erent analyzers 
an programtheir de
isions, Shunting provides a series of �a
tions� that state, for every pro
essedpa
ket, whether it must be forwarded, dropped, or shunted. In order to 
ombinedi�ering a
tions, programmed a
tions are asso
iated with a priority, and the a
tionwith the highest priority is followed.In order to a
hieve the goal of analyzing most of the tra�
 using simple hardwarepro
essing, we have added a
tions only after 
onsidering (a) the bene�t they provideto qui
k 
lassi�
ation, and (b) the resour
e budget they 
onsume from the othera
tions. While an extra a
tion will always augment the �exibility of the devi
e, itwill 
onsume part of the devi
e's limited resour
es.We have identi�ed four a
tions that permit qui
k pa
ket 
lassi�
ation for most ofthe tra�
 in several important s
enarios. These four a
tions are 
onne
tion, address,port, and �lter.Conne
tion TableThe �rst a
tion that permits qui
k pa
ket pro
essing is the 
onne
tion, 
onsideredas the traditional 5-tuple (104 bits) that de�nes a TCP 
onne
tion ({sour
e address,sour
e port, destination address, destination port, transport-layer proto
ol}). Withthis a
tion, 
onne
tions 
an be mat
hed to the 3-valued de
ision, namely forward,
6Se
tion 2.5.2 in Chapter 2 dis
usses this a

ounting method in depth.



200drop, or shunt. When the devi
e re
eives a pa
ket, it looks for its 
onne
tion tuplein the 
onne
tion table. If the 
onne
tion tuple mat
hes, the 
orresponding de
isionis used to pro
ess the pa
ket.The 
onne
tion a
tion is easy to implement. From the devi
e point of view,it implies reading 104 �xed bits in every pa
ket, then querying a table that yields a3-valued de
ision. This ease permits implementing this table with a very large numberof entries.From the analyzer's point of view, the 
onne
tion seems a natural 
ategory inwhi
h to take de
isions. In the intrusion dete
tion world, for example, it is easy to�nd 
ases where all pa
kets from a 
onne
tion are dealt with in the same fashion,dropping all of them if the 
onne
tion is mali
ious, and forwarding all of them if the
onne
tion is safe.The 
onne
tion a
tion is also e�e
tive, by leveraging the heavy-tailed nature of
onne
tion sizes and durations [Crovella and Bestavros, 1996; Paxson and Floyd,1995℄. If, in the general 
ase, the analyzer is able to limit the pro
essing of a
onne
tion to just a few of its initial pa
kets, and then take a de
ision on how topro
ess any additional pa
kets from the same 
onne
tion, it is possible to diminishthe total amount of tra�
 the analyzer pro
esses, while e�e
tively pro
essing all
onne
tions. This seems a useful aid in any pa
ket pro
essing appli
ation that requires�ow state management, as intrusion dete
tion or �ow 
lassi�
ation.This a
tion 
an also be useful to limit the tra�
 load a server must bear. If



201the analyzer dete
ts an unexpe
ted, non-mali
ious spike in the amount of tra�
dire
ted to a server that may overwhelm it, the analyzer 
an opt between (a) to keepmonitoring all the tra�
 it sees, but simplifying the monitoring type, and thereforeredu
ing the amount of per-pa
ket pro
essing; or (b) to keep the same amount ofper-pa
ket pro
essing, but limiting the total amount of monitored tra�
, for example,by forwarding some of the 
onne
tions without further analysis. This is a key poli
yde
ision that should be taken by the analyzer, not by the Shunting ar
hite
ture.Note that the insertion of a forward tuple in the 
onne
tion table is 
aused by theanalyzer guessing that further pro
essing is not needed, or that further pro
essing isnot possible. The latter may happen, for example, if the analyzer knows it does notknow how to analyze a 
onne
tion (be
ause, say, it is an unknown proto
ol). In this
ase, it may just forward all su
h tra�
.Let's dis
uss an usage example. Consider a NIPS monitoring an SSH 
onne
tion.An SSH 
onne
tion 
onsists of two parts [Ylonen, 1996℄: First, a 
lear-text, sessionhandshake, in whi
h the 
lient and server (a) ex
hange identi�er strings, (b) agree onthe 
iphers and authenti
ation method they will use, and (
) 
reate the session keythat will be used for the rest of the session. Se
ond, en
rypted tra�
, in whi
h theappli
ation data is ex
hanged.The �rst pa
kets of the 
onne
tion are shunted to the NIPS. After the 
lear-textsession handshake ends, the software NIPS may realize that the 
onne
tion is dangerous,for example if any of the SSH version identi�er strings shows the SSH server is running



202a buggy software version. If the NIPS realizes this, any additional pa
ket belongingto the 
onne
tion 
an be dropped without further pa
ket analysis.Conversely, if at any moment the NIPS deems the 
onne
tion is safe, any additionalpa
ket belonging to the 
onne
tion 
an be forwarded without further pa
ket analysis.7Moreover, and assuming that the NIPS does not know the session key, the NIPS
annot peek into the 
onne
tion 
ontents on
e they get en
rypted. Any further pa
ketanalysis is therefore a resour
e waste. If the NIPS did not �nd anything bad in the
onne
tion, it will not be able to do so in the future. Therefore, it 
an just pass alongany additional pa
ket from the 
onne
tion, without inspe
ting it.Address TableThe se
ond a
tion that permits qui
k pa
ket pro
essing is the IP address, of boththe sour
e and the destination. IP addresses 
an be mat
hed to 3-valued de
isions,namely forward, drop, or shunt. When the devi
e re
eives a pa
ket, it reads bothits sour
e and destination addresses, and looks for them in the address table. If theaddress tuple mat
hes, the 
orresponding de
ision is used to pro
ess the pa
ket.The address a
tion is easy to implement. From the devi
e point of view, it impliesreading 64 �xed bits in every pa
ket (32 per address), and then 
arrying out twoqueries to a table that yields a 3-valued de
ision. From the analyzer point of view,the address seems a natural 
ategory in whi
h to take de
isions. In some 
ases, it
7The analysis a
tually may want to wait a little bit to guess if the 
lient is using brute for
e tolog in the server. This is typi
ally seen as three tries and fails in the en
rypted stream, and 
an beguessed by 
he
king the pa
ket sizes before termination.



203is easy for the analyzer to develop a simple drop/forward poli
y for all the tra�

oming from or going to a given host. This is also known as host bla
klisting andhost whitelisting.The address a
tion is also e�e
tive. We believe an important per
entage of thetra�
 may be pro
essed by just looking at ea
h pa
ket sour
e and/or destinationaddresses. For example, if a NIPS dete
ts that an external host is s
anning thenetwork, it may de
ide to bla
klist it. This means that any further pa
kets whosesour
e address is that of the s
anner will be dropped without further pro
essing.The opposite may be also true. Some organizations use a host to s
an theirnetwork in sear
h of vulnerabilities. These s
anners look at the internal networkhosts for servi
es that are mis
on�gured, outdated, or just plainly forbidden. Awell-known me
hanism to 
arry out this sear
h is to open 
onne
tions to all the portswhere su
h servi
es 
an be lo
ated. In most 
ases, the servi
e will not exist, and the
onne
tion will fail.Of 
ourse, this behavior is not that di�erent from that of port-s
anners, so anetwork analyzer may qualify the s
anner's tra�
 as mali
ious. In this 
ase, theNIPS must not drop the s
anner tra�
. What's more, it may de
ide all tra�
 relatedto this type of host is inno
uous (albeit it looks mali
ious), and therefore whitelist it.The address a
tion also permits Shunting to defend hosts inside the networkagainst unusual surges of mali
ious tra�
 (�ooding), by temporarily disabling theira

essibility from the outside network. Consider a distributed �ooding of an internal



204host. If the engine dete
ts the amount of tra�
 dire
ted to a host in
reases ex
essively,but su
h tra�
 has anomalous 
hara
teristi
s (for example, a large asymmetry, or anunusual per
entage of 
onne
tions 
losed just after the initial SYN), it 
an instru
tthe devi
e to drop any pa
ket dire
ted to the atta
ked host, e�e
tively isolating itfrom outside tra�
.Note that the isolation 
an be further re�ned to permit host-initiated 
onne
tionsto be forwarded, by using priorities (see Se
tion 4.4.5).Shunting 
an use this isolation te
hnique to defend itself from su
h �oodings.While most atta
ks re
orded so far against intrusion dete
tion and prevention systemsare based on software bugs in su
h systems [Moore and Shannon, 2004℄, there arealready some tools that atta
k the analyzer itself, either by in
reasing the numberof false positive, or by in
reasing the workload until the analyzer gets overwhelmed.Some of these tools in
lude Sti
k [Giovanni, 2001℄, Squealing [Patton et al., 2001℄,and Snot.Last, the isolation te
hnique provides a me
hanism for the analyzer to defenditself against unusual surges of well-behaving tra�
: The ability to forward pa
ketswithout any in-host pro
essing. If the analyzer dete
t some large in
rease in theamount of tra�
 it is pro
essing, it has the option to instru
t the devi
e to justforward a subset of it. This would invalidate the analyzer's prote
tion in the tra�
subset, at the bene�t of keeping the prote
tion in the remaining tra�
. Again, thisis a poli
y de
ision the Shunting me
hanism is neutral to.



205Port TableThe third a
tion that permits qui
k pa
ket pro
essing is the transport proto
olport, in
luding both the sour
e and the destination one. Transport (TCP or UDP)ports are mat
hed to 3-valued de
isions, namely forward, drop, or shunt. When thedevi
e re
eives a pa
ket, it reads both its sour
e and destination port, and looks forthem into the port table. If any port tuple mat
hes, the 
orresponding de
ision isused to pro
ess the pa
ket.The port a
tion is extremely easy to implement. From the devi
e point of view,it implies reading 40 �xed bits (the two ports plus the transport proto
ol identi�er)from every pa
ket, and then 
arrying out two queries to a table that yields a 3-valuedde
ision.From the engine point of view, the port seems a natural 
ategory in whi
h totake de
isions. There are some ports that 
orrespond to well-known inse
ure servi
es(telnet), and others whi
h, while not being inse
ure, its presen
e in a DMZ is rarelyjusti�ed (e.g. Mi
rosoft NetBIOS or NFS tra�
). If the site poli
y 
onsiders thattra�
 in any of these ports 
onstitutes a se
urity problem, the port table me
hanismpermits dropping all their pa
kets. Shunting permits re�ning this poli
y by usingseveral tables at the same time. (See Se
tion 4.4.5 for a dis
ussion on the prioritysystem.)In the intrusion dete
tion world, the port a
tion 
an be used to slow the spreadingof fast worms. If the analyzer dete
ts an extreme in
rease in similar tra�
 dire
ted



206to an unusual port, and it 
on
ludes it is due to worm a
tivity, it 
an instru
t thedevi
e to drop all tra�
 dire
ted to that port. On the other hand, we doubt thatwe 
an ever set an entry in the port table to forward all tra�
 
orresponding to aspe
i�
 port. That 
ould be used by an atta
ker: by setting her tra�
 lo
al port tobe equal to the forwarded port, she would in fa
t launder all her tra�
, getting a freepass on the NIPS. Dire
tionality would help here, as we will see in Se
tion 4.4.5.In the a

ounting s
enario, on the other hand, we imagine there are some proto
olsthat, be
ause of poli
y reasons, are not interesting. These ports 
ould be dealt withby setting an entry in the port table to forward .Note that, while we understand port and servi
e are independent entities, we areassuming they are normally related, at least in the lo
al network endhost, whi
h isthe side the intrusion dete
tor is trying to defend.The utility of the port table is de�nitely more limited than the two previous tables.On the other hand, the 
ost of a port table is very low, as a 3-valued yield requires 2bits per port. Considering the two main transport proto
ols, TCP and UDP, everyproto
ol has 64 K ports. This implies we 
an 
arry information about all TCP andUDP ports for just 32 KB of memory.FilterThe last a
tion that permits qui
k pa
ket pro
essing is three �xed BPF �lters,known as the �forward �lter,� the �drop �lter,� and the �shunt �lter,� that 
ause
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kets mat
hing them to be always pro
essed the same way (forwarded, dropped, orshunted, respe
tively).Note that the three �lters are stati
. The option of implementing a generi
 BPFengine in the devi
e, where dynami
 �lters 
ould be uploaded at will, is 
ompli
atedin hardware terms, and would limit the hardware parallelization opportunities.The stati
 nature of the three �lters is 
ompensated by 
ombining their use withthe dynami
 tables. In this way, we envision that they 
ould be useful in helping theanalyzer managing its state.As an example, while an intrusion dete
tion system may de
ide to forward allpa
kets from a given TCP 
onne
tion, it would bene�t from seeing the 
onne
tiontermination segments, as it 
an free the asso
iated spa
e. In a similar fashion, ana

ounting analyzer 
ould bene�t from seeing su
h termination segments, from whi
hit 
ould estimate the total 
onne
tion size.In order to ensure the 
onne
tion termination segments are always sent to theanalyzer, while at the same time forwarding a 
onne
tion's bulk transmitted data, aplausible approa
h 
ould be to set the stati
 shunt �lter so that TCP segments withthe RST or FIN �ags set mat
h, and then add, with a smaller priority, an entry tothe 
onne
tion table 
ausing pa
kets from the 
onne
tion to be forwarded.A pa
ket belonging to su
h 
onne
tion will be dire
tly forwarded, ex
ept when ithas the RST or FIN �ags set, in whi
h 
ase it will be shunted.The stati
 nature of the three �lters makes them a likely target for atta
kers. For



208example, if an atta
ker wants to �ood a NIPS whi
h she knows uses a �TCP RST orFIN segments� shunt �lter, she 
ould send a large amount of TCP segments with anyof the two �ags set. If the atta
ker 
an be identi�ed, and she is not spoo�ng the IPsour
e address, the atta
k 
an be thwarted by setting an even higher-priority entryin the address table, asso
iating the atta
ker address to a drop result.The �lter a
tion is easy to implement, 
onsidering it is stati
. For example, theshunt �lter mentioned before (�TCP RST or FIN segments�) 
an be implemented byreading just the network and transport proto
ol header.We expe
t the �lter a
tion to be e�e
tive, not on the amount of tra�
 it will beable to uniquely des
ribe, but in the e�e
t that su
h tra�
 will have in the engine(state management). Moreover, we expe
t the �lter to be simple enough so as toimpose a very low burden on the devi
e. In parti
ular, its memory usage will be verysmall.4.4.5 Other DetailsSome details about how the shunt ar
hite
ture works are:
• Priorities: The shunt ar
hite
ture in
ludes the idea of �ne-grained (per-tuple)priorities, asso
iated with di�erent a
tions. The obje
tive is twofold. First, it isintended to solve potential 
on�i
ts between de
isions obtained from di�erenta
tions. For example, let's assume the port table has an entry that states thatpa
kets from a given port are to be forwarded. Let's also assume that the



209address table has an entry that states that pa
kets dire
ted to a given host areto be drop. If a pa
ket mat
hes both a
tions, the devi
e will follow that withthe highest priority.Se
ond, �ne-grained priorities permit the user to have at her disposal a hierar
hi
alde
ision system. Lo
al, low-priority defaults 
an be set with the prote
tionof higher-priority safeguards. An example is how to instru
t the devi
e to(a) forward all pa
kets from a given TCP 
onne
tion, while at the same timeensuring (b) the 
onne
tion teardown segments are sent to the engine, and (
) anatta
ker 
annot overwhelm the engine by sending lots of TCP 
ontrol segments.As we mentioned before, priorities may be used to address this problem: Apa
ket belonging to the given 
onne
tion is forwarded with low priority, a pa
ketwith any TCP 
ontrol �ag on is shunted with medium priority, and a pa
ketfrom a well-known atta
ker is dropped with high priority. The devi
e, therefore,
he
ks every pa
ket with the four a
tions, and takes the highest priority de
ision.We de�ne a 
on�i
ting mat
h as the 
ase where two tables provide di�erenta
tions with the same priority. This is 
onsidered an error, and the result isthat the pa
ket will be shunted.Note that priorities are set in a per-tuple basis. Therefore, di�erent tuples inthe same table may have di�erent priorities.
• Dire
tionality: Another added point is the in�uen
e of dire
tionality in the
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onne
tion, address, and port tables. A 
onne
tion table tuple mat
hes pa
ketsgoing in both the forth and ba
k dire
tions. Di�erent yields 
an be set for thesame 
onne
tion. For example, you 
an set pa
kets going in the forth 
onne
tionto be forwarded, while pa
kets going in the ba
k dire
tion are shunted. Thisway, the engine will only see one side of the 
onne
tion.For the address table, dire
tionality helps di�erentiate sour
e and destinationport. Again, it makes perfe
t sense for the devi
e to take di�erent de
isionsdepending on whether the pa
ket goes to a given host, or 
omes from a givenhost. The same reasoning 
an be applied to the port table.
• Default Shunting: If no a
tions mat
hes a pa
ket, it is shunted to the engine.The main goal of this de
ision is analysis exhaustivity, i.e., ensuring that anypa
ket whose pro
essing has not been made expli
it in advan
e, will be sent tothe engine.Default shunting introdu
es two interesting 
on
epts: First, �safe de
ision�,i.e., shunting, whi
h is never wrong in fun
tionality terms (though it maybe in performan
e terms). This presents an additional advantage: It permitshardware designs where, in order to in
rease e�
ien
y (in performan
e or spa
eterms), results are only probabilisti
 or even knowingly in
orre
t.Shunting supports su
h implementations while their errors are single-sided, i.e.,they 
hange forward and drop into shunt , but they never transform a shunt into



211a forward or a drop.An example of the usefulness of a hardware design that may knowingly produ
ein
orre
t results is devi
es with limited storage spa
e. In these devi
es, tableentries 
an be evi
ted for spa
e reasons. Consider the 
ase of a pa
ket thatwould have been mat
hed by a tuple in one of the tables, but su
h tuple hasbeen evi
ted due to la
k of spa
e. As no tuple exists now, the pa
ket willbe shunted by default. If the original de
ision was shunt , the pa
ket will gothe right path. If it was forward or drop, it will go the wrong path (it willbe shunted), but on
e it arrives to the analyzer, the latter will �x its path.The engine will then either inje
t the pa
ket ba
k in the network interfa
e, ordrop the pa
ket itself (and probably update the 
orresponding table). The �nalpa
ket pro
essing will be the same in the limited storage devi
e as in a devi
ewith unlimited storage spa
e, at the 
ost of pro
essing a pa
ket through theshim instead of just in the devi
e.The se
ond 
on
ept is the possibility of the shim reissuing entries that have beenevi
ted by the devi
e. If the devi
e, be
ause of limited spa
e, needs to evi
tan entry in one of the tables, the shim will know, as it will get a pa
ket thatshould have been pro
essed dire
tly by the devi
e. In this 
ase, the shim mayreissue the entry into the devi
e table, therefore optimizing the 
omposition ofthe devi
e tables.The main problem of default shunting is 
old-start. When the shunting system



212is started, it is swamped with the full link tra�
. This high-load situationlasts until the engine manages to populate the 
onne
tion, address, and porttables. Moreover, some of the tra�
 
orresponds to partial 
onne
tions, i.e.,
onne
tions from whi
h the engine will never see the start. The analyzer in theengine should be able to take poli
y de
isions based on su
h partial 
onne
tions.These de
isions 
annot just be forward all partial 
onne
tions: This 
ould betaken advantage of by an atta
ker: She 
ould launder all her TCP tra�
 bysending a non-SYN segment to the vi
tim address and port before the real
onne
tion. The analyzer would think it is a partial 
onne
tion, and forwardany further pa
ket.There is also another problem related to Default Shunting, whi
h is dis
ussedin Se
tion 4.7.3.
• Sampling: Another fun
tionality added to the Shunting ar
hite
ture is theintrodu
tion of per-tuple, random sampling. Alongside the forward/drop/shuntyield (in both dire
tions) and the priority, all entries in the three tables and allstati
 �lters have a shunt sampling ratio. When a tuple's yield is forward ordrop, or either the forward or the drop �lter mat
h a pa
ket, the 
orrespondingshunt sampling ratio is 
he
ked. If it is not zero, a random de
ision with thementioned sampling ratio is taken. If the de
ision is sample, then the forwardor drop yield is substituted with a shunt yield, and the priority is kept the same.



213Sampling permits the analyzer to 
arry out tri
ks like re
eiving small pie
es ofa large subset of tra�
 without having to 
apture the full subset. An example
ase is a large 
onne
tion that the engine 
annot a�ord to pro
ess, and thereforesets to forward . On the other hand, the engine is willing to see a pa
ket fromtime to time, in order to dete
t strong bitrate variations, or absen
e of a
tivity.Note that the sampling infrastru
ture has been designed to be very 
heap. Oneof the main ar
hite
ture 
on
erns is spa
e, and there is a sampling ratio forea
h table entry. We do not want to spend 32 bits just for ea
h samplingratio. Instead, we have limited the sampling rate representation to a few bits ofgranularity, 3 in our primary implementation. This permits 7 di�erent samplingratios, plus 0 for �no sampling.� The exa
t meaning of ea
h of the 7 samplingratios 
an be de�ned by the analyzer.
• Inter
onne
tion: An important implementation de
ision is the inter
onne
tionbetween the shim and the shunt devi
e. Be
ause we want the analyzer to havea

ess to generi
 pro
essor 
apabilities, the shunt engine will run in a generi
host. As for the devi
e, we have 
onsidered two di�erent options.First, the devi
e may be inter
onne
ted using the host lo
al bus (for example,PCI). This presents simpli
ity advantages: Installing a shunting host should beas easy as plugging a new 
ard in the lo
al bus, and the shim and the devi
ewould not need 
are about 
ommuni
ation reliability.



214Se
ond, the devi
e may be inter
onne
ted using a generi
 network link (forexample, Gigabit Ethernet). The main advantage of this approa
h is that itpermits de
oupling devi
e and engine physi
ally, and be
ause Ethernet is ashared medium, to 
ombine several devi
es with several engines.This presents several interesting possibilities, like a single engine managingseveral devi
es, whi
h 
ould be used to, for example, a
hieve a 
entralized,
omplete view of the DMZs linking a domain to the rest of the internet; or asingle devi
e dividing its load among several engines, so that the workload 
anbe shared between the analyzers in the di�erent engines; or a 
ombination ofboth.The ar
hite
ture is neutral to the inter
onne
tion �avor.Figure 4.3 shows an abstra
t representation of the shunting de
ision pro
ess. Apa
ket is passed through the four a
tions (the three tables plus the stati
 �lters), andea
h a
tion produ
es a tuple {de
ision, priority}. The de
ision taken by the devi
eis the one 
orresponding to the yield with the highest priority. (If a table does not
ontain the pa
ket's 
orresponding entry, or if none of the three stati
 �lters mat
hesthe pa
ket, then the 
orresponding tuple 
ontains a shunt de
ision with minimumpriority.)Figure 4.4 shows the stru
ture of the three tables. Note that the yield o

upiesonly 10 bits per entry, in
luding 4 for the forward and shunt a
tion in both dire
tions,3 for the priority �eld, and 3 for the sampling 
apability.
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2164.4.6 Dis
ussionThe rationale behind the proposed me
hanism is that the engine 
an typi
allystate whi
h tra�
 it need not pro
ess, or 
annot pro
ess, and that it 
an expressits statement in the aforementioned a
tions. Therefore, the engine will only re
eivetra�
 it 
an and must pro
ess.The performan
e bene�t of the Shunting ar
hite
ture relies in pro
essing themajority of the tra�
 at the earliest possible stage, the devi
e. Most of the tra�
never goes into the host, therefore saving the host's s
ar
e resour
es (bus, memory,and CPU).In order to do this pro
essing, Shunting uses the shunt devi
e, an augmentedNIC that permits generi
 pa
ket pro
essing o�oading. As any hardware element,the devi
e sa
ri�
es �exibility for performan
e. It 
an only perform a redu
ed set ofa
tions (forwarding, dropping, and shunting pa
kets) based on four simple a
tions:
onne
tion, address, and port tables, and �lter. In ex
hange, the devi
e 
an performvery fast pa
ket pro
essing.To 
ontrol the devi
e, Shunting uses the shunt engine. The devi
e providesprogrammable fun
tionality to 
lassify tra�
. The use of that fun
tionality is de
idedby the engine. The devi
e is the me
hanism, and the engine provides the poli
y.This simple setup permits redu
ing the amount of pro
essing in the softwareengine, as it 
an o�oad pro
essing to the devi
e, while at the same time allowingfor fast pro
essing in the hardware devi
e, as the simpli
ity of the four a
tions allows



217for fast implementations.Another bene�t of Shunting is to permit engine self-defense. This self-defense 
anbe a
tually weighted with the 
urrent engine workload. For example, when feelingoverwhelmed, the engine may de
ide to forward some subset of the tra�
 be
ause itis low-value to pro
ess versus the load it requires.Yet another bene�t of Shunting is to provide a framework where to permit e�
ientanalysis of tra�
 in non-standard ports. The analyzer 
ould �ngerprint any 
onne
tionit sees, and on
e it manages to do so, it 
ould avoid seeing any more pa
kets fromsu
h 
onne
tion by inserting a 
orresponding entry in the 
onne
tion table.4.4.7 Appli
ationsThis se
tion des
ribes some appli
ations of the Shunting ar
hite
ture.
• The main Shunting s
enario use we devise, and the one evaluated in this Chapter,is network monitoring. This in
ludes both network intrusion dete
tion [Paxson,1999℄ and network debugging [Agarwal et al., 2003℄. For network monitoring,Shunting 
an be seen as a �exible, though e�
ient, Input-Volume ControlTe
hnique (see Se
tion 4.3.5). Shunting allows for dynami
ally de
iding whi
hpa
kets rea
h the engine. This provides a very powerful tool to redu
e theamount of state 
reated in intrusion dete
tion systems, and to e�
iently 
apturetra�
 in network debugging systems.
• Shunting also permits performing network monitoring in subsets of tra�
 that



218require in
remental, dynami
 �lter spe
i�
ations. Some examples of data sessionsbeing dynami
ally negotiated in
lude: (a) multimedia streaming, where thebulk media data is sent over a UDP session (RTP, session 
ontrol 
hannels)that is negotiated during a 
ontrol proto
ol session (RTSP, H.323) lo
ated ata well-known TCP port [van der Merwe et al., 2000℄; (b) 
apturing FTP datain either a
tive or passive transfer mode, where the bulk data transmission isdone using a 
onne
tion de�ned during the FTP 
ontrol proto
ol [Postel andReynolds, 1985℄; and (
) peer-to-peer sessions, where the full �ow spe
i�
ationkeeps 
hanging through the life of the data transmission, when data providers(transmitters) keep appearing and disappearing.
• Another s
enario where Shunting is useful is to perform load balan
ing in pa
ketpro
essors. The basi
 idea is to use shunting as very-fast pa
ket 
apture devi
esfor the pa
ket pro
essors. The idea of using a 
omplex devi
e (the shuntingar
hite
ture, in our 
ase) as a fast pa
ket 
apture devi
e is similar in spiritto [Deri, 2003℄. In that 
ase, the author proposes using a router. By setting thedevi
es to divide the tra�
 using any of the three 
onne
tion, address, and/orport tables, several pa
ket pro
essors 
an be limited to pro
ess only a subset ofthe tra�
. The main problem of pla
ing Shunting systems in parallel is that it
an in
rease pa
ket delay and pa
ket reordering.
• Shunting 
an also prove useful for tra�
 a

ounting. Shunting helps to 
apture



219information about 
onne
tions without having to pass the full data through theanalyzer. Also, e�
ient sampling permits probabilisti
 billing.
• As we dis
ussed in Se
tion 4.3.4, Shunting 
an be used to perform tra�
normalization.4.4.8 Comparison with BPF-Based Approa
hesThis Se
tion enumerates the problems of performing inline high-speed pa
ketpro
essing using only software and/or hardware approa
hes based on the popularBPF pa
ket �lter ar
hite
ture [M
Canne and Ja
obson, 1993℄.In-host BPF, i.e., running the pa
ket pro
essor on a host, and using the kernelBPF implementation to de
ide whi
h pa
kets rea
h the pro
essor and whi
h do not,is not viable in high-volume environments, as all pa
kets will rea
h the host, even ifthey are just forwarded. This means that the host must be able to bear at least twotimes the bitrate of the link it is pro
essing.Pushing BPF to the NIC, while solving the host bus and memory bottlene
k,presents three drawba
ks, namely (a) it does not provide enough fun
tionality, (b) itdoes not s
ale, and (
) it is too stati
.In some ways, the semanti
 model of the BPF language is higher than that ofthe shunting ar
hite
ture: While the total number does not ex
eed a few tens, any
ombination of 
onne
tions, addresses, and ports 
an be spe
i�ed using the BPFlanguage.



220Shunting provides simpler, �xed semanti
s with dynami
 tables. The bene�ts are:
• BPF does not s
ale. In the in-host BPF 
ase, a simple �lter 
omposed of severalhundreds of primitives takes several minutes to 
ompile, and runs extremelyslowly, as the BPF engine must pro
ess all primitives sequentially. In the shuntdevi
e, we expe
t to have almost unlimited spa
e for the address and port tables,and a very high number of entries for the 
onne
tion table.The shunting ar
hite
ture's goal, on the other hand, is to have tables withmaybe a million 
onne
tion entries.
• BPF �lters are too stati
. Adding or deleting an address from the addressbla
klist in BPF requires re
ompiling the full �lter and 
hanging the full �lterin the period of time between the pro
essing of two pa
kets. In the Shuntingar
hite
ture, it only requires adding or deleting an entry in the address table.
• BPF is a pa
ket 
apture �lter, and therefore it produ
es binary de
isions (
apturea pa
ket or not). Shunting produ
es multivalued de
isions (forward, drop, orshunt).
• BPF is not as �exible as the whole shunt ar
hite
ture, whi
h uses a generi
pro
essor as the analyzer. As an example, byte-string signature dete
tion in ane�
ient and generi
 way requires a ri
her syntax than that of BPF, in
ludinggeneri
 inter-pa
ket state availability.



2214.5 Design and ImplementationThis Se
tion des
ribes the design of an implementation of Shunting, and itsappli
ation to 
arry out network intrusion prevention.This Se
tion is organized as follows: Se
tion 4.5.1 des
ribes our implementationof a NIPS, based on integrating a NIDS with Shunting. Se
tion 4.5.2 des
ribes the
ommuni
ation between the the shim and the devi
e, in
luding the network API.Se
tion 4.5.3 des
ribes the shunt devi
e. Se
tion 4.5.4 des
ribes the 
ommuni
ationbetween the analyzer and the shim (the me
hanisms and poli
ies in the analyzer todrive the shim). Se
tion 4.5.5 introdu
es the shunt shim, the thin layer that permits
ommuni
ation between the analyzer and the shunt devi
e. Se
tion 4.5.6 des
ribes anexample of the modi�
ations required by an analyzer (Bro) to work with the shuntingar
hite
ture.4.5.1 Implementation Des
riptionFigure 4.5 shows the implementation of a NIPS based on integrating a popularNIDS (Bro) and the Shunting ar
hite
ture. Data tra�
 is shown using solid lines,while 
ontrol tra�
 is shown using dotted lines.The Shunting system is 
omposed of two parts: a simple, hardware front-end(�shunt devi
e�), and a �exible software 
omponent (�shunt engine�), whi
h 
an runon an o�-the-shelf host. The engine is divided into the analyzer (for whi
h we usea modi�ed version of Bro [Paxson, 1999℄), and the shunt shim, whi
h serves as glue
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223between devi
e and analyzer.During the normal data operation (solid lines in Figure 4.5), the devi
e re
eivespa
kets through any of its two network interfa
es. These pa
kets may be forwardedto the opposite interfa
e, dropped, or shunted. In the last 
ase, pa
kets are sent tothe engine, whi
h 
aptures them using the standard libp
ap over BPF me
hanism.In the engine, pa
kets are re
eived by the shunt shim and �ltered again. The goalis to take into a

ount the 
ase where the shunt devi
e made a mistake. If the pa
ketgets shunted again, it is sent to the analyzer. Otherwise, it is either reinje
ted intothe devi
e (if the right de
ision would have been forward), or dropped.The analyzer pro
esses the pa
ket. This pro
essing may result in insertion ordeletion of table entries in the shim and devi
e (see dotted lines in Figure 4.5), forwhi
h the analyzer has been extended.When the pa
ket pro
essing �nishes, the analyzer re-inje
ts the pa
ket into theshim. The shunt shim performs a third �ltering, this time to take into a

ount the
ase where the analyzer modi�ed a table in a way that 
hanges the way the pa
ketgets pro
essed. If the result is again di�erent from drop, the pa
ket is sent ba
k intothe devi
e, where it is �nally reinje
ted ba
k into the network.4.5.2 Devi
e-to-Shim Conne
tionIn the 
urrent implementation, from the two options to make the devi
e 
ommuni
atewith the shim (PCI bus and Ethernet 
onne
tion), we have sele
ted the latter for



224this implementation. The reason is twofold: First, during the design and testingphase of the proje
t, it is easier to simulate the the Ethernet 
onne
tion (by usingvirtual devi
es) than the PCI bus. Se
ond, the software devi
e simulator used fordebugging provides the full hardware devi
e fun
tionality (ex
ept the performan
e),and therefore 
an be used in 
ases where the pro
essed tra�
 stream is intermediate,meaning high enough as to 
ause problems to an analyzer 
apturing pa
kets dire
tlyfrom the network, but not as high as to require the real, hardware shunt devi
e.For the �rst implementation, the Ethernet 
onne
tion used is point-to-point,instead of shared.As the devi
e and shim 
ommuni
ate using a dedi
ated Ethernet 
onne
tion, theyuse network tra�
 to ex
hange information. This network tra�
 
an be divided indata pa
kets and 
ontrol pa
kets.Data pa
kets 
orrespond to pa
kets that are shunted (devi
e to shim) and pa
ketsthat are re-inje
ted by the devi
e (shim to devi
e). Data pa
kets are atta
hed tosome information on the de
ision taken. For example, when the devi
e sends ashunted pa
ket to the shim, it must atta
h information on why the pa
ket was shunted(in
luding the table that mat
hed, and sampling information, if it applies), and thein
oming network interfa
e. When the shim sends ba
k the pa
ket, it must in
ludethe in
oming interfa
e, so that the pa
ket 
an be re-inje
ted in the opposite interfa
e.Control pa
kets are sent using a new proto
ol, known as the Shunt Inter
onne
tProto
ol (SHIP), whi
h runs over UDP.



225Shunt Inter
onne
t Proto
olFigure 4.6 shows the SHIP pa
ket format. The shaded se
tion represents thepa
ket header, and the blank se
tion represents the pa
ket payload.
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Bytes
0-34-78-1112-1516-1920-23

Bits0 4 8 12 16 20 24 28 31SHIP Proto
ol Identi�
ationPa
ket TypeSHIP Pa
ket Length (in
luding the header)Sour
e Identi�erDestination Identi�erMessage Identi�erSHIP PayloadFigure 4.6: Shunt Inter
onne
t Proto
ol Pa
ket FormatTable 4.2 des
ribes the 24 byte header �elds.�eld length (bytes) explanationproto
ol version 4 support for proto
ol versionstype 4 
ontrol message typelength 4 SHIP pa
ket length, in
luding 24-byte headersour
e ID 4 support for multiple engines/devi
esdestination ID 4 support for multiple engines/devi
esmessage ID 4 identi�er to implement reliabilityTable 4.2: Shunt Inter
onne
t Proto
ol HeaderThe 
ontrol message types, and the 
orresponding SHIP payloads, are des
ribedin Table 4.3. In this table, the �dire
tion� information states whether the 
ontrolpa
ket 
an be seen in the shim-to-devi
e dire
tion (s → d), devi
e-to-shim dire
tion(s ← d), or both (s ↔ d). The exa
t semanti
s and payload 
ontents are des
ribed



226in Se
tion B.1 of Appendix B.SHIP ReliabilityIf the shim and the devi
e 
ommuni
ate through a network link, we must 
onsiderthe possibility of pa
ket losses, espe
ially be
ause the shared 
hara
ter of Ethernetpresents issues like 
ollisions, and physi
al problems whi
h in
rease the loss rate fromthe 
hannel Bit Error Rate (BER).Our reliability approa
h uses a simple sliding window me
hanism, and is used onlywith 
ontrol pa
kets, where losing a single pa
ket may a�e
t the shunt pro
essing.For data pa
kets, we assume the transport proto
ol in the 
orresponding 
onne
tionend-hosts will 
are about reliability, if needed at all.When either the shunt devi
e or the shunt shim want to send a reliable 
ontrolpa
ket, they prepend a unique, 
onse
utive identi�er to the pa
ket, send it, and storeit in a �xed-size bu�er. When either the devi
e or the shim re
eive a pa
ket markedas reliable, they a
knowledge it by sending an ACK message ba
k asso
iated to thepa
ket identi�er.Both sides use timers to a
hieve reliability. When sending a reliable pa
ket at time
t, the message sender also sets a retransmission timer at time t + ∆ in the future,where ∆ is a 
on�gurable, �xed value. On re
eiving an a
knowledgment pa
ket forthe 
orresponding identi�er, the bu�er frame where the pa
ket was stored is freed,and the retransmission timer is either 
an
eled or reset. If, on the other hand, the
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Table 4.3: Shunt Inter
onne
t Proto
ol Payload
ontrol message type (dire
tion) parameters explanationa
k (s ↔ d) message was re
eiveda
ked_msg_id a
ked messaged identi�erdevi
e_ready (s ← d) devi
e is alivedev_id devi
e identi�eropen (s → d) initialize the devi
e�lter_strings forward, drop, and shunt �lters�lter_priority forward, drop, and shunt �lter priorities�lter_sample sampling ratio for the �ltersdefault_sample default sampling ratiofailsafe_mode fail-safe mode (fail-open or fail-
lose)
apabilities (s ← d) devi
e 
apabilitiesversion devi
e versionni
s information on the network adapters the devi
e listens to
lose (s → d) 
lose the devi
e
lose (s ← d) the devi
e had to 
losereset (s → d) reset the devi
ehard whether the reset must be hard or softstats whether the devi
e must reset its statisti
stables whether the devi
e must reset its tableserror (s ← d) report an error
ode error 
odestatus_request (s → d) request the devi
e statuson_o� send status periodi
allystatus_response (s ← d) return the devi
e statusdata devi
e status (table 
ontents)statisti
s_request (s → d) request the devi
e statisti
son_o� send statisti
s periodi
ally Continued on next page
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ontrol message type (dire
tion) parameters explanationstatisti
s_response (s ← d) return the devi
e statisti
sdata devi
e statisti
s (information on pa
ket/bytesforwarded/dropped/shunted/inje
ted during lastse
ond/sin
e start)asso
iate_
onn (s → d) insert a tuple in the 
onne
tion tablesr
_addr 
onne
tion's sour
e addresssr
_port 
onne
tion's sour
e portdst_addr 
onne
tion's destination addressdst_port 
onne
tion's destination portforth_a
tion whether pa
kets in the forth dire
tion must beforwarded/dropped/shuntedba
k_a
tion whether pa
kets in the ba
k dire
tion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioasso
iate_addr (s → d) insert a tuple in the address tableaddress the addressforth_a
tion whether pa
kets in the forth dire
tion must beforwarded/dropped/shuntedba
k_a
tion whether pa
kets in the ba
k dire
tion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioasso
iate_port (s → d) insert a tuple in the port tableport the portforth_a
tion whether pa
kets in the forth dire
tion must beforwarded/dropped/shuntedba
k_a
tion whether pa
kets in the ba
k dire
tion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratio Continued on next page
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ontrol message type (dire
tion) parameters explanationdeasso
iate_
onn (s → d) deasso
iate a tuple from the 
onne
tion tablesr
_addr 
onne
tion's sour
e addresssr
_port 
onne
tion's sour
e portdst_addr 
onne
tion's destination addressdst_port 
onne
tion's destination portdeasso
iate_addr (s → d) deasso
iate a tuple from the address tableaddress the addressdeasso
iate_port (s → d) deasso
iate a tuple from the port tableport the portevi
tion_
onn (s ← d) a tuple was evi
ted from the 
onne
tion tablesr
_addr 
onne
tion's sour
e addresssr
_port 
onne
tion's sour
e portdst_addr 
onne
tion's destination addressdst_port 
onne
tion's destination portevi
tion_addr (s ← d) a tuple was evi
ted from the address tableaddress the addressevi
tion_port (s ← d) a tuple was evi
ted from the port tableport the port



230timer expires before re
eiving the 
orresponding ACK, the pa
ket whose transmissiontime has also expired is retransmitted, and the asso
iated timer reinstated.In order to make things as simple as possible for the hardware devi
e, ACKmessages are individual, not 
umulative, and they are assumed to be unreliable. Thismeans that retransmissions only o

ur when a pa
ket has not been a
knowledgedafter ∆ se
onds. On the other hand, an ACK may also be lost. In this 
ase, the timer
orresponding to the una
knowledged pa
ket will expire, and the pa
ket will be sentagain.If, at any time, the number of retransmissions for a single pa
ket sent from thedevi
e rea
hes a �xed threshold, or the devi
e tries to send a reliable pa
ket and thebu�er is full, we assume the devi
e and the shim have 
ommuni
ation problems, andmove the former to fail-safe state. The devi
e drains 
ompletely its bu�er, and sendstwo messages to the shim: One to report it had a bu�er error, and the se
ond toreport it is ready to be initialized again.If, at any time, the shim tries to send a reliable pa
ket, and the bu�er is full, thebu�er is drained and a �full bu�er� error message is sent to the shunt shim. Whenre
eiving this message, the shim knows something bad is going on with the devi
e,and may opt for putting it in fail-safe mode, or resyn
hronizing the table 
ontents.Table Syn
hronizationBoth the shim and the devi
e have their own 
opies of the three dynami
 tables.



231The 
ontents of the devi
e tables need not be exa
tly the same than those of theshim tables. Instead, they will be just a subset of the 
ontents of the shim tables.The reason of this di�eren
e is that the shunt devi
e is implemented in hardware,and therefore its 
apa
ity will be limited. In 
omparison, the shim runs on ano�-the-shelf host, and therefore it may use more resour
es for the tables.In some sense, the devi
e tables work as a 
a
he of the shim tables: They have lessspa
e, but in ex
hange they operate faster. The only requirement is that there areno entries in the devi
e tables that are not in the 
orresponding shim table. Defaultshunting 
ombined with the fa
t that the devi
e is obliged to report any table evi
tion,ensures that the limited 
apa
ity of the devi
e tables only a�e
ts the performan
e ofthe shunting pro
ess, not the 
orre
tness.SHIP Syn
hronizationSHIP in
ludes a me
hanism to syn
hronize the tables devi
e and shim. Thesyn
hronization me
hanism is very simple: it permits sending the full table 
ontentsto the other side in an e�
ient fashion (several tables per pa
ket, instead of one tupleper pa
ket, as in the normal method).The syn
hronization me
hanism uses reliable transmission. In order to avoid usingall the bu�er retransmission spa
e, only a handful of pa
kets are sent at the sametime. Further pa
kets are 
lo
ked by in
oming pa
kets.Syn
hronization works in both dire
tions, i.e., syn
hronizing the shim with the



232devi
e, or the devi
e with the shim.In the �rst 
ase, the shim sends all the entries in its three tables to the devi
e,whi
h uses them to �ll its own tables. This syn
hronization method is useful afterthe shim moves the devi
e from fail-safe state to working state. If the shim wants topopulate the devi
e qui
kly, using the normal table a

ess me
hanism will implysending one SHIP pa
ket per tuple. Instead of that, the SHIP syn
hronizationme
hanism permits inserting several tuples per pa
ket (as many as �t in a networkpa
ket).The devi
e may not be able to �t all the entries in its tables, for example for la
kof 
apa
ity. In this 
ase, it may evi
t the entries that do not �t, provided that itreports the evi
tions to the shim.In the se
ond 
ase, a useful s
enario 
onsists of the shim willing to know the
ontents of the devi
e tables. This is useful, for example, when the shim and thedevi
e run on separate pla
es, and the former 
rashes. When it is restarted, it mayask the devi
e for its table 
ontents. At the shim request, the devi
e will respond bysending syn
hronization pa
kets with all the tuples in its three tables. On re
eivingthe pa
kets, the shim generates an per-tuple event on the analyzer, whi
h the latter
an use, for example, to populate its shim's tables. An alternate approa
h would befor the shim to drive the extra
tion pro
ess, so that it 
an request just subsets of thetables.Note that, in both 
ases, the pro
ess is initiated by the analyzer. There is a
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i�
 
all that allows the analyzer to request syn
hronization in either dire
tion.Again, the goal is to permit very simple hardware devi
es.During the syn
hronization pro
ess, normal operation 
ontinues. This means that,while the devi
e is sending its table's entries, the 
ontents of the tables may 
hange,either be
ause the analyzer requested so, or be
ause there were evi
tions in the devi
e.4.5.3 Shunt Devi
eFigure 4.7 shows the devi
e stru
ture. The devi
e 
aptures and inje
ts tra�
from two network taps. It has its a 
opy of the three tables, whi
h it uses (alongsidethe stati
 �lters) to de
ide whether ea
h pa
ket should be forwarded to the oppositeinterfa
e, dropped, or shunted to the shim for further pro
essing. The devi
e mayalso re
eive pa
kets from the shim, whi
h are inje
ted in the tap opposite to the onefrom whi
h they were originally 
aptured.Devi
e StatesThe shunt devi
e operates in one of two di�erent states. Figure 4.8 shows thedevi
e state transition diagram. The normal operation just des
ribed o

urs whenthe devi
e is in �working state�. The operation in �fail-safe� mode is des
ribed below.
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PSfrag repla
ements
to shim from shim


onn tableaddr tableport table
stati
 �lters

from/to tap 1 from/to tap 2
shuntdrop forward

?
?
Figure 4.7: Shunt Devi
e Stru
ture

PSfrag repla
ements fail-safe
working

start/send(devi
e_ready)re
eive(
lose), networkor bu�er problems/send(error), send(devi
e_ready) re
eive(open)/send(
apabilities)
Figure 4.8: Shunt Devi
e State Transition Diagram



235Devi
e FilteringFigure 4.9 shows the full devi
e �ltering algorithm in working state, in
ludingsampling.1 get a pa
ket2 query 3 tables and 3 stati
 �lters. Choose the entry with highestpriority, or �default� (shunt) if none mat
hesde
ision = F/D/S (forward,drop,shunt)3 de
ide whether the pa
ket must be sampled, a

ording to �ve a
tions3.1 
onne
tion tableif there is an entry for the pa
ket 
onne
tion, and the 
orrespondingtuple sampling ratio (TSR) is non-zero, use it to de
idewhether to sample the pa
ket or not3.2 same for the address table3.3 same for the port table3.4 3 stati
 �ltersif the �lter sampling ratio (FSR) for any of the 3stati
 �lters is non-zero, use it to de
ide whether to samplethe pa
ket or not3.5 global sampling ratio GSRif the GSR is non-zero, use it to de
ide whether to sample thepa
ket or not4 de
ide what to do with the pa
ketde
ision = de
ision from step 2if (steps 3.1 to 3.5 
ause the pa
ket to be sampled)de
ision = shuntmark the pa
ket as �sampled by a
tion(s)�, wherea
tion is ea
h a
tion that 
aused the pa
ket to be sampledFigure 4.9: Shunt Devi
e Filtering Algorithm



236Layer-2 Transparen
yThe shunt devi
e is transparent at layer 2. I.e., pa
kets forwarded keep theiroriginal Ethernet addresses. The reason is twofold: First, the goal of the devi
e isto be unnoti
ed by all endhosts, ex
ept atta
kers, who should see it as a very lossy
hannel. Se
ond, we want to be able to plug the full system in the middle of a linkwithout the need to take 
are of any link-layer issue.This de
ision means that, for data pa
kets going the shunt path, all layers above(and in
luding) layer 2 must be preserved inta
t. On the other hand, we mentionedin Se
tion 4.5.2 that data pa
kets must in
lude some per-pa
ket information.Considering that the devi
e-shim 
ommuni
ation is 
arried out using a point-to-pointEthernet 
onne
tion, there are two alternatives to in
lude the information:
• The generi
 solution is to en
apsulate the data pa
kets into ethernet/IP/UDPpa
kets. This is �exible, but it may 
ause problems when the shunted pa
ketis maximum-size itself. In this 
ase, transmission of the pa
ket must be doneusing very large (jumbo) frames, whi
h may present transmission problems.
• For the preliminary implementation used in this proje
t, we have taken advantageof the fa
t that the devi
e-shim 
onne
tion is point-to-point, and that, for NIDSpurposes, only a handful of network proto
ols are of interest (namely IP, ARP,and reverse ARP, whi
h 
an be spe
i�ed using only 2 bits). We have remappedthe original 16-bit ethertype �eld, using only the �rst 2 bits, and pa
ked the



237per-pa
ket information in the remaining 14 bits. Se
tion B.3 in Appendix Bdes
ribes the remapping.Fail-Safe OperationThe goal of the fail-safe state is to permit the devi
e to keep operating safelyeven when the engine or any of its parts has 
rashed. Inline pa
ket-pro
essingadds stringent requirements to the system reliability: In 
ase of problems in theshunting system, some network operators will prefer to fail-open, meaning to disablethe shunting system and forward all the tra�
. Network operators with di�erentrequirements may prefer to 
ut the 
onne
tivity of their site before letting tra�
 passwithout having been passed through the analyzer.If the shim sends a Close message to the devi
e, or the devi
e dete
ts it ismalfun
tioning, the latter will go into fail-safe mode. In the se
ond 
ase, a Closemessage is sent ba
k to the shim, if possible, a

ompanied by an Error message, ifneeded.In the devi
e's fail-safe state, all data pa
kets re
eived are either dire
tly forwardedto the other network tap (fail-open mode), or dropped (fail-
lose mode). The fail-overmode 
an be set by the analyzer through the shim API.



238Devi
e ImplementationCurrent network interfa
e 
ards do not provide enough fun
tionality to 
lassifytra�
 as the Shunting ar
hite
ture requires. Therefore, we are working on thedevelopment of a spe
i�
 pie
e of hardware that will provide it. Ni
k Weaver fromthe International Computer S
ien
e Institute is building a hardware devi
e that willwork as the shunt devi
e.While we are building the hardware devi
e, we have written a software simulatorof the devi
e. This �software devi
e� implements the full fun
tionality of the hardwaredevi
e. It has been written using Cli
k [Morris et al., 1999℄.The software devi
e also provides a 
heap Shunting system for low-bandwidthlinks (100 Mbps or less), and an easy-to-debug testbed.4.5.4 Analyzer-to-Shim APITable 4.4 and Table 4.5 des
ribe the API exported by the shim to the analyzer.It in
ludes fun
tions (messages whi
h the analyzer uses to program the shim) andevents (
alls initiated by the shim to report something to the analyzer). As our �rstimplementation uses Bro, fun
tions and events are des
ribed using the Bro s
riptlanguage.Note that most of the API fun
tions have a one-to-one 
orresponden
e in theshim-to-devi
e API. The only additions are shunt_inje
t_pa
ket and shunt_drop_pa
ket,that permit expli
it forwarding or dropping of a pa
ket at the shim. The exa
t



239semanti
s of ea
h API fun
tion and event are des
ribed in Se
tion B.1 in Appendix B.4.5.5 Shunt ShimFigure 4.10 shows the shim stru
ture. The shim re
eives a pa
ket from the devi
e,and has a 
opy of the tables to 
arry out �ltering. If it de
ides to shunt a pa
ket,it sends the pa
ket to the analyzer, whi
h pro
esses it. After the pro
essing, and ifthe analyzer inje
ts ba
k the pa
ket, it is �ltered again in the shim, and if �nallya

epted, sent ba
k to the devi
e for inje
tion into the wire.Note that the shim stru
ture is very similar to that of the devi
e (
ompare withFigure 4.7). The devi
e re
eives tra�
 from two network taps, and �lters it usingits tables. The tables are likely very limited, as the devi
e may be implemented inhardware with limited resour
es, and are 
ontrolled by SHIP tra�
 from the shim.Most of the tra�
 should be dire
tly forwarded, and therefore inje
ted in the tapdistin
t to the one where the pa
ket was re
eived. If the de
ision is to shunt, thetra�
 is pushed up to the shim.The shim re
eives tra�
 from the devi
e, and �lters it using its own tables. Theshim tables are unlimited, as the shim typi
ally runs on an o�-the-shelf host, andare 
ontrolled by the analyzer through the shunt API. Most of the tra�
 should besent to the analyzer (otherwise the shim is performing badly) and pro
essed there.If reinje
ted by the analyzer, the pa
ket is �ltered again (to take into 
onsideration
hanges in the tables 
aused by the pro
essing of the very same pa
ket), and then
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Table 4.4: Bro Shunt A

ess API (Fun
tions)fun
tion parameters explanationshunt_open open the devi
eshunt_
lose 
lose the devi
eshunt_reset reset the devi
ehard whether the reset must be hard or softshunt_inje
t_pa
ket inje
t the pa
ket 
urrently being analyzedshunt_drop_pa
ket drop the pa
ket 
urrently being analyzedshunt_asso
iate_
onn insert a tuple in the 
onne
tion table
onn_id 
onne
tion IDforth_a
tion whether pa
kets in the forth dire
tion must beforwarded/dropped/shuntedba
k_a
tion whether pa
kets in the ba
k dire
tion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioshunt_asso
iate_addr insert a tuple in the address tableaddress the addressforth_a
tion whether pa
kets in the forth dire
tion must beforwarded/dropped/shuntedba
k_a
tion whether pa
kets in the ba
k dire
tion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratio Continued on next page
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fun
tion parameters explanationshunt_asso
iate_port insert a tuple in the port tableport the portforth_a
tion whether pa
kets in the forth dire
tion must beforwarded/dropped/shuntedba
k_a
tion whether pa
kets in the ba
k dire
tion must beforwarded/dropped/shuntedpriority tuple prioritysampling tuple sampling ratioshunt_deasso
iate_
onn evi
t a tuple from the 
onne
tion table
onn_id 
onne
tion IDshunt_deasso
iate_addr evi
t a tuple from the address tableaddress the addressshunt_deasso
iate_port evi
t a tuple from the port tableport the portshunt_get_status request devi
e statusshunt_get_statisti
s request devi
e statisti
s
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Table 4.5: Bro Shunt A

ess API (Events)event parameters explanationshunt_asso
iate_
onn_event a tuple was inserted into the 
onne
tion table
onn_id 
onne
tion IDshunt_asso
iate_addr_event a tuple was inserted into the address tableaddress the addressshunt_asso
iate_port_event a tuple was inserted into the port tableport the portshunt_deasso
iate_
onn_event a tuple was evi
ted from the 
onne
tion table
onn_id 
onne
tion IDshunt_deasso
iate_addr_event a tuple was evi
ted from the address tableaddress the addressshunt_deasso
iate_port_event a tuple was evi
ted from the port tableport the portshunt_query_de
ision_event the shim took a pa
ket de
isionpkt_hdr pa
ket headerde
ision the de
ision takenreason rationale behind the de
isionshunt_status_event devi
e status re
eivedshunt_statisti
s_event devi
e statisti
s re
eived



243sent ba
k to the devi
e for inje
tion in the wire.
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Figure 4.10: Shunt Shim Stru
ture
4.5.6 AnalyzerWe use Bro with some extensions as ba
k-end software NIPS driving the engine.The list of modi�
ations 
arried out in Bro in
lude (a) reading pa
kets from the shim,instead of the network tap, (b) inje
ting pro
essed pa
kets ba
k into the shim, (
)extending Bro analyzers to 
ontrol the shunting system, and (d) having dire
t reada

ess to the 
onne
tion, address, and port tables by exporting them into Bro. Thelast modi�
ation permits a

ess to the tables from Bro s
ripts (though read-only),



244and also making the tables persistent.Note that the analyzer extensions are 
on�gurable. We des
ribe the ones set bydefault. Those in
lude so far the following items:
• Bro ports
anning analyzer (s
an.bro) in
ludes a fun
tion that is typi
ally 
alledwhen the analyzer dete
ts a ports
an (drop_address()). We have extendedsu
h fun
tion to in
lude an entry in the address table with a drop yield, so thatfurther pa
kets from the mentioned address are dropped dire
tly in the shuntdevi
e.
• Bro's 
onne
tion analyzer (Conn.

) in
ludes SetSkip(), a fun
tion that analyzers
all when they do not need to see more payloads of a given 
onne
tion. It isused, for example, by the SSH, SSL, and login analyzers. We have extended thefun
tion to insert a tuple in the 
onne
tion table, with a forward yield.
• Any TCP or UDP 
onne
tion whose proto
ol is not supported by any Broanalyzer is also inserted in the 
onne
tion table, with a forward yield. Therationale is that, if no appli
ation-layer analyzer is available, then the onlyevents that need be reported are those related to the network and transportlayers, whi
h are indeed 
aptured by the shunt stati
 �lter.
• Multi
ast tra�
 
auses the 
orresponding multi
ast address to be in
luded inthe address table with a forward yield.
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• The SSH analyzer has been extended to set a forward yield in the 
onne
tiontable when it thinks the 
onne
tion is OK.
• Bro's FTP analyzer (ftp.bro) has been 
on�gured to set a drop entry for FTPdata and 
ontrol 
onne
tions where bu�er over�ow atta
ks based on ex
essive�lenames are dete
ted; and a forward entry for all other FTP data 
onne
tions.Both passive (PASV and EPSV 
ommands) and a
tive FTP data 
onne
tions(PORT and EPRT 
ommands) are identi�ed from the FTP 
ontrol 
onne
tions.In both 
ases, if the FTP analyzer does not see anything strange in the FTP
ontrol 
onne
tion, an entry 
orresponding to the data 
onne
tions is set toforward in the devi
e 
onne
tion table
• The HTTP analyzer has been extended as follows: If the 
on�guration in
ludesthe HTTP request analyzer, all the requests are shunted for in-Bro analysis. Ifthe 
on�guration in
ludes the HTTP reply analyzer, all the replies are shuntedfor in-Bro analysis. Otherwise the replies are dire
tly forwarded (even while therequests may still be shunted).If an HTTP 
onne
tion's request is in Bro's list of dangerous (sensitive) URLs,or the 
ontents of the reply are deemed dangerous, a drop entry is set in thedevi
e's 
onne
tion table.
• When a TCP 
onne
tion is �nished, Bro's TCP 
onne
tion analyzer (TCP.

)raises a 
onne
tion_�nished event. We have extended this event to remove the
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orresponding entry from the 
onne
tion table.
4.6 Evaluation4.6.1 Proje
t StatusWe have written the shim and extended a well-known NIDS (Bro) to be usedas the engine's analyzer. Note that this transforms the NIDS to a de fa
to NIPS,allowing Bro to instantly blo
k atta
k tra�
.We are still working on the implementation of the hardware devi
e. In orderto be able to analyze the shunt performan
e, we have written a �software devi
e�,a program that simulates the fun
tionality of the hardware shunt devi
e, in
ludingthe use of a �xed amount of resour
es. The software devi
e permits us (a) gainingunderstanding of the �ltering e�e
t of the shunt devi
e, (b) obtaining a hint on thenet performan
e bene�ts, and (
) allowing the running of the Shunt ar
hite
ture bysoftware-only means in low-speed links (sort of a poorman's shunt ar
hite
ture).We have so far extended Bro's SSH, HTTP, FTP, and generi
 TCP 
onne
tionanalyzer to take advantage of the shunt ar
hite
ture. We are working in extendingmore Bro analyzers, to ensure full use of the shunt 
apabilities.The 
ode 
onsists of 16 K lines, mainly heavily-
ommented C++ 
ode, from whi
h6.4 K are used in 
ommon 
ode (SHIP proto
ol and table implementation), 4.6 K areused for the shunt shim, 2 K for the analyzer extension (in
luding some Bro s
ripts),



247and 3 K lines for the shunt simulator (in
luding some 
li
k glue).We have run several experiments to measure the bene�t obtained by the shuntingar
hite
ture. These experiments 
over four di�erent aspe
ts:The main bene�t of the shunt ar
hite
ture is that the NIPS has to pro
ess onlya fra
tion of the total tra�
 being analyzed. Shunting �lters the tra�
 that theanalyzer re
eives, and most of the tra�
 is dire
tly pro
essed in the shunt devi
e.Se
tion 4.6.3 quanti�es this bene�t, measured as the �ltering ratio, whi
h is de�nedas the amount of tra�
 that a NIPS has to pro
ess when used as the analyzer inthe shunt engine, 
ompared to what the same NIPS would have to pro
ess if runningwithout shunting.Se
ond, this shunt �ltering e�e
t has as natural 
onsequen
e an enhan
ement inthe system performan
e: If the NIPS running as the analyzer in the shunt engine hasto pro
ess less tra�
 than when running without shunting, it should also run faster.While it is hard to evaluate this bene�t without a hardware devi
e, Se
tion 4.6.4 triesto provide some hints.The third e�e
t we have investigated is the in�uen
e of limited tables in the shuntdevi
e �ltering performan
e. We want to know how mu
h we should augment theshunt devi
e 
apabilities in order to deal with a real tra�
 environment. Se
tion 4.6.5studies the �ltering ratio for several table 
on�gurations.Finally, Se
tion 4.6.6 des
ribes the experien
e obtained from running the shuntar
hite
ture in a live environment.



2484.6.2 Tra
e Des
riptionThis Se
tion des
ribes the di�erent tra
es in whi
h we have run Bro with shunting.Isolated ExperimentsFirst, and in order to double 
he
k that the shunt is working �ne, we have used 2isolated port tra
es, namely ssh-1 and www-1 .ssh-1 is a 45 min tra
e taken at Lawren
e Berkeley National Lab (LBL) DMZ onNovember 2004. It 
onsists of port 22-tra�
 only, and a

ounts for 757 
onne
tions,2 M pa
kets, or 1 GB (an average of 530 bytes/pa
ket).www-1 is a 25 min tra
e taken at LBL DMZ in September 2004. It 
onsists of port80 tra�
 from or to the LBL web server. The tra
e a

ounts for 2320 
onne
tions,150 K pa
kets, or 100 MB (an average of 670 bytes/pa
ket).t
p-1 Tra
e Des
riptionA more realisti
 tra
e (t
p-1 ) was obtained at the LBL DMZ, whose link is 1 Gbps.It 
onsists of TCP-tra�
 only, and a

ounts for 1.2 M 
onne
tions, 127 M pa
kets,and 113 GB (an average of 892 bytes/pa
ket). The tra
e was taken during workinghours on a weekday, in September 2005. Its total duration is 2 hours (an averagebitrate of 126 Mbps).



2494.6.3 Shunt Filtering RatioThe most important bene�t of the shunt ar
hite
ture is the redu
tion in theamount of tra�
 the analyzer must pro
ess. We de�ne the �ltering ratio as theproportion of the analyzed tra�
 that a NIPS has to really pro
ess when used as theanalyzer in the shunt engine. For example, a �ltering ratio of 10% means that, fromall the tra�
 in the wire, the analyzer really pro
esses 10%, and the remaining 90%is pro
essed in the shunt devi
e.In order to measure the �ltering ratio, our �rst experiment uses an unlimited-sizeshunt devi
e simulator. Bro was 
on�gured to use the shunt 
apabilities only for thethree Bro analyzers that have been modi�ed to do so (HTTP, SSH, and FTP). Inorder to permit full HTTP payload inspe
tion, Bro's HTTP analyzer was 
on�guredso that it requests shunting for all tra�
 in both the server-to-
lient (the pa
kets that
onform the bulk data transmission) and 
lient-to-server dire
tion (the ACKs that
lo
k the bulk data transmission).Isolated ExperimentsWe ran some introdu
tory experiments in the ssh-1 and www-1 tra
es. In the �rst
ase, the �ltering ratio is extremely small, around 0.2% of the pa
kets and 0.05% ofthe bytes.In the www-1 
ase, the �ltering ratio is 100%: There are no savings at all, as theshunt is instru
ted to divert all HTTP tra�
 to the analyzer for pro
essing.
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p-1 ResultsFrom the total amount of tra�
, all of the 1.2 M 
onne
tions had at least onepa
ket shunted. The tra�
 shunted a

ounted for 30 M pa
kets and 20 GB, i.e., a�ltering ratio of 24% of the pa
kets or 18% of the bytes.In order to understand what is being shunted by the devi
e, Table 4.6 shows thede
omposition of the shunted tra�
. per
entage on shunted tra�

ategory pa
kets bytes1 �ags 13.7 1.322 AUS 71.6 85.72.1 FTP 0.05 0.012.2 SSH 0.02 0.002.3 HTTP 71.6 85.72.3.1 sr
 HTTP 43.6 80.12.3.2 dst HTTP 28.0 5.612.3.2.1 HTTP ACKs 24.0 1.572.3.2.2 HTTP GET/POST 4.03 4.043 AAS 14.3 12.993.1 port 25 3.47 4.213.2 port 8000 1.36 0.493.3 port 443 5.55 4.543.4 port 993 2.62 2.443.5 port 995 0.99 1.034 NAN 0.33 0.03Table 4.6: Shunted Tra�
 De
omposition, t
p-1The des
ription of the di�erent 
ategories is as follows:1 (�ags) 
orresponds to TCP �ags (TCP segments with the SYN, FIN, or RST�ag set). This tra�
 is required in order to monitor transport proto
ols, andto a

ount for 
onne
tions.



2512 (AUS) 
orresponds to tra�
 for whi
h Bro has an analyzer, and this analyzerhas been modi�ed to take advantage of the shunt. Currently this in
ludes theHTTP, SSH, and FTP analyzers.2.3.1 
orresponds to tra�
 with port 80 as sour
e. This HTTP tra�
 
orresponds tothe bulk data being transmitted in HTTP 
onne
tions. Note that this a

ountsfor 
lose to 85% of the bytes.2.3.2 
orresponds to tra�
 with port 80 as destination. This is HTTP tra�
, and
an be further subdivided as:2.3.2.1 
orresponds to empty ACKs that the 
lient users to 
lo
k data transmissionsfrom the server.Note that the typi
al empty ACK is a small pa
ket (43 bytes in average),and therefore any e�ort to redu
e this tra�
 
ategory will be only importanton pa
kets, not in bytes.2.3.2.2 
orresponds to the HTTP GET/POST lines that the 
lient uses to requestdata transmissions from the server.3 (AAS) 
orresponds to ports for whi
h Bro has an analyzer, but it has not beenmodi�ed to use the shunt. For these ports, all pa
kets are shunted, so that the
orresponding Bro analyzer 
an pro
ess them.The main sour
e of AAS tra�
 is HTTPS (port 443), whi
h a

ounts for 4.5% ofthe shunted bytes, and SMTP (port 25), whi
h a

ounts for 4.2% of the shunted



252bytes. The HTTPS and SMTP Bro analyzers are the two main 
andidates tobe instru
ted to use shunting.4 (NAN) 
orresponds to ports for whi
h Bro has no analyzer. Conne
tions whosedestination port has no analyzer in Bro are shunted as soon as Bro instantiatesthe 
orresponding per-
onne
tion data.Con
lusionsThe total bitrate that the analyzer re
eives gets redu
ed to less than one �fth ofthe original bitstream.Moreover, from this 20% of the total bytes that are shunted, 
lose to 85% of thebytes are 
aused by HTTP tra�
, in
luding 80% by HTTP payloads. Se
tion 4.7.1proposes a more �ne-grain me
hanism to deal with HTTP and other similar proto
ols.4.6.4 Shunt Performan
eThe �ltering ratio provides an idea of the appli
ability of the approa
h for di�erentlink bandwidths. On the other hand, this ratio does not ne
essarily translate into aproportional redu
tion in the amount of resour
es used in the analyzer.For on
e, it seems 
lear that as the �ltering ratio diminishes and less tra�
 rea
hesthe analyzer, this �ltered stream has been sele
ted for analysis, and therefore is morelikely of interest for the Intrusion Dete
tion Analyzer. We expe
t the amount ofanalysis required per pa
ket to be larger in the shunted stream than in the original



253one, and the savings in performan
e to be smaller than the savings in the shuntedbitstream.Also, it may be the 
ase that the main fa
tor in the NIDS performan
e is not thenumber of pro
essed pa
kets, but the number of pro
essed 
onne
tions, whi
h thestati
 shunt �lter at the devi
e ensures that are always seen by the analyzer.In order to 
he
k the savings in resour
es, we studied the performan
e of di�erent
on�gurations of Bro and shunt pro
essing the three experiment tra
es, measuring therunning (user plus system) time of ea
h of the 
on�gurations. The exa
t 
on�gurationswere as follows:T1 plain Bro (no shunt) on the original experiment tra
e, with the following analyzersloaded: s
an, ssh, ftp, http, http-event, http-request, http-reply, noti
e, 
onn,and weird.T4 Bro using shunting on the original experiment tra
e, without the simulatordevi
e, and using the same set of Bro analyzers.T5 Bro using shunting on the full tra
e, with the simulator devi
e (simdev), andusing the same set of Bro analyzers.T2 Bro using shunting on the �shunted tra
e�, a redu
ed tra
e 
omposed of thetra�
 that was shunted when running T5 on the original tra
e. T2 should beapproximately equivalent to running the shunt engine behind a real hardwareshunt devi
e, whi
h shunts to the engine the 
ontents of the shunted tra
e.



254Table 4.7 shows the results of running the four 
on�gurations in the three di�erenttra
es.tra
e 
on�guration time (se
onds)
total user systemssh-1 T1 (plain Bro) 5.4 4.2 1.2ssh-1 T4 (Bro+shunt) 12 11 1.0ssh-1 T5 (Bro+shunt+simdev) 20 19 1.0ssh-1 T2 (Bro+shunt on shunted tra
e) 0.25 0.24 0.01www-1 T1 (plain Bro) 6.5 6.4 0.18www-1 T4 (Bro+shunt) 7.3 7.2 0.18www-1 T5 (Bro+shunt+simdev) 8.6 8.4 0.18www-1 T2 (Bro+shunt on shunted tra
e) 7.3 7.1 0.16t
p-1 T1 (plain Bro) 2750 2500 250t
p-1 T4 (Bro+shunt) 3050 2800 250t
p-1 T5 (Bro+shunt+simdev) 3450 3200 250t
p-1 T2 (Bro+shunt on shunted tra
e) 2550 2500 50Table 4.7: Shunt Performan
e ResultsThe bene�t in the SSH tra
e 
ase is impressive for the T2 
ase. Bro with shuntingruns 22 times faster than the Bro without shunting.The poor performan
e of the 
ase T4, whi
h is two times slower than running Broby itself, states that �ltering tra�
 in the shim is slow, as 
ompared to 
apturing thepa
ket and just dis
arding it. From visual inspe
tion of a pro�le of the running, themain 
auses of the slowdown of the shim are (a) the stati
 �lter pro
essing in theshim (17% of the time is spent there), (b) the management of lo
al statisti
s in theshim (15%), and (
) the 
ost of using Bro tables so that they are a

essible from Bros
ripts (15%). We believe we 
an redu
e these three 
osts by (a) 
onsidering that thestati
 �lter pro
essing will be done 
orre
tly at the devi
e, and therefore does not



255need being repeated at the shim; (b) optimizing the performan
e, or disabling lo
alstatisti
s; and (
) exporting the table entries to the analyzer as fun
tions, instead oftables, whi
h would allow for a faster implementation.The poor performan
e of the 
ase T5, whi
h is four times slower than running Broby itself, states that the shunt devi
e implementation is also slow. We also pro�led this
ase, and realize that 75% of the pro
essing time is 
aused by the table implementationin the devi
e, whi
h fo
uses on saving spa
e by storing ea
h entry's key, yield, andvalid bit in the minimum number of possible bits. This has demonstrated to be apoor implementation de
ision, whi
h we are 
urrently �xing.In the www-1 tra
e, T1 runs 12% faster than T2. This extra 
ost of T2 (whi
hanalyzes the same tra�
, as all HTTP tra�
 is shunted to the engine) 
an beexplained by the �ltering of the tra�
 in the shim to 
he
k that the devi
e didits work well.In the t
p-1 tra
e, T2 ran 10% faster than T1. While this number is not impressive,the system time 
onsumed by T2 was one �fth of the system time 
onsumed by T1.This makes sense as the size of the shunted tra
e in the t
p-1 
ase is approximatelyone �fth of the original tra
e.We think there is a lot of leeway in the user pro
essing to make T2 run mu
hfaster than in T1. Also, the BTL approa
h des
ribed in Se
tion 4.7.1 should be ableto help with a redu
tion in the amount of HTTP tra�
 that rea
hes the engine.We also want to move the shunt devi
e to the kernel, adding is as an in-kernel



256�ltering alongside the BPF �ltering. This is relatively safe, as the size of the tables islimited and well-known beforehand, and the operations available are relatively simple(add or delete entries in the tables). This should provide added savings as the numberof pa
kets requiring a 
ontext ex
hange will be mu
h smaller.4.6.5 Devi
e Limited-Size In�uen
eThis Se
tion studies the e�e
t of the limited size of the shunt devi
e in the amountof tra�
 that rea
hes the analyzer in the engine.A shunt devi
e is a hardware devi
e, and therefore the resour
es it 
an use arelimited. We assume the hardware devi
e used to implement it would have a few MBof fast memory (SRAM), and some more slower memory (DRAM).The tables have been implemented in the shunt devi
e simulator as 
a
he tableswith a pseudo-random (
ryptographi
ally se
ure) hash fun
tion (H3 [Carter andWegman, 1979℄).From the three tables used in the shunting ar
hite
ture, we expe
t the 
onne
tiontable to be the most useful in �ltering tra�
, and at the same time the one requiringmore spa
e and the most used one. The port table is very minor (an exhaustive table
overing all the possible ports with the mentioned 10 bits/entry requires 80 KB), and[Weaver et al., 2004℄ shows how to tra
k all external IP addresses of note for a fairlylarge (several thousand hosts) site with a 4 MB table.We therefore fo
us our e�orts on investigating the e�e
t of the limited size of the
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onne
tion table.We have 
onsidered a 
onne
tion table with 1 MB, 2 MB, and 4 MB of spa
e,whi
h at 16 bytes per entry, �ts 64 K, 128 K, and 256 K entries, respe
tively. We havealso 
onsidered three di�erent levels of asso
iativity, namely 2-way, 4-way, and 8-wayasso
iativity. The three values are small enough as to permit qui
k read-only pa
ketpro
essing. The last parameter whose e�e
t we have studied is the evi
tion poli
yin the 
a
he table. We have 
onsidered random and Least Re
ently Used (LRU )evi
tion.For any 
ombination of the three parameters, the �ltering ratio result is 
omparedwith the �ltering ratio assuming an in�nite table. What we want to know is how mu
htra�
 will rea
h the engine for di�erent 
a
he 
on�gurations.For all the experiments, we have used the t
p-1 tra
e des
ribed before. The tra
eis 
omposed of 1.2 M 
onne
tions, and the analyzer has a maximum instant demand(the maximum number of entries in the table 
onne
tion that are needed at anygiven time) of 200 K entries. Note that this number is 
lose to 3 times larger thanthe 
apa
ity of the smallest size 
on�guration.Figure 4.11 shows the number of entries requested by the analyzer (top line), andthe number of entries used for di�erent 
ombinations of 
apa
ity and asso
iativity.Results using LRU evi
tion are very similar to those using random evi
tion, andtherefore are not shown.We 
an see that, in the 
on�gurations with 64 K and 128 K entries, the analyzer



258rea
hes the maximum 
apa
ity of the table before the end of the experiment. While it
an be argued that the 256 K entry 
on�guration would eventually run into 
apa
ityproblems, and therefore its long-term performan
e 
annot be understood, this is notthe 
ase for the 64 K and 128 K entry ones, whi
h do work in a stable state for alarge part of the experiment.
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e sending to the shunt, orin other words, whi
h is the penalty of a limited-size devi
e.We 
an see that, in general, LRU 
auses around one order of magnitude less extra



259in
orre
tly shunted tra�
 than random evi
tion. Moreover, LRU gets more bene�tfrom higher asso
iativity than random evi
tion. This is also expe
ted, as LRU gets
an make better use of a higher asso
iativity to optimally evi
t the tuples.The drawba
k of LRU is that every table read operation requires a write operation,in order to a

ount for the least re
ently used entry.
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e.



260The Figure only presents results for the 64 K entry table 
ases (the 
ases withmore entries have lower per
entages of in
orre
tly shunted bytes). The results showthat higher asso
iativities and LRU evi
tion perform 
onsistently better than lowerasso
iativities and random evi
tion, respe
tively. This was expe
ted as reissuingentries permits LRU evi
tion and a larger asso
iativity to optimize the 
ompositionof the table by trial and error.The most interesting aspe
t of the experiments, though, is how small the e�e
tof limited-size devi
es is. In the worst 
ase (random evi
tion, 2-way asso
iativity,64 K entries), the maximum amount of in
orre
tly shunted data is a meager 0.07%of the total tra�
. This is also true when using smaller time periods: The maximumamount of in
orre
tly shunted data in a 10 se
 period is 0.7% of the total tra�
.(The 
orresponding number for bytes are 0.2% for the 160 se
 period, and 0.4% forthe 10 se
 period).The main reason why the per
entages are so small is table reissuing. When theshim (whi
h has in�nite-size tables) dete
ts that a pa
ket shunted by the devi
e shouldhave been pro
essed dire
tly by the devi
e, it reissues the table entry to the devi
e.This means that at most one pa
ket would be dealt with in
orre
tly at the devi
e:After it rea
hes the shim, the latter reinstates its 
onne
tion table entry.By reissuing entries after ea
h miss, the shim qui
kly �nds the a
tive 
onne
tions.Pa
ket 
onne
tions present a very strong lo
ality of referen
e, both temporal andspatial: Pa
kets from the same 
onne
tion are typi
ally 
lose in time, and there
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Figure 4.13: In
orre
tly Shunted Bytesare not too many a
tive 
onne
tions present at a given time, 
ompared to the totalnumber of 
onne
tions ever seen in the wire.There 
ould be a problem if, in an N -way asso
iative 
a
he, N + 1 
onne
tionshashing to the same 
a
he position were a
tive at the same time (thrashing). Otherwise,either LRU or random will qui
kly evi
t the non-a
tive 
onne
tion (though LRUfaster).Comparing the extra amount of shunted data be
ause of the limited-
apa
itydevi
e with the results in Se
tion 4.6.3, the main 
on
lusions are that LRU is betterthan random (with higher asso
iativity, up to one order of magnitude less extratra�
), but that the per
entage of extra shunted tra�
 with a sensible-size table



262(1 MB) is so small, that the extra in-devi
e a

ounting needed in order to implementLRU is not worth.4.6.6 Live ShuntingWe have also run Bro with the shunt in a real, low-bandwidth environment, forover 262 hours (11 days). The total tra�
 pro
essed was 34 M pa
kets, or 9.8 GB(36 pkts/se
 and 83 Kbps, or around 300 bytes/pa
ket).The host used for shunting is a 2-pro
essor, Pentium (Xeon) at 3 GHz CPU(hyperthreading enabled) with 2 GB of memory running Linux (2.6.9 kernel). Thishost was used to route tra�
 between the internet and four hosts, in
luding someresear
her's desktops and laptops.Bro was 
on�gured to use the software shunt devi
e, and the shunt 
apabilitiesonly for the three Bro analyzers that have been modi�ed to do so (HTTP, SSH,and FTP). The HTTP analyzer was 
on�gured to request forwarding of all tra�
 inthe server to 
lient address, so that HTTP entity bodies (but not the HTTP entityheaders) are either forwarded or dropped at the simulator devi
e, but never shunted.Note that this approa
h is not the same than the one des
ribed in Se
tion 4.7.1, whereall HTTP entity bodies are shunted, independently of their type.From the full tra�
 pro
essed at the shunt devi
e, 8.9% of the pa
kets and 3.5%of the bytes were shunted. This 
orresponds to the devi
e having shunted to theanalyzer an average 3.2 pkts/se
, 2.9 Kbps, and 115 bytes/pa
ket. Note that the



263average shunted pa
ket is less than half the size of the average pa
ket seen at thedevi
e, whi
h makes sense due to the large per
entage of empty TCP pa
kets in theshunted tra�
.The peak amount of tra�
 shunted to the analyzer in a one-se
ond interval was750 pkts/se
, or 800 Kbps. During this peak, the time used by Bro to analyze thepa
kets a

ounted for 16% of the wall
lo
k time. The peak happened around oneweek after the experiment was started, so it was not due to 
old start. No pa
ketlosses were reported by any of the p
ap devi
es used to 
apture tra�
.Table 4.8 shows the de
omposition of the 3 M pa
kets (345 MB) shunted.per
entage on shunted tra�
type pa
kets bytes1 �ags 26.54 13.622 AUS 51.18 48.742.1 FTP 0.00 0.002.2 SSH 4.68 2.452.3 HTTP 46.50 46.302.3.2 dst HTTP 45.03 45.742.3.2.1 HTTP ACKs 40.94 16.512.3.2.2 HTTP GET/POST 4.10 29.233 AAS 14.68 30.523.3 port 443 4.53 11.313.6 port 139 4.65 14.203.7 port 111 2.51 1.503.8 port 53 2.99 3.504 NAN 7.61 7.12Table 4.8: Shunted Tra�
 De
omposition, Live Tra�
One third of the shunted tra�
 is 
omposed of the HTTP entity headers, andone fourth is 
omposed of tra�
 
orresponding to ports whose 
orresponding Bro



264analyzer has not yet been modi�ed to take advantage of the shunting ar
hite
ture.
4.7 Future Work4.7.1 Expiring Entries (BTL)Justi�
ationThe normal operation for the shunt ar
hite
ture is to shunt the �rst few pa
kets ofa 
onne
tion, so the analyzer 
an take a de
ision on whether it wants to keep re
eivingpa
kets from it or no. On
e the analyzer takes a de
ision, we use it to forward/drop(or shunt) any further 
onne
tion tra�
.This operation mode works if the life of a 
onne
tion 
onsists of some appli
ation-layermetadata and 
ontrol ex
hange, followed by a bulk data transfer. This is the 
asefor SSH, FTP, and non-persistent 
onne
tions in HTTP. But, what happens whenmetadata and data are interleaved in a 
onne
tion?A 
ase example of this behavior is persistent 
onne
tions in HTTP 1.1 [Fieldinget al., 1999℄. Persistent HTTP 
onne
tions reuse the same TCP 
onne
tion to servemultiple requests, therefore avoiding the overhead of opening a TCP 
onne
tion forea
h request.Persistent HTTP 
onne
tions present several advantages: (a) They redu
e thetotal amount of tra�
 in the wire, as the TCP 
onne
tion establishment and teardownhandshakes are needed only on
e per 
onne
tion; (b) they redu
e the laten
y of



265loading all obje
ts but the �rst one, as (again) the TCP 
onne
tion establishmenthandshake is only needed on
e; and (
) they in
rease the performan
e of small requesttransfers, as they are 
arried out in a TCP 
onne
tion outside of slow start [Ja
obsonand Karels, 1988℄.Figure 4.14 shows an example of the stru
ture of an HTTP persistent 
onne
tion.In the left 
olumn, C represents the HTTP 
lient, and S the HTTP server. The right
olumn shows the 
ontents of the requests and replies.HTTP Server to Client replies 
onsist typi
ally of one or several entity transfers[Fielding et al., 1999℄. Ea
h entity transfer is 
omposed of an entity body (the datathat is being served by the reply), pre
eded by an entity header des
ribing it. Thelatter is 
omposed of a series of one-line �elds, in
luding among others the obje
ttype, its en
oding, and its length.Let's 
onsider the situation where a network operator running Bro wants toanalyze the entity headers in HTTP responses, but not some of the asso
iated entitybodies (for example, large binaries). If a 
onne
tion is not persistent, the analyzer
an be instru
ted to 
he
k the entity headers, and if the body being des
ribed is notof interest, or there is no analyzer available for the media type, instru
t the devi
e toforward all further tra�
 asso
iated to the 
onne
tion.With persistent 
onne
tions, though, the analyzer 
annot assume that the 
onne
tionused at one moment for sending an uninteresting entity body will not be used later foran interesting one. Current shunt 
apabilities (
onne
tion, address, and port table,
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dire
tion 
ontents
C ↔ S [TCP Handshake℄
C → S GET page.html HTTP/1.1\r\nConne
tion: KeepAlive\r\nKeep-Alive: · · ·
S → C HTTP/1.1 OK\r\n

· · · header· · · \r\n
\r\n
· · · data· · ·

S → C · · · data for �rst ADU· · ·
C → S GET image1 HTTP/1.1\r\nConne
tion: KeepAlive\r\nKeep-Alive: · · ·
S → C HTTP/1.1 OK\r\n

· · · header· · · \r\n
\r\n
· · · data· · ·

S → C · · · data for se
ond ADU· · ·
C → S GET image2 HTTP/1.1\r\nConne
tion: KeepAlive\r\nKeep-Alive: · · ·
S → C HTTP/1.1 OK\r\n

· · · header· · · \r\n
\r\n
· · · data· · ·

S → C · · · data for third ADU· · ·Figure 4.14: HTTP Persistent Conne
tion Example



267plus stati
 �lters) do not permit forwarding the entity bodies while at the same timeshunting the entity headers: Both share the same 
onne
tion, and pa
kets from thesame 
onne
tion are always dealt with in the same manner. All pa
kets must gothrough the analyzer, and the shunt bene�t for that 
onne
tion gets redu
ed to zero.An added problem is that, in HTTP/1.1, unless either the 
lient or the serverstate expli
itly that they want non-persistent 
onne
tions, 
onne
tions are persistent(Se
tion 8.1.2 in [Fielding et al., 1999℄). The analyzer only knows that it should notexpe
t more entities in a 
onne
tion when it sees the FIN segment from the 
lientthat e�e
tively 
loses the TCP 
onne
tion. It must therefore dealt with all HTTP/1.1
onne
tions as if they were persistent.This means that, in order for the analyzer to a

ess to the HTTP responses, thedevi
e must shunt to the analyzer all the pa
kets 
orresponding to default 
onne
tions,even if they end up being used as non-persistent.BTL Des
riptionThe solution we propose to address HTTP persistent 
onne
tions is to extend the
onne
tion table yield with an appli
ation-layer byte 
ounter, whi
h we 
all BTL,or bytes-to-live. The basi
 idea 
onsists of the 
onne
tion table still produ
ing ana
tion with a priority, but before doing so, the length of the mat
hing pa
ket'sappli
ation-layer 
ontents is subtra
ted from the value of the entry's BTL 
ounter.When the BTL 
ounter rea
hes zero, the entry is removed automati
ally from the



268table.Figure 4.15 shows the operation of the 
onne
tion table under the BTL approa
h.Times goes from the top to the bottom. The left 
olumn depi
ts the state of the
onne
tion table. (The yield shows only the main a
tion and the BTL 
ounter.) The
olumn in the middle represents pa
kets pro
essed from the highlighted 
onne
tion.The right 
olumn represents the a
tion 
arried out by the devi
e (we assume neitherthe other two tables nor the stati
 �lters mat
h any of the three pa
kets).The �rst pa
ket mat
hes the highlighted 
olumn. It is forwarded, and the BTLvalue of the entry is redu
ed in the amount of appli
ation-layer bytes in the pa
ket(1000 bytes in this 
ase). The se
ond pa
ket also mat
hes the highlighted 
olumn,and therefore is dealt with the same way. But, when subtra
ting the total amount ofappli
ation-layer bytes of the pa
ket, the BTL 
ounter rea
hes zero, and the entry isautomati
ally removed. The third pa
ket does not mat
h any entry in the 
onne
tiontable, and therefore is shunted.The BTL 
ounter allows the analyzer to spe
ify expiring entries. For example, ifthe analyzer sees an HTTP entity header where the Conne
tion−Length header statesthat the entity body will o

upy 100 KB, it 
an set a forward entry asso
iated to the
onne
tion, but with a BTL value of 100 KB. The shunt devi
e will keep forwardingpa
kets, and dis
ounting the forwarded appli
ation-layer length from the BTL. On
ethe BTL rea
hes zero, the entry is removed, and further pa
kets are shunted.Note that this solution will not only work for HTTP persistent 
onne
tions, but
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270also for any other appli
ation-layer proto
ol where the size of the bulk data transferis obtained from the appli
ation-layer header (in HTTP this is possible, unless the"
hunked" transfer is used),The BTL approa
h has two main drawba
ks: First, it requires a per-pa
ket writefor tra�
 belonging to a 
onne
tion with a non-zero BTL, whi
h may be expensive.Se
ond, if pa
kets get reordered just near the time when the BTL entry is about toexpire, then some headers for the next 
hunk (whi
h the NIDS wanted to see) mightget forwarded, and some data from the 
urrent 
hunk (whi
h the NIDS did not wantto see) might get shunted. This means the NIDS might miss some important headers,whi
h might 
ause it to miss atta
ks. This 
ould happen either by mis
han
e (networkre-ordering, dupli
ations, or end-host retransmission) or mali
e (deliberate evasion).In order to �ght these two drawba
ks in TCP tra�
, our implementation of BTLresorts to using TCP sequen
e numbers instead of appli
ation-layer lengths. Insteadof spe
ifying the maximum amount of tra�
 that is to be pro
essed a

ording tothe entry, the analyzer spe
i�es the last sequen
e number that will be pro
esseda

ordingly to the entry. This approa
h solves both BTL drawba
ks for TCP tra�
.It is not appli
able to UDP, where the appli
ation-layer data order is not identi�edexpli
itly.Finally, some s
enarios will still justify non-expiring entries, and therefore a �xedvalue 
ould be used to denote them. In a hardware implementation of a devi
e, it maymake sense for e�
ien
y reasons to avoid using a full 
ounter for ea
h non-expiring



271entry, and therefore to have two 
onne
tion tables, one with BTL, and the otherwithout BTL.EvaluationThis Se
tion analyzes the e�e
t of adding a BTL 
ounter in the pro
essing of thet
p-1 tra
e dis
ussed previously. We are interested in knowing (a) the distribution of
ontent types in the HTTP tra�
, to get an idea of whi
h ones 
ould be dealt withusing BTL, and whi
h ones deserve full engine analysis, and (b) the per
entage ofHTTP tra�
 that 
ould be forwarded dire
tly when using the BTL approa
h.Figure 4.16 shows a breakup of the HTTP 
ontents in t
p-1 . The HTTP 
ontentsin
lude all bytes 
orresponding to HTTP tra�
 in port 80, ex
luding network overhead(Ethernet, IP, and TCP headers), but in
luding HTTP headers for both queries,replies, and entity headers. The latter a

ount for 7.9% of the HTTP 
ontents.The most important 
ontent types found in our tra
e are binaries, multimedia
ontents (JPEG, GIF, Windows Media Video, et
.), HTML, and plain text.Figure 4.17 shows the savings in the amount of HTTP tra�
 shunted when usingthe BTL approa
h. In order to avoid sending 
ommands to the devi
e for very smallentity bodies, we show the per
entage of saved bytes as a fun
tion of the length of thesmallest entity body required to justify a new BTL entry (X axis). This also 
oversthe e�e
ts of pa
ketization: The �rst bytes of an HTTP entity body are sent in thesame pa
ket that its entity header, and therefore 
annot be pro
essed at the shunt
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273devi
e.We have been 
areful to dis
ount HTTP 
ontents sent using 
hunked transfer
oding from the savings [Fielding et al., 1999℄. Chunked transfers are used to senddynami
ally produ
ed 
ontent for whi
h the total length is unknown until the end ofthe transfer. Therefore, there is no Content-Length �eld to use in the BTL �eld.The operation des
ribed by the experiment is as follows: For a given HTTP
onne
tion from whi
h the HTTP reply header is 
aptured, if (a) the value of theTransfer-En
oding �eld is not 
hunked, and (b) the value of the Content-Length �eldis bigger than the threshold, then a forward entry is added to BTL-
apable 
onne
tiontable in the shunt devi
e. This entry is set to expire after Content-Length bytes areforwarded.The upper three lines represent, respe
tively, the total amount of HTTP 
ontents(in
luding HTTP reply, response, and entity headers), the total amount of HTTPpayloads (the transmitted data, dis
ounting the HTTP reply and response headers),and the total amount of HTTP payloads (not in
luding those sent using 
hunked
oding).The �Shunted HTTP Tra�
� line shows the bene�t of BTL assuming all non-
hunkedpayloads bigger than the threshold are BTLed. If analyzing HTTP payloads is not ofinterest for the analysis, we 
ould save around 90% of the total HTTP 
ontents (anda proportional part of the 
orresponding Ethernet, IP, and TCP headers) by BTLingall payloads whose length is more than 5 KB.



274The �Skippable Shunted HTTP Tra�
� line shows the bene�t of BTL assumingthat only a subset of the HTTP non-
hunked payloads are skipped using BTL (again,only those bigger than the threshold). The subset of skippable payloads in
ludesthose payloads where the MIME type in the value of the Content-Type �eld is audio,video, image, appli
ation. It ex
ludes those payloads where the the MIME type is textor multipart/byteranges, whi
h are instead shunted. (Payloads with MIME 
ontenttype equal to multipart/byteranges are not skipped as they 
an re�e
t just about anytype.) All other payloads are skipped.This approa
h would save around 70% of the total HTTP 
ontents (and a proportionalpart of the 
orresponding Ethernet, IP, and TCP headers) by BTLing all payloads inthe skippable subset whose length is more than 5 KB.Con
lusionsThe results of the BTL state that, from all HTTP 
ontents, 75% of the bytes
an be safely skipped by not shunting audio, image, video, and appli
ation payloads.If we 
onsider the results from Se
tion 4.6.3, where the tra�
 shunted (20% of thebytes) is 85% HTTP, a shunt devi
e using BTL 
ould provide a �ltering ratio of 5%of the bytes.
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2764.7.2 Shunting Other AnalyzersAnother pie
e of future work is to keep modifying Bro analyzers to take advantageof the shunt 
apabilities. In the live experiment, for example, the �rst two 
andidateproto
ols to be modi�ed this way are HTTPS and Mi
rosoft NetBIOS, whi
h a

ountfor 25% of the shunted bytes. In the t
p-1 tra
e, the �rst two 
andidate proto
olsto be modi�ed this way are HTTPS and SMTP, a

ounting for 9% of the shuntedtra�
 before BTL, or 25% when redu
ing the HTTP tra�
 that BTL 
ould pro
essdire
tly at the shunt devi
e.In the HTTPS 
ase, the modi�
ation should be pretty simple, as the tra�
 isen
rypted after the initial header, and the analyzer 
annot pro
ess en
rypted tra�
without the proper key.4.7.3 Evi
tions and Default ShuntingDefault shunting may, in some rare 
ases, produ
e in
orre
t results. For example,
onsider a pa
ket that is mat
hed by entries in two tables. In one of the tables (T1), ahigh priority entry (E1) states that the pa
ket must be forwarded. In the other table(T2), a lower priority entry (E2) states that the pa
ket must be dropped. If bothE1 and E2 exists, and assuming no other table or stati
 �lter have a higher-priorityentry, the pa
ket should be forwarded. Now, had E1 been evi
ted from T1, the pa
ketwould be dropped, instead of forwarded.Note that, in order for this to be a problem, several fa
ts must hold: (a) We expe
t



277E1 to 
orrespond to the 
onne
tion table. The reason is that it is the table with alarger domain spa
e, and therefore the most prone to evi
tions be
ause of table spa
e
on
erns. This means that E2 will be an entry in either the port or the address table.(b) E2 must request the pa
ket to be forwarded or dropped. If E2 requests the pa
ketto be shunted, then the shim will re
eive the pa
ket, realize that an a
tive entry (E1)was evi
ted, and reissue it. (
) E2 must have been issued after E1. Otherwise, thepa
ket that 
aused E1 would have been forwarded or dropped be
ause of E2, insteadof rea
hing the analyzer, and E1 would have never been issued. (d) E1 and E2 musthave been di�erent yields.An example of an error of this type would happen when E1 des
ribes a 
onne
tionthat the analyzer wants shunted. Eventually, one of the hosts in the 
onne
tiongets bla
klisted/whitelisted (E2). Later, E1 is evi
ted for 
apa
ity reasons. At thismoment, the analyzer loses visibility of the 
onne
tion.We believe that the right approa
h in the shunting ar
hite
ture is to provide ame
hanism to address it, and let the analyzer set the right poli
y. To address possiblein
onsisten
ies be
ause of probabilisti
 devi
e implementations, we provide the devi
ewith a me
hanism to report to the analyzer when it de
ides to evi
t a table entry.In order to prevent ra
e 
onditions (the analyzer realizing that E1 was evi
tedand reissuing it, but only after E2 has dropped some pa
ket), we plan to add a newevi
tion resolution message in the SHIP proto
ol. On re
eiving a request to add anew entry that would 
ause an evi
tion in one of its tables, the devi
e will send ba
k



278to the analyzer an evi
tion resolution request. This request will in
lude a list of the
andidate entries for evi
tion. The analyzer will re
eive an event, and will answerstating whi
h entry in the devi
e should be evi
ted.
4.8 Con
lusionsWe have des
ribed a novel ar
hite
ture to perform inline tra�
 pro
essing inhigh-speed links using an o�-the-shelf 
omputer and a simple, spe
ial-purpose hardwaredevi
e. The 
ore of the ar
hite
ture is the �shunt devi
e,� a network element thatperforms very simple pa
ket pro
essing (basi
ally forwarding, dropping, or shuntingpa
kets to a software analyzer) at a very high speed.Shunting provides �ne-grained semanti
s to the analyzer using it, namely per-
onne
tion,per-address, and per-port pro
essing. The goal of the ar
hite
ture is that most pa
ketsare pro
essed dire
tly by the shunt devi
e (either forwarded or dropped), while a smallpart are diverted through the intrusion-dete
tion analyzer.An added advantage of shunting is that, by default, all tra�
 is diverted to theanalyzer. This allows the latter to perform intrusion prevention, blo
king atta
ktra�
 before it 
an 
ause any harm.We believe Shunting is an appealing ar
hite
ture be
ause it provides a largeperforman
e enhan
ement in return for a minimal additional me
hanism. While theme
hanisms are simple, they provide enough leverage for a NIPS to pro
ess high-speedlinks.



279We have applied shunting to the intrusion dete
tion arena, resear
hed its performan
ebene�ts, and operated it in a real environment in order to understand its e�e
ts. Wefound that, when using shunting, the amount of tra�
 that the analyzer has topro
ess gets redu
ed to one �fth in a real tra
e, and to 8% when 
onsidering BTLand a sensible 
on�guration.Shunting works spe
ially well with some proto
ols, as SSH and FTP, redu
ing the
ost of pro
essing them to up to a fa
tor of 20. It also opens the door to the analysisof similar proto
ols that pervade very high-speed links, as do Grids [Thain and Livny,2003℄ in s
ienti�
 laboratories.In other proto
ols, as HTTP, the bene�t of Shunting is 
ompelling in the amountof �ltered tra�
, but the savings in resour
es are still poor. On the other hand,being able to perform full analysis in the HTTP tra�
 by just pro
essing a 20% ofthe total tra�
, plus the ability to take per-
onne
tion de
isions in the hardwaredevi
e, opens the door to �ne-grained parallel approa
hes, where several NIDS sharethe responsibility of pro
essing the shunt workload generated by a single devi
e.
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Appendix A
Se
ondary Path Details
A.1 Generi
 Algorithm for Dete
ting Intera
tive Ba
k-doorsThis Se
tion des
ribes the implementation of the Generi
 Algorithm for Dete
tingIntera
tive Ba
kdoors des
ribed in [Zhang and Paxson, 2000a℄ using the Se
ondaryPath.Figure A.1 shows the generi
 analyzer 
ode.Note that the �lter we propose is slightly di�erent from the one suggested by [Zhangand Paxson, 2000a℄. We got rid of the pa
kets with zero-length payload, whi
h
orrespond to ma
hine-driven transport-layer a
knowlegments, but are 
ommon enoughas to a�e
t signi�
antly the performan
e of the Se
ondary Path-based solution.



296global generi
_sig_�lter ="t
p and((ip[2:2℄ - ((ip[0℄&0x0f)<<2) - (t
p[12℄>>2)) <= 20) and((ip[2:2℄ - ((ip[0℄&0x0f)<<2) - (t
p[12℄>>2)) > 0)";
onst inter
onn_min_num_pkts = 10 &redef; # min num of pkts sent
onst inter
onn_min_alpha = 0.2 &redef; # minimum required alpha
onst inter
onn_min_gamma = 0.2 &redef; # minimum required gammafun
tion 
omp_gamma(s: 
onn_info): double{return s$N >= inter
onn_min_num_pkts ?(1.0 * (s$S - s$G - 1)) / s$N : 0.0;}fun
tion 
omp_alpha(s: 
onn_info) : double{return ( s$short_intervals > 0 ) ?(1.0 * s$large_intervals / s$short_intervals) : 0.0;}fun
tion is_intera
tive_endp(s: 
onn_info): bool{# Criteria 1: num_pkts >= inter
onn_min_num_pkts.if ( s$N < inter
onn_min_num_pkts )return F;# Criteria 2: gamma >= inter
onn_min_gamma.if ( 
omp_gamma(s) < inter
onn_min_gamma )return F;# Criteria 3: alpha >= inter
onn_min_alpha.if ( 
omp_alpha(s) < inter
onn_min_alpha )return F;return T;} Figure A.1: Generi
 Ba
kdoor Dete
tor Implementation



297fun
tion estimate_gap(gap: 
ount): 
ount{return (gap + inter
onn_default_pkt_size - 1) / inter
onn_default_pkt_size;}fun
tion interval_is_short(t: interval): bool{return (inter
onn_min_interarrival <= t) && (t <= inter
onn_max_interarrival);}event ba
kdoor_generi
_sig(�lter: string, pkt: pkt_hdr){# get rid of tra�
 in well-known portsif ( inter
onn_ignore_standard_ports &&(pkt$t
p$sport in inter
onn_standard_ports ||pkt$t
p$dport in inter
onn_standard_ports) ){return;}# 
reate the 
onne
tion idlo
al id = [$orig_h = pkt$ip$sr
, $orig_p = pkt$t
p$sport,$resp_h = pkt$ip$dst, $resp_p = pkt$t
p$dport℄;lo
al payload_length = pkt$ip$len - pkt$ip$hl - pkt$t
p$hl;lo
al seq = pkt$t
p$seq + payload_length;# if inexistent 
onne
tion => 
reate blank entryif ( id !in inter
onn_
onns ){inter
onn_
onns[id℄ = [$S = 1,$N = 1,$G = 0,$top_seq = seq,$last_ts = network_time(),$short_intervals = 0,$large_intervals = 0,$intera
tive = INTERCONN_UNKNOWN℄;} Figure A.2: Generi
 Ba
kdoor Dete
tor Implementation (
ont.)
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else{# we got a (small) pa
ket++inter
onn_
onns[id℄$S;++inter
onn_
onns[id℄$N;lo
al top_seq = inter
onn_
onns[id℄$top_seq + payload_length;if ( top_seq != 0 && top_seq < seq ){# there's been a gap in this 
onne
tion++inter
onn_
onns[id℄$G;#inter
onn_
onns[id℄$N += estimate_gap(seq - top_seq);inter
onn_
onns[id℄$N = inter
onn_
onns[id℄$N + estimate_gap(seq - top_seq);}inter
onn_
onns[id℄$top_seq = seq;if ( interval_is_short(network_time() - inter
onn_
onns[id℄$last_ts) )++inter
onn_
onns[id℄$short_intervals;else++inter
onn_
onns[id℄$large_intervals;inter
onn_
onns[id℄$last_ts = network_time();}if ( ! is_intera
tive_endp(inter
onn_
onns[id℄) )return;log_inter
onn(id);}redef se
ondary_�lters += {[generi
_sig_�lter℄ = ba
kdoor_generi
_sig,}; Figure A.3: Generi
 Ba
kdoor Dete
tor Implementation (
ont.)
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Appendix B
Shunt Details
B.1 Shunt Inter
onne
t Proto
ol (SHIP) DetailsThis Se
tion des
ribes in detail ea
h of the SHIP messages.For the 
ontrol message type, SHIP uses 4-byte identi�ers with a human readablesequen
e. For example, the type �eld for the OPEN message is 0x4f50454e, whoseASCII translation is the string �OPEN�.For the 
ontrol message payloads, SHIP uses two di�erent stru
tures: Messageswith �xed 
ontents use a �xed stru
ture, while messages with variable 
ontents dividetheir payload in 
hunks, ea
h 
omposed of a 4-byte identi�er, a 4-byte data size(always a multiple of 4 for alignment reasons), and the data itself. The 4 byte identi�eris again a human readable sequen
e of four 
hara
ters, su
h as �FILE� or �VERS�.Figure B.1 shows an example of a variable-
ontent SHIP payload. The payload



300is 
omposed of two (variable) �elds, one 
ontaining a 4-byte integer with a �lterpriority, and the other 
ontaining a 10-byte long string (plus 2 bytes of padding) withthe expression to be used for the stati
 forward �lter.Note that this stru
ture is very similar to the one used in some generi
 �le formats,as the Inter
hange File Format Morrison [1985℄.
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PSfrag repla
ements

Bytes
0-34-78-1112-1516-1920-2324-2728-31

Bits0 4 8 12 16 20 24 28 31type (�lter priority)length (4 bytes)
ontents (priority=3)type (stati
 forward �lter expression)length (10 bytes)
ontents (expression = �t
p or udp�)Figure B.1: Shunt Inter
onne
t Proto
ol Variable Payload Example
B.1.1 ACK MessagesACK messages just a
knowledge a pa
ket sent from the other side. Their onlyparameter is the message identi�er of the a
knowledged pa
ket. Its payload is �xed,just 4 bytes with the su
h message identi�er.



301B.1.2 Devi
e-Ready MessagesDevi
e-Ready messages are sent from the devi
e to the shim to report it is aliveand waiting for initialization. The only parameter is a unique devi
e identi�er. Itspayload is �xed, 4 bytes with the devi
e identi�er.B.1.3 Open MessagesOpen messages are sent from the shim to the devi
e to put the devi
e in workingmode. Its payload is variable, in
luding some or all of the items in Table B.1.�eld type explanation�lter string(forward) string t
pdump expression to be used as stati
forward �lter�lter string(drop) string t
pdump expression to be used as stati
 drop�lter�lter string(shunt) string t
pdump expression to be used as stati
shunt �lter�lter priority(forward) integer priority of the stati
 forward �lter�lter priority(drop) integer priority of the stati
 drop �lter�lter priority(shunt) integer priority of the stati
 shunt �lter�lter sample 3 bits sampling ratio of the three stati
 �ltersdefault sample 3 bits default sampling ratiofailsafe mode Boolean fail-safe mode (fail-open or fail-
lose)Table B.1: SHIP Open Variable Contents
B.1.4 Capabilities MessagesDevi
e Capabilities messages are sent from the devi
e to the shim on re
eptionof a Open Message. Its payload is variable, in
luding some or all of the items inTable B.2.



302B.1.5 Close MessagesClose messages are sent from the shim to the devi
e to put it ba
k into fail-safemode, or from the devi
e to the shim to report that an internal problem is tooimportant to keep in working mode, and that therefore the devi
e is moving intofail-safe state. The payload is �xed, and there are no arguments.B.1.6 Reset MessagesReset messages are sent from the shim to the devi
e to instru
t it to reset all itstables and/or a

ounting information. The payload is �xed, and it 
onsists of three4-byte values, ea
h representing a Boolean. The �rst Boolean states whether thedevi
e must 
arry out a hard reset, whi
h removes all the table entries, resets all thedevi
e statisti
s, and 
leans up the retransmission bu�er. The se
ond Boolean stateswhether the devi
e must reset all its statisti
s. The third Boolean states whether thedevi
e must remove all the table entries.B.1.7 Error MessagesError messages are sent from the devi
e to the shim to report of an error. Thepayload is �xed, and it 
onsists of a 4-byte integer with a human readable sequen
e�eld type explanationversion integer devi
e version identi�erni
s integer list unique identi�ers for ea
h of the devi
e's network tapsTable B.2: SHIP Devi
e Capabilities Variable Contents



303of four 
hara
ters that expresses the error that happened in the devi
e. There are novalid values de�ned so far.B.1.8 Status-Request MessagesStatus-Request messages are sent from the shim to the devi
e to request the
ontents of the devi
e's tables. The payload is �xed, and it 
onsists of a 4-byte valuerepresenting a Boolean that states whether the status response must o

ur just on
eor be �red periodi
ally.Status-Request and Status-Response messages are used in the syn
hronizationmethod des
ribed in Se
tion 4.5.2.B.1.9 Status-Response MessagesStatus-Response messages in
lude a dump of the 
ontents of the sender's (devi
eor shim) tables. They may be sent (a) from the devi
e to the shim as a response toa Status-Request message, or (b) from the shim to the devi
e in order to populatethe latter's tables. The payload is variable, and it 
onsists of a set of 
hunks, ea
h
omposed of a 4-byte table identi�er, a 4-byte data size (again a multiple of 4 foralignment reasons), and the entry's index and yield. There are 4 di�erent tableidenti�ers, as des
ribed in Table B.3.Figure B.2 shows an example of the en
oding of an entry in a SHIP Status-Responsemessage. Note that the bits are not en
oding for e�
ien
y (for example, the forth



304and ba
k forward and shunt �elds use 32 bits ea
h, while there is only one bit beingused).
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PSfrag repla
ements

Bytes
0-34-78-1112-1516-1920-2324-2728-3132-35

Bits0 4 8 12 16 20 24 28 31table identi�er (ADDR)length (28 bytes)address (1.2.3.4)forth forwardforth shuntba
k forwardba
k shuntprioritysampling ratioFigure B.2: SHIP Status Response Entry Example
B.1.10 Statisti
s-Request MessagesStatisti
s-Request messages are sent from the shim to the devi
e to request thedevi
e's operation statisti
s. These statisti
s in
lude the amount of pa
ket and bytes,forwarded, shunted, or dropped, for di�erent reasons: 
onne
tion ID mat
hing the
onne
tion table, sour
e or destination address mat
hing the address table, sour
e oridenti�er explanationCONN an entry in the 
onne
tion tableADDR an entry in the address tablePORT an entry in the port tableDONE last pa
ket in the syn
hronization pro
essTable B.3: SHIP Status Response Table Types



305destination port mat
hing the port table, pa
ket mat
hing any of the 3 stati
 �lters,or default shunting.The request payload is �xed, and it 
onsists of a 4-byte value representing aBoolean that states whether the statisti
s response must o

ur just on
e or be �redperiodi
ally.B.1.11 Statisti
s-Response MessagesStatisti
s-Response messages in
lude a dump of the 
ontents of the devi
e's operationstatisti
s.The payload is �xed, and it 
onsists of a the values mentioned in Se
tion B.1.10.B.1.12 Asso
iate Conne
tion MessagesAsso
iate Conne
tion messages are sent from the shim to the devi
e to add a newentry in the devi
e's 
onne
tion table.The payload is �xed, and it 
onsists of a 20-byte value representing a 104-bit
onne
tion identi�er (sour
e and destination address and port, plus transport port),followed by a 28-byte value representing the 10-bit yield. The latter is 
omposed of1 bit for the forward de
ision in the forth dire
tion, 1 bit for the forward de
ision inthe ba
k dire
tion, 1 bit for the shunt de
ision in the forth dire
tion, 1 bit for theshunt de
ision in the ba
k dire
tion, 3 bits for the entry priority, and 3 bits for thesampling ratio.



306B.1.13 Deasso
iate Conne
tion MessagesDeasso
iate Conne
tion messages are sent from the shim to the devi
e to removean entry from the devi
e's 
onne
tion table, or from the devi
e to the shim to reportan entry being evi
ted from the 
onne
tion table.The payload is �xed, and it 
onsists of a 20-byte value representing a 104-bit
onne
tion identi�er (sour
e and destination address and port, plus transport port),followed by a 4-byte value representing the reason why the entry was evi
ted (thisvalue is unused when the message is sent from the shim to the devi
e).B.1.14 Asso
iate Address MessagesAsso
iate Address messages are sent from the shim to the devi
e to add a newentry in the devi
e's address table.The payload is �xed, and it 
onsists of a 4-byte value representing an IP address,followed by a 28-byte value representing the 10-bit yield. The latter is 
omposed of1 bit for the forward de
ision in the forth dire
tion, 1 bit for the forward de
ision inthe ba
k dire
tion, 1 bit for the shunt de
ision in the forth dire
tion, 1 bit for theshunt de
ision in the ba
k dire
tion, 3 bits for the entry priority, and 3 bits for thesampling ratio.



307B.1.15 Deasso
iate Address MessagesDeasso
iate Address messages are sent from the shim to the devi
e to remove anentry from the devi
e's address table, or from the devi
e to the shim to report anentry being evi
ted from the address table.The payload is �xed, and it 
onsists of a 4-byte value representing an IP address,followed by a 4-byte value representing the reason why the entry was evi
ted (thisvalue is unused when the message is sent from the shim to the devi
e).B.1.16 Asso
iate Port MessagesAsso
iate Port messages are sent from the shim to the devi
e to add a new entryin the devi
e's port table.The payload is �xed, and it 
onsists of an 8-byte value representing a transport-layerproto
ol and port, followed by a 28-byte value representing the 10-bit yield. The latteris 
omposed of 1 bit for the forward de
ision in the forth dire
tion, 1 bit for the forwardde
ision in the ba
k dire
tion, 1 bit for the shunt de
ision in the forth dire
tion, 1 bitfor the shunt de
ision in the ba
k dire
tion, 3 bits for the entry priority, and 3 bitsfor the sampling ratio.B.1.17 Deasso
iate Port MessagesDeasso
iate Port messages are sent from the shim to the devi
e to remove an entryfrom the devi
e's port table, or from the devi
e to the shim to report an entry being



308evi
ted from the port table.The payload is �xed, and it 
onsists of an 8-byte value representing a transport-layerproto
ol and port, followed by a 4-byte value representing the reason why the entrywas evi
ted (this value is unused when the message is sent from the shim to thedevi
e).
B.2 Shim Appli
ation Programming Interfa
eThis Se
tion des
ribes in detail the Shunting API, as exported to Bro.B.2.1 shunt_open() Fun
tionThe shunt_open() fun
tion 
an be used by the analyzer to request the shim toopen the devi
e. It has no parameters.B.2.2 shunt_
lose() Fun
tionThe shunt_
lose() fun
tion 
an be used by the analyzer to request the shim to
lose the devi
e. It has no parameters.B.2.3 shunt_reset() Fun
tionThe shunt_reset() fun
tion 
an be used by the analyzer to request the shim toreset the devi
e. It has three Boolean parameters: The �rst Boolean states whether



309the devi
e must 
arry out a hard reset, whi
h removes all the table entries, resets allthe devi
e statisti
s, and 
leans up the retransmission bu�er. The se
ond Booleanstates whether the devi
e must reset all its statisti
s. The third Boolean stateswhether the devi
e must remove all the table entries.B.2.4 shunt_drop_pa
ket() Fun
tionThe shunt_drop_pa
ket() fun
tion 
an be used by the analyzer to request that thepa
ket 
urrently being analyzer be dropped after inje
tion, without further �ltering.B.2.5 shunt_inje
t_pa
ket() Fun
tionThe shunt_inje
t_pa
ket() fun
tion 
an be used by the analyzer to request thatthe pa
ket 
urrently being analyzer be inje
ted ba
k into the wire, without further�ltering.B.2.6 shunt_get_status() Fun
tionThe shunt_get_status() fun
tion 
an be used by the analyzer to request to startthe table syn
hronization me
hanism, so that the devi
e table 
ontents are sent tothe shim.



310B.2.7 shunt_status_event() EventThe shunt_status_event() event is �red in the analyzer for every entry 
omingfrom the devi
e that is re
eived by the shim during syn
hronization.B.2.8 shunt_get_statisti
s() Fun
tionThe shunt_get_statisti
s() fun
tion 
an be used by the analyzer to request thatthe shim obtains the devi
e's operation statisti
s.B.2.9 shunt_statisti
s_event() EventThe shunt_statisti
s_event() event is �red in the analyzer on
e it has re
eivedthe devi
e operation statisti
s.B.2.10 shunt_asso
iate_
onn() Fun
tionThe shunt_asso
iate_
onn() fun
tion 
an be used by the analyzer to add an entryin the 
onne
tion table (both at the shim and at the devi
e). The fun
tion parametersare the 
onne
tion identi�er (sour
e and destination IP addresses and transport-layerports, plus the transport proto
ol), the forth a
tion (forward , drop, shunt , or �forwardand shunt�), the ba
k a
tion (same possibilities), the priority of the entry, and thesampling ratio.



311B.2.11 shunt_deasso
iate_
onn() Fun
tionThe shunt_deasso
iate_
onn() fun
tion 
an be used by the analyzer to remove anentry from the 
onne
tion table (both at the shim and at the devi
e). The fun
tionparameter 
onsists of the 
onne
tion identi�er (sour
e and destination IP addressesand transport-layer ports).B.2.12 shunt_asso
iate_addr() Fun
tionThe shunt_asso
iate_addr() fun
tion 
an be used by the analyzer to add an entryin the address table (both at the shim and at the devi
e). The fun
tion parametersare the IP address, the forth a
tion (forward , drop, shunt , or �forward and shunt�),the ba
k a
tion (same possibilities), the priority of the entry, and the sampling ratio.B.2.13 shunt_deasso
iate_addr() Fun
tionThe shunt_deasso
iate_addr() fun
tion 
an be used by the analyzer to removean entry from the address table (both at the shim and at the devi
e). The fun
tionparameter 
onsists of the IP address.B.2.14 shunt_asso
iate_port() Fun
tionThe shunt_asso
iate_port() fun
tion 
an be used by the analyzer to add an entryin the port table (both at the shim and at the devi
e). The fun
tion parameters arethe transport-layer port, the transport proto
ol, the forth a
tion (forward , drop,



312shunt , or �forward and shunt�), the ba
k a
tion (same possibilities), the priority ofthe entry, and the sampling ratio.B.2.15 shunt_deasso
iate_port() Fun
tionThe shunt_deasso
iate_port() fun
tion 
an be used by the analyzer to removean entry from the port table (both at the shim and at the devi
e). The fun
tionparameter 
onsists of the transport-layer port and the transport proto
ol.B.2.16 shunt_evi
t_
onn_event() EventThe shunt_evi
t_
onn_event() event is �red by the shim every time it re
eivesa report from the shim stating that it had to evi
t an entry in the 
onne
tion table.The event parameter 
onsists of the 
onne
tion identi�er (sour
e and destinationIP addresses and transport-layer ports, plus the transport proto
ol).B.2.17 shunt_evi
t_addr_event() EventThe shunt_evi
t_addr_event() event is �red by the shim every time it re
eivesa report from the shim stating that it had to evi
t an entry in the address table.The event parameter 
onsists of the entry's IP address.



313B.2.18 shunt_evi
t_port_event() EventThe shunt_evi
t_port_event() event is �red by the shim every time it re
eives areport from the shim stating that it had to evi
t an entry in the port table.The event parameter 
onsists of the entry's transport proto
ol and the transport-layerport.B.2.19 shunt_in
onsistent_
onn_event() EventThe shunt_in
onsistent_
onn_event() event is �red by the shim every time itre
eives a shunted pa
ket that was pro
essed in
orre
tly at the devi
e be
ause of a
onne
tion table entry. A typi
al 
ase is when, for spa
e reasons, the devi
e musthave removed an entry in its 
onne
tion table, and a pa
ket that should have beenforwarded is instead shunted. As soon as the shim re
eives the pa
ket, it pro
essesthe pa
ket through its tables and stati
 �lters. If it �nds that the pa
ket should havebeen dealt with di�erently in the devi
e be
ause of a 
onne
tion table entry, thisevent is issued.The analyzer response may be, for example, to reissue the entry again. Note thatreissuing the 
onne
tion entry must 
ause yet another table evi
tion, whi
h eventuallymay 
ause another shunt_in
onsistent_
onn_event() event. If the number of a
tive
onne
tions �ghting for the same devi
e table frames is too large, there would bethrashing. It is the analyzer's responsibility to dete
t thrashing and rea
t adequately.The only event parameter is the 
onne
tion identi�er (sour
e and destination IP



314addresses and transport-layer ports, plus the transport proto
ol).B.2.20 shunt_in
onsistent_addr_event() EventThe shunt_in
onsistent_addr_event() event is �red by the shim every time itre
eives a shunted pa
ket that was pro
essed in
orre
tly at the devi
e be
ause of anaddress table entry.The only event parameter is the IP address.B.2.21 shunt_in
onsistent_port_event() EventThe shunt_in
onsistent_port_event() event is �red by the shim every time itre
eives a shunted pa
ket that was pro
essed in
orre
tly at the devi
e be
ause of anport table entry.The event parameters 
onsist of the entry's transport proto
ol and the transport-layerport.
B.3 Ethertype Field Information Pa
kingThis Se
tion des
ribes the remapping of the Ethernet Type (ethertype) �eld usedin order to pa
k per-shunted pa
ket information in data messages sent between shimand devi
e, and des
ribed in Se
tion 4.5.3.Figure B.3 shows the remapping of the 16 bit Ethernet Header's Type Field.
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PSfrag repla
ements
Bits0 2 4 5 8 15ET MD RO RE SA UUFigure B.3: 16 bit Ethernet Header Type Field RemappingTable B.4 des
ribes the remapping in depth.
ode size(bits) explanationET 2 Real Ethernet Type En
odingPossible values are 00 (invalid)1, 01 (IP), 10 (ARP), and 11 (ReverseARP)MD 2 Main De
isionPossible values are 00 (invalid), 01 (pa
ket was forwarded), 10(pa
ket was dropped), 11 (pa
ket was shunted)2RO 1 Routing InformationPossible values are 0 and 1, depending on whether the pa
ket wasoriginally re
eived in the devi
e's �rst or se
ond network interfa
e,respe
tivelyRE 3 Reason Why the Pa
ket Was Marked as MDPossible values are 000 (invalid), 001 (mat
h in 
onne
tion table),010 (mat
h in address table for the sour
e address), 011 (mat
h inaddress table for the destination address), 100 (mat
h in port tablefor the sour
e port), 101 (mat
h in port table for the destinationport), 110 (mat
h in any of the three stati
 �lters), or 111 (defaultde
ision)SA 7 Sampling InformationEvery one of the bits represents whether the sampling de
ision wastriggered by ea
h of the seven sample sour
es or not, namely the
onne
tion table (�rst bit), the address table as sour
e address (se
-ond bit), the address table as destination address (third bit), theport table as sour
e port (fourth bit), the port table as destinationport (�fth bit), the stati
 �lter sampling ratio (sixth bit), and/orthe default sampling ratio (seventh bit)UU 1 UnusedThis bit is unused, and should always be 1Table B.4: Remapping of the 16 bit Ethernet Header's Proto
ol Field



316Note that the 
urrent en
oding does not permit pro
essing IPv6 tra�
.

1The rationale of asso
iating the 00 
ode for invalid pa
ket is to ensure that the normal 
odesfor the ethertypes we support are invalid 
odes in our system. This way, a shim 
an dete
t easilythat there is no devi
e at the other side of the link, without waiting for a timeout after it sent theOPEN message.
2Note that a pa
ket rea
hing the shim implies of 
ourse that it has been shunted. The MD�eld refers to the de
ision before sampling is taken into 
onsideration. MD is therefore used todi�erentiate between two 
ases: (a) the devi
e de
ision was really to shunt, and (b) the de
ision wasto drop or to forward, but sampling implied a 
opy was sent to the engine. In the latter 
ase, thepa
ket has also been forwarded or dropped by the devi
e, and therefore the shim must not try toreinje
t it ba
k into the devi
e. Note also that a pa
ket may have been shunted and sampled at thesame time. The shim knows the di�eren
e by 
he
king the SA �eld.


