






Table 4.2: Number of Spectral Segments with Signi�cance < p, ws = 100,ov = 80.

p Random Segundo tumbao quinto

1 82 82 82 82

0.5 40 82 82 62

0.2 16 82 75 41

0.1 6 82 67 29

0.05 3 82 62 17

0.02 2 79 55 11

0.01 1 79 52 8

0.005 1 77 49 7

0.002 0 74 47 5

0.001 0 70 45 4

0.0005 0 68 42 3

0.0002 0 64 38 3

0.0001 0 57 32 2

Min. Sig. 0.002 3:338� 10�9 9:966� 10�9 1:760� 10�5

The synthesized examples consist of the following:6

1. Direct { by triggering the samples at the appropriate time.

2. Quantized { using a constant tempo equal to the overall average.

3. Quantized { using b[n] as the tempo.

4. Quantized { with devs[n] added to the nth attack.

5. Quantized { with random Gaussian deviations added to each attack time. The Gaus-

sian process had the same mean and variance as the devs[n] array.

6. Quantized { with per-tatum random Gaussian deviations added to each attack time.

In this case, there were 16 independent Gaussian processes, each with a di�erent mean

and variance. The mean and variance for the ith process was the same as the mean

and variance of devs[n mod i].7

Most people who listen to these examples say that number 4 sounds most like the

original, observing that only 4 contains the \feel" of the original performance. In addition,

6Also see Appendix C.
7Also see Section 5.1.1.
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Figure 4-10: Lomb Normalized Periodogram: Random Gaussian Deviations.

numbers 5 and 6 are considered, in general, to sound \sloppy" and \random" (also see Sec-

tion 5.1.1). Accordingly, Figure 4-10, showing a periodogram for the deviations in synthe-

sis 5, con�rms that there is a lack of structure. As expected, synthesis 2 sounds mechan-

ical. Unexpectedly, even synthesis 3 sounds mechanical; tempo variation apparently does

not matter. In general, without the correct deviations, the performance sounds colorless

and cold { with them, it sounds rich and alive.

Consequently, I propose that, in addition to the ongoing studies of tempo variation,

we begin a concentrated study on performance deviations.8 Combining both tempo varia-

tion and deviations could eventually produce the full e�ect of rhythmic expressivity.

4.4 Conclusion

In this chapter, I have used the separate rhythmic elements de�ned in Chapter 2 for rhyth-

mic analysis and have demonstrated the importance of deviations for representing and re-

producing expressive timing in percussive musical phrases. Furthermore, I have demon-

strated that the deviations extracted from a performance are indeed meaningful. The Lomb

normalized periodogram provides quantitative evidence and the synthesis provides empiri-

8Appendix E describes a new electronic drum machine interface for the exploration of deviations.
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cal evidence that the timing data is not random noise { that, in fact, deviations play a vital

role in expressive timing and, therefore, should be analyzed, comprehended, and utilized in

the pursuit of electronic means to reproducing human musicality.
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Chapter 5

Deviation Learning System

The least initial deviation from the truth is multiplied later a thousandfold.

Aristotle
On the Heavens

In this chapter we bridge the gap between symbolic and numerical approaches to mu-

sic information processing. Speci�cally, we have the following goal: given a quantized mu-

sical phrase, produce the deviations that make it sound natural { plainly stated, take a di-

vested construct, and impart both life and beauty.

5.1 First Attempts

In Figure 5-1 the �rst 170 tatums of the quinto score can be seen. The top plot shows de-

viation as a function of tatum number and the bottom one shows the stroke type (the dis-

played section uses only three di�erent stroke types). The vertical dashed lines denote the

measure boundaries (16 tatums per measure). As can be seen, there is no obvious structure

in the plots and from this standpoint the data even appears random. Similarly, Figure 5-2

displays the �rst 120 tatums of the segundo score. There seems to be slightly more struc-

ture; the segundo is playing a repetitive phrase. Still, no obvious plan seems to be generat-

ing these deviations.
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Figure 5-1: Quinto Score. First 170 Tatums.
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Figure 5-2: Segundo Score. First 120 Tatums.
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5.1.1 Simple Random Processes

The deviation distributions might provide some insight into the underlying structure of the

data. In Figure 5-3, we see a 30 bin histogram of the quinto deviations. The plot looks ap-

proximately Gaussian, centered slightly to the left of zero. Promisingly, this agrees with our

intuitive feeling that the quinto player is, on average, playing slightly in front of the beat.

Could modeling the deviations as a simple independent and identically distributed

(i.i.d.) random Gaussian process provide the mechanism we are looking for to model devi-

ations? Probably not. Nevertheless, as discussed in Section 4.3.2, taped example number 5

is a synthesis of such a performance. In that case, the real deviations are substituted with

ones generated from a simple Gaussian process with the same mean and variance as the

original deviations. When listening to the tape, we perceive it as being obviously wrong. In

fact, it sounds terrible. The deviations are no longer related to the current musical event

and the performance seems �lled with random mistakes. As expected, a simple i.i.d. ran-

dom process alone can not accurately represent the deviations in a musical data stream.

A possible problem with the above approach is that it ignores per-measure tatum1

deviations. It assumes the same deviation distribution for all tatums in the performance. Is

there a special importance about the ith tatum of a measure? Perhaps. Figures 5-4 and 5-5

show the per-measure tatum deviation histograms.2 For each value i ranging from 0 : : :16,

I have computed a histogram using deviations from the i'th tatum of all measures. The

plot labeled \tatum i" shows that histogram. As can be seen, the histograms look some-

what akin to each other; they all look Gaussian with slightly di�erent means and variances.

Could we model the deviations as 16 i.i.d. random processes, the ith one providing a

deviation value for a drum stroke landing on the ith per-measure tatum? In Section 4.3.2,

taped example number 6 is a synthesis of such a performance. Unfortunately, it sounds

just as bad as if not worse than example number 5. Therefore, there must be some contex-

tual dependence: the deviations must somehow depend on the phrase in which they exist.

The deviations are not just randomly generated, as some commercial drum machine manu-

facturers think.3 Although a sophisticated random process model might have more success

1Per-measure tatums were de�ned in Section 2.2.
2These plots also show the tendency for the quinto to play o� beat. In fact, 37% of the strokes were on

beat (tatums 0,2,4,: : : ) and 63% were o� beat (tatums 1,3,5,: : : ). Therefore, algorithms based on the mini-
mum syncopation principle de�ned in [LHL84, Lee85] would incorrectly parse these phrases.

3Some drum machines have a human feel button which, when activated, slightly perturbs each percussive
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Figure 5-3: General Histogram of Quinto Deviations.
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Figure 5-4: Per-Tatum Histogram of Quinto Deviations, tatums 0-7.
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Figure 5-5: Per-Tatum Histogram of Quinto Deviations, tatums 8-15.
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in this endeavor, I chose to abandon this approach in search of one that explicitly uses the

current context.

5.1.2 Time Series Learning

There are many methods for the learning and analysis of time series. In [Jor89], a recur-

rent arti�cial neural network is made to learn, reproduce, and generalize a sequence of ac-

tions. Similar work is described in [WZ92, Moz92, SHH88]. In [LO88, Spa88], autoregres-

sive and Bayesian approaches to time sequence learning can be found. Furthermore, many

�nance theory models have been applied to stock market data with reasonable results.

The deviations and stroke types we have extracted are also time series. The meth-

ods above, however, are inadequate for our use because they often have di�culty learning

global structure; that is, they are not able to deduce the way in which long-range low fre-

quency information a�ects short-range high frequency information. In addition, they do not

take advantage of potential a priori knowledge; they blindly charge ahead trying to learn

the series without a pause to consider the generation process. But the main problem is that

these approaches learn only a single series. Our problem consists not only of learning both

the deviation and stroke type array, but also to understand their inter-relationship. That

is, we must understand how the context of the stroke type data in
uences the deviations.

Therefore, I did not pursue the methods discussed above.

5.2 Similar Phrases have Similar Deviations

Figure 5-6 shows two quinto phrases. Phrase A begins on tatum 209 and ends on tatum

216 and phrase B begins on tatum 833 and ends on tatum 840. The phrases are almost the

same: they are situated in the same place relative to the measure markers and the stroke

types used in them are nearly identical. In fact, these phrases sound practically the same.

Note that the deviation patterns are also very similar { phrase B is a bit earlier, but rel-

ative to the �rst tatum, the di�erence is quite small. That di�erence is 0.0134, -0.0024,

0.0156, 0.0111, and 0.0105 seconds respectively.4

event. The purpose is to make a more expressive sounding phrase. The result is ghastly.
4The tempo at phrase A (near tatum 840) is faster than at phrase B (near tatum 210). See Figure 4-

2. The deviations are almost all about 10ms smaller in magnitude when the tempo is faster. This suggests
that a phrase's deviation is dependent on tempo. Unfortunately, I have deferred this issue for the future.
Also see Section 6.1.3.
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Fortunately, there are other sets of nearly identical phrases with similar deviations

in the quinto performance. Furthermore, in Figure 5-2 we see that the conga performance,

primarily a repeated pattern, has matching periodic deviations. The tumbao performance

also exhibits this behavior. In general, nearly identical quantized musical phrases seem to

have similar corresponding deviations in general. Consequently, we can use the phrase itself

to determine an appropriate set of deviations. That is, given a quantized musical phrase

and given that we have speci�c knowledge about the particular musical style, we can deter-

mine a set of deviations that can make the phrase sound expressive. This fact is extremely

relevant to our goal.

5.3 Function Approximation: Learning by Mapping

To produce an expressive rhythmic phrase, we can �rst �nd a quantized one and then ap-

propriately deviate each stroke. This sounds quite similar to function approximation.

We assume there exists some mapping

f : X ) Y;

where X is the space of all quantized percussive phrases, and Y is the space of all devia-

tions. Both X and Y are well-de�ned if we assume that the length in tatums of these per-

cussive phrases is bounded. This is not disconcerting perceptually. Most musical phrases

tend not to last more than at most 32 tatums. Our goal is, given a training set of pairs

D = f(xi; yi) 2 X � Y gNi=1;

where N is the data set size, produce an approximation to f

f� : X ) Y:

That is, the mapping f� is an approximation to f based on the training pairs D.

According to Poggio [PG93], producing the mapping f� will work only if the follow-

ing three conditions are satis�ed:

1. Similar inputs must have similar outputs. This is known as the smoothness assump-
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Figure 5-6: Near Identical Quinto Phrases.
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tion.

2. The method of producing the approximating map f� must be powerful enough to re-

semble the real map f .

3. The data set D must be large. Normally, the number of errors of f� is inversely de-

pendent to the training set size N .

Condition number 1 is the smoothness assumption. The telephone-number learning

example [PG93] clearly illustrates this concept. If the input X is the set of all names and

the output Y is the set of all phone numbers listed in a phone directory, then the output

space is very jagged. Consider the names \John A. Smith," \John B. Smith," and \John

C. Smith." Although the names themselves are very similar (very small steps in the in-

put space), it is extremely unlikely that they will have similar phone numbers in the output

space (very sharp peaks in the output space). We can say that the mapping is not smooth,

or that similar inputs do not have similar outputs. It would therefore be impossible to in-

fer the phone number of \John B. Smith" from knowing the phone numbers of the other

two. Section 5.2 demonstrated that similar quantized rhythmic phrases have similar devia-

tions. Therefore, it seems reasonable to assume that we can infer the deviations of a phase

knowing only the deviations of other phrases near it in the input space.

Condition number 2 requires that the approximating mapping must be powerful

enough to represent the real mapping. A powerful approximating strategy, however, always

implies a large capability for learning. The results of [VC71] extended in [BEHW89, Hau89]

show that the capability (or VC-dimension) of a learner is directly correlated with the num-

ber of training examples needed to achieve reasonable generalization. It is beyond the scope

of this discussion to provide a detailed explanation of this principle (see [HH93] for a nice

introduction). Nevertheless, these results obligate condition number 3.

Assuming the three conditions above can be satis�ed, an additional potential prob-

lem remains. The information in the data might not be su�cient to uniquely reconstruct

the mapping in regions at which data is not available. That is, we can never know with cer-

tainty what the appropriate mapping is at locations not covered by D. There are holes in

the input and output space in which we must somehow interpolate. Furthermore, consider

the rhythmic phrase space X . In practice, it is not possible to obtain a data set that com-

pletely spans the input space X by observing only one musical style. There are likely to be
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Figure 5-7: Phrase Space.

large regions representable by X that never appear in the musical phrases of a performer of

a particular style. Moreover, di�erent musical styles could have di�erent deviations for the

same quantized rhythmic phrase, i.e., across musical style boundaries, identical points in X

would map to very di�erent deviations. This could even be true of di�erent performers of

the same style. Therefore, it seems like we have a problem. If we were to obtain enough data

to broadly span the input space X , our data set would contain contradictory X � Y pairs.

Fortunately, there are ways around this problem. The mapping problem can be

thought of as regression, interpolation, splines, etc. The smoothness assumption really

means that we have dense data relative to the space, dense enough so that there is no signif-

icant variation in the output surface Y between data points. That is, the highest frequency

variation in the output space Y should be comparable to the data set spacing. There are

two situations in which this condition is achieved:

1. The entire mapping is smooth and we have enough training data to span the entire

input space. Therefore, any interpolation between data points will closely approxi-

mate any actual point that exists there, and the learner can achieve good generaliza-

tion (Figure 5-7B).

2. The entire mapping is spiky, and we do not have enough training data to span the en-

tire input space. But, we are interested only in small regions of the input space and

we do have enough examples to densely cover those regions. That is, within the small

regions, our data set is relatively dense enough so that the mapping (within that re-

gion) for all means and purposes becomes smooth. In those regions, an interpolation
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between points will not be a gross error. Therefore, it is possible for the learner to

achieve good generalization (Figure 5-7A).

We are working only within one musical style and we are not interested in simultaneously

obtaining the mapping for phrases not found in that style. Furthermore, we would be satis-

�ed to approximate the deviations of even one expert performer in one style. Therefore, we

need only to pick densely packed samples from select regions of the space X . Fortunately,

those select regions are exactly the ones that appear in a performance of one style. There-

fore, we just need to obtain a large data set from the performer of interest.

When working with the data for the conga (Figure 5-2) and the tumbao, choosing the

phrases that constitute the X space is obvious. Each of these drums is repeatedly playing

phrases delineated by measure boundaries. The similar phrases are naturally delineated by

these measure boundaries. Therefore, the training data may consist of separate measures;

xi is the quantized representation and yi are the deviations of the ith measure.

For the quinto, choosing the phrases is not obvious. The quinto is improvisational,

and does not repeat the same phrase every measure. As we saw above, nearly identical

quinto phrases do have similar deviations. We can not, however, simply segment the per-

formance using measure boundaries as with the conga or the tumbao. If we did, we would

�nd that the resulting phrases would not be similar to each other at all. We need a method

to determine the similar phrases in the quinto data. The next section presents an algorithm

to do just that.

5.4 Similarity Phrase Clustering

The goal of the algorithm is, given a musical quantized score in the form of a sequence

of tatum and stroke type pairs, extract the phrases and bundle them into clusters. The

phrases in each cluster should be similar. Previous methods of musical pattern detec-

tion [MRG85] are not applicable in this context. The approach I take is one of clustering

[DH73, And73, JD88]. We want to �nd the phrases in the piece of music, and simultane-

ously cluster them into groups of identical or nearly identical sets. Within each cluster, the

di�erence between any two phrases should be minimal.
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5.4.1 Clustering Criterion Function

Assume that the vector ~x denotes a phrase from a musical sequence and let Xi denote one

of c clusters of identical or nearly identical phrases. One way of proceeding is to derive a

function that judges the quality of a particular clustering; this is called a criterion function.

The clustering algorithm can then proceed as an optimization problem; we �nd the cluster-

ing that minimizes the criterion function.

One way of judging a clustering is to use the minimum variance criterion

Je =
cX

i=1

X
~x2Xi

k~x� ~mik2; (5:1)

where the mean vector is

~mi =
1

ni

X
~x2Xi

~x ; ni = jXij:

This function is minimized when the intra-cluster phrase distance is as small as possible.

There are three problems:

1. How do we segment the musical sequence into phrases?

2. How do we represent a quantized percussive phrase?

3. How do we optimize the criterion function?

5.4.2 Derivation of Phrase Distance d(~x; ~x0)

How do we represent variable length percussive phrases with a �xed length vector ~x? Fur-

thermore, can we correctly assume that given such a representation, the perceptual distance

between two musical phrases corresponds to the Euclidean distance between their two cor-

responding vectors? Probably not. With a bit of algebra, we may re-write equation 5.1 as

follows[DH73]:

Je =
1

2

cX
i=1

ni�si;

where

�si =
1

ni2

X
~x2Xi

X
~x02Xi

k~x� ~x0k2:

It is now possible to see that the criterion function is actually an average of the intra-cluster

phrase distances. The problem lies, where ~x is mentioned, in the expression k~x� ~x0k2. This
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quantity is the Euclidean distance between ~x and ~x0. If we substitute this distance metric

with our own measure as in

�si =
1

ni2

X
~x2Xi

X
~x02Xi

d(~x; ~x0);

we have reduced the problem to �nding an appropriate distance measure d(~x; ~x0) between

percussive rhythmic phrases.

There are several qualities we would like d(~x; ~x0) to possess. First, identical phrases

should have a distance of zero. Two quantized percussive phrases are identical only if:

1. Their �rst strokes have the same relative measure o�set.

2. They have the same number of tatums between their bounding strokes.

3. They have the same sequence of stroke types (not counting leading or tailing rests).

4. The inter-onset times between strokes are identical.

Second, nearly identical phrases, phrases slightly violating few of the conditions above,

should have very low distance values.

One approach to a distance measure is to discover the set of features that constitute

all percussive phrases. The features might be contours, patterns of ups and downs, or other

shapes. A similarity measure could possibly be found that matches the features of two per-

cussive phrases; the degree of feature commonality would determine the overall similarity

[Tve77]. This approach is not suitable, however, for percussive phrases because we do not

know a priori the appropriate set of features; nor do we want to create a �xed set of fea-

tures. That would be restricting because a new musical sequence would need its own feature

set. Furthermore, this approach is not suitable because percussive phrases come in various

lengths, and might consist only of one note on one tatum in one measure. There is no ap-

parent way to obtain features from such a phrase and then compare them to those from one

much longer. For the same reason, �xed length vector representations seem unpromising.

Therefore, rather than approaching the problem in this way, the distance measure d(~x; ~x0)

developed herein compares the two phrases directly without extracting features.

First, the phrases are transformed into a contingency table. Normally, a contingency

table is used to represent the co-occurrence between two presumably independent variables
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Var B: Height
5' 5.5' 6' : : : 12' Row Totals

70lb. n11 n12 n13 : : : n1q n1:
80lb. n21 n22 n23 : : : n2q n2:

Var A: 90lb. n31 n32 n33 : : : n3q n3:

Weight
...

...
...

... : : :
...

...
300lb. np1 np2 np3 : : : npq np:

Col Totals n:1 n:2 n:3 : : : n:q n::

Table 5.1: Height versus Weight Contingency Table.

Var B: Height
5' 5.5' 6' : : : 12' Row Totals

70lb. f11 f12 f13 : : : f1q f1:
80lb. f21 f22 f23 : : : f2q f2:

Var A: 90lb. f31 f32 f33 : : : f3q f3:

Weight
...

...
...

... : : :
...

...
300lb. fp1 fp2 fp3 : : : fpq fp:

Col Totals f:1 f:2 f:3 : : : f:q 1

Table 5.2: Height versus Weight Relative Frequency Table.

A and B. The table represents n:: events. Element nij in the table is the number of events

that fall in both the ith class of variable A and the jth class of variable B. The marginal to-

tals are ni:, the number of events that fall in the ith class of variable A, and n:j , the num-

ber of events that fall in the jth class of variable B. Therefore, we have

ni: =
X
j

nij n:j =
X
i

nij

n:: =
X
i

ni: =
X
j

n:j

For example, class A might be a persons weight, and class B height. An experiment consists

of sampling n:: events. In Table 5.1, n:: peoples' heights and weights are obtained where nij

is the number of people who have weight given in row i and height given in column j.

In contingency table analysis, all entries and the marginal totals are typically divided

by n:: providing the relative frequency fij of each event (see Table 5.2). Notice that fij has
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the properties of a joint probability mass function.5 That is,

0 � fij � 1;

and X
i

X
j

fij = 1:

A quantized percussive musical phrase can be represented as a quantized discrete time

sequence, discrete in time (the tatum number is the index) and quantized in amplitude (the

stroke type). Figure 5-8 shows two musical phrases and their corresponding time sequence

representations. These phrases contain only three stroke types; type 0 refers to a rest, type

1 refers to pitch A, and type 2 refers to pitch C.

Each of these rest-padded phrases can be considered a variable in the contingency

table and each stroke type in the phrase can be considered a variable class. Furthermore,

each tatum can be considered an event. The two phrases must adhere to the same metric

form and in particular, they must have the same time signature. The phrases are lined up

according to the metric grid, as shown in the �gure. The phrase boundaries are determined

by the earliest and latest non-rest of both phrases. I assume that a short phrase is equiv-

alent to a long phrase with rest on the ends. So, if one phrase extends past the other, the

other is padded with rests. Note in the �gure that phrase B has a rest padded onto its be-

ginning, and phrase A has a rest padded onto its end.

A contingency table can thus be constructed that encodes, for each possible pair of

stroke types, the number of tatums in which phrase A is one type, and phrase B another.

The total number of tatums considered is n::. Consequently, the contingency table counts

the number of stroke type co-occurrences between two phrases. For example, the contin-

gency table for the phrases given in Figure 5-8 is shown in Table 5.3.

We use C(A;B) to denote the matrix de�ned by the contingency table for phrases A

and B. Notice that, for identical phrases, C(A;B) is zero everywhere except for along the

main diagonal.

When measuring the similarity between two phrases, a stroke type di�erence on one

tatum might matter to a greater or lesser degree than a stroke type di�erence on another

5A discrete joint probability density function.
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Figure 5-8: Percussive Phrases as Time Sequences.

Phrase B
0 1 2

0 0 3 0 3
Phrase A 1 1 1 1 3

2 1 0 1 2
2 4 2 8

Table 5.3: Phrase A versus Phrase B Contingency Table.
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Figure 5-9: Two Phrases with Tatum Signi�cance Values.

Phrase B
0 1 2

0 0 2b3 + b1 0 2b3 + b1
A 1 b2 b5 b2 b5 + 2b2

2 b0 0 b4 b4 + b0
b2 + b0 b5 + 2b3 + b1 b4 + b2 b0 + b1 + 2b2 + 2b3 + b4 + b5

Table 5.4: Phrase A versus Phrase B Tatum Dependent Contingency Table.

tatum. Therefore, we attach a signi�cance to each per-measure tatum, and construct a

tatum dependent contingency table. For each measure, each tatum has a signi�cance bi as-

sociated with it. The signi�cance is a value, between 0 and 1, that indicates the importance

of a stroke type di�erence. That is, the signi�cance bi indicates the degree to which a co-

occurrence of two stroke types on that tatum is valuated in the contingency table (see Fig-

ure 5-9). If there are N tatums per measure, then there are N distinct signi�cance values. A

value of 1 indicates that a di�erence on this tatum is maximally signi�cant and 0 indicates

that it is not counted. Each time there is a co-occurrence on the kth per-measure tatum of

stroke type i in phrase B and type j in phrase A, the value bk is added into the ith row and jth

column of the tatum dependent contingency table. The result for Figure 5-9 is shown in Ta-

ble 5.4. Let us denote the tatum dependent contingency table for phrases A and B by P (A;B).

As in regular contingency table analysis, we require a relative frequency measure. If

we divide each entry by
P
bi, the sum of the n:: tatum signi�cance values spanning the

length of the phrases, the result is the tatum dependent relative frequency matrix for phrases

A and B, R(A;B). That is,

R
(A;B)
ij =

X
i2Qij

bi

P
bi

=
P
(A;B)
ijP
bi

;
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Phrase B
0 1 2

0 0 (2b3 + b1)=
P
bi 0 (2b3 + b1)=

P
bi

A 1 b2=
P
bi b5=

P
bi b2=

P
bi (b5 + 2b2)=

P
bi

2 b0=
P
bi 0 b4=

P
bi (b4 + b0)=

P
bi

(b2 + b0)=
P
bi (b5 + 2b3 + b1)=

P
bi (b4 + b2)=

P
bi 1

Table 5.5: Phrase A and B Tatum Dependent Relative Frequency Matrix.

where Qij is a multi-set of tatum signi�cance indices. The indices in Qij are those of the

per-measure tatums upon which a phrase A stroke of type i and a phrase B stroke of type

j both land. An example, for the phrases given in Figure 5-8, is shown in Table 5.5 whereP
bi = b0 + b1 + 2b2 + 2b3 + b4 + b5.

The matrix R(A;B)still has the properties of a joint probability mass function. This

becomes clear if we consider three things:

1. Clearly, no element in R(A;B)can be less than zero.

2. The maximum value of an element in P (A;B) is
P
bi. This occurs when phrases A and

B are identical and consist of only one stroke type. Because R(A;B) = P (A;B)=
P
bi,

the largest possible value of R(A;B) is 1.

3. By de�nition, we know that
P

i;j P
(A;B)
ij =

P
bi, therefore

P
i;j R

(A;B)
ij =P

i;j P
(A;B)
ij =

P
bi = 1.

Once again, our goal is to develop a similarity measure between the two phrases. No-

tice that the sum of the columns in R(A;B) is the tatum-signi�cance scaled distribution of

stroke types for phrase A. Similarly, the sum of the rows is the tatum-signi�cance scaled

distribution of stroke types for phrase B. One approach, then, is to use a standard measure

of association between variables in a contingency matrix. The chi-square statistical mea-

sure [JD88, And73] can be used to test the hypothesis of independence between these two

distributions. Speci�cally, we can test the hypothesis H0 : rij = ri:r:j where rij is the ac-

tual value of the ith row and jth column of R(A;B), ri:r:j is the expected value, under the

independence assumption, of that row and column, and ri: and r:j are the marginal totals

of, respectively, that row and column. If H0 is found to be probable, the distributions are

independent and there is low association. If H0 is very improbable, the distributions are
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likely to be dependent and there is high association. Other association methods are based

on optimal class prediction [And73]. These measures test the power of one stroke type in

phrase A to predict another stroke type in phrase B. If a high degree of predictability can

be found, then we say there is high association. Further association methods are based on

the correlation coe�cient [HT88], and entropy [PTVF92, CT91].

A problem with the above approaches, however, is that they all test association not

similarity. Phrase A is well associated with phrase B if, for example, all the rests of phrase

A perfectly coincide with any one stroke type in phrase B. But, in that case, the phrases

would certainly not be similar. Essentially, the measures mentioned above test how well

the matrix resembles the solution to the N-rooks problem, where N is the number of stroke

types. We, however, need a measure that tests how well the matrix resembles one that re-


ects the degree of similarity between stroke types. What follows is such a measure.

Let S denote a similarity matrix where Sij is a value between 0 and 1. A 0 in row i

column j indicates that stroke type i and j are completely dissimilar, whereas a 1 indicates

that stroke type i and j are completely identical. The matrix S can be obtained using data

from a perceptual experiment on human subjects (see Section 5.4.4 further describing the

results of such an experiment). It is found that S has the following properties:

� It is symmetric.

� It contains values of 1 along the main diagonal (identical stroke types are identical to

each other).

� O� the main diagonal, all values are less than one.

The distance measure on percussive musical phrases is de�ned by using the joint dis-

tribution properties of R(A;B) to measure the probability of dissimilarity. We take the op-

posite of the expected value, with respect to the tatum dependent relative frequency ma-

trix, of the similarity matrix S. This result is scaled by the di�erence in lengths between

the original phrases. That is, for phrases ~x and ~x0,

d(~x; ~x0) = 1�	(~x; ~x0)E(~x;~x0)[S] =

1�	(~x; ~x0)
X
i;j

R
(~x;~x0)
ij Sij ;
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where 	(~x; ~x0) is a scaling function de�ned as

	(~x; ~x0) = 1�
���k~xk � k~x0k���
k~xk+ k~x0k ;

k~xk is the length of the phrase ~x before rest padding, S is the similarity matrix, and where

E(~x;~x0)[S] is the expected value of S with respect to phrases ~x and ~x0

E(~x;~x0)[S] =
X
i;j

R
(~x;~x0)
ij Sij :

We also will �nd it useful to de�ne the similarity measure

s(~x; ~x0) = 1� d(~x; ~x0) = 	(~x; ~x0)E(~x;~x0)[S]:

Notice that E(~x;~x0)[S] is a similarity measure; 	(~x; ~x0) is a penalty for having di�erent length

phrases; s(~x; ~x0) is a scaled similarity measure; and d(~x; ~x0) is the opposite of the scaled

similarity measure.

Assuming that ~x 6= ~x0, the distance measure d(~x; ~x0) has the following properties:

1. 8~x; ~x0 : 0 � d(~x; ~x0) � 1: Clearly, s(~x; ~x0) � 0 and 0 � 	(~x; ~x0) � 1. Furthermore,

R(~x;~x0) has the properties of a joint probability mass function, and because 0 � Sij � 1

the result follows.

2. 8~x; ~x0 : d(~x; ~x0) = d(~x0; ~x): The similarity matrix S is symmetric, so E(~x;~x0)[S] =

E(~x0;~x)[S]. Clearly 	(~x; ~x0) is a symmetric function. The result follows.

3. 8~x; ~x0 : ~x = ~x0 , d(~x; ~x0) = 0: Right to Left: Because R(~x;~x) contains non-zero values

only along the main diagonal, E(~x;~x)[S] = 1. Clearly, 	(~x; ~x) is always 1. The result

follows. Left to Right: If the distance is zero, then s(~x; ~x0) must be 1. 	(~x; ~x0) is 1

only when ~x and ~x0 have the same length. E(~x0;~x) is 1 only when all o�-diagonal ele-

ments of R(~x;~x0) are zero, which implies that ~x = ~x0.

4. Triangle Inequality is False: 8~x; ~y; ~z : d(~x; ~y) + d(~y; ~z) � d(~y; ~z). Consider three two

stroke-type phrases. Each phrase is three tatums long, ~x1 = [001], ~x2 = [010], and

~x3 = [100]. Assume the similarity matrix S has values of 0 everywhere except for

the diagonal at which it has only values of 1. Then, d(~x1; ~x2) = d(~x2; ~x3) = 1, but
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d(~x1; ~x3) = 2=3.

It would be strange to expect d(~x; ~x0) to satisfy the triangle inequality. If it did, then

this distance measure would be a true distance metric and that would seem counterintu-

itive. I believe, however, that d(~x; ~x0) has a close correspondence to human judgment of

disparity between identical and near-identical percussive phrases.

Do the tatum signi�cance values re
ect a cultural or stylistic bias? They probably

do. In fact, we can compute the signi�cance values using the results of a perceptual exper-

iment. Suppose we ask a set of subjects to rate the dissimilarity, on a scale from 0 to 1, of

N pairs of percussive phrases. Suppose further that the ith response is the rating between

phrases ~xi
A and ~xi

B and that the dissimilarity value is di. The entire vector of experimen-

tally derived dissimilarity values obtained from the subjects is denoted by the N � 1 vector

~d. Assume there are M tatum signi�cance values we wish to compute and they are repre-

sented by the M � 1 vector ~b. We want to �nd the tatum signi�cance values that minimize

the di�erence between the predicted dissimilarity values and those obtained experimentally:

~b� = argmin
~b

�
~d� ~d(~xA; ~xB)

�2

where ~d(~xA; ~xB) is the N � 1 vector of of predicted dissimilarity values and ~b� is the vec-

tor of optimum tatum signi�cance values. We can perform this minimization by setting the

predicted and experimentally derived dissimilarity values equal to each other

di = 1�	(~xi
A; ~xi

B)E(~xi
A; ~xi

B)[S] 8i:

This can be represented as a system of N equations with M unknowns

(	F )~b = 1 � ~d; (5:2)

where 	 is an N �N diagonal matrix with 	ii = 	(~xi
A; ~xi

B), and

F =

0
BBBBBBB@

F1

F2

...

FN

1
CCCCCCCA
;
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Figure 5-10: Percussive Phrase Examples.

where Fi is a row vector and Fij is the number of tatums with signi�cance bj existing within

the duration of phrases ~xi
A and ~xi

B . With this de�nition of F , the predicted dissimilarity

values may be given by

d(~xi
A; ~xi

B) = 1�	iiFi~b:

Normally, M << N in Equation 5.2, and ~b can be found by least squares

approximation[Str88]

~b =
�
(	F )T (	F )

��1
(	F )T (1� ~d):

An example follows. Figure 5-10 lists �ve phrases. Assuming the similarity matrix

S =

0
BBBB@

1 0 0

0 1 0:5

0 0:5 1

1
CCCCA ;

and that 8i : bi = 1, then the values of d(~x; ~x0) for the phrases listed in Figure 5-10 are

d(X1; X2) = 0:776; d(X1; X3) = 0:647;

d(X1; X4) = 0:045; d(X1; X5) = 1:

These distance values seems reasonable, especially considering the contrived similarity ma-

trix and the fact that we have not computed the tatum signi�cance values.
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5.4.3 Clustering Algorithm: Divide and Conquer

The next step is the actual clustering. The problem is, �nd the phrases and clustering that

minimizes the expression

Je =
1

2

cX
i=1

1

ni

X
~x2Xi

X
~x02Xi

�
1� 	(~x; ~x0)

X
i;j

R
(~x;~x0)
ij Sij

�
: (5:3)

Assume that we have N drum strokes. The brute force approach would be to look at

all possible ways to form the N strokes into K phrases and all possible ways to cluster the

K phrases into c clusters, where K may range from 1 to N and c may range from 1 to K.

We would then pick the phrases and clustering with minimum Je. The number of ways to

cluster K phrases into c clusters S(K; c) is very large and given by [JD88, DH73]

S(K; c) =
1

c!

cX
i=1

(�1)c�i
 
c

i

!
(i)K � cK=c!:

And this assumes c is known! The number of ways to form the N strokes into K phrases6

is L(N;K) =
�N�1
K�1

�
. If K and c are known, the number of ways to form the N strokes

into K phrases and cluster the K phrases into clusters is L(N;K)S(K; c). If K is unknown

and c = 1, the number of ways to form the N strokes into phrases6 is 2N�1. In our case,

however, we do not know either K or c and the number of ways to form the N strokes into

phrases and the phrases into clusters is astronomical. Therefore, to avoid a ridiculously in-

tractable algorithm, we must proceed with a heuristic optimization strategy.

Finding the best number of clusters is a fundamental problem in cluster analysis.

There are various heuristic clustering strategies given in the literature. One of the most pop-

ular techniques is the ISODATA algorithm [BH65, DH73, And73, JD88]. This is an iterative

procedure in which clusters are split and merged according to certain guidelines, using K-

means along the way. Another method, called hierarchical clustering [DH73, And73, JD88],

works bottom-up by �rst creating one cluster for each sample (phrase in our case) and then

merging the clusters that increase Je the least. There are other methods that test cluster

validity, i.e., how good is the computed value for c. These methods statistically determine,

using Monte Carlo analysis, how unusual (valid) a particular clustering is.7 In our case,

6This is derived in Appendix A.
7We also encountered this problem back in Chapter 3.
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however, because a sample is a phrase and a phrase is a set of strokes, we need to simul-

taneously �nd the phrases and decide how to cluster them, a task that none of the above

clustering techniques will perform. We need a multi-stage clustering algorithm, one that si-

multaneously clusters on two levels. A new algorithm was therefore developed.

The algorithm Linear Phrase Cluster divides the sequence of strokes into two

halves, solves the problem on each of the two halves, and then merges them back to form

the complete solution. It produces a group of clusters. The �nal number of clusters is c, as

de�ned in Equation 5.3. Each cluster contains a set of phrases that are maximally similar.

Each phrase comprises a sequence of stroke types and tatum numbers.

Procedure: Linear Phrase Cluster

Input: A sequence of tatum numbers and corresponding stroke types.

Output: A phrase clustering that minimizes Je.

Step 1: Call Recurse with the entire sequence and return the result.

Procedure: Recurse

Input: A sequence of tatum numbers and corresponding stroke types.

Output: A phrase clustering that minimizes Je for the sequence.

Step 1: If the sequence is less than the threshold length, call baseCluster and return the

resulting group.

Step 2: Split the sequence in half. If possible, the point of division should be situated at

a gap between strokes of two or more tatums (thereby, we avoid splitting a phrase in

half).

Step 3: Call Recurse on the left half.

Step 4: Call Recurse on the right half.

Step 5: Call Merge on the two halves.

Step 6: Call Iterative Optimize on the result.

Step 7: Call Merge on the result with itself. This will merge any clusters that either cause

a reduction in or only slightly increase Je (see the de�nition of Merge).
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Step 8: Return the result.

Procedure: baseCluster

Input: A sequence of tatum numbers and corresponding stroke types.

Output: A phrase clustering obtained by heuristics.

Step 1: Assemble all strokes that are one tatum apart into phrases.

Step 2: Place each phrase into its own cluster.

Step 3: Place all the clusters into one group.

Step 4: Call Iterative Optimize on the resulting group.

Step 5: Return the result.

The procedure baseCluster uses simple heuristics to obtain its clustering. First, it

assumes that the sequence length is small, so there are probably not any similar clusters.

Second, it assumes that all adjacent strokes are part of the same phrase (which accounts

for step 1). Finally, in case there are similar phrases, it calls Iterative Optimize which

tries to �nd them.

Procedure: Merge

Input: Two groups to be merged.

Output: A merger of the two input groups.

Step 1: For all unequal pairs of clusters in each group, calculate the di�erence in Je be-

tween separately representing and merging the two clusters. That is, let J
(2)
e be the

cost if we keep both clusters and let J
(1)
e be the cost if we merge the two clusters. The

di�erence is then J
(2)
e � J

(1)
e . Let Di be the di�erence for the i

th pair of clusters.

Step 2: Sort Di in increasing order. Create a new empty group.

Step 3: While Di � 0, merge the two corresponding clusters and place the result in the

new group. Merge some fraction (mergeFraction) of the remaining clusters, even if

Di > 0. We want to encourage the merging of clusters even if it slightly increases Je.

This step avoids the situation in which Je is zero but the number of clusters is equal

to the number of phrases, clearly an incorrect solution [DH73, page 241].
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Step 4: Add any remaining clusters into the new group.

Step 5: Return the new group.

Procedure: Iterative Optimize

Input: A group.

Output: A group whose phrases have been manipulated to minimize Je.

Step 1: Edge Switch: Check the strokes at the edges of each phrase. If switching the edge

of a phrase to its neighbor reduces Je, then do it. The edges of a phrase are de�ned

as the strokes at its left and right ends.

Step 2: Split: Check each phrase. If Je is reduced by splitting the phrase in half, then do it.

Step 3: Split and Merge: Check each phrase. If Je is reduced by splitting the phrase in half

and merging either the left half with the left neighbor, or the right half with the right

neighbor, then do it. Note that the left or right neighbor might be in another cluster.

Step 4: If any changes have taken place and we have not passed a maximum loop count,

goto step 1.

Step 5: Return the modi�ed group.

In the procedure Iterative Optimize, the edges of a one-tatum phrase are the same. Be-

cause we might remove the only edge of a phrase, this step might eliminate phrases.

Linear Phrase Cluster would surely be of no use if it was computationally in-

tractable. As we will see, it is not. The following are the costs of each of the procedures:

� Cost of baseCluster: because a maximum of N strokes are given to this procedure,

and because it is clearly linear in its input size N , this step is O(N).

� Cost of Merge: Calculating the di�erence array is O(N2); Sorting is O(N lg(N));

Merging is O(N) because a maximum of N=2 clusters can be merged. Therefore, this

step is O(N2).

� Cost of Iterative Optimize: Each of the optimization stages, Edge Switch, Split,

and Split and Merge are clearly O(N). Convergence is not guaranteed however; in�nite

loops could occur if not for the loop count threshold. But considering the loop thresh-

old as a constant, the cost is a constant times O(N). Therefore, this step is O(N).
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The procedure Recurse performs four steps: it calls itself with the left and right

halves of its input, and calls Merge and Iterative Optimize. Therefore, the cost is:

O(N2) +O(N) + 2(COSTOF(Recurse; N=2))

This may be expanded into

O(N2) + O(N) + 2(O((N=2)2) + O(N=2) + 2(O((N=4)2) +O(N=4) + : : :

+O(N 02) + O(N 0) + 2(O(N 0=2))) : : :)

where N 0 = O(N= lg2(N)). This may be reduced to

O(N2) + O(N2):::+O(N2)| {z }
lg2(N)

;

where there are lg2(N) terms in the sum. Therefore the complexity of the algorithm is

O(N2 lg2(N)), far better than the brute force approach. Now the question is, how well does

it do?

5.4.4 Clustering Results

I implemented the phrase clustering algorithm and tested it on the quinto data. I obtained

the similarity matrix S by performing a perceptual experiment on human subjects.8 The

goal of the experiment was to obtain information about perceived similarity between drum

strokes. A computer program presented a set of drum stroke pairs to a subject. Each pair

was presented using a graphics window that contained eight widgets: two buttons played

the drum strokes, �ve numbered buttons enabled the subject to choose a similarity rating,

and a next button moved on to the next pair. The pairs were presented in random order.

Thirty subjects participated in the study. Each subject produced three similarity matri-

ces, one each for the quinto, the conga, and the tumbao. For each drum, the overall aver-

age similarity matrix was calculated, and used as the similarity matrix S.

The similarity matrix for the quinto is listed in Appendix B, Figure B-17. Notice

8Seth McGinnis, an undergraduate working with me at MIT, was the principle experiment administra-
tor and wrote the computer program to test the subjects. We gratefully acknowledge the support of TVOT
for this experiment.
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Threshold Length 32 tatums (2 measures)

Similarity Matrix Perceptual Experiment

Tatum Signi�cance Values 8i : bi = 1

Merge Fraction 0.5

Loop Count 25

Figure 5-11: Quinto Phrase Cluster Parameters.

that it is almost symmetric. To ensure that presentation order did not e�ect the similarity

rating, the entire matrix of pairs was presented to the subjects. That is, we wanted to ver-

ify that, when comparing strokes A and B, the similarity rating was identical regardless of

whether stroke A was listed on the left or right. The asymmetries in the matrix are negligi-

ble and may be considered experimental error. Figure B-18 shows the matrix standard de-

viations over all the subjects. The values are quite small which shows there was wide agree-

ment about the similarities. Notice also that the asymmetries in the mean matrix are al-

most always within one standard deviation of each other.

The algorithm was run with various parameter values on the quinto data; the val-

ues from the �nal run are listed in Table 5-11. I used the distance measure d(~x; ~x0) under

the assumption that all tatums were equally signi�cant, i.e., 8i : bi = 1. Figure B-1 in Ap-

pendix B shows the results of the quinto data for the �rst 450 tatums. The vertical dotted

lines show phrase boundaries and the vertical solid lines show the stroke type. Figures B-

2 through B-16 show some of the typical clusters in standard musical notation.

Out of 1717 tatums total (about 5 minutes), the algorithm produced 292 clusters of

phrases. Most of the clusters were quite small, and many of them contained only one phrase.

Although it did produce a clustering with Je = 0, it was not the best possible. There are

probably several reasons for this.

� Insu�cient data. The data in the quinto performance alone does not predominantly

contain similar phrases. If we used a much longer performance, or many performances,

the similar phrases would become more apparent because they would constitute denser

chunks in the sample space. Therefore, with more data, similar phrases would have a

better chance of being clustered together. This would, in turn, cause clusters to at-

tract additional similar phrases because the procedure Merge �nds mergers that in-

crease Je the least. This is a fundamental problem for cluster analysis. If the data
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does not occupy relatively compact and well separated clouds in the sample space,

clustering becomes di�cult. Insu�cient quantities of data can lead to this sparsity.

� Inadequate assumption for bi. All tatums were valuated equal. We do not hold this to

be self-evident, however. I expect that obtaining better values for bi using the method

given in Section 5.4.2 would signi�cantly improve the results.

� The space de�ned by Je is di�cult. The criterion function Je probably has local min-

ima. Moreover, there are many incorrect global minima. That is, the minimum value

of Je is zero, but any clustering with one phrase per cluster will have that minimum.

If the sequence has no similar phrases, such a result might be correct. This is not,

however, the normal case. Step number 3 in Merge and step 7 in Recurse was an at-

tempt to avoid this situation. In step 3, even if Je was increased, we forced the clus-

ters to merge, producing a cluster with more than one phrase. However, it might be

additionally bene�cial to bias Je away from clusters with just one phrase.

� The distance measure. The distance measure d(~x; ~x0) tends to get large quickly as

phrases become dissimilar. If the measure was slightly more tolerant of dissimilar

phrases, additional phrases might be clustered together.

I also applied the algorithm to test data containing multiple copies of only two phrases.

Although it successfully grouped identical phrases into clusters, many clusters that con-

tained near identical phrases were not merged together. Therefore, the algorithm shows

promise, but more parameter �ddling is clearly necessary.

5.5 Neural Network Learning Strategy

This section describes a Neural Network learning strategy for implementing the mapping

function f : X ! Y discussed in Section 5.3. It was designed speci�cally for learning devi-

ations from quantized rhythmic phrases. The approach is a common one: a multi-layered

perceptron (MLP) trained using the gradient descent procedure[HKP91]. The output rep-

resentation, however, is not.

The input to the network consists of a set of units for each tatum. Each unit in a set

encodes a particular stroke type. Each set corresponds to a tatum; a unit in a set is acti-

vated if a stroke occurs on the set's tatum and no unit is activated if there is a rest. The
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number of tatums in the input layer is determined by the number of tatums in the maxi-

mum length phrase. Because a phrase shifted right or left is completely di�erent perceptu-

ally, each phrase is lined up according to its measure boundaries when presented as input

to the network.

The �nal network output needs to be a deviation. As the histograms have shown, this

is a small real number somewhere between about -0.25 and +0.25 seconds and has what

looks like a Gaussian distribution. Any output of the network must also follow a similar

distribution; that is, it must have approximately the same mean, variance, and shape. Be-

cause we can pre-compute the mean and variance, we can eliminate this burden from the

network. Assuming an approximate Gaussian distribution, the probability of a given devi-

ation is given by

p =
1

�
p
2�

e
�(d��)2

2�2 ;

where � and �2 are the computed mean and variance and d is the deviation. The inverse

of this function is given by

d = � �
q
�2�2 ln (�p

p
2�): (5:4)

Therefore, corresponding to each deviation d, there is a probability p and a sign +1 or �1.
Rather than learning the deviations directly using one MLP, we use two MLP networks.

Network A uses logistic output units and learns the probability of a particular deviation,

something that is distributed uniformly between 0 and 1. Network B uses hyperbolic tan-

gent outputs and learns the sign of a deviation. After performing a forward pass through

the network, the two values are post-processed through Equation 5.4 providing a deviation.

This technique should facilitate deviation learning for two reasons: �rst, we have essentially

doubled the amount of deviation training data; network A receives the same probability for

two deviations on opposite sides of the mean. Second, the target values are now uniformly

distributed and the information about the mean and variance has been removed which is

one less thing for the network to learn.
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Chapter 6

The Future

This thesis is only a beginning. There are many avenues left to explore and the following

section describes several of them.

6.1 Future Work

6.1.1 Multiple Tatum Clocks

Multiple tatum clocks refer to tatums at di�erent rates. This is not tempo variation, how-

ever. The tempo might stay �xed while the tatum clock rate changes. Even within an

ensemble, di�erent performers might simultaneously perceive di�erent tatum clock rates.

There are two (not necessarily mutually exclusive) musical situations in which multiple

tatum clocks can occur.

The �rst may be called successive tatum clocks. Some of the phrases in a piece of mu-

sic seem better represented using a di�erent tatum rate. For example, some phrases more

closely match a metric grid containing of a multiple of three tatums per measure rather than

a multiple of four. Fast triplet �gures are a perfect example. In the Mu~nequitos record-

ings, a phrase occasionally sounded more triplet-like and the L = 16 assumption produced

a few incorrect quantizations. Consequently, the resulting deviations were also incorrect.

This occurred rarely, but it could pose problems for future analysis. We therefore need a

method to determine if a tatum rate change has occurred.

Perhaps one method could perform the timing analysis described in Chapter 4 with

di�erent values of L, the number of tatums per measure. Regions in the performance at
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which deviations are smaller for a given L could be evidence for a temporary tatum rate

equal to L. Of course, we could not increase L inde�nitely because the deviations would

eventually approach zero as the clock resolution becomes �ner. We would probably choose

reasonable tatum rate values, like 16, 24, or 32 tatums per measure { whatever we believe

likely in the music. The appropriate tatum rate would probably have the smallest devia-

tions. This minimum deviation principle, however, needs to be veri�ed. That is, why should

we believe that the best L produces the minimum deviations? This seems akin to the min-

imum syncopation principle of [LHL84, Lee85] which is not applicable in many musical sit-

uations. Therefore, we need more research in this area.

In addition, percussive rhythmic phrases are often ambiguous. In those cases, even

humans might not know the tatum rate. We often do not know how to quantize them and

therefore �nd them most di�cult to notate using standard musical scripture. When, for ex-

ample, do phrases begin to sound in three (twenty four tatums per measure) or four (six-

teen tatums per measure). We need a test to determine this threshold. I expect that there

is a hysteresis e�ect, in which we maintain one tatum perception until the deviations be-

come very large in magnitude (past some threshold) and then we switch to the other tatum

perception. Therefore, at di�erent times, the exact same phrase might be more naturally

perceived using di�erent tatum clock rates.

There is a second multiple tatum situation, in which multiple concurrent tatum clocks

exist in the perception of a music. African music frequently seems to contain two simulta-

neous tatum clocks; often the clock rates are both 16 and 24 tatums per cycle. The pro-

gram described in Appendix E describes an interface that can model this situation. We

need, however, much more research into this area.

6.1.2 A Drum Machine Project

Ultimately, the research contained herein might be used in the production of a commercial

drum machine. There are several changes that I would advise. First and most importantly,

the recorded performance should be ideal. If possible, there should be no bleed between

tracks. The bleed signi�cantly complicates the attack detection process and solving the

problem of bleed removal is irrelevant to obtaining good timing data. In the ideal recording

situation, each drummer would reside in a transparent sound-proof isolation booth. The

booths should be transparent so the drummers can all see each other. It should be isolated
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so there is no inter-track bleed. When recording trap drums, each drum should be moni-

tored separately using a piezo pickup rather than a microphone. Everything that can be

done to eliminate bleed should be done. Attack time analysis will then be much easier.

Second, it would be bene�cial to test the accuracy of the performers. They should be

asked to play the same phrases several times and the deviations for each phrase should be

calculated. Then, the deviation variance for identical phrases will provide rough guidelines

about the required accuracy of our representation. Furthermore, a small deviation variance

will con�rm our assumption that the same phrase at the same tempo is always deviated in

the same way.

Third, select the reference instrument (de�ned in Chapter 4) carefully. The reference

instrument should be the most solid instrument in the performance. In the Mu~nequitos

recordings, for example, it might have been bene�cial to use a combination of the segundo

and tumbao. Whatever is chosen, it should be solid and it should de�ne the tempo.

Other suggestions are perhaps more obvious: make sure the performers are well-

rested, are in a good mood, and are performing in as natural a setting as possible. All these

things will produce a superior performance and, consequently, superior timing data.

6.1.3 Deviations Dependent On Tempo

In Chapter 5, Figure 5-6 suggests that deviations are dependent on tempo. This is not sur-

prising. It seems clear that a performer will use di�erent deviations when playing a piece

at di�erent tempos. Unfortunately, I did not inquire into this matter but I would proceed

as follows: obtain several performances of the same phrase at di�erent tempos. The tim-

ing analysis algorithm can then provide the deviations and we can see how the deviations

change with tempo. Perhaps for a given phrase, the deviation is a �xed percentage of tatum

duration. In fact, Appendix E describes a drum machine interface that speci�es deviations

not in seconds but in percentage of tatum duration. Varying the tempo with that program,

however, seems to suggest that deviations get smaller relative to the tatum duration as the

tempo increases. This makes sense; there is less room to deviate. However, there is much

room here for experimentation.
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Figure 6-1: Timing Variation on a Metric Hierarchy.

6.1.4 Metric Hierarchy and Deviations and Tempo

Music can be hierarchically divided into separate components based on its metric structure.

One simple example of a metric hierarchy can be obtained from the 32 bar jazz AABA form.

The form repeats inde�nitely. Each repetition is divided into four sections, each section into

eight measures, each measure into four beats, and each beat into three tatums. Each piece

of music has its own hierarchical structure. In addition, the arrangement may change over

time. A jazz tune, for example, might alternatively move from a structured (e.g., AABA)

to a free (only measures and tatums) form. Therefore, the hierarchical structure is time-

varying; it changes as the piece transpires. In [LJ83] much discussion is devoted to this topic.

It is possible to de�ne both tempo variation and deviations on domains corresponding

to levels in a metric hierarchy. So far, we have seen these functions de�ned only on the low-

est level, the tatum level. In general, a function de�ned on a particular level operates over

a time region equal to the duration of that level (e.g., measure, beat, eight measures, etc.)

and is band-limited. That is, a function operating on the highest level might last the entire

piece and contain only low-frequency energy. A function operating on a low level might last

only a measure and contain only high frequency energy. The low-frequency high-level func-

tions may describe global structure whereas the high-frequency low-level functions may de-

scribe local phrase speci�c variation. Figure 6-1 depicts such a situation. Section A consti-

tutes an entire piece and there is one low-frequency timing variation function (tempo vari-

ation or deviations) that lasts for that duration. During the �rst half of the piece, section

A1, a higher frequency timing variation function applies. The second half of the piece, sec-

tion A2, is similar, and on down the hierarchy.

Mathematically, it is feasible to represent tempo variation or deviations as the sum

of all the functions on all the levels of the metric hierarchy. This is what I have been do-

ing so far; each tempo variation or deviation function represents all the tempo variation or

deviations in the performance. The point of this hierarchical breakdown is to �nd simple
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functions (sinusoids, second or third degree polynomials, etc.) that accurately describe the

variation for a particular level. Figures 4-6 in Chapter 4, for example, comprises two main

components which might be simpler functions operating at di�erent levels in the metric hi-

erarchy. I believe that a separation based on the metric hierarchy will enable us to �nd sim-

ple functions describing tempo variation and deviations. We can then combine these sim-

ple functions during a resynthesis to produce natural-sounding expressive phrases.

6.1.5 Higher Order Similarity Matrices

In Section 5.4.2, the similarity matrix measured only the similarity between isolated per-

cussive strokes. As was mentioned in Section 3.2.4, di�erent strokes might sound identi-

cal when heard out of context. The similarity matrix in Chapter 5 (and listed in Figure B-

17), however, tested the similarity of strokes only out of context. Context is important and

incorporating it into the distance measure should produce more realistic values. Let's say

there are N stroke types. A �rst-order similarity matrix (Figure B-17) provides a similar-

ity for each of the N(N � 1)=2 pairs of strokes. A second order similarity matrix, how-

ever, provides the similarity of two strokes also considering the strokes that preceded them.

The preceding strokes provide a context. Each stroke may be preceded by one of N other

strokes, so this matrix contains a value for each of the N2(N2
�1)=2 possibilities. This idea

could be extended to even higher order similarity matrices. In all cases, the similarity ma-

trices may be used in the distance measure de�ned in Chapter 5 as long as the contingency

tables also considered the preceding strokes.

6.1.6 Additional Points

� The timing analysis algorithms in Chapter 4 use low-pass �lters to remove high-

frequency variation from a performance. It is assumed that the deviations constitute

this high-frequency variation. We need a method to determine the stop-band cuto�

frequency of the low-pass �lter so this algorithm can be applied to a variety of di�er-

ent musical forms.

� Ametric musical phrases should be studied and better understood.

� Deviations could prove useful for determining the style or 
avor of a piece of music.

The style is the type of music, and the 
avor is the category within a type of music
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such as \excited", \sad", \complex", etc. The same set of quantized phrases could be

performed within a variety of styles and 
avors and the resulting deviations (extracted

using the timing analysis algorithm) could be examined. The deviations might then

indicate from which style the music originated and could be used in a 
avor oriented

drum machine interface such as [Mat93].

� Flams are two or more very rapid successive drum strokes. They are much faster than

the tatum rate and I believe they are often perceived as one stroke. Nevertheless, the

inter-onset times of the 
ams should be studied. Deviations will appropriately model

this situation.

6.2 Finis

The main goal of this thesis was to represent and reproduce expressive timing in percus-

sive musical rhythm { that is, to design algorithms that computers can use to produce ex-

pressive sounding rhythmic phrases. I believe I have been successful in this endeavor and

have begun to quantitatively describe one of the many elusive human behaviors. Music is

one of the most important means of expression, and rhythm is probably the most impor-

tant means of attaining musical expression. We have herein begun to produce expressive

sounding rhythmic phrases using a computer. We have yet, however, to achieve the level

of Star Trek's Data, the level at which computers can combine styles and be creative suc-

cessfully. And if computers do not soon progress, they might su�er a dreadful fate { they

might become what is referred to in the following:

He ain't got rhythm.

So no one's with 'im.

He's the loneliest man in town.1

1An Irving Berlin tune. Sung by Billie Holiday with Teddy Wilson and his Orchestra, 1937.
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Appendix A

Derivation of L(N;K)

Herein we derive the formula L(N;K), the number of ways to formN strokes intoK phrases.

The strokes all live on a line and the phrases must all consist of contiguous sequential line

segments.

We can consider the domain as a sequence of numbers on the number line. That is, we

have the numbers 1 through N, and we want to �nd the number of ways to cluster those N

numbers into K clusters, where the clusters must consist of a contiguous sequence of num-

bers.

Clearly, L(N;K) is de�ned only for N > 0 (there must be something to cluster) and

K � N (we can not ask to cluster N numbers into more than N clusters). Figure A-1 shows

a derivation tree for L(N;K). The left-most branch is the case when just the number 1 is

contained in one cluster. The remaining problem is then to cluster the remaining numbers,

L(N−1,K−1) L(N−2,K−1) L(K−1,K−1)

[1],2
,3,4,...

,N

[1
,2

],3
,4

,..
.,N

[1,2,...,N−K+1],N−K+2,...,N

L(N,K)

.  .  .

Figure A-1: L(N;K) Derivation Tree.
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2 through N, into K-1 clusters. The second branch then shows the case when numbers 1 and

2 are contained in one cluster. The remaining problem then is to cluster the remaining num-

bers, 3 through N, into K-1 clusters. This proceeds until we ask for the minimum number

of numbers (K-1) to be clustered into K-1 clusters. This implies the recurrence relationship

L(N;K) =
N�1X
i=K�1

L(i;K � 1)

where 8i; L(i; 1) = 1 and L(K;K) = 1 are the base values. If we generate this recurrence

relationship in a table, we get the following:

K

1 2 3 4 5 6 7

N 1 1

2 1 1

3 1 2 1

4 1 3 3 1

5 1 4 6 4 1

6 1 5 10 10 5 1

7 : : :

Therefore, this generates Pascal's triangle. Looking carefully at the table, we see that

L(N;K) =

 
N � 1

K � 1

!
:

This simple answer begs for an intuitive derivation of L(N;K). An intuitive one fol-

lows: We have N sequential strokes, thus there are N-1 stroke gaps between samples. We

want K clusters. For a given clustering, there are K-1 cluster gaps between clusters, each

cluster gap must correspond to some sample gap. The number of ways of choosing K-1

stroke gaps out of a total of N-1 is exactly
�
N�1

K�1

�
, and this is identical to the number of

ways of clustering the N strokes into K clusters.

The number of ways to cluster N strokes into K clusters where K is unknown

follows[Bey87, page 66]:
NX
i=1

L(N; i) =
NX
i=1

 
N � 1

i� 1

!
=
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=
N�1X
i=0

 
N � 1

i

!
= 2N�1:
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Appendix B

Phrase Cluster Results:

Quinto Data
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Figure B-1: Quinto Phrase Cluster Results: First 455 Tatums.
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Figure B-2: Cluster Number 0.
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Figure B-3: Cluster Number 1.
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Figure B-4: Cluster Number 5.
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Figure B-5: Cluster Number 10.
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Figure B-6: Cluster Number 11.
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Figure B-7: Cluster Number 13.
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Figure B-8: Cluster Number 19.
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Figure B-9: Cluster Number 20.
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Figure B-10: Cluster Number 38.
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Figure B-11: Cluster Number 42.
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Figure B-12: Cluster Number 58.
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Figure B-13: Cluster Number 126.
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Figure B-14: Cluster Number 184.
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Figure B-15: Cluster Number 187.
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Figure B-16: Cluster Number 239.

1:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00 0:00

0:00 1:00 0:35 0:54 0:47 0:42 0:36 0:69 0:35
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0:00 0:56 0:31 1:00 0:73 0:43 0:49 0:64 0:39

0:00 0:52 0:42 0:72 1:00 0:57 0:63 0:57 0:67
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Figure B-17: Quinto Mean Stroke Similarity Matrix. 8 Stroke Types, 1 Rest.
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Figure B-18: Quinto Drum Stroke Standard Deviations.
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Appendix C

Tape Contents

Two sets of musical examples are contained on a tape that accompanies this thesis. Each set

contains two sections: 1) a section of short sound segments and 2) a section of long sound seg-

ments fromwhich the short segments were extracted. Csound[Ver] was used for all syntheses.

We �rst hear musical examples from the Los Mu~nequitos de Matanzas recording. In

the �rst section, each segment is about 30 seconds long:

1. Recording of the segundo attack detection example shown in Figure 3-8.

2. Original two microphone room recording.

3. O� the board, recording.

4. O� the board, recording. Vocals not included.

5. Direct synthesis by triggering samples of the performance at the appropriate time

(Section 4.3.2, Example 1).

6. Quantized with the tempo equal to the average (Section 4.3.2, Example 2).

7. Quantized including the original tempo variation in the performance (Section 4.3.2,

Example 3).

8. Quantized with the original deviations in the performance and average tempo (Sec-

tion 4.3.2, Example 4).

9. Quantized with random Gaussian deviations and average tempo (Section 4.3.2, Ex-

ample 5).
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10. Quantized with per-measure tatum random Gaussian deviations and average tempo

(Section 4.3.2, Example 6).

The second section consists of the full four minute examples. The descriptions are

the same as above.

The third section contains 20 second examples from a di�erent performance. Here,

the timing analysis and data extraction methods were applied to a performance given by

myself and C.K. Ladzekpo[Lad89], a master drummer from Ghana, Africa.

1. Original Recording.

2. Direct synthesis by triggering samples of the performance.

3. Quantized with the tempo equal to the average.

4. Quantized with the original performance tempo variation.

5. Quantized with the original deviations (average tempo).

6. Quantized with both the original deviations and tempo variation.

7. Quantized with double the deviations in the original performance, original tempo.

8. Quantized with the original performance deviations negated, original tempo.

The fourth section consists of the full four minute examples of the Ladzekpo perfor-

mance. The descriptions are the same as above.

The taped examples demonstrate two things: 1) The original performance's expres-

sivity is captured by the synthesis. Therefore, when working with a representation control-

ling only attack times, it is possible to produce expressive music. 2) The deviations, not

the tempo variation, is crucial to determining expressivity in these percussive performances.

Without the deviations, the syntheses sound lifeless and cold, regardless of the tempo vari-

ation. With the deviations, they sound warm and alive. These claims were con�rmed by

C.K. Ladzekpo himself in an experiment in which he was given no prior knowledge.
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Appendix D

Source Code

The postscript form of this thesis, the compressed sound examples, and all the source code

is or will be1 available via anonymous ftp from one of the following locations:

� media-lab.media.mit.edu:pub/bilmes-thesis

� cecelia.media.mit.edu:pub/bilmes-thesis

� ftp.icsi.berkeley.edu:pub/bilmes-thesis

The source code was all written in C++. Therefore, to take advantage of the code,

you will need a C++ compiler. I used GNU C++ version 2.4.5, a free compiler available

from the Free Software Foundation. Unfortunately, the numerical recipes code[PTVF92] is

not included because it would be in violation of copyright restrictions.

1
Or was once.
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Appendix E

xited: A New Drum Machine In-

terface

Drum machines and music sequencers should start providing advanced facilities for exper-

imenting with deviations. While waiting for this to occur, we1 have developed a deviation

experimentation program called xited (pronounced \excited" for eXperimental Interactive

Tatum-Editor of Deviations, see Figure E-1). Currently, xited runs on SGI IRIS Indigo

workstations.

The program consists of a control panel and any number of pattern windows. The

control panel controls global tempo in units of normal-tatums per minute, starting and stop-

ping, and other miscellany.

The pattern windows determine the score. Each pattern window consists of a rect-

angular grid of toggle buttons (of any size), an additional row of sliders, and a duration

value. A pattern window's grid represents a repeatedly-played percussive phrase. The rows

correspond to drum samples or voices and the columns correspond to pattern-tatums. If a

toggle is set for row i and column j, then voice i will be triggered during pattern-tatum j.

Each column also has a corresponding deviation slider. The slider for pattern-tatum j de-

termines, in percentage of pattern-tatum, the amount of time to shift all voices set to play

on that pattern-tatum.

A pattern window also contains a duration in units of normal-tatums. Therefore, dif-

ferent patterns, with identical absolute durations, might have di�erent numbers of pattern-

1Je� Foley, an undergraduate working with me at MIT, has been the main implementor of this program.
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Figure E-1: Graphical Deviation Program xited in Action.
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tatums. This can be used to express polyrhythms and multi-tatum ethnic music. For ex-

ample, in Figure E-1, the top pattern has a duration of 16 normal-tatums and contains 24

pattern-tatums. The bottom pattern has a duration of 16 normal-tatums and contains 16

pattern-tatums. This example encodes, in a sense, the feeling of multiple concurrent tatums

that is heard in African or Afro-Cuban music.

Each pattern window maintains a counter. When the <PLAY> button is pressed,

the counters are isochronously incremented modulo their pattern-tatum length. When the

counter reaches a particular tatum, any voices scheduled for that tatum are appropriately

shifted and triggered. Deviations, toggles, and pattern durations may all be adjusted dur-

ing playback.

xited is thus a novel drum machine user interface. A similar such interface could be

used by music sequencers, or eventually, by commercial drum machines. In Chapter 5, an

algorithm is de�ned that creates a mapping between quantized musical patterns and sets of

deviations. This algorithm will be eventually incorporated into xited. xited provides the

ability to experiment with deviations and to determine the best sounding deviations for a

drum pattern. Indeed, some very interesting rhythmic e�ects may be attained with xited by

varying deviations and pattern durations. Yet, they must be heard to be fully appreciated.
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