Theory of Computation

CFL / NPDA

Barath Raghavan
CS 361 Fall 2009
Williams College
Homework 3 out
NDPAs recognize CFLs.
What is the intuitive relationship?
Forget about NPDAs: Let’s write code to interpret a CFG.
CFGs

- V: set of variables
- Σ: set of terminals
- R: set of rules
- $S \in V$: start variable

$V \cap \Sigma = \emptyset$
1. Start at start variable.
2. Substitute variables.
3. Match against input.
We only have a stack.
0. Push start variable on stack.
1. Loop.
2. Substitute if variable.
3. Match if terminal.
How do we store strings on an NPDA’s stack?
How do we assemble the pieces of the construction?
$L = \{ w \mid w \text{ has the same number of 0s and 1s} \}$

Grammar G:

\[
A \rightarrow 0A1A \mid 1A0A \\
A \rightarrow \varepsilon
\]
Can **CFGs** generate any language an **NPDA** recognizes?
Plan:

Given an NPDA \(P \), construct a restricted NPDA that is equivalent, then construct a CFG \(G \).
\[P = (Q, \Sigma, \Gamma, \delta, q_0, \{ q_{\text{accept}} \}) \]

Properties:

1. Single accept state.
2. Empties stack before accepting.
3. Each transition only pushes or pops.
\[P = (Q, \Sigma, \Gamma, \delta, q_0, \{q_{\text{accept}}\}) \]

\[G = (V, \Sigma, R, S) \]
\[G = (V, \Sigma, R, S) \]

\[V = \{ A_{pq} \mid p, q \in Q \} \]

\[S = A_{q_0, q_{\text{accept}}} \]
For each \(p, q, r, s \in Q, t \in \Gamma, a, b \in \Sigma_{\varepsilon} \):

if \(\delta(p, a, \varepsilon) \) contains \((r, t) \) and
\(\delta(s, b, t) \) contains \((q, \varepsilon) \),
add rule \(A_{pq} \rightarrow aA_{rs}b \).
For each $p, q, r \in Q$: add rule $A_{pq} \rightarrow A_{pr} A_{rq}$.

For each $p \in Q$: add rule $A_{pp} \rightarrow \varepsilon$.
If we have an NPDA P that goes from p to q on input x, does the rule A_{pq} in grammar G generate x?
Basis: In 0 steps, \(P\) reads the empty string. \(G\) generates the empty string with \(A_{pp}\).
Induction: Assume true for k steps. Suppose NPDA P goes from p to q on input x in k+1 steps.
Either the stack is empty at both ends of the computation, or it is empty elsewhere.
1. Suppose t is pushed first, a in read first, and b is read last and y is read in between. Then A_{pq} generates this input, and the rest occurs in $k-1$ steps.
2. Suppose the stack becomes empty at state r between p and q. y is read between p and r, z is read between r and q. A_{pq} generates this input, and A_{pr} and A_{rq} occur in k steps.
Some languages weren’t regular.
Is the following language regular?

\[L = \{ ww^R \} \]

\[\Sigma = \{ 0, 1 \} \]
Pumping Lemma

For every regular language \(L \) there exists some integer \(p \) where for every string \(s \) in \(L \) of length at least \(p \), \(s = xyz \) and \(y \) can be repeated, \(|y| > 0 \), and \(|xy| \leq p \).

\[
L = \{ w w^R \}
\]
Is the following language regular?

\[L = \{ w w^R \} \]

1. Identify some property \(P \) that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume \(P \) holds true for language \(L \).

Assume \(L \) is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing \(L \) is not regular.

\[s = 0^p 110^p \]

\[|x y| \leq p, |y| > 0 \implies y \in \{0^+\} \implies x y^0 z \notin L \]
Is the following language in CFL?

\[L = \{ w w \} \]

\[\Sigma = \{ 0, 1 \} \]
CFL Pumping Lemma
For every CFL language L there exists some integer p where for every string s in L of length at least p, $s = uvxy$ and v, y can be repeated, $|vy| > 0$, and $|vxy| \leq p$.
Is the following language in CFL?

$$L = \{ww\}$$

NO

$$s = 0^p1^p0^p1^p$$
Is the following language in CFL?

\[L = \{ 0^n 1^n 2^n \mid n \geq 0 \} \]
\[\Sigma = \{ 0, 1, 2 \} \]
Is the following language in CFL?

\[L = \{ 0^n 1^n 2^n \mid n \geq 0 \} \]

\[s = 0^p 1^p 2^p \]

NO
Reading: Sipser 2.2, 2.3