MISC

Homework 1 due
Quiz 1 out Monday
(covers Sipser 1.1-1.3
self-timed, 2 hours)
What does it mean for a language to be REGULAR?
Is the following language regular?

\[L = \{ w \mid w \text{ has the same number of } 01\text{s as } 10\text{s} \} \]

\[\Sigma = \{ 0, 1 \} \]
\(L = \{ w \mid w \text{ has the same number of 01s as 10s} \} \)
Is the following language regular?

\[L = \{ w \mid w \text{ has the same number of 0s and 1s} \} \]

\[\Sigma = \{ 0, 1 \} \]
NON

Regular Languages
How do we prove that a language is not regular?
How to show a language L is not regular:

1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.
Is the following language regular?

\[L = \{a^n b^n \} \]
How to show a language L is not regular:

1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.
Pumping Lemma
((0 \cup 1)*0)^*
\(((0 \cup 1)^* 0)^*\)
Let’s look at strings s, $|s| = 4$

What is true about the automaton for all strings of length 4 it reads?
What is the shortest string that will cause a repeated state?
Suppose DFA M has $|Q|$ states. Any string s, $|s| \geq |Q|$ will cause M to repeat a state.
What does it mean to repeat a state?
Input: 10
State Sequence: ABA

First appearance

Last appearance
Input: 10
State Sequence: ABA
Input: 10
State Sequence: ABA
Also accepted:
1010
101010
101010
Input: 010
State Sequence: ABBC
Also accepted: 01*0
Generalized process:
1. Pick a string s of length $|Q|$.
2. Find where it repeats a state.
3. Repeat that part of the string.

$s = xyz$, where y is the repeating part.
How to show a language L is not regular:

1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.

(Draft 1)

Property: Every regular language with a DFA of $|Q|$ states has a string s of length $|Q|$ where $s = xyz$ and y can be repeated.
How to show a language L is not regular:
1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.

(Draft 2)
Property: Every regular language with a DFA of |Q| states has a string s of length |Q| where s = xyz and y can be repeated and |y| > 0.
How to show a language L is not regular:

1. Identify some property P that is true for all regular languages.
2. Assume P holds true for language L.
3. Obtain a contradiction, thereby showing L is not regular.

(Draft 3)

Property: Every regular language with a DFA of $|Q|$ states has a string s of length $|Q|$ where $s = xyz$ and y can be repeated, $|y| > 0$, and $|xy| \leq |Q|$.
Pumping Lemma

For every regular language L there exists some integer p where for every string s in L of length at least p, $s = xyz$ and y can be repeated, $|y| > 0$, and $|xy| \leq p$.
How to show a language \(L \) is not regular:

1. Identify some property \(P \) that is true for all regular languages.
2. Assume \(P \) holds true for language \(L \).
3. Obtain a contradiction, thereby showing \(L \) is not regular.
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

\[\Sigma = \{0, 1\} \]
Is the following language regular?

\[
L = \{0^n1^n \mid n \geq 0\}
\]

1. Identify some property \(P \) that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume \(P \) holds true for language \(L \).
Is the following language regular?

\[L = \{ 0^n1^n \mid n \geq 0 \} \]

1. Identify some property P that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string \(s \) of length \(p \) for which we can apply the pumping lemma.

2. Assume P holds true for language \(L \).

Assume \(L \) is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing \(L \) is not regular.
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

1. Identify some property P that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string s of length p for which we can apply the pumping lemma.

2. Assume P holds true for language L.

Assume L is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing L is not regular.
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]
Is the following language regular?

\[L = \{ 0^n1^n \mid n \geq 0 \} \]

Let \(s = 0^p1^p \), \(s \in L \).
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \ s \in L \)

The pumping lemma guarantees:
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \) \(s \in L \)

The pumping lemma guarantees:

\[s = xyz \quad xy^*z \in L \]
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \) \(s \in L \)

The pumping lemma guarantees:

\[s = xyz \quad xy^*z \in L \]

3 CASES
Is the following language regular?

\[L = \{ 0^n 1^n \mid n \geq 0 \} \]

Let

\[s = 0^p 1^p \quad s \in L \]

The pumping lemma guarantees:

\[s = xyz \quad xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \)
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \(s = 0^p1^p \) \(s \in L \)

The pumping lemma guarantees:

1. \(y \in \{0^*\} \)
2. \(y \in \{1^*\} \)
3 CASES

1. \(y \in \{0^*\} \)
2. \(y \in \{1^*\} \)
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

Let \[s = 0^p1^p \quad s \in L \]

The pumping lemma guarantees:

1. \(y \in \{0^*\} \)
2. \(y \in \{1^*\} \)
3. \(y \in \{0^i1^j\} \)
Is the following language regular?

\[L = \{ 0^n 1^n \mid n \geq 0 \} \]

\[s = xyz \quad xy^*z \in L \]

3 CASES
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

3 CASES

1. \(y \in \{0^*\} \)
 Impossible because repeating \(y \) would produce more 0s than 1s.
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

\[s = xyz \quad xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \)
 Impossible because repeating \(y \) would produce more 0s than 1s.

2. \(y \in \{1^*\} \)
 Impossible because repeating \(y \) would produce more 1s than 0s.
Is the following language regular?

\[L = \{0^n1^n \mid n \geq 0\} \]

\[s = xyz \quad xy^*z \in L \]

3 CASES

1. \(y \in \{0^*\} \) Impossible because repeating \(y \) would produce more 0s than 1s.

2. \(y \in \{1^*\} \) Impossible because repeating \(y \) would produce more 1s than 0s.

3. \(y \in \{0^i1^j\} \) Impossible because repeating \(y \) would mis-order 1s and 0s.
Therefore

\[L = \{0^n1^n \mid n \geq 0\} \]

is NOT regular.
Is the following language regular?

$L = \{ w \mid w \text{ has the same number of 0s and 1s}\}$

$\Sigma = \{0, 1\}$
Pumping Lemma

For every regular language L there exists some integer p where for every string s in L of length at least p, $s = xyz$ and y can be repeated, $|y| > 0$, and $|xy| \leq p$.

$L = \{ w \mid w \text{ has the same number of 0s and 1s} \}$
Is the following language regular?

$L = \{ w \mid w \text{ has the same number of 0s and 1s} \}$

1. Identify some property P that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string s of length p for which we can apply the pumping lemma.

2. Assume P holds true for language L.

Assume L is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing L is not regular.

$s = 0^p 1^p$

$|xy| \leq p \implies y \in \{0^*\} \implies xy^2z \notin L$
Is the following language regular?

$L = \{ \text{ww}^R \}$

$\Sigma = \{0, 1\}$
Pumping Lemma

For every regular language L there exists some integer p where for every string s in L of length at least p, $s = xyz$ and y can be repeated, $|y| > 0$, and $|xy| \leq p$.

$L = \{ww^R\}$
Is the following language regular?

\[L = \{ww^R\} \]

1. Identify some property P that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string s of length p for which we can apply the pumping lemma.

2. Assume P holds true for language L.

Assume L is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing L is not regular.

\[s = 0^p110^p \]

\[|xy| \leq p, \ |y| > 0 \implies y \in \{0^+\} \implies xy^0z \notin L \]
Is the following language regular?

\[L = \{0^i1^j \mid i > j\} \]
\[\Sigma = \{0, 1\} \]
Pumping Lemma

For every regular language L there exists some integer p where for every string s in L of length at least p, $s = xyz$ and y can be repeated, $|y| > 0$, and $|xy| \leq p$.

$L = \{0^i1^j \mid i > j\}$
Is the following language regular?

$$L = \{0^i1^j \mid i > j\}$$

1. Identify some property P that is true for all regular languages.

There exists some DFA that recognizes any regular language and accepts some string s of length p for which we can apply the pumping lemma.

2. Assume P holds true for language L.

Assume L is regular and thus has a DFA and is pumpable.

3. Obtain a contradiction, thereby showing L is not regular.

$$s = 0^{p+1}1^p$$

$$|xy| \leq p, |y| > 0 \implies y \in \{0^+\} \implies xy^0z \notin L$$
Is the following language regular?

\[L = \{0^i1^j0^k \mid i > 10 > j > k > 0\} \]

\[\Sigma = \{0, 1\} \]
Is the following language regular?

\[L = \{0^i 1^j 0^k \mid i > 10 > j > k > 0\} \]

\[R = 0^{+}0^{10}((1^9(0^8 \cup 0^7 \cup \ldots \cup 0^1))\cup (1^8(0^7 \cup 0^6 \cup \ldots \cup 0^1))\cup \ldots \cup (1^2(0^1))) \]
Reading: Sipser 1.4