WHAT REGULAR EXPRESSION DESCRIBES

$L = \{ w \mid w \text{ has a 0 in its 4th position from the end} \}$
What DFA describes this regular expression?

\[\Sigma^* 0 \Sigma^3 \]

\[\Sigma^* 0 \Sigma^3 = \]

NON Deterministic Finite Automata
import java.util.*;
import java.io.*;

public class NFA1 extends Thread
{
 public static boolean accept = false;
 private String s;
 private int pos;

 NFA1(String s, int pos) {
 this.s = s; this.pos = pos;
 }

 public void run() {
 if (s.length() - pos == 3) {
 accept = true;
 }
 }

 public static void main(String[] args) throws Exception {
 BufferedReader inp = new BufferedReader(new InputStreamReader(System.in));
 String line = inp.readLine();
 Vector<Thread> threads = new Vector<Thread>();
 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == '0') {
 NFA1 n = new NFA1(line, i+1);
 n.start();
 threads.add(n);
 }
 }
 for (Thread t : threads) {
 t.join();
 }
 System.out.println(accept ? "Accept" : "Reject");
 }
}
DFAs

\[Q \] set of states
\[\Sigma \] the alphabet
\[\delta : Q \times \Sigma \rightarrow Q \] transition function
\[q_0 \in Q \] start state

NFAs

\[Q \] set of states
\[\Sigma \] the alphabet
\[\delta : Q \times \Sigma \rightarrow Q \] transition function
\[q_0 \in Q \] start state
\[F \subseteq Q \] set of final states
NFAs

\[Q \text{ set of states} \]
\[\Sigma \text{ the alphabet} \]

\[\delta : Q \times \Sigma_e \rightarrow P(Q) \text{ transition function} \]

\[q_0 \in Q \text{ start state} \]

\[F \subseteq Q \text{ set of final states} \]
\[
\delta : Q \times \Sigma_e \rightarrow P(Q) \text{ transition function}
\]

\[
\Sigma_e = \Sigma \cup \{\varepsilon\}
\]

\[
P(Q) \text{ power set}
\]

Every DFA is an NFA.

Claim:
Any NFA has an equivalent DFA.
(we'll prove this soon)
NFA Examples

Example 1

\[\Sigma = \{0, 1\} \]

\[0^*1^*0^+ \]

Example 1

\[\Sigma = \{0, 1\} \]

\[0^*1^*0^+ \]
\[\Sigma = \{0, 1\} \]

\[L = \{ w \mid w \text{ contains 000 or 01100} \} \]

Claim:
The class of regular languages is closed under union.

(Already shown with DFAs)
IDEA

Connect to both NFAs’ start states from a new start state.

Claim:
The class of regular languages is closed under concatenation.

IDEA

Connect first NFA’s accept states to second NFA’s start state.
Claim: The class of regular languages is closed under Kleene star.

IDEA
Loop NFA’s accept states to its start state.

Claim: Any NFA has an equivalent DFA.
IDEA
Build a DFA to track all possible states the NFA could be in.

$\Sigma = \{0, 1\}$

$0^*1^*0^+$

Example 1

DFAs

Q set of states

Σ the alphabet

$\delta : Q \times \Sigma \rightarrow Q$ transition function

$q_0 \in Q$ start state

$F \subseteq Q$ set of final states
\[\Sigma = \{0, 1\} \]

\[Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\} \]

\[q_0 = \{A, B\} \]

\[F = \{\{C\}, \{A, C\}, \{B, C\}, \{A, B, C\}\} \]
Claim:
A language is regular if and only if a regular expression describes it.

Example 1 as a DFA

Reading: Sipser 1.2, 1.3