MISC

Homework 2
WHAT REGULAR EXPRESSION DESCRIBES

\[L = \{ w \mid w \text{ has a 0 in its 4th position from the end} \} \]
\(\Sigma \ast 0 \Sigma^3 \)
What DFA describes this regular expression?

\[\Sigma^* 0 \Sigma^3 \]
\[\sum^* \theta \sum^3 = \]
Deterministic Finite Automata
import java.util.*;
import java.io.*;

public class NFA1 extends Thread {
 public static boolean accept = false;
 private String s;
 private int pos;

 NFA1(String s, int pos) {
 this.s = s; this.pos = pos;
 }

 public void run() {
 if (s.length() - pos == 3) {
 accept = true;
 }
 }
}
import java.util.*;
import java.io.*;

public class NFA1 extends Thread {
 public static boolean accept = false;

 private String s;
 private int pos;

 NFA1(String s, int pos) {
 this.s = s; this.pos = pos;
 }

 public void run() {
 if (s.length() - pos == 3) {
 accept = true;
 }
 }

 public static void main(String[] args) throws Exception {
 BufferedReader inp = new BufferedReader(new InputStreamReader(System.in));
 String line = inp.readLine();
 Vector<Thread> threads = new Vector<Thread>();

 for (int i = 0; i < line.length(); i++) {
 if (line.charAt(i) == '0') {
 NFA1 n = new NFA1(line, i+1);
 n.start();
 threads.add(n);
 }
 }

 for (Thread t : threads) {
 t.join();
 }

 System.out.println(accept ? "Accept" : "Reject");
 }
}
DFAs Q set of states
DFAs

\(Q \) set of states

\(\Sigma \) the alphabet
DFAs

\(Q \) set of states

\(\Sigma \) the alphabet

\(\delta : Q \times \Sigma \rightarrow Q \) transition function
DFAs

\[Q \]

set of states

\[\Sigma \]

the alphabet

\[\delta : Q \times \Sigma \rightarrow Q \]

transition function

\[q_0 \in Q \]

start state
DFAs

- Q: set of states
- Σ: the alphabet
- $\delta: Q \times \Sigma \rightarrow Q$: transition function
- $q_0 \in Q$: start state
- $F \subseteq Q$: set of final states
NFAs Q set of states
NFAs

Q set of states

Σ the alphabet
NFAs

\[Q \]

set of states

\[\Sigma \]

the alphabet

\[\delta : Q \times \Sigma_e \rightarrow P(Q) \]

transition function
NFAs

\[Q \quad \text{set of states} \]

\[\sum \quad \text{the alphabet} \]

\[\delta: Q \times \sum \rightarrow P(Q) \quad \text{transition function} \]

\[q_0 \in Q \quad \text{start state} \]
NFAs

- Q: set of states
- Σ: the alphabet
- $\delta: Q \times \Sigma \rightarrow P(Q)$: transition function
- $q_0 \in Q$: start state
- $F \subseteq Q$: set of final states
\[\delta : Q \times \Sigma_e \rightarrow P(Q) \] transition function

\[\Sigma_e = \Sigma \cup \{ \varepsilon \} \]

\[P(Q) \] power set
Every DFA is an NFA.
Claim: Any NFA has an equivalent DFA.

(we’ll prove this soon)
Transition function?
NFA Examples
\[\Sigma = \{0, 1\} \]

\[0^*1^*0^+ \]
Example 1

\[\Sigma = \{0, 1\} \]

\[0^* 1^* 0^+ \]

Diagram:

- States: A, B, C
- Edges: 0 → A, 1 → B, ε → B, 0 → B, 1 → B, 0 → C

Example 1
$$\Sigma = \{0, 1\}$$

$$L = \{w \mid w \text{ contains 000 or 01100}\}$$
$\Sigma = \{0, 1\}$

$L = \{w \mid w \text{ contains 000 or 01100}\}$
Claim:
The class of regular languages is closed under union.
(Already shown with DFAs)
IDEA

Connect to both NFAs’ start states from a new start state.
Claim:
The class of regular languages is closed under concatenation.
IDEA

Connect first NFA’s accept states to second NFA’s start state.
Claim:
The class of regular languages is closed under Kleene star.
Loop NFA’s accept states to its start state.
Claim: Any NFA has an equivalent DFA.
IDEA

Build a **DFA** to track all possible states the **NFA** could be in.
Example 1

\[\Sigma = \{0, 1\} \]

0*1*0^+
Example 1

\[\Sigma = \{0, 1\} \]

\[0^*1^*0^+ \]

Example 1
DFAs

\[Q \]

set of states

\[\Sigma \]

the alphabet

\[\delta : Q \times \Sigma \rightarrow Q \]

transition function

\[q_0 \in Q \]

start state

\[F \subseteq Q \]

set of final states
Example 1 as a DFA

\[\Sigma = \{0, 1\} \]
Example 1 as a DFA

\[\Sigma = \{0, 1\} \]

\[Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\} \]
\[\Sigma = \{0, 1\} \]

\[Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\} \]

\[q_0 = \{A, B\} \]
\[\Sigma = \{0, 1\} \]

\[Q = \{\emptyset, \{A\}, \{B\}, \{C\}, \{A, B\}, \{A, C\}, \{B, C\}, \{A, B, C\}\} \]

\[q_0 = \{A, B\} \]

\[F = \{\{C\}, \{A, C\}, \{B, C\}, \{A, B, C\}\} \]
Example 1 as a DFA

\[
\begin{align*}
\{A, B\} &\rightarrow 0, 1 \\
\emptyset &\rightarrow 0, 1 \\
\{B\} &\rightarrow 0 \\
\{C\} &\rightarrow 0 \\
\{A, B, C\} &\rightarrow 0
\end{align*}
\]
Claim:
A language is regular if and only if a regular expression describes it.
Reading: Sipser 1.2, 1.3