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Summary

The first part of this report documents a study into the problems involved in establishing
audio communication over heterogenous, and possibly lossy, networks like the Internet.
In particular, it first provides a description of the problems involved in sending audio
over networks. The report then goes on to describe how other researchers have attempted
to study and overcome the problems and presents other proposals for dealing with the
problems.

The second and third parts of this report describe the design and implementation of a
new prototype tool that was created to aid the study of audio transmission over networks.
This tool, the International Computer Science Institute Audio Laboratory or IAL, provides
its users with a means to quickly evaluate new techniques for processing audio data. It
is hoped that this tool will enable researchers to spend less time rewriting code that is
irrelevant to their research and to spend more time on researching resilient coding and
audio processing techniques.
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I

Background

1 Introduction

In the early days of large wide-area networks like the Internet, the primary form of com-
munication was electronic mail. Presently, with greater bandwidths, there is a move to-
wards using the Internet for other types of communications. Despite the creation of the
MBone [9, 18], the multimedia backbone, multimedia communication over the Internet is
at best limited. Some of the reasons for the slow acceptance of multimedia communication
include bandwidth limitations, the presence of packet losses on the Internet and high vari-
ability in traffic conditions. These conditions often result in difficult to predict loss rates
and high jitter rates.

Bandwidth limitation will slowly become less of a problem as the backbone of the
Internet is upgraded and users switch to higher speed offerings; for example, moving
from T1 to T3 trunk lines, upgrading from a 28.8Kbps modems to 128Kbps ISDN BRI
lines. However, many believe that in the near future, packet losses and jitter will still be
a fact of life on the Internet. Hence, researchers continue to work on schemes that allow
multimedia communication through the tolerance of losses. For example, the researchers
at the International Computer Science Institute have developed one such resilient scheme,
called Priority Encoding Transmission (PET). [1].

With such schemes in place, and with the judicious application of other techniques,
multimedia communication over a lossy network like the Internet can become a reality. For
example, consider the many “Internet Phones” or “Web Phones” that have appeared on
the market in recent months. Or the increasing popularity of RealAudio, a standard for
sending unidirectional audio streams over the Internet at low (14.4Kbps or 28.8Kbps) rates.
No doubt, applications like these are still plagued by many of the problems mentioned
earlier, as users of these tools will attest to. However, their proliferation demonstrates the
feasibility of such kinds of communication.

As mentioned earlier, there are many applications that allow two-way or multi-party
(in multicast mode) communication over the Internet. If we were to focus on those that run
on multiple platforms and are freely available, we would come up with, to mention some
of the more popular ones, candidates like VAT (Visual Audio Tool) from LBL (Lawrence
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12 I. BACKGROUND

Berkeley Labs), CU-SeeMe from Cornell University, IVS (INRIA Video Conferencing Sys-
tem) from INRIA (Institut National de Recherche en Informatique et en Automatique) and
RAT (Reliable Audio Tool) [12] from UCL (University College London). In particular, VAT,
from LBL is part of the standard set of applications that are used over the MBone.

Several of these applications have introduced different techniques that deal with some
of the problems associated with audio transmission over the Internet. For example, RAT
uses a piggybacking scheme, in which a low-resolution version of a previous audio packet
is piggybacked on the current packet being sent, and IVS has a prototype of a scalable
CODEC with an adaptive feedback mechanism. Hartmut Chodura of the Fraunhofer-
IGD is working on a multi-platform digital telephone application [5] that will incorporate
resilient coding (PET) as well as digital signal processing techniques that deal with the
non-transport problems associated with audio communication over networks (especially
long haul networks).

However, we have yet to see a definitive study of the myriad parameters that affect
two-way or multi-party audio communication over the Internet. Furthermore, there does
not exist a comprehensive toolkit that allows such studies to be done in an efficient manner.
The ICSI Audio Laboratory (IAL) is a tool that has been designed from the ground up to fill
this niche. A prototype of the IAL was designed and built at the International Computer
Science Institute as part of the author’s research in the PET group. Before we can embark
on a detailed discussion of the design of the IAL, it is necessary to first explore the various
problems involved in audio communication over networks.

2 Problems

There are different types of problems involved in achieving good two-party or multi-party
audio communication over both short-haul and long-haul networks. In general, these
problems are either network-based (i.e. they exist because of the underlying transport
architecture) or non-network-based, like the problems with echos and feedback howling.
Most of the research in audio communication over networks have focussed on attempting
to combat the loss of packets during a session. However, before good audio communica-
tion can be carried out, other types of problems have to be investigated and dealt with.
Most of the problems we will focus on involve mainly two-party communication. We be-
lieve that the results should extend to multi-party (more than two) communication. The
following, though not an exhaustive list, are some of the more common problems that
affect two-party communication over a network.

Loss of packets. When transmitting over networks like the Internet, or even over local
area networks, losses will inevitably occur. Obviously, one could use a transport
protocol that would retransmit whenever losses occurred. However, the use of such
protocols (like TCP over IP) usually results in increased latency (on the order of
round-trip times) and the lack of application control over the handling and detection
of losses. It is for this reason that most audio communication software use datagram
packets (for example, UDP over IP) as their preferred mode of transport. In this way,
losses can be detected and dealt with if necessary, and the application can decide
whether retransmission is both necessary and tractable.

ICSI Audio Laboratory Version 0.1



2 Problems 13

Bolot studied the characteristics of end-to-end packet delays and losses in the Inter-
net [3]; and more recently, in his joint work with Crépin and Vega Garcia [4], he dealt
with an analysis of audio packet loss in the Internet. Both studies were neither long-
term studies (in [3], tests lasted only 10 mins) nor comprehensive. For example, only
one packet size was used in both studies (32 bytes in [3] and the IVS default fixed
size of 320 samples per packet in [4]). In the second study, at most two samples were
taken on one particular day for each of their two test routes. Bolot concluded that
the number of packets lost was small and randomly distributed when the network
load was low and the number of consecutively lost packet increase as the network
becomes more loaded. These results form the basis for RAT’s technique for dealing
with packet loss. To do a quick validation of Bolot’s studies, a few quick experiments
were done at ICSI using a UDP echo client program written by the author. The results
are similar to Bolot’s and without further extensive test results that prove otherwise,
it appears that Bolot’s results are justifiable. The lack of extensive studies of audio
packet losses over the Internet (and over local area networks) further highlights the
need for a flexible audio tool that allows the setting of various network parameters
like packet length, adding source routes to packets etc.

In any case, packet loss is a major problem in audio communication over networks
and it will have to be dealt with if users are to have a better than mediocre quality of
communication.

Large delays. Over long-haul links, like network connections between the west coast of
the United States and countries in Europe, or between the US and Asia, long delays
abound. Researchers in the field of audio communication have indicated that hu-
mans can tolerate delays of between 150-300ms in a two-party conversation. When
faced with delays of more than 180ms to Europe and on the order of 800ms to some
countries in Asia (for small sized packets of 32 bytes), it is clear that there is not
much room left for processing overhead. In such cases, we would want to keep the
size of the audio packet as small as possible, to minimize delays. Of course, when
the round-trip-time (RTT) is much less, we can increase packet sizes and do more
processing to create better audio quality. Therefore, a good audio application should
be able to adapt to the RTT and provide the best quality given that.

Jitter in packets. Audio sampling is usually done at a fixed frequency and hence, audio
packets are sent out at regular intervals (assuming the sending workstation is not too
heavily loaded). However, at the receiving end, packets do not come in with fixed
delays. This variation in packet arrival delays (jitter) is a further challenge that must
be overcome to provide good audio quality. One way would be to slowly adapt to
this jitter by introducing small, almost unnoticeable delays before playing samples
from a new talk spurt (humans seldom speak continuously in normal conversation).
For a continuous audio stream, this would obviously not be possible, so the rate
of playback will either have to be varied slightly over time or, if delays are not too
large, introduce a “delayed playback buffer” (i.e. we buffer a certain number of
packets before we start playing back the stream) at the start of playing the stream
and hope that this “buffer” is sufficient to counteract the jitter during the course of
playing the stream. VAT incorporates some means by which to adapt to the jitter,

ICSI Audio Laboratory Version 0.1



14 I. BACKGROUND

and a sophisticated audio tool should have this ability as well.

Audio quality and bandwidth. Telephone quality (toll-quality) speech can be obtained
with a bandwidth of about 3KHz (300 Hz to 3.3 KHz). An 8KHz sampling rate
(deemed sufficient by the Nyquist theorem to deal with a signal of less than 4KHz
bandwidth), using 8 bits per sample (PCM), or using 12 bits per sample and using
compression to get 8 bits (A-law or � -law), usually provides toll quality speech on
workstations. Using 16 bits per sample (and/or increasing the sampling rate) will
provide better quality sound. However, the increase in quality comes with a price
– an increase in bandwidth. The increase in bandwidth could result in either more
packets being lost if the network becomes too loaded, or in having less bandwidth
available for other users or applications. Of course, compression and better coding
could be used to reduce the required bandwidth. Whatever the case, the bandwidth
should be increased to a point where the quality of the audio, as affected by the
bandwidth, loss rates and delays, is optimal (we could also take into account other
applications or users who may be sharing the link).

Echos. In a two-party communication with some delay, there is always a problem with
echos when using certain types of input and output devices. For example, the nor-
mal workstation configuration of an omni-directional microphone and a workstation
speaker results in bad echo problems. This happens when the signal that is gener-
ated at one user’s end, and played back at the other end, is captured by the far-end
recording device and sent back to the user who generated that signal. This phe-
nomenon is perceived as an “echo” of one’s speech and can be extremely annoying.
The greater the round-trip delay, the more disturbing the echo. To deal with this, we
can employ a few different techniques, including echo suppression and echo cance-
lation, both of which will be discussed in greater detail in a later section. Obviously,
if all users were to use headphones and good quality microphones, we would not
have an echo problem. This is, however, an unlikely scenario since headphones and
hand-held microphones are cumbersome and uncomfortable, to say the least.

Howling. The howling problem occurs under the same scenario as the echo problem.
When gains are turned up on the recording device (microphone) and the playback
device, there is the possibility that one will introduce a feedback loop that results in
signals at certain frequencies building up energy. This creates a howling sound that
is extremely annoying. Most users usually keep gains below the threshold at which
howling occurs, but sometimes, certain loud sounds (either speech or background
noise) can trigger a howling feedback loop.

Computational resources. This is usually ignored as being a factor affecting the quality of
audio communication, but it is an important one, as anyone who works on real-time
signal processing will know. If we are to digitally process the audio signal to obtain
some desired effect (like less bandwidth through compression), we have to ensure
that the problem is computationally feasible in real-time, on the average worksta-
tion. A user seldom runs a single task on a workstation and there will inevitably be
contention for workstation resources like memory and CPU time. A sophisticated
audio tool could watch the workstation load and reduce its coding complexity to
obtain optimal audio quality given the limited resources.

ICSI Audio Laboratory Version 0.1



3 Proposals to examine 15

3 Proposals to examine

We will next examine proposals that deal with some of the above problems. A few of these
proposals have already been implemented in some of the freely available tools mentioned
earlier. Furthermore, many of the commercial “Internet Phone” products will surely in-
clude one or more of these techniques. However, since these are commercial products,
their source code is not freely available and their techniques for producing good quality
speech communication are often guarded trade secrets.

3.1 Coding for efficiency

There are numerous different standards for voice and audio encoding available today.
Most of them provide the means to achieve good quality voice encoding at various rates.
Of course, for audio encoding (as opposed to just voice encoding), we will have to use
different kinds of coding algorithms, or simply transmit high-bit rate signals. For the
moment, we shall concern ourselves with mainly speech encoding techniques. These tech-
niques provide the means to get better quality speech using less bandwidth, although they
increase computational complexity. An audio tool should provide some means to evaluate
the different encoding and to determine if they are useful.

Pulse Code Modulation - PCM

Pulse code modulation involves sampling a given signal at some fixed rate and then quan-
tizing the signal by assigning the closest fixed quantization level for each sample. Using
8-bits, we can get up to 256 quantization levels. The more bits we use, the greater the
quality (the less the quantization errors). Usually the step size between quantization lev-
els is uniform. However, we can use techniques that allow us to use non-uniform step
sizes to get better signal to noise (distortion) ratios by exploiting known signal traits. For
example, the � -law and A-law systems both amplify low-volume signals more than high-
volume signals. These techniques use a sampling levels of 12 bits and compress them
down to 8 bits. Standard 8-bit PCM, or � -law/A-law signals therefore take up 64Kbps –
the nominal rate for toll or telephone quality speech. The sampling rate or quantization
levels may be increased if we need better quality audio (for example, CD-quality audio can
be obtained at 16bit and 44.1KHz sampling rates). Variations of PCM include DPCM (Dif-
ferential Pulse Code Modulation), and ADPCM (Adaptive DPCM). These are predictive
coding schemes that exploit the correlation between neighboring samples of input signals
to compress the signal. For toll quality speech, we need 64Kbps for PCM. With ADPCM,
we can get almost toll quality speech with just 10-40Kbps of bandwidth.

Delta Modulation - DM

Delta modulation is sometimes defined as a 1-bit version of DPCM. Basically, it attempts
to approximate a signal by using a series of linear segments of constant slope. It produces
a staircase like output signal that tracks the sampled signal. Adaptive Delta Modulation
(ADM) can obtain almost toll quality speech at bandwidths of 10-40 Kbps.

ICSI Audio Laboratory Version 0.1



16 I. BACKGROUND

Vocoder and Linear Predictive Coding - LPC

If we only want good quality (or recognizable) speech, we can turn to vocoders and lin-
ear predictive coding (LPC). Vocoders model the speech generation process by using an
excitation signal that models the way vocal cords modulate air pressure and a filter that
characterizes the vocal track. LPC vocoders model the vocal tract by using a single, linear
all-pole filter. The actual operations of vocoders are beyond the scope of discussion of this
report and the interested reader is referred to speech processing texts for further discus-
sions. Suffice to say that these techniques require complex algorithms and a substantial
amount of computation time, but they result in good quality speech at very low bit rates,
on the order of 1-15 Kbps.

3.2 Coding for resilience - Priority Encoding Transmission and Wavelets

Priority Encoding Transmission, first introduced in [1] and described briefly in [15] is an
efficient Forward Error Correction scheme that deals with different levels of priority. In
essence, it provides its users with the ability to set different loss probabilities on different
portions of their data, allowing for the graceful degradation of a data stream. It has been
demonstrated that a PET protected MPEG stream could result in less distorted pictures in
the face of network losses [17]. Subsequently, a new version of the PET algorithm [2] and
an MPEG CODEC was integrated into a version of VIC [19], the standard video conferenc-
ing tool used on the MBone. The resultant software [16] showed that PET protected MPEG
video was less distorted and resulted in subjectively better video quality when there were
network losses.

In video, there are a few coding standards which are natural for PET protection. PET
works when the data to be protected has inherent priorities. For example, in MPEG, there
are I, P and B frames, listed in order of importance. Similarly, in H.261, there are means
to prioritize the traffic. However, the standard coding algorithms for audio do not easily
lend themselves to prioritization. It is difficult, for example, in basic PCM, to decide which
samples or even which bits are more important than others. One could presumably use
the energy of small mini-packets and use that as a priority, but it is unclear that we will
see much better quality audio. It was therefore proposed that other coding techniques be
used for audio.

One such coding technique is the wavelet transform. Wavelet transforms (introductory
papers:[11, 29, 31]) are mathematical functions that allow one to break data down into
different frequency components and then to study each component with a resolution that
is matched to its scale. They overcome the time-frequency resolution limitation of short-
time Fourier transforms (i.e. taking the transform of a temporal window of a time varying
signal). Given a non-stationary signal ������� , the wavelet transform may be defined as[13]:�	� ��

��������� ����������� ���� � �������! #"%$'& �!()
�+*-, �
where " $ is a basis function that belongs to the two parameter family of basis functions
denoted by: "/.10 23�����4�5� ���6�������7"8& �!(9
� *
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and � is a scale factor or dilation parameter and 
 is a time delay. The basis functions " .10 2 �����
are wavelets that are derived from a prototype " ����� called the mother wavelet. Figure I.1
shows some families of wavelet functions. The Haar wavelet is the simplest wavelet, often
used for educational purposes. It should be noted that the wavelet transform is actually a
subset of a more versatile transform, the wavelet packet transform [7].

Wavelets (wavelet transform and
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Figure I.1: Families of Wavelet Functions

wave packet transform) have been used
in numerous signal processing appli-
cations [8], including fingerprint com-
pression and data de-noising [11] . Fur-
thermore, with fast algorithms that im-
plement fast wavelet transforms [6],
using wavelet transforms for real-time
data like speech and video streams is
feasible. Where audio coding is con-
cerned, wavelets have been used suc-
cessfully to get significant compression
with good quality for both speech [30]
and high quality monophonic CD sig-
nals [25]. For instance, discarding small
wavelet coefficients for speech signals
resulted in compression ratios between
1.3 and 14.3 depending on the length
of the conjugate mirror filter used in
the wavelet transform (the longer the filter, the better the compression, but the greater the
computational complexity). In the case of [25], through the employment of wavelet best
basis selection, Sinha and Twefik managed to achieve almost transparent coding of mono-
phonic CD quality signals (16-bit PCM, sampling rate of 44.1KHz – bit rate of 705.6Kbps)
at bit rates of 64-70Kbps. When dynamic dictionary encoding and psycho acoustical per-
ceptual masking techniques were added, the rate went down to 48-66Kbps.

The above alone would prove sufficient justification to use wavelets as our encoding
function. Nevertheless, our main reason for using the wavelet transform is that the magni-
tude of the wavelet transform coefficients provide the necessary prioritization. The greater
the magnitude of the coefficient, the greater its importance. Preliminary studies of com-
pression through truncation of small magnitude coefficients (by Hartmut Chodura and
Martin Isenburg of Fraunhofer-IGD/ICSI and Rainer Storn of Siemens/ICSI) have yielded
promising results. PET can then be applied to the wavelet coefficients, putting more re-
dundancy on the larger magnitude coefficients. As an added feature, we can also factor in
psycho acoustic effects [21] into our calculation of priorities. Our aim in calculating prior-
ities will be to achieve a prioritizing algorithm that is in direct correlation with perceived
audio quality, while still working under the resource constraints of an average worksta-
tion.

It is unclear how much better this approach will be over the RAT approach of pig-
gybacking an LPC packet on a PCM packet. We believe, though, that PET with wavelets
allows a more graceful degradation when network losses occur and that the computational
complexity should be no more than that required to implement LPC.

ICSI Audio Laboratory Version 0.1



18 I. BACKGROUND

3.3 Howl Removal

Howl removal can be achieved by a variety of methods. One method, which has been used
by the telephone industry, is to use a frequency shifter to shift the transmitted signal up
by some small, almost imperceptible amount. This shift has to be large enough to ensure
that energy cannot build up at any particular frequency. By not allowing this energy to
build up, we effectively eliminate the howling effect. It would be useful to determine the
effectiveness of such a technique, and to study, in frequency space, the characteristics of
howling.

Fourier Analysis

Fourier analysis of an input signal is a means by which we can view the frequency com-
ponents of the signal. There are packages available on workstations and on personal com-
puters that allow users to view the frequency make-up of a time-varying signal. However,
it would be useful to have an audio tool which would enable the user to perform Fourier
analysis in real-time, while data were being transmitted across the network. Many differ-
ent Fast Fourier Transforms (FFT) algorithms are available and they operate fast enough
to enable real-time Fourier analysis.

3.4 Echo Cancelation

Echo cancelation is not an easy process. It requires a large adaptive filter which attempts
to model the acoustics in the room in which the speaker is located. To cancel the echo,
the output signal (going out through the loudspeaker) is processed through the adaptive
filter, and the result is subtracted from the microphone input (see figure I.2). In the ideal
case, the filter works correctly and the echo (signals from the loudspeaker that are picked
up by the microphone) is removed.

Adaptive

Filter

+

Adaptive Acoustic Echo Canceller

Figure I.2: Echo Cancelation Block Diagram

However, in real life, the adapting of the filter is a complicated and computationally
intensive process. If successful, though, the quality of two-party communication is sub-
stantially improved. Most echo cancelation in audio conferencing is done with the aid of

ICSI Audio Laboratory Version 0.1



3 Proposals to examine 19

high speed digital signal processors (DSP). For instance, PictureTel has an excellent echo
cancelation algorithm that works on a low-cost Texas Instrument DSP chip. With worksta-
tion computation power growing exponentially though, it might be possible, in the near
future, to implement a decent echo canceler purely in software. In that respect, Chodura
and Storn [5] have proposed a degradable echo canceler, which adapts to the processing
power available and attempts to provide the best echo cancelation given the computation
constraints. A mechanism, similar to their proposal, should be included in a high-quality
audio tool.

3.5 Echo Suppression

If a means to deal with echos is required, and computational resources prove not readily
available, echo supression may be used instead of echo cancelation. In most echo suppres-
sion schemes, instead of varying the microphone or loudspeaker gains, the microphone or
loudspeaker is completely shut off when there is an incoming or outgoing signal (priori-
ties can be set so that the appropriate device is shut off). This in effect creates a half-duplex
channel. In our proposed scheme (figure I.3), Rainer Storn (Siemens/ICSI) has suggested
that instead of shutting off the signal, the gain may be modulated.

Comparator/

Controller

Echo Supressor

Gain

Gain

Figure I.3: Echo Suppression Block Diagram

We believe that this will result in more natural two-way communication, and prevents
irritating speech clipping effects. This technique, when used with silence detection (not
sending data when the input signal is below some threshold), should be able to deal with
echos (though not as satisfactorily as echo cancelation) and even eliminate howling to
some extent.

3.6 Adaptive Feedback Mechanisms

There have been several studies and proposals for adaptive coding and transmission algo-
rithms that will result in better multimedia quality. For example, in [10, 14, 27], methods
are proposed for producing better video and audio streams while taking into account CPU
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or network loads. It would be useful to implement some form of these adaptive algorithms
and see if they are useful, feasible and result in more efficient audio transmission.

Storn [26] proposes a fuzzy controller to adapt the PET-MPEG priority scheme to the
network conditions. A similar approach could be taken with PET protected audio (whether
through the use of wavelet encoding or other forms of encoding). If it were possible to gen-
erate output with RTP ([24]) headers, we could use RTCP to get feedback on the current
state of the network and adapt our output accordingly. In any case, RTP is becoming a
standard ([28]) on the MBone and within reasonable limits (assuming that it makes sense
to use RTP with the audio encoding format), any audio tool (especially those that aim to
support multicast) should aim to support this standard.

4 The Need for a Tool

Given the above proposals, some of which have been implemented, or are being imple-
mented, and others which are not yet implemented, it would be useful to have a tool
which enabled the quick implementation and evaluation of each of the proposals in a
standardized environment. This tool should not be merely an audio communication tool,
like RAT, IVS or VAT, but should allow users to quickly prototype different approaches to
audio communication without dealing with irrelevant coding.

For instance, a signal processing researcher might be interested in trying out a new au-
dio encoding format and wants to replace the current encoder with her/his new format.
Or, a networks researcher might want to modify the audio packet parameters to see how
changing packet sizes, or using variable packet sizes can affect packet loss rates and pat-
terns. This tool should function effectively as a kind of audio laboratory, where users can
simply plug-in new encoders, decoders, or change the network control functions, quickly
and efficiently.

With the above in mind, we set about designing such a tool at the ICSI.
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II

The ICSI Audio Laboratory

1 History

The ICSI Audio Laboratory or IAL is an ongoing project at the International Computer
Science Institute (ICSI) in Berkeley. The aim of this project is to provide a tool for the net-
work and signal processing researchers to quickly evaluate different approaches to audio
coding.

The IAL had its origins in a program called “Chatty Box”, written by Hartmut Chodura
of the Fraunhofer-IGD during his stint at ICSI. Originally, the program was written to
test the feasibility of wavelet encoding of audio streams. The program was subsequently
modified, by this author, for robustness and to incorporate code to perform howl removal
through frequency shifting. The howl removal code in “Chatty Box” was the result of
Rainer Storn’s research and filtering routines. Later on, extra functionality was added to
this program to perform FFTs and to display a real-time FFT of the input signal. During the
time that research was being done to combat the problem of howl removal in the frequency
domain, we realized that it would be more efficient to have some kind of tool into which
we could quickly plug in filters that we had designed and evaluate the results immediately.
This would free us from the bother of attempting to integrate new code into “Chatty Box”.
It was at this time that the idea for developing the IAL was born.

2 Overview

The IAL consists of code written in both C/C++ and Tcl/Tk. The initial version of the IAL
used slightly modified audio code and network code from “Chatty Box” (the audio and
network code had been previously obtained by Hartmut from other sources and modi-
fied). At present, work is underway to port IAL to use some of the audio and network
code from VAT. In addition, we are adopting the Tcl/Tk classes and mechanisms for in-
tegrating Tcl/Tk into C++ used by VAT. We believe that by using more of the code from
VAT, we will be able to quickly port the IAL to the many platforms that VAT currently
supports (SunOS, Solaris, Linux, etc).
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22 II. THE ICSI AUDIO LABORATORY

The IAL was designed, from day one, to be “user-friendly”. We want the researchers
who use our tool, many of whom may only be familiar with writing numerical routines in
C, to able to create new “filter plug-ins” for the IAL without understanding the internals
of the IAL. However, the IAL should also support those who need a great deal of control
over the audio transmission process. In order to make this a reality, we had to create strict
high-level interfaces for the “filter plug-ins”, while exposing a great deal of internal state
to those who would be modifying the audio module or the network module. Figure II.1
provides a good overview of how the IAL is structured. Observe that the IAL is divided

Filter Processing UnitAudio I/O Unit Network I/O Unit

Filter

Plug-in Network Control

Module
Audio Control

Module

Network

Controller

Figure II.1: IAL Block Diagram

into three different parts. The Audio I/O Unit, the Filter Processing Unit and Network
I/O Unit.

The Audio I/O Unit is responsible for all audio control functions, including audio
input and output, fixing the sampling rate, dealing with device problems like overflows
and underflows. In addition, there is the provision to insert an Audio Control Module into
the Audio I/O Unit that performs special tasks, like echo cancelation, or echo suppression.
The rationale behind delegating such tasks to the Audio Control Module (ACM) is that
such techniques require intimate knowledge of the audio driver and have to be closely
coupled to the audio devices. For example, an echo cancelation routine would need to
know when overflows or underflows occur and it must not perform cancelation, or update
the filter weights when this happens.

The Filter Processing Unit consists of a bank of filter plug-ins. These plug-ins perform
two major functions – encoding and decoding. The data stream, on its way from the Audio
I/O Unit to the Network I/O unit, will pass through each of the plug-ins and the signal
will be processed accordingly. The plug-ins in the unit are managed by the Filter Manager
and the plug-ins may be attached or detached on on the fly (i.e. when the program is run-
ning). Furthermore, these plug-ins can be activated or deactivated when the program is
running. The major difference between attaching/detaching and activating/deactivating
is that in the former case, the user may reorder the filters or add new filters, and in the
latter, the user can only choose whether to bypass the currently attached filter. Also, statis-
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tics that are gathered about a filter (like time per execution) will not be retained between
detachment and attachment.

The Network I/O Unit deals with the sending and reception of packets over a net-
work. Like in the Audio I/O Unit, We also provide the ability to insert a Network Control
Module (NCM) into this unit. The NCM may provide coding that deals with adding re-
dundancy (like PET) and may additionally contain routines to do packet spreading and
striping. Once again, our rationale for having such tasks done in the NCM, instead of the
Filter Processing Unit, is that these tasks will need to interact closely with the network,
like dealing with packet losses, etc.

To get a sense of all all the units tie in together, it would be instructive to observe the
data flow across the units:

� When there is sufficient data in the audio buffer, the system generates an interrupt
which wakes the audio handler within the Audio I/O Unit. The handler then copies
the data into a global set of buffers and calls the central controller to tell it that data
is ready. The central controller invokes the filter manager to do all the necessary en-
coding of the audio frame. In encoding the audio frame, the filter manager marks the
packet with the unique filter-ids of the filters that the packet was processed through
(to enable proper decoding at the receiving end). The controller then calls the Net-
work I/O Unit to send the data out through the network.

� When a packet arrives, the handler code in the Network I/O Unit executes. If a Net-
work Control Module (NCM) is present, it will be allowed to deal with the incoming
packets and to call the central controller when it has built up an audio frame. Other-
wise, the Network I/O Unit calls the central controller directly. The controller then
calls the filter manager to do all the necessary decoding of the audio frame and then
hands the data to the Audio I/O Unit which then places the data into the speaker
buffer and has the audio device driver playback the data.

We will next describe the user interface structure of the IAL before moving on to de-
scribe each of the abovementioned units in greater detail.

3 User Interface

Given the modular design of the IAL, it was necessary to provide a way by which one
could generate independent user interfaces that controlled each of the different modules.

Our user interface paradigm is described in figure II.2. For each unit in the IAL, there
is a corresponding, independent graphical user interface (GUI) written in Tcl/Tk. All of
the user interfaces in Tcl/Tk are written to interact directly with the corresponding object
classes written in C++. By doing this, we limit interaction between classes and reduce code
complexity.

For the Audio I/O Unit, there is an Audio Control Console (ACC), which provides
both basic user interface (UI) support for simple audio functions, like choosing which
input and output devices are to be used and their I/O gains, as well as added UI support
for the Audio Control Module (ACM), if it is present. For more information, see section 5
(page 28), which describes the ACC and ACM in greater detail.
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Figure II.2: IAL User Interface Design

The Filter Processing Unit has its Filter Management Console (FMC) and Filter Status
Display (FSD). The FMC liases with the C++ Filter Manager Object to enable the user to
attach and detach filters on the fly, while the FSD works with the Filter Manager to manage
each independent filter plug-in. The FSD also controls whether a particular filter’s GUI is
displayed or hidden. Note that the designer of a filter need not create a GUI if she/he does
not feel a need for one (or does not know enough Tcl/Tk to write one or modify a given
UI template).

The Network I/O Unit’s UI is similar to that of the Audio I/O Unit. The Network Unit
has a Network Control Console (NCC) which also provides simple network functions (this
will be expanded when the port to the VAT network code is complete) like selecting the
network mode, and in addition, provides support for the Network Control Module (NCM)
if it exists.

In addition to the above UIs, there is a main control interface (figure II.3) from which a
user might pop-up or hide a certain unit’s GUI (II.3-pointer 1) or set certain global param-
eters (II.3-pointer 2). Right now, the only global parameter supported is the audio frame
size, measured by the number of samples per frame. Observe that the frame sizes are all
powers of 2. This is due to the fact that the FFT and Wavelet Filters all require input arrays
that are of such sizes.
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1
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Figure II.3: IAL Main Controls Screen Shot

4 Filter Management

The Filter Processing Unit and the Filter Manager are an important part of what the IAL
does. In fact, if we were to strip away the ACM and the NCM, the IAL would still fulfill
one of its main goals – that of providing an easy way for researchers to efficiently evaluate
new audio processing techniques (i.e. test new audio filters).

The use of Tcl/Tk in the IAL was by no means an accident. Before designing the IAL,
it was decided that filter registration should be a run-time process. By having a run-time
interpreter built into the IAL executable, it is possible to load new filters in at run time and
attach and detach them on the fly. To add a new filter to the IAL, the user simply has to
provide two object (.o) files which are linked into the IAL executable. One of these will be
the compiled C++ filter code itself, and the other object file will contain a static string that
is the Tcl/Tk code associated with the filter. This Tcl/Tk code will register the filter (the
registration code will execute when IAL gets loaded up, before the UIs are built) and its
corresponding user interface. The UI is optional and the user may choose not to provide
one. It is highly recommended though, that each filter provide associated UI code, so that
its parameters are easily accessible to the user at run-time.

The Filter Manager (FM) in the IAL consists of both a C++ class and associated Tcl
routines. The Tcl routines will, at run-time, determine what filters are available to the FM.
These routines will communicate with the C++ class as necessary, to allow the attachment
and detachment of the filters, and to control the activation and deactivation of these filters.
Obviously, when the filter manager is attaching and detaching filters (short time periods),
data that is sent for processing will not be processed – i.e. it will be sent to the network
without additional processing.

To interact with the filter manager, the user utilizes the Filter Management Console
(FMC) user interface. The FMC provides the user with an interface to attach and detach
filters, to rearrange filters, as well as control individual filter settings (through the Filter
Status Display portion of the FMC). The interaction between the plug-ins, their GUIs and
the Filter Management Console is depicted in figure II.4. The FSD provides fine-grained
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Figure II.4: Filter Management Console Block Diagram

control of each filter. By clicking checkbuttons, we can inform the Filter Manager of our
preferences, and we can also call up the appropriate GUI for the filter that we are interested
in.

To provide the reader with a clearer picture of the FMC, we provide an on-screen snap-
shot of the FMC in figure II.5.The FMC user interface can be divided into 7 sections:

➀ Attach/Detach Buttons. These buttons allow the user to move filters in between the
two lists – the list of available filters, and the list of filters to be attached. Note that
the filters in the “Attached Filters” list are not considered to be attached until the
“Update Filter List” button is pressed.

➁ List of Attached Filters. This shows one of two things depending on the status of
the “Update Filter List” button. If that button is disabled (greyed out), then this is a
list of the attached filters, in correct order. Otherwise, this displays a list of filters to
be attached when that button is pressed. The user can change the order of the filters
by holding down the left mouse-button on a filter and then moving the filter up or
down the list. Note that only one item on this list may be selected at any time.

➂ Filter Status Display. This is the in-depth display of an individual filter and is ob-
tained by clicking the middle mouse-button on an attached filter. It is discussed in
greater detail in the next paragraph.

➃ Update Filter List Button. This button is active if the “List of Attached Filters” has
been modified in any way (i.e. if a filter was attached, detached, or if the ordering
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Figure II.5: Filter Management Console Screen Shot

was changed). When the button is active, clicking on it results in the detaching of all
previously attached filters, and will force the Filter Manager to attach, in order, the
list that is currently displayed.

➄ Filter Description. This provides a short description of the filter currently selected.
If there is more than one selected filter, then the information displayed here will be
for the last filter that was selected.

➅ Filter Info Button. Pressing this will pop-up a small window that provides a more
detailed description of all the filters that are currently selected.

➆ List of Available Filters. This is a list of all the filters that were loaded into the
IAL and registered. A user can attach one or more of these filters by using the left
mouse button (in conjunction with the shift or meta keys for extended selection, if so
desired) to select the filter(s) and clicking the “Attach” button.

Figure II.6 shows both the filter information display and the filter specific UI for the
Howl Removal Filter (described in the next chapter) as well as the Filter Status Display UI.
The different parts of this figure are described below:

➀ Filter Information Pop Up. This is the more detailed description of the Howl Re-
moval filter. This pop-up is the result of selecting the Howl Removal filter and then
pressing the “Filter Info” button as described in the earlier list.

➁ Filter Name/Activate Filter Checkbutton. “Name” shows the name of the filter that
has been selected for display in the FSD. The “Active/Inactive” checkbutton allows
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Figure II.6: Filter Status Display Screen Shot

the user to activate or deactivate a currently attached filter. A filter that is inactive
will not be invoked by the filter manager during the encoding process. This is used to
provide quick feedback to the user about how her/his filter affects the audio stream.

➂ Filter Timing Checkbutton. When this button is active, the filter manager will time
the execution of the filter. The time per execution, in milliseconds will be displayed
here. Currently, we only time the encoding process, but are making changes to sup-
port timing for the decoding process as well.

➃ Update Filter List Button. Note that in this screen-shot, this button is inactive. It
means that the user, after attaching the list of filters (by using the attach function
and registering her/his request through pressing this button), has not modified the
“Attached Filters” list.

➄ Howl Removal Filter UI. This is the user interface that is provided by the Howl
Removal filter. By using the “Pop-Up” button on the FSD, we can control whether
this window is displayed or not. Note that it contains controls specific to the Howl
Removal filter.

Having finished our in-depth discussion of the Filter Manager and its associated sup-
porting functions and UIs, we will move on to the audio and network control aspects of
the IAL. At this time, we will defer the discussion of the actual plug-in filters to the next
chapter.

5 Audio Unit

The Audio I/O Unit (figure II.7) provides all that is necessary to deal with the audio con-
trol portion of the IAL. This includes the audio driver that is operating system and hard-
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Figure II.7: Audio I/O Unit Block Diagram

ware specific, as well as a group of I/O device functions that interface with the driver.
At present, we only support the Solaris/Sparc environment and the functions are specific
to that environment. However, we hope that when the code completes its migration to
the VAT audio drivers, we will have system independent I/O code that can interface with
various drivers on various operating systems and hardware platforms.

Presently, the unit provides the ability to choose among

Figure II.8: Audio Control
Console Screen Shot

the available playback and input devices and it also allows
the user to set the record and playback volumes (figure II.8).
There is also a means by which the unit can detect overflows
and underflows in the audio playback and record buffers.

The Audio Control Module is currently inactive. Part of
the reason for this is that the research on echo suppression
and acoustic echo cancelation is still in progress at the ICSI,
though we believe that we will have a prototype echo sup-
pression module for testing very soon. Also, since the mi-
gration to the VAT audio code is almost complete (at least on
the Sparcstations), and since the ACM interface will proba-
bly change to adapt to the new audio code, we feel that it
would be prudent to add in the ACM after the new audio
code works successfully and is sufficiently tested.

There is, however, one caveat to observe in migrating the
audio code to a system independent version – since routines
that belong in the ACM will often need to interface intimately
with the audio device driver, it may happen that the device
drivers on certain platforms may not provide sufficient functionality to support the ACM.
A simple solution would be to have the ACM disable itself whenever it discovered that
certain functions were not available on a platform. Unfortunately, this is not a graceful
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solution. Ideally, the ACM should be able to adapt to provide reduced functionality on
such platforms. We feel that further research and experiments will have to be done on this
before we have an adequate solution.

6 Network Unit
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Figure II.9: Network I/O Unit Block Diagram

The Network I/O Unit (figure II.9) does for the network what the Audio I/O Unit did
for the audio devices, albeit with one distinction – since we do not support different net-
work transport protocols (for now, we deal only with UDP/IP), we do not really have the
equivalent of an audio driver in the Network Unit. This situation might change in the near
future, if we decide to support different transport protocols. In figure II.9, observe that the
Network Control Module (NCM) converts between processed audio frames and network
packets. Each audio frame may generate more than one network packet and conversely,
more than one network packet may be required to generate an audio frame.

The Network Unit currently takes an audio frame and prepends a simple header to it
before sending it on its way. Similarly, when a packet comes in, it strips off the header
and sends it along for audio processing. Lost packets are presently detected and treated
as null data, so there is no playback when that happens. In other words, the unit simply
performs the most basic tasks necessary to send and receive audio over the network. The
only available options are those that control the I/O mode - receive only, send only, no
output (which means that the audio data is run through the filters, but we don’t send the
packets out) and local loopback mode (in which outgoing packets are simply diverted into
the incoming data stream).

The screen display of the Network Control Console (NCC) shows the current state of
the network unit (figure II.10):

➀ Network Options. This is not implemented yet, but when the network code has
completed its migration to VAT’s network code, which supports multicasting, these
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Figure II.10: Network Control Console Screen Shot

options will become available.

➁ Packet Striping UI. When the packet striping/spreading mechanisms are developed
in conjunction with PET, the user interface would appear in this space.

➂ PET UI. Similarly, the PET user interface would occupy this space.

➃ Output Mode Options. This is, at present the only enabled panel on the NCC. It
allows the user to select one of the four different network I/O modes.

As in the Audio Unit, when the network code has completed its migration to the
multicast-enabled network code from VAT, work will begin on the Network Control Mod-
ule (NCM). We expect that the NCM will support features like resilient coding, generation
of RTP-compatible packets and also some adaptive mechanism that takes into account the
RTT of the link and the network congestion. This will be discussed in greater detail in
Chapter IV.
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Figure III.1: Structure of a plug-in filter

Figure III.1 shows the structure of a filter, and its relation to the internal structure of the fil-
ter manager. Within the filter manager itself, there are a few fixed size arrays (limited by a
fixed constant, currently set to 256). The use of fixed size arrays is believed to be reasonable
since attempting to run IAL with a large number of filters will be somewhat impossible (at
least in the next 2 to 3 years), even if computational power grows exponentially. One of
the fixed size arrays holds the current list of attached plug-ins. Corresponding entries in
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the other arrays contain the status and statistics of each filter.

At any given time, the list of currently attached filters in the filter manager is main-
tained both in the C++ domain as well as the Tcl/Tk domain. This is not mandatory, since
we could always keep the list in one domain and have code in the other domain ask its
counterpart for the list. However, it makes coding somewhat easier and is more efficient.
As long as consistency is maintained across both domains, the IAL will run correctly.

To create a plug-in filter, the user will have to create a new C++ specialized filter class
that inherits from the Filter class in the IAL distribution. The base Filter class dictates
both the structure and the interface for this new filter. The user has to supply a name for
the filter, as well as the encoding and decoding functions. The rest of the functions are op-
tional, and the only other code that has to be written is a single line Tcl script that registers
the filter at run time. Since sample filter classes are provided, the user can simply take
one that fits her/his needs and modify it for the new filter. By exploiting the inheritance
mechanism in C++, we allow the user to create her/his own filter specific functions and
Tcl commands, while forcing the filter to conform to rigid interfaces required to make the
filter manager work. In addition, the global filter-id.h header file will have to be up-
dated to add this filter. The globally unique filter-id is necessary to ensure that the correct
decoders are called in sequence when an encoded audio packet arrives at its destination.

When the user is done with the .cc and .tcl files, she/he simply places them in a
new directory within the IAL distribution (a new directory under IAL-FILTERS-SRC)
and adds that directory name to the list of FILTERS in the IAL Makefile. When the user
next builds the IAL executable (by typing make filters;make all), the new filter will
automatically be compiled and added to the IAL code. This technique has the added
bonus of allowing users to distribute object files containing proprietary filter code without
releasing the source files. Subsequently, when there exist different releases of IAL, with
slightly different Filter base classes, Tcl run-time checks could be added to provide ver-
sion matching.

In the current implementation of the IAL, all the encoding and decoding functions take
in a pointer to an array of floats and the size of that array. The way the array is initially
generated is by taking the PCM samples and dividing it by the number of quantization
levels to form a float. Our reason for choosing the array of floats is to make writing digital
filters easy, since the use of floats frees us from having to worry about scaling problems.

We shall now look at a few different filters that have been implemented within the IAL.

2 The Generic Filter

The Generic Filter exists simply to serve as a reference for those creating their own filters.
It has code that doesn’t do anything, except print comments on standard output. It also
provides a simple Tk do-nothing interface to demonstrate how one can write filter-specific
GUIs.
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3 The Howl Removal Filter

The Howl Removal filter provides a means to shift an input signal by some given value,
in the hope of preventing a build up of energy within some frequency bands. The shift
is implemented through the use of two filters, a bandpass filter and a lowpass filter. The
block diagram of the filter is given in figure III.2. Note that the filter only has an encoding
function. There is no need for a decoding function – in fact, we would not want to ’undo’
the shift, since this would nullify our original efforts in encoding.

As can be observed from figure III.2, the
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signal is first up-sampled by 4 and then passed
through the bandpass filter, followed by the
actual frequency shift and then through the
lowpass filter, before being down-sampled by
4, to obtain the final shifted signal. The design
and initial coding of the frequency shifter was
done by Rainer Storn at the ICSI. In addition,
the coefficients for the lowpass and bandpass
filters were generated using differential evolu-
tion based optimization techniques. The aim
here is to get good bandpass and lowpass fil-
ters while keeping the length of these filters
relatively short and computationally tractable.

This plug-in allows the user to modify the
amount of the shift, in both the negative and
positive directions. This can be seen from the
user interface of the filter (figure II.6), in which
there is a sliding scale which the user can operate. Furthermore, this plug-in allows the
user to select one of a few different bandpass filters, each of a different length, to determine
which bandpass filter gives the least distortion, while still being computationally feasible
on an average workstation.

Having used the howl removal shifter in some experiments, we discovered that the
filter was in fact, a huge burden on the CPU, and it appears that the extra volume gain in
playback that we get may not be worth the amount of resources that have to be spent on
the howl removal filter. However, more comprehensive and detailed studies will have to
be done before more can be said about this filter.
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4 The Wavelet Filter

The wavelet filter (figure III.4) is a slightly modified

Figure III.4: Wavelet Filter
Controls Screen Shot

version of the wavelet code that was present in Hartmut
Chodura’s “Chatty Box”. It uses the code from Numeri-
cal Recipes in C ([23]) to implement the discrete wavelet
transform. Specifically, the wavelet transform as found
in Numerical Recipes, uses the Daubechies family (figure
III.5) of wavelets as its basis function and uses a pyrami-
dal algorithm (involving Quadrature Mirror Filters) for
generating the wavelet coefficients.

This plug-in provides the ability to switch between
the different wavelet basis, including Daub4, Daub12 and
Daub20, in increasing order of computational complexity.
In addition, it provides a means for testing the effective-
ness of using wavelets as a means of compressing speech or audio data. The user is pre-
sented with a slider that allows her/him to set a compression level (this determines the
threshold for truncation of wavelet coeffcients). Subsequently, the number of non-zero co-
efficients are indicated on standard output. It is usually undesirable to have information
from the filter printed on the standard output device; preferably, the plug-in’s user inter-
face should have a means for providing feedback to the user. In this case, it be relatively
simple to modify the filter to provide feedback on its GUI.

The block diagram of the wavelet filter is given in figure III.6. Note that there is the pro-
vision for a wavelet display, but we have not implemented one as yet. We could of course
simply use the Stripchart widget that we use for the FFT Filter (see section 5). However,
we are looking for other means of displaying the wavelet coefficients in a way that would
allow us to locate the coefficients in a time/frequency plot and tell their magnitude simul-
taneously.

Presently, Rainer Storn (Siemens/ICSI), Martin Isenburg (Fraunhofer-IGD/ICSI) and
the author are researching wavelets and the application of PET to wavelets. To demon-
strate the useability of the IAL, we will be incorporating the results of this research into
the next version of the wavelet filter. The new wavelet filter, coupled with a modifed Net-
work Control Module that supports PET encoding, should prove to be a most interesting
combination.

5 The FFT Howl Cancelation Filter

Initially, the FFT filter was simply created to view the spectrum that howls create in the
frequency domain. It incorporates a real-valued, in-place Cooley-Tukey Radix-2 FFT that
was ported and modified by Rainer Storn from “Real-Valued Fast Fourier Transform Algo-
rithms” by Sorensen, H.V. et al” in ASSP-35, June 1987 (pp. 849 - 863). The block diagram
of the filter is given in figure III.7, and a screen snapshot of its associated user interface is
show in figure III.8 Note once again that this filter, like its earlier howl removal counter-
part, only has an encoding function. In addition, note that the Hamming Window that is
applied to the signal before the transform is meant to counteract aliasing and other sig-
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Figure III.5: The Daubechies Family of Wavelets
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Figure III.6: The Wavelet Filter

nal artifacts that come about because we are doing a hopping FFT – i.e. we do FFTs on a
packet by packet basis, instead of doing it using a sliding window, which would be more
accurate, but which would take much more computation.

Once we had the FFT and Inverse FFT in place, we decided to test various novel ap-
proaches to howl removal, in the frequency domain. Our initial expectations were that
the aliasing effects in the time domain that would result from modifying signals in the fre-
quency domain, would be intolerable. However, our experiments have shown that we can
do substantial modification (even implement a frequency shift operation) in the frequency
domain while still maintaining speech of tolerable quality.

Our approach to the removal of howling in the frequency domain involves the use of
a “zeroing window”. Basically, this is a window, of some width (say 1KHz), that slides
within the higher frequency bands (generally 2KHz to 4KHz, where howls usually build
up), zeroing coefficients as it moves along rapidly. This prevents any kind of energy build
up at any frequency band, and effectively eliminates howling. Obviously, when the mi-
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Figure III.8: FFT Howl Cancelation Filter Controls Screen Shot

crophone is brought closer and closer to the speaker, there is a distance threshold beyond
which howling inevitably occurs. However, when we combined this technique with the
shifting howl removal filter, we discovered that we could place the microphone so that it
almost touched the workstation speaker (in local loopback mode), without generating a
howl. This frequency domain howl remover proved to be much less intrusive than the fre-
quency shifting howl removal. Furthermore, it runs around 4 times as fast the as frequency
shifting howl removal. In many cases, its effect on normal speech are almost transparent.
We have still to determine what the optimal settings for the different parameters (width
of the window, sliding speed and so on) are, and if attenuation, as opposed to complete
zeroing, will work better.

In our experiments with this filter, we also attempted to create frequency shifts in the
frequency domain. If this is successful, we will have a more efficient means to do fre-
quency shifting (compared to the earlier howl shifting). Early results appear promising,
but more research has to be done before any conclusions can be drawn.
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IV

Observations, Current and Future
Work

1 Observations

The design and prototyping of the IAL and its associated filters form the basis for the
author’s Master’s project. It has been demonstrated that the IAL provides an excellent
framework in which to implement various filters and run experiments on these filters. It is
relatively easy to create new filters and add them to the IAL filter repository. Furthermore,
the filter management console allows good control over the filters and the use of Tcl/Tk
with C++ has proven to be the correct choice for implementing the filter repository.

We expect work on the IAL to continue and are confident that it will prove to be suc-
cessful. However, there are certain drawbacks that are present in the current version of
the IAL and before the IAL will gain wide acceptance, some of these drawbacks will have
to be dealt with. The more pressing problems will be described in the following section.
Other problems that require extensive code changes, but which will not adversely impact
the acceptance of the IAL in the short run will be dealt with in the “Future Work” section.

2 Current Work on IAL

The following is a list of work in progress at ICSI:

Port to VAT code This is the most important item on our agenda right now, and we expect
that the work to integrate network and audio code from VAT into the IAL will be
completed very soon. This port will enable the IAL to support multicasting, and will
pave the way to porting IAL to different operating systems and hardware platforms.

Creation of Network Control Module Interface When the port to VAT code is done, we
will have to work on the interface for the NCM and provide ways to integrate PET
and the striping algorithm into the module. This is the next most important item
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since having the NCM in place will allow us to proceed in our studies of the use of
wavelets and PET in audio transmission.

Creation of Audio Control Module Interface Similarly, we will have to work on the ACM,
and provide hooks for the echo suppression and echo cancelation modules, which
will be implemented at some later time.

Filter constraints We are still working on ways to resolve specific requirements that some
filters have by providing a means for these filters to report any constraints that they
may have (for example, the wavelets and FFT filters botht require packets which
have sizes that are powers of 2). In addition, we are working on means to detect con-
flicts and provide ways by which the user can interactively indicate how a conflict is
to be resolved.

3 Future Work on IAL

The following consitutes the list of what we would like to have incorporated into the IAL
in the near future. These are basically implementations of some of the more complicated
proposals described earlier in this report.

Echo cancelation Much more research and development has to be done in our studies into
echo cancelation before a prototype version can be built. In particular, the author
believes that the development of a gracefully degradable acoustic echo canceler will
not happen for some time. However, the IAL would be a good tool to use to test out
potential candidates.

Echo suppression We believe that echo suppression is feasible and that it would not re-
quire too much coding to implement. When the ACM interface is fully defined, we
will begin work on echo suppression and should have a working version soon after.

Adaptive feedback mechanisms It should be possible to incorporate some kind of adap-
tive feedback mechanism (akin to those described earlier in the report) into the NCM.
Perhaps we could write an NCM that supports RTP and RTCP, and adapts the re-
silient coding function and the pack striping algorithms accordingly. However, more
research has to be done before we embark on such a project.

Supporting different audio encoding Currently, due to the constraints imposed by the
audio drivers, we only support PCM as our encoding format. However, it should
be possible to write a filter that converts from the float type to PCM to some other
format, like DM or ADPCM, before sending the data out on the network. In order
to support such a filter, we will have to change the way the filter manager interfaces
with the encoding and decoding functions in the filters. If there is a demand for
this kind of support, we will look into the matter and redesign the filter manager
accordingly.
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