REMAP MODELING FOR
CONNECTIONIST SPEECH
RECOGNITION

Yochai Konig, Hervé Bourlarda, and Nelson Morgan
International Computer Science Institute
Berkeley, CA 94704, USA.

aAlso affiliated with Faculté Polytechnique de Mons, Mons, Belgium
Summary

- We can train hybrid HMM/ANN system in a globally discriminant way by estimating ANN parameters that maximize the global posterior probabilities, i.e. minimize the utterance error rate.

- In training we use posterior probabilities as targets ("soft targets") versus labels ("hard targets") in our standard HMM/ANN system.

- In recognition we use only posterior probabilities versus scaled likelihoods in our standard system.

- Preliminary experiments show an improvement in recognition results.
Algorithm

- **Goal** - To increase $P(M|X)$ of the correct model. X - sequence of acoustic vectors, M - sentence model.

- **Question** - How to incorporate this global goal in the local training of the ANN?

- **Idea** - REMAP: Recursive Estimation and Maximization of A Posteriori Probabilities. ANN targets are re-estimated iteratively to guarantee a continuous increase of the global posterior. The global posteriors of all possible models sum up to one, so we get discriminant training.
Discriminant HMM - An example of “cat”

- It can be shown that $P(M|X)$ can be expressed in terms of $p(q^k_n | q^{k-1}_n, X^{n+d}_{n-c})$, where X^{n+d}_{n-c} is a window of acoustic vectors, and q^{k-1}_n represents being at state k at time $n - 1$.

![Diagram showing transitions between states](attachment:diagram.png)
Local Transition Probabilities

- An MLP that estimates these local conditional transition probabilities.
Motivation - Soft Targets

Prob(transition)

--- Hard Targets (Viterbi)

............... Soft Targets (Desired)
Soft Targets - Details

<table>
<thead>
<tr>
<th>Time</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viterbi</td>
<td>k→k</td>
<td>k→eh</td>
<td>eh→eh</td>
</tr>
<tr>
<td>Desired</td>
<td>k→k 0.7</td>
<td>k→k 0.5</td>
<td>k→k 0.2</td>
</tr>
<tr>
<td></td>
<td>k→eh 0.3</td>
<td>k→eh 0.5</td>
<td>k→eh 0.8</td>
</tr>
</tbody>
</table>

MLP Training (t = 2)

0
Viterbi

k

MLP

Prev-state

0.5
Desired

k

MLP

Prev-state

0.5

k

Acoustics (t = 2)

k

Acoustics (t = 2)
REMAP Algorithm - Idea

- **E-step** Estimate new transition targets given the current MLP.
- **M-step** Train new MLP to maximize performance according to new targets.
- Iterate until the increase of the a posteriori probability of the correct model is too small.
Before and After REMAP

Targets (Viterbi) :
/k/ → /k/ 0.8
/k/ → /ae/ 0.2
/k/ → /ae/ 0.8

Targets (MAP) :
/k/ → /k/ 0.3
/k/ → /ae/ 0.7
/ae/ → /ae/ 0.8
/ae/ → /t/ 0.2

Trained net → Sentences

Viterbi Alignment → MAP Estimate

Train a new net
REMAP Algorithm - Details

- Start from some initial net providing $P(q^k_{\ell} | X_{n-c}^{n+d}, q^{n-1}_k)$, ∀ possible (k, ℓ)-pairs.

- **E-step** Run recurrences to compute MLP targets $P(q^n_{\ell} | X, q^{n-1}_k)$, ∀ possible (k, ℓ)-pairs.

- **M-step** For every x_n in the training database, train MLP with output targets equal to $P(q^n_{\ell} | X, q^{n-1}_k)$, ∀ possible q_k at the input or for a limited subset as imposed by the HMM topology.

- Iterate from E-step until convergence, or according to cross-validation results.
Proof - Outline

- Defining an auxiliary function such that maximizing that function is equivalent to maximizing the global posterior probability of the correct model.

- Finding new targets for training the MLP that maximize the auxiliary function.

- Showing that training the MLP with these new targets leads to an increase in the value of the auxiliary function.
Experimental Methods

- **Task**- Digits+ database: “one” through “nine”, “zero”, “oh”, “no”, and “yes”. Isolated words over a clean phone line. Added Noise: 10DB S/N. 200 Speakers, 1720 training utterances, 230 cross-validation, 650 testing.

- **Nets**- 214 inputs, 153 inputs- acoustic features, 61 - previous state. 200 hidden, 61 outputs.

- **Acoustic Features**- RASTA-PLP8 + delta features + delta log gain. Analysis window - 25 ms estimated every 12.5 ms. 8 Khz sampling, telephone bandwidth.
Experiments - Results

<table>
<thead>
<tr>
<th>System</th>
<th>Error Rate</th>
<th>Average Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classical Hybrid</td>
<td>3.1%</td>
<td>-</td>
</tr>
<tr>
<td>Discriminant HMM, pre-REMAP</td>
<td>2.9%</td>
<td>0.110</td>
</tr>
<tr>
<td>1 REMAP iteration</td>
<td>2.3%</td>
<td>0.161</td>
</tr>
<tr>
<td>2 REMAP iterations</td>
<td>2.3%</td>
<td>0.174</td>
</tr>
<tr>
<td>3 REMAP iterations</td>
<td>2.2%</td>
<td>0.180</td>
</tr>
</tbody>
</table>

Table 1: Results in word error (wrong words)
The Effect of REMAP

- Y-axis shows the probability of a transition (changing state) for every frame in the utterance “one”.

![Graph showing the effect of REMAP](image-url)
Conclusions

- The EM-like REMAP algorithm is a general solution to the problem of parameter estimation with incomplete data according to the Maximum A Posteriori criterion in hybrid HMM/MLP systems.

- We have applied REMAP to transition-based connectionist speech recognition system, specifically to the Discriminant HMM.

- We have shown recognition improvement on a small but non-trivial task. We plan to test our theory on more difficult tasks.