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Abstract

A method for deriving phrase structure categories from
structured samples of a context-free language is pre-
sented. The learning algorithm is based on adaptation
and competition, as well as error backpropagation in
a continuous vector space. These connectionist-style
techniques become applicable to grammars as the tra-
ditional grammar formalism is generalized to use vec-
tors instead of symbols as category labels.

More generally, it is argued that the conversion of
symbolic formalisms to continuous representations is a
promising way of combining the connectionist learning
techniques with the structures and theoretical insights
embodied in classical models.

Introduction

Connectionism, and especially Parallel Distributed Pro-
cessing (PDP) has developed an array of models of
learning systems (backpropagation, Boltzmann ma-
chines, competitive learning (Rumelhart, McClelland,
& The PDP Research Group 1986)). These models
typically operate on representations at a rather low and
unstructured level (unit activations, bit vectors, micro-
features) relative to the structures used in traditional
linguistic descriptions (trees and graphs, case frames,
grammar rules, stacks). This is a necessary feature, the
algorithms used are powerful and general precisely be-
cause they operate on simple and homogeneous repre-
sentations. Simplicity and uniformity of the represen-
tations also allows for mathematical analysis, leading
to theoretically well-founded methods such as gradient
decent or simulated annealing.

A second prerequisite for these connectionist learning
algorithms is that representations be continuous. Con-
tinuity of the representation space (ofter paired with re-
quirement that some performance measure be differen-
tiable with respect to the representations), ensures that
adaptive learning can take place, i.e., gradual adjust-
ment towards a specified goal. Again, continuity and
differentiability are typically not found in traditional
linguistic constructs, which tend to be inherently dis-
crete (an exception are Fuzzy Languages (Zadeh 1972)).

It seems desirable, then, to investigate ways to com-
bine connectionist (usually vector-based) representa-
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tions with structures and concepts developed in tradi-
tional theories, especially in cases where those theories
have a strong empirical or intuitive appeal. The goal
would be to use one or several of the learning tech-
niques mentioned above to learn or develop representa-
tions that are meaningful in the framework of the theory
at hand.

The remainder of the paper gives an example of this
general approach, applied to the theory of context-free
grammars and the problem of learning category labels
for the phrase types in a language. First we intro-
duce the the hybrid symbolic/connectionist formalism
on which the algorithm 1s based, and then discuss learn-
ing by way of a detailed example.

Vector Space Grammars

The formalism presented here has been dubbed Vector
Space Grammar (VSG) because it represents a gener-
atization of traditional context-free grammars (CFGs)
in which the nonterminals are represented by points in
a continuous vector space rather than by symbols. Like

in CFG, nonterminal rules (in Chomsky Normal From,
CNF) are of the form

X—yz (1)
and lexical (terminal) rules of the form
X —a (2)

But whereas in CFG categories (x, y, z) are symbols
in a space with a binary metric (equality /nonequality),
VSG uses vectors as nonterminals. This gives a contin-
uous metric on the category space, thus fulfilling one of
the prerequisites for an adaptive learning mechanism.
Terminals (words) in VSG are still unanalyzed atomic
entities, and strings of terminals form the domain over
which a language is defined.

A standard non-terminal rule maps two specific sym-
bolic categories into a third symbolic category (the left-
hand side of the rule). Similarly, a VSG rule maps two
vectors onto a third. From a bottom-up parsing point
of view, a traditional CFG rule is applicable if and only
if its two right-hand side categories match exactly two
other categories (roots of partial parses). In VSG, rule
applicability becomes a graded notion, and every rule



terminal symbols

Figure 1: Vectors involved in VSG rule application. The
new root vector a is a function of the subtree root vectors
b and ¢ and the vectors in the rule x — y z, eg.,, a =

(b-y)(c-z)x.

will be applicable to every two categories to some ex-
tent. However, the formalism is designed such that
well-matching rules give a ‘high’ output, and poorly
matching rules result in a vector close to the zero vec-
tor. This is accomplished by the following ‘activation
function’ for VSG rules. Let x — y z be the rule ap-
plied to two categories b and ¢ (we use bold letters to
denote vector quantities). Then the category resulting
from the rule application is defined as

a=(b-y)(c z)x (3)

where - denotes the inner product of the vector space.
The two inner products on the right express the match
between the categories specified by the rule and the cat-
egories assigned to the substrings. Match values range
between —1 and +1 if the category vectors are normal-
ized. Since the right-hand side terms in a context-free
rule work conjunctively (all have to match), the match
values are multiplied. Choosing the inner product as
the measure of matching partly determines the struc-
ture of the category space: categories will behave differ-
ently to the extent that they are orthogonal. The ele-
ments involved in rule application are depicted schemat-
ically in Fig. 1.

Traditional CFGs can be mapped into the vector
representation such that equation 3 works precisely as
traditional grammar rules do (using an all-or-nothing
match between categories). This isomorphism maps
each nonterminal in the CFG to a dimension in the VSG
category space, and demonstrates that VSGs are indeed
a formal generalization of symbolic phrase-structure
grammars.

Acceptance of strings by a grammar can be defined
analogously to traditional grammars, although accep-
tance becomes a non-discrete function (as in fuzzy lan-
guages). Since these definitions are not directly relevant
to the learning procedure we will omit them here and
turn immediately to the learning algorithm (see (Stol-

cke 1991) for details).

Learning with Vector Space Grammars

The problem of learning to parse strings of a language
can be broken down into two subproblems: finding the
structure of the parse tree (i.e., the phrase bracket-
ing), and assigning category labels to the nodes in the
tree (the phrases). Current work with VSGs addresses
mainly the second of these problems, for several rea-
sons.

There are indications that the two problems might in
fact be handled separately by natural language speak-
ers, and that there are cues independent from category
assignment that allow speakers to derive the phrase
bracketing information. It has been shown that there
are very effective statistical methods to find phrase
boundaries (without phrase type classification) in text
(Magerman & Marcus 1990). Secondly, psycholinguis-
tic data indicates that humans can learn language struc-
tures successfully only when they can draw from a rich
set of universal intra- and extra-sentential cues to in-
duce phrase structure independently (Morgan, Meier,
& Newport 1987; Morgan, Meier, & Newport 1989).
Morgan (1986) has also argue for the prior availability
of phrase structure information on learnability grounds.

Another source of independent phrase structure in-
formation comes from strong correlations between syn-
tactic and semantic structure, i.e., the fact that syn-
tax usually exhibits a structure parallel to one of the
conceptual dependencies 1t expresses. This fundamen-
tal ‘iconic relationship’ between syntax and concepts 1s
understood by some linguists as the very essence of lan-
guage (Langacker 1985). A learner could capitalize on
this principle if one assumes that certain general cogni-
tive capacities are available prior to syntax learning.

For the purpose of this paper, then, we will assume
that a learning system has access to phrase-bracketing
information from independent sources. We will discuss
how the category system and the rules for a language
can be learned within the formal framework provided by
VSG, given positive (and possibly negative) instances of
the language along with their phrase structure bound-
aries. The kinds of structures available to the learn-
ing algorithm are familiar from Levy and Joshi’s (1978)
skeletal structural descriptions, and have been shown
to be sufficient for syntax learning (Fass 1983). These
learnability results, however, use automata induction
techniques with very complex data structures (equiv-
alence classes of trees structures), and are therefore
not directly comparable to the methods employed here.
VSG learning uses only very simple vector data struc-
tures and works on-line, 1.e., no history of past sam-
ples has to be stored. All the primitive computations
performed could be implemented using standard con-
nectionist hardware, except for the global control and
structure allocation mechanism.

Two global parameters of the system are the dimen-
sion of the category space and the number of rules to
be used. These parameters should be set ‘large enough’
for a given language, and have an effect similar to the
number of hidden units in a backpropagation network.



With too little resources, the system will not converge
on a solution, and with too many degrees of freedom
the solution might be redundant and not express cer-
tain generalizations about the input.

At the outset of learning, then, a fixed number of non-
terminal rule ‘templates’ of the form (1) (with a given
vector space dimension) are allocated. Additionally, for
each terminal symbol, a rule of the form (2) is created.
All category vectors, in all rules, are set to random unit-
length vectors.

Given a sample string from the language and a parse
tree skeleton, we construct a labeled parse tree from
the current set of rules. To assign a category vector to
a node, the rule whose right-hand side represents the
best match for the child node categories is selected and
equation (3) is used to compute the output category
for that node. ‘Best match’ is defined according to the
same inner product metric as used in equation (3), i.e.,
using the value (b - y)(c -z). Only the rules selected
at some node will later participate in the learning pro-
cess. Since only the currently best rules get selected the
whole process strongly resembles the method of compet-
itive learning (Rumelhart & Zipser 1985).

By working from the terminal nodes to the root we
arrive at a category label for the entire string. If the
training sample is a positive instance of the language
we know what the target category for the parse should
be: the sentence category ‘S’ that every grammar has
to provide. Without loss of generality we can fix S
throughout training to be a particular vector, e.g., the
unit vector (1,0,...,0).

The second idea adapted from connectionist learning
methods is that of error backpropagation (Rumelhart,
Hinton, & Williams 1986). At the root node we can
immediately compute an error term for the discrepancy
between the desired output and the actual output. For
positive examples this is just the difference between S
and the root category, for negative examples we com-
pute an error term which tends to make the output cat-
egory and S orthogonal. A recursive procedure (based
on the chain rule) can then compute the derivative of
that error with respect to every category vector occur-
ring in some rule (left of right-hand side) applied some-
where in the tree. The computation of error derivatives
is straightforward because of the simple linear opera-
tions used in equation 3 but omitted here for lack of
space (see (Stolcke 1991)).

Derivatives for each category vector are then added
up and multiplied by some constant (the ‘learning rate’)
to give the adjustment to be applied to that category.
All rules are updated accordingly, all categories are
rescaled to unit-length, and the next training example
is processed. The algorithm cycles through the train-
ing set until the error becomes negligible or no further
improvement is observed over a long period of time.

It is important to realize that the backpropation step
can not assign errors that are due to choosing the
‘wrong’ rule at some point, because rule selection is
a discrete step that allows no differentiation. Unfor-

+ ((a circle) (touches (a sqgare)))
+ ((a §quare) (touches (a circle)))
+ ((a circle) (1s (below (a sqgare))))
+ ((a sguare) .(1s (below (a circle))))
+ ((a circle) (1s (above (a sqgare))))
+ ((a square) (is (above (a circle))))

- (a square)

- (a c1rcl§)
- (above (a circle))
- (below (a sqgare))

- (touches (a circle))

- .(touches (a square))
- (1s (above (a square)))
- (1s (above (a square)))
- (1s (below (a circle)))

- ((a circle) (below (a sqgare)))
- ((a squarje) (above (a circle)))
- ((a .cu“c.le) (is (touches (a square))))
- ((is circle) (touches (a square)))

- ((a c1rcl§) (a(a sqgarg)))
- ((a square) (is (below (is c1rcle))))
- ((a square) (touchgs (below (a circle))))
- ((acircle) (is (a squarje)))
- ((a square) (a (above (a circle))))

Figure 2: Training set used for the VSG learning experi-
ment. The data is drawn from a fragment of English gen-
erated by the grammar given in the text. Positive training
instances are labeled with + negatives ones with -.

tunate rule selection has to be overcome by changing
the rules themselves, and competitive rule selection 1s
a heuristic to minimize rule selection errors.

A Sample Grammar

We have run simulations of the algorithm described
above to verify that is can indeed converge onto work-
ing VSG grammars for a variety of small artificial and
‘natural’ languages. As indicated in the introduction,
one of our main goals was to not only attest learning
success (as defined by the error function) but to try to
understand how the category vectors formed collabo-
rate to produce a meaningful system of rules.

As an example consider a fragment of English consist-
ing of transitive sentences (‘A circle touches a square’)
and copula sentences (‘A circle is below a square’) in-
volving the nouns circle, square, the verbs is, touches,
the prepositions above, below and the determiner ¢ (this
fragment is borrowed from the Ly project domain (Feld-
man et al. 1990), a sample grammar for it is given
below).

The algorithm was run over a set of 6 positive and
18 negative samples, listed in Fig. 2. the number of
rules was set to 5 and the category dimension to 15. At
a constant learning rate of 0.5 the error was typically
negligible after 50 passes over the training set.

As a method for analyzing the resulting VSG we used
cluster analysis, which groups vectors according to a
distance metric in a hierarchical fashion. Fig. 3 shows
the result of clustering all vectors occurring in rules as
well as the fixed S vector.

The graph shows that the vectors fall into nine major
clusters of left-hand side and right-hand side rule vec-
tors. We can reconstruct a symbolic rule system from



rhs2-R1
“:[ lhs-R2
NP thsl-R3
— rhs2-R4
Vas [ rhsl-R4
lex-touches
PP [ lhs-R1
rhs2-R5
\C [ rhsl-R5
lex-is
lhs-R4
MP—[E rhs2-R3
lhs-R5
1 rhs2-R2
N_ﬁ lex-circle
lex-square
rhsl-R
lex-a
lex-al
rhsl
lex
lhs-R3

s

S-category

pove
-R1
below

Figure 3: Clusters of category vectors derived from sam-
ple language. Left-hand side and right-hand side vectors
in non-terminal rules are labeled by one of ‘lhs’, ‘rhs1’ and
‘rths2’, and the rule number (R1-5). Left-hand side vectors
of terminal rules are labeled as ‘lex’ and the terminal they
generate. ‘cat-S’ is the fixed S category vector. Branches
leading to clusters that can be identified with non-terminals
from the context-free grammar given in the text are labeled
with the corresponding symbol.

the diagram by identifying these clusters with (initially
arbitrary) symbols and then filling in the rule templates
used. Once this is done, we can interpret the rules on
the basis of their interaction with other rules and re-
name the symbols according to our traditional names
for syntactic categories if an unambiguous interpreta-
tion 1s possible.

Analysis of cluster diagram for this example shows
not only that a rule system has been formed that
accounts precisely for the input sample, but also
that these rules and categories can be put into
a one-to-one correspondence with a natural stan-
dard CFG for the language at hand, such as:

S

— NP VP N — square|circle
NP — DetN VT — touches
VP — VT NP VC — s
VP — VCPP P — abovelbelow
PP — P NP Det — a

(Fig. 3 explains how CFG symbols map to vector clus-
ters.)

Discussion

The details of the resulting rule and category struc-
ture are highly dependent on the training environment.
For the example in the previous section, extreme con-
ditions were intentionally chosen to generate the per-
fect correspondence between the structure learned and
the traditional CFG. Specifically, constraining the num-
ber of rules to five forced a parsimonious use of cate-
gories. With more rules to work with either redun-
dancies would have developed (several rules serving the
same function) or some rules stay useless (never win-
ning a competition and not converging onto meaningful
categories). Also, the relatively large number of nega-
tive examples ensured that the categories formed were
sufficiently discriminatory. With less or no negative ex-
amples a grammar develops that accounts for all the
positive examples but fails to exclude all the negative
ones, due to overly general rules.

The need for negative examples is the most bother-
some problem if one is looking for a plausible mecha-
nism for natural language acquisition (and widely ac-
knowledged as a major challenge for many theories of
acquisition, see, e.g., (Pinker 1989)). Although our cur-
rent system is certainly too impoverished to claim to be
a model of natural language acquisition (it handles only
syntax, for one thing), it would be nice to obviate the
need for negative examples.

Experiments show that just dropping the negative ex-
amples from the training set produces grammars with
too few rules. They account for the training data by
clustering a large number vectors together, resulting in
categories that are too general and have too little dis-
criminatory power to rule out false negative examples.

This situation arises partly due to a well-known prob-
lem with competitive learning schemes. A small num-
ber of rules win most of the competitions early, thereby
pulling all category vectors into a few large pools. Many
rules never get applied and never learn to be useful as
a result. To counteract this tendency we have recently
modified the learning algorithm to incorporate an idea
from learning in genetic systems (Holland 1975). In the
modified learning schedule, rules that never are used are
periodically eliminated from the rule set and replaced
by copies (‘clones’) of rules that are heavily used. These
are the ones that tend to be overly general, and du-
plicating them allows the two copies to specialize into
different roles in the grammar. A modified algorithm
based on this heuristic does much better in positive-
only training, and is able to derive a category structure
similar to that in Fig. 3 with only one overly general
cluster (merged VP and PP vectors, an error that is
in fact motivated by the similar syntactic functions of
these two categories).

Before concluding, we would like to contrast the gen-
eral line followed here with some of the pure PDP ap-
proaches to language. Many of these take the view that
learning networks have to ‘discover’ whatever struc-
ture is implicit in language, and are reluctant to pro-
vide the network with clues to this effect. In this ap-



proach, interpreting the results and representation ob-
tained through successful learning (as well as their the-
oretical implications) becomes a major problem. Fre-
quently researchers resort to post hoc analyses hoping
to find familiar structures in their data using techniques
similar to the ones used here (Elman 1988; Pollack
1990).

Part of the motivation underlying VSGs is that fa-
miliar structures (e.g., context-free rules) can be built
into connectionist representations as a bias, allowing a
more straightforward interpretation of the results. In
the example, traditional categories emerged as a dis-
crete approximation to the cluster structures developed
in learning, thereby guiding their interpretation. (The
case for symbolic representations as approximations
to sub-symbolic entities has been made by Smolensky

(1987).)

Conclusions

We have argued for generalizations of traditional sym-
bolic representations and models to benefit from some
of the learning power found in connectionist systems
without completely discarding the structural properties
and intuitions embodied in traditional theories. As an
example, we have introduced a generalization of phrase
structure grammars, Vector Space Grammars, that is
based on vectors instead of symbols to represent gram-
matical categories. An algorithm using VSGs based on
the principles of adaptation of categories and compe-
tition between rules can be used to derive a syntac-
tic category system from exposure to phrase-bracketed
sample sentences. The results of learning can be in-
terpreted in traditional notions by interpreting vector
clusters as category symbols.
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