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Abstract

We investigate the problem of speaker adaptation of DNN
acoustic models in two settings: the traditional unsupervised
adaptation and a supervised adaptation (SuA) where a few min-
utes of transcribed speech is available. SuA presents addi-
tional difficulties when a test speaker’s adaptation information
does not match the registered speaker’s information. Employ-
ing feature-space maximum likelihood linear regression (fM-
LLR) transformed features as side-information to the DNN, we
reintroduce some classical ideas for combining adapted and un-
adapted features: early and late fusion methods, as well as the
estimation of the fMLLR transforms using simple target models
(STM). Results show that early fusion helps DNNs generalize
better when features are combined after a non-linear bottleneck
layer, while late fusion improves robustness, specifically in mis-
matched cases. STM give consistent improvements in both set-
tings.

Index Terms: Speech recognition, feature-space speaker adap-
tation, DNN acoustic models.

1. Introduction

Neural networks have become the state-of-the-art in acoustic
modeling (AM) for large vocabulary continuous speech recog-
nition systems (LVCSR) [1]; specifically neural networks with
multiple layers of affine transforms followed by nonlinear acti-
vations are trained to estimate the posterior probability of clus-
tered triphone states. Two common approaches to use the poste-
riors are: (a) the hybrid approach [2], where the neural network
outputs are divided by the state priors to estimate emission like-
lihoods in hidden Markov model (HMM) (b) the TANDEM ap-
proach [3], where the posteriors are further processed and used
as additional features to estimate HMM likelihoods using Gaus-
sian mixture models (GMM).

Employing the hybrid approach, this paper describes our
work on speaker adaptation of deep neural network (DNN)
acoustic models in two settings: the traditional unsupervised
2-pass adaptation and a supervised adaptation (SuA). Our work
in both settings happens in the context of spontaneous speech
recognition; in the SuA setting, additionally, we have two min-
utes of transcribed speech available per speaker.

Whereas speaker adaptation of GMM-HMM AM is a well-
established problem, with a number of approaches, adaptation
of DNN-HMM AM is an area of active research, exploring fea-
ture and model space methods [4, 5, 6,7, 8,9, 10, 11, 12]. Fur-
thermore speaker adaptation in the SuA setting presents a set
of additional challenges: although the SuA setting provides us
with per speaker adaptation data which can be used to perform
supervised DNN-HMM AM adaptation, there are cases of vary-
ing difficulties that can occur when a test speaker’s utterance is

presented to the system. For instance in our definition of the
problem for the SuA setting, a speaker whose data was used
to estimate adaptation material need not necessarily match the
speaker presented at test time: this leads to two cases namely,
matched and a mismatched speakers.

Despite a number of recent papers on DNN adaptation, [13]
observes that in comparison to GMM adaptation, DNN adapta-
tion yields much less gains over an unadapted, speaker inde-
pendent (SI) model. They speculate that retraining a SI DNN
for each speaker on adaptation data results in overfitting, show-
ing improvements by retraining speaker specific DNNs with
regularization. Another approach is to adapt a smaller set of
parameters, such as activations in a layer [11]. These ap-
proaches [13, 11] use more adaptation data per speaker than
this work. For instance, [13] uses SuA similar to our setup, but
with 10 minutes per speaker instead of only 2 minutes.

Consequently, we investigate a feature space adaptation
method using a single adaptively trained DNN for all speak-
ers; specifically, we employ per-speaker fMLLR transformed
features as input to the DNN. Additionally, in SuA setting, mis-
matched speakers can make the AM fragile. To this end, we
successfully reintroduce some classical ideas to combine fea-
tures and also to increase robustness of the DNN against sud-
den speaker changes: early fusion performed through a bottle-
neck nonlinearity and a late-stage fusion of DNNs yield gains.
Furthermore, we introduce the idea of estimating fMLLR trans-
forms using simple target models (STM), and find significant
gains over using more complex models for fMLLR estimation.

The rest of the paper is organized as follows: feature-space
adaptation, its motivation, some challenges, and proposed ap-
proaches are presented in Section 2; datasets used for training,
cross-validation, and testing are described in Section 3. The
baseline acoustic model, the proposed acoustic modeling meth-
ods, and the rest of the ASR system used in our experiments
are discussed in Sections 4 and 5. Results are discussed in Sec-
tion 6. Concluding remarks are drawn in Section 7.

2. DNN adaptation using fMLLR

We provide a brief background on feature-space adaptation of
DNN-HMM AM. We also discuss connections to other ap-
proaches; an interpretation of feature-space transform as an
adaptation of the first layer is presented.

DNNss are cascades of multiple layers of affine transforms
and non-linear activation functions, the latter being typically
sigmoid for the hidden layers and softmax for the output layer.
After the first layer of affine transform and non-linearity, the
output of the activation at the first hidden layer can be written:

h1 = ¢1(A1X +b1) M



where X is the input, and A; and by are the linear transform
and bias for the first layer, respectively. Let {A;, b; }i—1.n be
the set of all parameters of the DNN. Retraining the DNN for
each speaker is a solution to the problem of estimating speaker-
specific model; however, in most LVCSR tasks the amount of
data per speaker is only of the order of a few minutes. More
robust estimates of DNN parameters can be made when an up-
date is made to a small set of parameters or in a subspace of the
parameters. A recent work [11] adapts the activations specific
to a layer by re-scaling them. Transfer learning approaches to
adapting DNN freeze the parameter estimates for first few lay-
ers and adapt or retrain the last few layers [14]. Other recent
methods adopt a feature-space adaptation technique.

2.1. Feature-space adaptation

Since adaptation has a long history in GMM-HMM AM, and a
number of methods have been developed for GMM AM!, DNN
adaptation can be performed by providing speaker information
as an input; for instance [5, 6, 7] use i-vectors, fMLLR trans-
formed features, and VTLN respectively. These can be seen as
adapting the bias in first layer of the DNN:

hiorr — (bl(AlX-‘rbl"'biOTT) = ¢1(A1X+bl+Tbipk7) (2)

where bP*" is a speaker-specific side information and T is an
affine transform learnt by back-propagation. Of course bi”*"
can also be learnt by back-propagation [8].

2.2. fMLLR transformed features

Although originally proposed as a per-speaker model-space
transformation for GMM AM [16], constrained MLLR is fre-
quently interpreted as a feature-space transformation; it is
straightforward to show that the feature transform is an inverse
of the model transform. The transform estimation is usually
formulated in the maximum likelihood sense: the actual esti-
mation is done using the Expectation Maximization (EM) al-
gorithm. We provide fMLLR transformed features as input to
the DNN, making it a feature normalization technique. Adap-
tation of DNN can therefore be interpreted as speaker adaptive
training; that is a different motivation than behind the original
MLLR and fMLLR adaptation of GMMs.

There are many advantages to performing DNN AM adap-
tation with fMLLR: (a) the parameter estimation is quick — a
few iterations of EM usually suffice; (b) a few minutes of audio
data is usually sufficient for a robust estimation of the param-
eters — in case of further data sparsity, the number of param-
eters can be further reduced by considering a “diagonal” or a
“bias” only transform; (¢) MLLR transforms can compensate to
some extent for acoustic mismatches [19]. (d) it is less sensitive
to transcription errors than optimizing a discriminative criterion
(e) parameter estimation can be done in a number of settings: (i)
unsupervised 2-pass estimation; (ii) supervised estimation with
reference transcripts; and (iii) online estimation of the trans-
form parameters. This paper focuses on the unsupervised and
supervised estimations (i.e. (i) and (ii)).

2.3. Feature streams, fusion, and bottleneck layer

We remarked earlier that in comparison to GMM AM adapta-
tion, speaker adaptation of DNN AMs yields much less gains
with respect to the corresponding SI model. While it is possible
that DNNS are relatively more invariant to speaker variations, it

ICommon methods include constrained and unconstrained
MLLR [15, 16] and vocal tract length normalization (VTLN) [17, 18].

is natural to ask if feature streams themselves, or their combi-
nations can be made more effective.

While using fMLLR transformed features by themselves
as input to the DNN does provide some feature normalization,
DNN AM would be sensitive to noise in fMLLR estimation.
Another possibility is to combine the fMLLR features with SI
features to provide robustness. However a direct combination of
SI and speaker dependent (SD) features (say, like Equation 2)
forces the DNN to learn the weights in the first layer using fea-
ture streams drawn from different distributions. Our hypothesis
is that this has been one of the reasons why an L2 regularization
with a weight decay was required in [13]. To address this we
introduce late and early fusion (Section 5.2). Early-fusion with
a bottleneck can act as a powerful regularizer, while late-fusion
can provide significant robustness in cases where fMLLR esti-
mation is noisy.

2.4. Complex and simple target models

When using fMLLR transforms for recognition with GMM-
HMM AM a distinction can be made between target and recog-
nition models [20]; i.e. the model used for the estimation of
feature transforms, the target model, can be distinct from the
recognition model. It was shown that this separation yields
gains in recognition [20]. Furthermore it was argued that using
simpler target models (STM), such as using a single Gaussian
per HMM state, can yield bigger gains than using more complex
target models (CTM). While the separation of target and recog-
nition models occurs naturally when using fMLLR transformed
features with a DNN-HMM AM, it is interesting to investigate
whether gains can be obtained with STM.

3. Data sets

In our experiments, we use a dataset of roughly 200 hours of
speech data from an in-house collection; this is a subset of the
data set used for training our production models. From the same
data collection we carve out a development set of 20 hours, used
to optimize meta-parameters like the language model scale, and
an evaluation set of 10 hours on which we report WER improve-
ments. Training, development, and evaluation set do not have
any speaker overlap. An additional two minutes of transcribed
speech is available for each test speaker to be used in the SuA
setting to compute fMLLR transforms (unsupervised two-pass
adaptation does not use this data). Mismatched SuA presents a
random speaker’s fMLLR transform (computed on 2 min) along
with a test utterance.

We report results as relative reduction in WER compared
to a strong baseline system. All decoding experiments use
the same language model with the language model scale be-
ing tuned separately for each experiment for minimum WER
on the development set. Furthermore, all experiments use the
same acoustic decision tree and differ only in the DNN and its
input. The baseline DNN model is described in Section 4.

4. Baseline System

Features for the ST DNN consist of log-energies computed on
the audio signals every 10 ms (25 ms analysis window), from
a bank of 20 filters placed on mel-warped spectrum. A causal
mean estimate is computed and subtracted; we refer to these
features as Log Filter Bank Energies (LFBE). The input to
the DNN is a temporal window over LFBE features, splicing
5 frames of left and right temporal context (total input size
11 %20 = 220), which is normalized by applying a global mean



and variance normalization, computed from the training data.

The baseline acoustic model is an ST DNN-HMM trained
on the LFBE features. It has 4 hidden layers each consisting of
1,536 logistic sigmoid units; the input to the DNN is the 220
dimensional spliced and whitened LFBE features, the output is
a softmax layer consisting of 3,052 units, corresponding to the
leaves of a phonetic decision tree. The architecture is summa-
rized as 220x1536?x3052. To denote the same DNN with an
emphasis on the input and output layers, we use 220 & 3052.
Figure 1(a) shows this DNN (about 12M parameters).

The DNN trainer is an internal tool; DNN AM is pretrained
by growing layer-by-layer and optimizing its parameters by
minimizing the cross-entropy loss function. The model param-
eters are learnt on the training set by doing several epochs of
cross entropy training on a single GPU; during all training runs
the frame accuracy saturates by 12 epochs. Although sequence
training has been reported to yield gains over cross-entropy
training (indeed we observe fairly large gains as well) this arti-
cle is restricted to cross entropy training for quicker turnaround
of experiments. The frame-level targets for cross-entropy train-
ing are derived using a GMM AM trained on the same set. We
refer to this DNN AM as LFBE DNN.

5. Proposed Methods and Systems

This section describes methods and systems for fMLLR estima-
tion; then we discuss late and early fusion.

5.1. Estimation of fMLLR transforms

For estimating the training-time speaker transforms we build
a GMM AM on the same training set as follows: beginning
with the LFBE features and with the application of DCT, the
parameters of the GMM AM are estimated using the EM algo-
rithm, with E-step obtained from LFBE DNN using reference
transcripts. After estimating LDA and MLLT, and keeping the
E-step from the LFBE DNN fixed, fMLLR transforms are es-
timated by performing 2 iterations of Gaussian posterior com-
putation and 5 inner row-iterations. The convergence is quick
and a couple iterations of EM suffice. We keep the phonetic
decision tree fixed, i.e. 3,052 states; the GMM AM has 80K
Gaussians.

fMLLR features are derived by applying the DCT, LDA,
MLLT, and fMLLR transforms on the LFBE features to obtain
40-dimensional features. A context window of 11 frames is ap-
plied to obtain an fMLLR stream input size of 440.

5.1.1. Unsupervised and supervised fMLLR transforms

The classical method of estimating fMLLR transforms on the
test set is the unsupervised 2-pass estimation [16]; we follow
the same procedure as the training-time estimation except that,
instead of reference transcripts, decoded-hypotheses are used to
perform the E-step with the SILFBE DNN. Using the LDA and
MLLT from training-time, the rest of the steps in the estima-
tion of the fMLLR transforms are identical to the description in
Section 5.1.

We also study estimating fMLLR using in the SuA setting,
where transcription for two minutes of speech per speaker is
available. Reference transcripts corresponding to utterances are
used instead of decoded-hypotheses to do the E-step of fM-
LLR estimation. Two complexities with the SuA setting are:
(a) amount of transcribed speech is limited — we study one and
two minutes per speaker; (b) a potential mismatch between reg-
istered and test speakers.
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Figure 1: DNN architectures: (a) linear chain speaker indepen-
dent LFBE DNN (b) linear chain speaker dependent fMLLR
DNN (c) Early fusion DNN (d) Late fusion DNN.

5.1.2. Complex vs simple target models

The notion of simple and complex target models was discussed
in Section 2.4. CTM and STM used for fMLLR estimation are:
(a) CTM: GMM AM with 80k Gaussians (3,052 states), and (b)
STM: GMM AM with 3k Gaussians (one per HMM state).

5.2. Late and early fusion

Adapted features can be used alone (Figure 1(b)); more robust
models can likely be built when SI and SD features are com-
bined. We begin by studying late fusion (i.e. combining pos-
teriors); while having a layer of non-linearity can make the SI
and SD features more compatible, it is natural to ask if features
can be combined earlier.

Late Fusion (LF): Combination techniques typically assign a
weight to each classifier’s evidence [21]. We use static weight-
ing with equal weights; this would yield better posterior esti-
mates when errors by the two DNNs are uncorrelated. Fig-
ure 1(d) illustrates this, represented as (iiggggg;)XSOSQ.

Early Fusion (EF): Combining LFBE and fMLLR at the input
would yield a 660-dimensional feature (= 11 % (20 +40)). This
DNN can be represented as: 660 & 3052; we call it input fusion
(IF). Combining after a layer of non-linearity as two Bernoulli
vectors would yield a representation: (221> ) @ 3052, il-
lustrated in Figure 1(c). While the size of the introduced hidden
layer is empirical, when the speaker information is viewed as a
bias correction in Equation 2, it is reasonable to expect it to be
a bottleneck layer, especially since it acts as a regularizer.

6. Results and Discussion
Results are presented on unsupervised and SuA settings, with
standalone, LF, and EF methods. We also discuss our results
with simple target models.

6.1. Unsupervised adaptation

Table 1 (rows 1 to 3) presents the results for unsupervised 2-
pass adaptation in terms of relative Word Error Rate (WER) im-
provement with respect to the baseline SI LFBE system?®. These

2Positive numbers imply a WER improvement/reduction.



Table 1: Unsupervised adaptation with fMLLR: SI and SD rep-
resent standalone LFBE and fMLLR features. IF refers to input
fusion of SI and SD features without a non-linearity. LF refers
to late fusion, while EF1 and EF2 refer to fusion after 1 and
2 non-linear layers, respectively. EF1 BN refers to fusion after
layer 1 with a bottleneck.

Architecture WER

reduction %

CTM: GMM based fMLLR estimation

Sno Sys

1] st 220 @ 3052 \ 0

2 SD 440 @ 3052 0

3 IF 660 © 3052 ~15.2%
4 LF (o a0a5) X3052 +9.9%

5 EF1 (ox1230) @ 3052 —7.8%
6 | EF2 | (fiousseusse) P 3052 |  +4.8%
7 | EF1BN |  (*3%1599) @ 3052 +7.4%

STM: single Gaussian fMLLR estimation

8 | EFIBN | (*3%1%3%) @ 3052 +10.4%
9 LF (Fioea055) X3052 +14.7%

results suggest that although the features themselves (LFBE and
fMLLR, rows 1 and 2) are good, they may not be compatible in
the input space — for instance, one is a correlated set of features
(LFBE), while the other uncorrelated (fMLLR).

These trends are further confirmed by measures such as
frame classification accuracy (FA) and cross-entropy (Xent)
loss. FA on the test set for SI, SD, and IF DNNs are (in %):
48.2, 49.6, and 40.7 respectively; similarly the Xent loss for the
DNNss are (in bits): 2.2, 2.1, and 2.6 respectively. Clearly the
SD features are good, if not slightly better than SI; nevertheless
they yield no gains when combined with the SI features. [13]
reports a similar behavior, requiring L2 regularization.

Let us now study the results with LF (Table 1 row 4): over
an SI DNN we get a 9.9% relative reduction in WER. These
results confirm that we need at least one layer of non-linearity to
combine LFBE and fMLLR features. These gains are confirmed
by other measures: LF DNN yields 54.1% FA on the test set.

Let us consider earlier fusions: EF1 and EF2 in Table 1 re-
fer to fusion after 1 and 2 non-linear layers respectively. While
there is a gain with fusion after the second layer (EF2), there
is a slight loss with fusion after the first layer (EF1). Although
the exact size of the EF1 is largely empirical, we expect it to
be a bottleneck (BN) layer performing regularization. With a
bottleneck of 32 units (it is a parameter that can be empirically
studied), a significant WER reduction can be obtained (—7.4%).

With LF and EF BN, DNNs yield gains between 7 to 10%.
Interestingly, these relative gains are in the range of what can be
obtained using fMLLR with GMM-HMM AM. Although not
presented here, combining SD and SI DNNs (rows 1 and 2)
through LF (row 4) is as good as combining SI and EF1 BN
DNN (rows 1 and 7) via LF.

6.2. Supervised adaptation

In the previous section we reported fMLLR adaptation results
in the classical 2-pass framework exploiting early and late fu-
sion. This section reports results in the SuA setting, where the
speaker transforms were trained with 1 min and 2 min.

Table 2: Supervised adaptation: Relative WER reductions with
SMLLR transforms estimated using CTM (W ERctm) and a
STM (W ERst ).

Sno Sys Architecture WERctm WERstm
reduction % | reduction %
1 ST 220 @ 3052 0 0
Matched speakers 1 min SuA
2 | EF1BN | (211259 @ 3052 | +7.4% +12.1%
LF (oo3055)X3052 +7.8% +13.4%
Matched speakers 2 min SuA
4 | EF1BN | (*10525°) @ 3052 | +7.4% +13.0%
LF (oca0es) X3052 +8.2% +13.9%
Mismatched speakers 2 min SuA
6 | EFIBN | (*2%15%6) ¢ 3052 | —45.0% —38.9%
LF (ioea055)X3052 —6.6% -1.2%

Matched speakers: When registered and test speakers are
matched, with Table 2 (rows 2 to 5, and column W E Rt ), we
confirm the gains using SD features employing early and late
fusion. For the CTM case and an 1-min of supervised data, we
get a 7.8% relative reduction in WER. Interestingly, in contrast
to the unsupervised fMLLR estimation, with the SuA setting,
LF does not yield as big a gain over EF (BN). This is perhaps
due to having smaller amount of data for fMLLR estimation.
Also, the gains due to EF (BN) seem to stabilize even with 1-
min of adaptation data — this could be explained by the SD DNN
being able to combine LFBE stream more effectively to make
decisions despite reduced data.

Mismatched speakers: This is a hard case especially with EF;
however, LF recovers most of the loss due to mismatched speak-
ers. We incur about 6.6% relative loss in WER in comparison
to the ST DNN.

6.3. Effect of single Gaussian fMLLR estimation

The results for the STM for the unsupervised fMLLR estima-
tion is presented in Table 1(rows 8 and 9), while the results for
STM with supervised adaptation is presented in Table 2 (col-
umn W E Rst,,). In both cases, there is a gain in estimating per-
speaker IMLLR matrices using STM (almost 5% relative). This
gain is not only consistent across the unsupervised and SuA sce-
narios, but we also almost completely recover the loss due to the
mismatched speaker case using LF.

7. Conclusions

We investigated the problem of speaker adaptation of DNN AM
in two settings: unsupervised and supervised adaptations. Em-
ploying the fMLLR transformed features, this paper success-
fully reintroduces some classical ideas for increasing the ro-
bustness of DNN AM: early and late fusion, as well as the esti-
mation of the fMLLR transforms using STM. Our results show
that early fusion helps adapted systems generalize better when
feature streams are combined after a layer of bottleneck non-
linearity, while late fusion improves the robustness of DNNs,
specifically in mismatched cases. STM alone gives about 5%
relative improvements in both settings. Overall we get 10 to
14 % relative WER gain in unsupervised adaptation and the
matched supervised speaker adaptation; we suffer almost no
loss with mismatched speakers.
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