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PERFORMANCE FUNCTIONS AND REINFORCEMENT
LEARNING FOR TRADING SYSTEMSAND PORTFOLIOS

Abstract

We proposeto train trading systemsand portfoliosby optimizing objective functionsthat directly measure
trading and investment performance. Rather than basing a trading system on forecasts or training via a
supervised learning algorithm using labelled trading data, we train our systems using recurrent reinforcement
learning (RRL) algorithms. The performance functions that we consider for reinforcement learning are profit
or wealth, economic utility, the Sharpe ratio and our proposed differential Sharpe ratio. The trading and
portfolio management systems require prior decisions as input in order to properly take into account the
effects of transactions costs, market impact and taxes. This temporal dependence on system state requires
the use of reinforcement versions of standard recurrent learning algorithms. We present empirical resultsin
controlled experiments that demonstrate the efficacy of some of our methods for optimizing trading systems
and portfolios. For along/short trader, we find that maximizing the differential Sharpe ratio yields more
consistent results than maximizing profits, and that both methods outperform a trading system based on
forecasts that minimize MSE. We find that portfolio traders trained to maximize the differential Sharpe ratio
achieve better risk-adjusted returns than those trained to maximize profit. Finally, we provide simulation
results for an S&P 500 / TBill asset alocation system that demonstrate the presence of out-of-sample
predictability in the monthly S& P 500 stock index for the 25 year period 1970 through 1994.

Key Words: Trading systems; asset alocation; portfolio optimization; reinforcement learning; recur-
rent reinforcement learning; dynamic programming; on-line learning; recursive updating; Bernoulli utility;
differential Sharpe ratio; transactions costs; state dependence; performance functions; recurrence.
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1 Introduction: Performance Functions and Reinforcement Learning
for Trading

Theinvestor's or trader’s ultimate goal is to optimize some relevant measure of trading system performance,
such as profit, economic utility or risk-adjusted return. In thispaper, we propose to usereinforcement learning
algorithms (on-line learning methods that find approximate solutions to stochastic dynamic programming
problems) to directly optimize such trading system performance functions.> When transactions costs are
included, the trading system must be recurrent, thus requiring a recurrent reinforcement learning (RRL)
approach. This methodology can be applied to optimizing systems designed to trade a single security or to
trade aportfolio of securities. For brevity, we refer to single security trading systems, asset allocation systems
and multi-security portfolio management systems as trading systems.

The development of our approach is presented in Sections 2 through 4 and simulation results are presented
in Section 5. In the remainder of this section, we motivate our reinforcement learning approach (Section
1.3) by contrasting it with two conventional approaches to optimizing trading systems based on supervised
learning. These include training a system to make price forecasts from which trading signals are generated
(Section 1.1) and training on labelled trading data (Section 1.2). Both supervised approaches are two-step
procedures that are not guaranteed to globally optimize trading system performance.

1.1 Trading based on Forecasts

A block diagram for a generic trading system based on forecasts is shown in Figure 1. In such a system, a
forecast module is optimized to produce price forecasts from a set of input variables. Supervised learning
techniques are used to minimize forecast error (typically mean squared error) on a training sample. The
forecasts are then used as input to a trading module that makes buy and sell decisions or adjusts portfolio
weights. Parameters of the trading module may be optimized, but are often set by hand.

Trading based on forecasts involves two steps, and minimizing forecast error is an intermediate step that
is not the ultimate objective of the system. Moreover, the common practice of using only the forecasts as
input to the trading module resultsin aloss of information relative to that availableto the forecast module, in
effect producing aforecast bottleneck. Both of these effects may lead to suboptimal performance.

1.2 Training a Trading System on Labelled Data

It is possibleto train a system to make trading decisions directly from the input variables, while avoiding the
intermediate step of making forecasts. Thisismore direct, and avoidsthe forecast bottleneck. One technique
for optimizing such a system is to use a supervised learning algorithm to train the system to make desired
trades, as shown in Figure 2. A sequence of desired target trades (or portfolio weights) used for training the
system isfirst determined via alabelling procedure. The data can be labelled by a human “expert” or by an
automatic labelling algorithm. The labelled trades are then used to train the trading system.

Training on labelled dataiis a two-step process. The procedure for labelling the data attemptsto solve the
temporal credit assignment problem, while subsequently training the system on the labelled data attemptsto
solve the structural credit assignment problem.? Certain difficulties arise when trying to solve the structural
and temporal credit assignment problems separately in this way, particularly when transaction costs are
included.

The performance achievablein practice by the trading modulewill usually be substantially worse than that
suggested by the labelled trades. Thisis because most labelling procedures are based on only the target series
(possibly taking into account transaction costs), ignore the input variables and do not consider the conditional
distributions of price changesin the target series given theinput variables. Moreover, since transactions costs
depend upon the actual sequence of trades made, the simulated costs associated with the labelled trades will

1The terms value function (or evaluation function) and objective function are used in the reinforcement learning and optimization
literatures, respectively. We prefer the term performance function for financial applications.
2Thisterminology was proposed in Sutton (1988).



differ from those incurred in practice. Hence, alabelling procedureis not likely to give rise to a sequence of
trades that is realizable in practice or to a realistic assessment of the actual transaction costs likely to occur.
Finally, since U (6,6’) isnot optimized directly (see Figure 2), supervised learning based on labelled datawill
yield suboptimal performance.

1.3 Direct Optimization of Performance via Recurrent Reinforcement L earning

A trading system can be optimizedto solve both thetemporal credit assignment and structural credit assignment
problems mentioned above simultaneously using reinforcement learning (see for example Sutton & Barto
(1997) and references therein). We adopt this approach here.

Reinforcement learning algorithms find approximate sol utions to stochastic dynamic programming prob-
lems (Bertsekas 1995) and can do so in an on-line mode. In reinforcement learning, target outputs are not
provided. Rather, the system takesactions (makestrades), receivesfeedback onits performance (an evaluation
signal) and then adjustsitsinternal parametersto increase its future rewards. With this approach, an ultimate
measure of trading performance U (#), such as profit, utility or risk-adjusted return is optimized directly. See
Figure 3.

A simultaneous solution of the structural and temporal credit assignment problems will generaly require
using a recurrent learning algorithm. Trading system profits depend upon sequences of interdependent
decisions, and are thus path-dependent. Optimal trading decisions when the effects of transactions costs,
market impact and taxes® are included require knowledge of the current system state. Including information
related to past decisionsin the inputs to a trading system results in arecurrent decision system.* The proper
optimization of a recurrent, path-dependent decision system is quite different from the simple supervised
optimization techniques used for direct forecasts or for labelled trading data.

Reinforcement | earning anal ogs of recurrent learning algorithmsarerequiredto train our proposed systems.
Such recurrent learning algorithms include both off-line (batch) training algorithms like backpropagation
through time (BPTT) (Rumelhart, Hinton & Williams 1986, Werbos 1990) or on-line (adaptive) algorithms
such as real-time recurrent learning (RTRL) (Williams & Zipser 1989) or dynamic backpropagation (DBP)
(Narendra & Parthasarathy 1990). The recurrent reinforcement learning algorithms that we utilize here are
novel, but straightforward. They are variants of the above mentioned algorithms that maximize immediate
rewards in an on-line fashion. We refer to them as RRL algorithms.

1.4 Related Work

Several papersthat relate to ours have recently appeared. Samuelson (1990) stimulated our interest in power
law utility functions and their relation to the differential Sharpe ratio. White (1996) suggested using a
performance ratio based on the second lower partial moment to us. We became aware of the other references
listed bel ow after developing our basic approach.

Samuel son (1990) useslogarithmic and power law utility functions, which we usein Section 3, to evaluate
simpleasset allocation or market timing strategies (which he calls“ across-timediversification”). Samuelson’s
analysis shows that under the assumption of arandom walk price process, the optimum behavior for a trader
with a power law utility function is to hold constant proportions of risky and risk-free securities. That is,
in the absence of superior forecasting ability, across-asset-class diversification will on a risk-adjusted basis
outperform across-timediversification. |n contrast, our approach assumesthat superior forecasting andtrading
strategies are not impossible, and that dynamic asset allocation strategies may in some cases achieve higher
utility than simple fixed allocation methods.

Timmermann & Pesaran (1995) use wealth and the Sharperatio as selection criteria (rather than optimiza-
tion criteria) for trading systems. The set of traders considered are based on linear forecasting models that

3For brevity, we omit further discussion of market impact and tax effects.

“4Here, recurrence refers to the nature of the algorithms required to optimize the system. For example, optimizing a feed forward
NAR(p) model for one-step-ahead prediction does not require a recurrent learning a gorithm, while optimizing the same NAR(p) model
to performiterated predictionsdoes. Thefact that aforecast or decision is made by afeedforward, non-recurrent network does not mean
that optimizing it correctly can be done with a standard, non-recurrent training procedure.



differ in the subsets of input variablesincluded. Theforecasting modelsarelinear regressionswith parameters
estimated to minimize mean squared forecast error (M SFE). The wealth and the Sharpe ratio performance
functions are not used for direct optimization of system parameters. The selection among forecasting models
is updated periodically. The authors are able to use their simulation results to document predictability in
monthly U.S. stock returns. In related work, Satchell & Timmermann (1995) provide argumentsthat MSFE is
abad indicator for potential trading profits. They prove atheorem that there is not necessarily any monotonic
relationship between the size of the M SFE and the probability of correctly forecasting the sign of avariable.

In independent work, Bengio (1997) points out that global optimization of trading systems consisting
of separate forecasting and trading modules (such as that shown in Figure 1) provides better results than
separately minimizing MSFE of the forecast module and subsequently maximizing profit of the trading
module. Bengio optimizes portfolios and employs back-propagation through time to maximize final wealth.
Kang, Choey & Weigend (1997) compare optimization of the Sharpe ratio and profits using a non-recursive
supervised learning method applied to a simple asset alocation strategy. The allocation that is varied is the
amount of capital invested in a fixed trading strategy. However, the authors do not directly optimize the
trading system parameters (those that determine when to buy or sell) or take into account transaction costs.
Neuneier (1996) uses Q-L earning (Watkins 1989, Watkins & Dayan 1992) to train an asset all ocation system
to maximize profit. Transaction costs consisting of both fixed and proportional parts are included in the
analysis. Simulation results are presented for an artificial exchange rate trading system and a system that
switches between cash and a portfolio of German stocks that tracks the DA X. The description of the methods
used is sketchy, and most relevant details of the empirical work are not disclosed. Finally, White (1996) has
done simulationsthat optimize the Sharpe ratio and other measures of risk-adjusted return based on downside
risk (see Section 4.6).

2 Structure and Optimization of Tradersand Portfolios

2.1 Structure and Optimization of Traders
211 Single Asset with Discrete Position Size

In this section, we consider performance functions for systems that trade a single risky security with price
series z;. We also consider a risk-free bond whose rate of return is known one time step ahead, which has
cumulative price series z,f . Since the trader can realize returns from either the risky security or the bond, the
trader is actually making asset allocation decisions.

Thetrader isassumed to takeonly short, neutral or long positions F; € {—1, 0, 1} of constant magnitudein
therisky security z;. A conservativestrategy for stock or bond investments might be restricted to F; € {0, 1},
whileasimplified reversal trading strategy could haveno neutral state, F; € {—1, 1}. The constant magnitude
assumption can be easily relaxed to enable better risk control. The position F} is established or maintained
at the end of each timeinterval #, and is reassessed at the end of period ¢ + 1. A tradeisthus possible at the
end of each time period, although nonzero trading costs will discourage excessivetrading. A trading system
return R, isrealized at the end of thetime interval (¢ — 1, t] and includes the profit or loss resulting from the
position F;_1 held in the risky security during that interval, any returns from positions in the risk-free bond,
and any transaction cost incurred at time ¢ is due to a difference in the positions F;,_1 and F;.

In order to properly incorporate the effects of transactions costs, market impact and taxes in a trader’s
decision making, the trader must haveinternal stateinformation and must therefore be recurrent. An example
of asingle asset trading system that could take into account transactions costs and market impact would be
one with the following decision function:®

Fy =F(0;; Fi_4, It) with I; = {Zt151—1151—2~, . ;th+1~,2’{-.5{_13 e Yt Yt—1,Yt—25 - - } (1)

where 6, denotesthe (learned) system parametersat timet and I; denotestheinformation set at time ¢, which
includespresent and past val ues of the price series z; and ;{ and an arbitrary number of other external variables

5Note that the value of the risk free bond one step ahead z1f+1 isknown at time¢.



denoted y;. Moregeneral decision functions could includethe current trade’s profit/loss (for capturing capital
gains tax effects), past positions F;_; and past profits and losses (in analogy with the moving average
components of ARIM A models) and other factors.

2.1.2 Optimizing Profit and Wealth

Trading systems can be optimized by maximizing performance functions U () such as profit, wealth, utility
functions of wealth or performanceratios like the Sharpe ratio. The Sharpe and other performance ratios will
be discussed in Section 4. The simplest and most natural performancefunction for arisk-insensitive trader is
profit. We consider two cases: additive and multiplicative profits. The transactions cost rate (per share, per
contract, or per dollar amount, depending on context) is denoted 4.

Additive profits are appropriate to consider if each trade is for a fixed number of shares or contracts
of security z;. Thisis often the case, for example, when trading small futures accounts or When trading
standard US$ FX contractsin dollar-denominated foreign currencies. With the definitionsr; = 2, — z;_; and
r,f = :,f — Mt , for the price returns of arisky (traded) asset and arisk-free asset (like T- BI||S) respectlvely,
the additive profit accumulated over T' time periods with trading position size i+ > 0 isthen defined as:

T T
Pr = ;LZR, = [LZ {1{ + Fy_q(ry — T{) —0|Fy — Ft71|} 2
t=1 t=1

with Py = 0 and typicaly Fr = Fy = 0. We have implicitly defined the return for the trade completed at
timet as R,. Note that the transaction costs for switching between short and long positions are twice those
for switching between neutral and long/short positions. Equation 2 holds for continuous quantities also. The
wesdlth is defined as Wy = Wy + Pr.

Multiplicative profits are appropriate when a fixed fraction of accumulated wealth » > O isinvested in
each long or short trade. Here, r; = (z,/z_1— 1) andr/ = (2{/2/_, —1). If no short sales are allowed and
the leverage factor is set fixed at v = 1, thewealthat time T is:

T
Wy = Wo[[{1+R:}

t=1

T
= T/VOH{:L—F(1—Ft_1)’l"tf+Ft_17‘t}{1—5|Ft—Ft_ll} B (3)
t=1

where R, isthereturn realized for the period ending at time ¢. In this case, the profit is Pr = W — Wo. If
short sales or leverage v # 1 are allowed, then the correct expression dependsin detail on the timing of the
seguence of trades. For brevity, we omit the discussion for this case.

2.2 Structure and Optimization of Portfolios
2.2.1 Portfolios. Continuous Quantitiesof Multiple Assets

When the risk-free rate of return rtf isincluded in single risky-asset trading models as above, one actually
has a simple two-asset portfolio. For trading multiple assets in genera (typicaly including a risk-free
instrument), a multiple output trading system is required. Denoting a set of m markets with price series
{{z¢} : a = 1,...,m}, the market return r{ for price series z{ for the period ending at time ¢ is defined as
(2828 1 —1). Defl ning portfolio weights of the a!” asset as F“() atrader that takes only long positions
must have portfolio weights that satisfy:

F*>0 and » F*=1. (4)
a=1



With these constraints, standard Markowitz mean-variance portfolio optimization is aquadratic programming
problem. However, when optimizing the parameters of a nonlinear trading system, portfolio optimization
becomes a nonlinear programming problem.

One approach to imposing the constraints on the portfolio weights (4) without requiring that a constrained
optimization be performed is to use a trading system that has softmax outputs:

o el 0]
B0 = s el 70

Here, the f¢() could be linear or more complex functions of the inputs, such as a two-layer neural network
with sigmoidal internal unitsand linear outputs. Such atrading system can be optimized using unconstrained
optimization methods. Note however that the portfolio weights F'“ obtained are invariant under shiftsin the
values of the f* of theform {f* — %+ ¢; a =1,...,m}, somultiple solutions for the f* exist. Denating
the sets of raw and normalized outputs collectively as the vectors f() and F () respectively, arecursive trader
will have structure

for a=1,...,m . (5)

F, = softmax {f;(#;—1; F1—1, I;)} ©)

2.2.2 Profit and Wealth for Portfolios

When multiple assetsare considered, the effective portfolio weightings change with each time step dueto price
movements. Thus, maintaining constant or desired portfolio weightsrequiresthat adjustmentsin positionsbe
made at each time step. The wealth after 7" periods for a portfolio trading systemis

T
Wr = Wo[{1+R:}
t=1
T m .a m .
= Wo]] { <Z Fp =t ) (1 — 3y |Ff - F[‘|> } . ©)
t=1 a=1 -1 a=1
where }7’;‘ isthe effective portfolio weight of asset a before readjusting, defined as
o F(l_ (Z(l/z(l_ )
Fa — vrnt 1\~ t—1 , (8)
' b:lFtb—l(Z?/Zf—l)

and we have defined thetrading returns R, implicitly. In (7), thefirst factor in the curly bracketsistheincrease
inwesalth over the time interval ¢ prior to rebalancing to achieve the newly specified weights F*. The second
factor is the reduction in wealth due to the rebalancing costs. The profit after T’ periodsis Pr = W — Wo,.

2.3 Optimization of Tradersand Portfolios via Recurrent Reinforcement L earning

Reinforcement | earning al gorithmsyield approximate sol utionsto stochastic dynamic programming problems
and are able to do so on-line (see for example Bertsekas (1995)).

Reinforcement learning adjusts the parameters of a system to maximize the expected payoff or reward
that is generated due to the actions of the system. Thisis accomplished through trial and error exploration of
the environment. Unlike supervised learning, the system is not presented with examples of desired strategies.
Rather, it receivesareinforcement signal fromitsenvironment (areward) that providesinformation on whether
its actions are good or bad.

The structural credit assignment problem refers to the problem of assigning credit to the individual
parameters of a system. If the reward produced also depends on a series of actions of the system, then the
temporal credit assignment problem isencountered, ie. assigning credit to theindividual actions of the system
through time. Reinforcement learning al gorithms solve both problems simultaneously.

The performance functions that we consider are functions of profit or wealth U (W) after a sequence
of T time steps, or more generally of the whole time sequence of tradesU (W1, Wa,..., Wy, ..., Wr). The



simpleform U (W) includes the economic utility functions discussed in the next section. The second caseis
the genera form for path-dependent performance functions like the Sharpe ratio and Sterling ratio. In either
case, the performance function at time 7' can be expressed as a function of the sequence of trading returns
U(Ry, Ry, ..., Ry, ..., Rr). Wedenotethisby Ur in the rest of this section.

Given a trading system model F;(6), the god is to adjust the parameters # in order to maximize Uy
This maximization for a complete sequence of T trades can be done off-line using dynamic programming
or batch versions of reinforcement learning algorithms. Alternatively, the optimization can be done on-line
using standard reinforcement learning techniques. Most of our simulations make use of on-line approaches
based on stochastic gradient ascent, since they offer advantages in computational efficiency.®

The gradient of U with respect to the parameters # of the system after a sequence of 7" tradesis

dUr(0) " aUr (dR, dF, dR; dF; 1
g Z dR; { dFy d8 ~ dF; 1 db }

(9)

t=1

The above expression as written with scalar F; can be applied to traders of a single risky asset described
in Section 2 by backpropagating the reinforcement signal through the pre-thresholded outputs in a manner
similar to the Adalinelearning rule (Widrow & Hoff 1960). The expression can also be trivially generalized
to the vector case for portfolios, as described in Section 2.2.

The system can be optimized in batch mode by repeatedly computing the value of Uy on forward passes
through the data and adjusting the trading system parameters by using gradient ascent (with learning rate p)

dU(8)
dp

Ab=p (10)
or some other optimization method. Note that the quantities dF; /d# are total derivatives that depend upon
the entire sequence of previoustrades. To correctly compute and optimize thesetotal derivativesrequiresthat
a reinforcement version of a recurrent algorithm like BPTT (Rumelhart et al. 1986, Werbos 1990), RTRL
(Williams & Zipser 1989) or dynamic backpropagation (Narendra & Parthasarathy 1990) be used. These
algorithms account for the temporal dependencies in a sequence of decisions through a recursive update
equation for the parameter gradients:

dF, _ OF  OF dFiy
e — o9 OF,_1 df

(11)

A simple on-line stochastic optimization can be obtained by considering only thetermin (9) that depends
on the most recently realized return R, during aforward pass through the data:

dU(f) _ dU, {@ dF, | dR, dFt_l}

= 12
de dR; | dF; df +dFt_1 dé (12

Note that this equation is correct if Ur isthe sum of the individual U,’s; otherwise, it is an approximation.
The parameters are then updated on-line using
dU(6:)
Al = p———=.

t=p a6, (13)
Such an algorithm performs a stochastic optimization (since the system parameters ¢, are varied during each
forward pass through the training data), and is an example of immediate reward reinforcement learning as it
only performs one-step ahead optimization. The stochastic, on-line analog of equation (11) is:

dF, OF | OF dFiy
do, ~ 00, ' OF, 1df, 1

(14)

6The use of stochastic optimization methodsiswidely viewed in the adaptive signal processing, neural network and machine learning
communities as more computationally efficient than other batch mode nonlinear optimization methods.
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We use on-line algorithms of this recurrent reinforcement learning (RRL) type in the simulations presented
in Section 5. Section 4 develops an on-line approach for optimizing a differential Sharpe ratio. To our
knowledge, the RRL approach that we present hereis unique.

Alternative reinforcement learning approaches include delayed reward agorithms, examples of which
include the actor-critic method (Barto, Sutton & Anderson 1983) and Q-Learning (Watkins 1989, Watkins &
Dayan 1992). We compare Q-Learning to our recurrent reinforcement learning algorithmsin Moody, Saffell,
Liao & Wu (1998).

3 Optimizing Economic Utility

The optimization of profit and wealth described above assumesthat investorsareinsensitiveto risk. However,
most investors are more sensitive to losses than to gains, and are therefore willing to sacrifice some potential
gainsin order to havelessrisk of loss. Thereis aso an intrinsic asymmetry between percentage losses and
gains: a 25% loss must be followed by 33% gain in order to break even. Utility functions of wealth U (W)
can capture various kinds of risk/reward preferences.

In 1738, Daniel Bernoulli proposed the logarithmic utility function U(W;) = log W, (see Bernoulli
(1954)). A more general classof utility functionsthat capture varying degrees of risk sensitivity are the power
law utilities:

U,(Wy) = W7 /y fory#0
Uo(W,) = logW, fory=0. (15)

These utility functions have constant rel ative risk aversion, defined as

_dlogU"(W) _

RW) = =—Ziog

-7 . (16)
The case v = 1 is risk-neutral, and U1(W) corresponds to absolute wealth or profit (Equation 2), while
utilitieswith v > 1 describe risk-seeking or “thrill-seeking” behavior. Most investors have risk-averse utility
functions (y < 1), with smaller values of v corresponding to greater sensitivity to loss. Thelimity — —oco
corresponds to absolute risk aversion.

The sensitivity to risk on a per time period or per trade basis can be seen by considering a second order
Taylor expansion of the contribution of R, to U, (Wr):

1 ~v—1
U,(1+ R) = ;+R[+—/2 R? for v#0
1
U,14+R) ~ O+R, —ZR? for v=0 17)

2

Taking the expectation value of U, (1 + R;), and defining risk to be E(R?), we see that for v > 1, risk is
positively-weighted, whilefor v < 1, riskisnegatively-weighted. Notethat thequantity A = R(W) = 1—~is
called the coefficient of risk aversion, so therisk {averse, neutral, seeking } caseshave{\ > 0, A = 0, < 0}
respectively.

4 The Sharpe Ratio and the Differential Sharpe Ratio

4.1 Optimizing the Sharpe Ratio

The Sharpe ratio is a measure of risk-adjusted return (Sharpe 1966, Sharpe 1994). Denoting as before the
trading system returns for period ¢ (including transactions costs) as R;, the Sharpe ratio is defined to be

Average( R;)

St = Standard Deviation( R;)

(18)

11



where the average and standard deviation are estimated over returns for periods¢ = {1,...,T}. A trading
system can be trained to maximize the Sharpe Ratio asfollows. First, we define the Sharperatio for n returns
R; interms of estimates of the first and second moments of the returns' distributions:

An

Sy = KB, A2 (19)
with 12
1 I~ . [ n
A, = E;R, B, = E;Ri K, = (n_l) . (20)

The normalizing factor K, isrequired for an unbiased estimate of the standard deviation, but is not relevant
for optimization. The derivative with respect to the system parameters (using scalar notation for #, even
though it is generally avector) is:

dS.(6) Z dS dA, dS dB,\ [dR:dF; dR; dF;_,
awo dA, dR; ' dB, dR; | \ dF; d8 " dF_; db

i=1

B 15‘: B, — A, R; dRidF;  dRi dF;y 1)
T n = Ko (B,—A2)%2f | dF; d6 " dF;1 df '

The above expression as written with scalar F; applies to the traders of a single risky asset described in
Section 2.1, but can be trivially generalized to the vector case for portfolios, as described in Section 2.2.

The system can be optimized in batch mode by repeatedly computing the value of S,, on forward passes
through the data and adjusting the trading system parameters by using gradient ascent (with learning rate p)

dSn(0)

do
or some other optimization method. A simple incremental optimization might consider only the term in (21)
dependent on the last realized return R,,. Note that the quantities dF;/df are total derivatives that depend
upon the entire sequence of previoustrades. To correctly compute and optimizethesetotal derivativesrequires
that arecurrent algorithm like BPTT, RTRL or dynamic backpropagation be used.

Ab, =p

(22)

4.2 Running and Exponential M oving Aver age Sharpe Ratios

In order to facilitate on-line learning, an incremental Sharpe ratio is required. First, we define a running
Sharperatio by making use of recursive estimates of thefirst and second momentsof thereturns' distributions:
1 -1 1 -1

Ay=Ro+ T 4,4 ad B,= “RZ+ n

n £

anl (23)

(with Ag = Bog = 0) in the evaluation of (19). Next, we extend this definition to an exponential moving
average Sharpe ratio on time scale ! by making use of moving average estimates of the first and second
moments of the returns’ distributions:

A,
=— 5 24
S = R (B = A (24)
with
A = R+ (1—n)Ai—1
B, = nR?+(1-n)Bi1
. 1-n/2 12
Ky = /=~ 25
H < 17 ) (25)

initialized with A, (0) = B,,(0) = 0. In (24), thenormalization factor &, isrequired for an unbiased estimate
of the moving standard deviation. For purposes of trading system optimization, however, this constant factor
can beignored.
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4.3 Differential Sharpe Ratiosfor On-Line Optimization

While both the running and moving Sharpe ratios can be used to optimize trading systemsin batch or off-line
mode, proper on-line learning requires that we compute the influence on the Sharpe ratio of the return at time
t. With the running or moving Sharperatios defined above, we can derive differential Sharperatiosfor on-line
optimization of trading system performance. It is advantageous to use on-line performance functions both
to speed the convergence of the learning process (since parameter updates can be done during each forward
pass through the training data), and to adapt to changing market conditions during live trading. The update
equations for the exponential moving estimates can be rewritten

A = A+ nAA =A 1+ (R — Aia)
B, = Bi.1+nAB, =B;_1+ H(sz, —B;_1) , (26)

where we have implicitly defined the update quantities A4, and AB,. Treating A;,_,, B;—1 and K, as

numerical constants, note that » in the update equations (26) controls the magnitude of the influence of the

return R; on the Sharpe ratio S;. Takingn +— 0 turns off the updating, and making » positive turnsit on.
With thisin mind, we can obtain a differential Sharpe ratio by expanding (24) to first order in n:’

ds,
Sy~ Si—1+ ﬂd—nt|n:0 +0(n) . (27)

Noting that only thefirst order term in this expansion depends upon the return R, at timet (through A A; and
AB;), we define the differential Sharperatio as:

dSy _ BiaAA; — 341 1AB;
dy —  (B;_1— A2_})32

t =

(28)

The current return R, enters this expression only in the numerator through AA; = Ry — A;_; and AB, =
R B, ..

The influences of risk and return on the differential Sharpe ratio are readily apparent. The first termin
the numerator is positive if R, exceeds the moving average of past returns 4, 1, while the second term is
negativeif R? exceedsthe moving average of past squared returns B, ;. Assumingthat A, ;1 > 0, thelargest
possible improvement in D; occurswhen

R; = Btfl/.A.t,l . (29)

Thus, the Sharpe ratio actually penalizes returns larger than R}, which is counter-intuitive relative to most
investors' notions of risk and reward.

Note that a second expression for a differential Sharperatio can be obtained by considering a perturbative
expansion of the current return R, relative to the exponential moving average of past returns A;_;. Thisis
obtained by expanding S; of equation (24) in a Taylor series about R; = A, 1 to second order in A A;, and
expressing the coefficients in terms of information availableat timet — 1. Theresultis:

1 n 3
N _ —D AA
Sy (1_77)1/2 {St 1+ K, ¢+ + O(( t) )}
Bi_1— A2 VAA, — 14, 1(AA)?
D, = (Bia— Ai_)AA — 34 4(A4)° (30)

(Bi1— A7_1)%/?

The numerators of (28) and (30) differ only by a constant. Asfor (28), this expression too is maximized when
R; = Bt_]_/A.t_]_.

"Note that Sy — S;_1 asn +— 0. Again, wetreat A, 1, B; 1 and K, as constants. As atechnical point, differentiation of 7,
with respect to » can be avoided by considering an expansion with terms /&, Lgm (K5 S¢)/dn™.
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Thedifferential Sharperatio D, isused in (12) asthe current contribution to the performance function Uy.
Since S;—1 in equation (27) does not depend on R;, we have dU, /dR; = dS;/dR; = ndD;/dR;. Whether
optimizing atrading system with (28) or (30), the relevant derivatives have the same simple form:

dD; _ Bi-1— ARy
dR; — (Bi_1— A2 ;)32 °

(31)

4.4 Advantages of the Differential Sharpe Ratio
The differential Sharpe ratio has severd attractive properties:

Facilitatesrecursive updating: Theincremental nature of the calculations of A; and B; make updating the
exponential moving Sharpe ratio straightforward. It is not necessary to recompute the average and
standard deviation of returns for the entire trading history in order to update the Sharpe ratio for the
most recent time period.

Enablesefficient on-line optimization: D, and dD,/dR, can be cheaply calculated using the previously
computed moving averages A;_1 and B;_; and the current return R;. This enables efficient stochastic
optimization without the need to compute complete sums as in equation (21).

Weightsrecent returnsmore: Based on the exponential moving average Sharperatio, recent returnsreceive
stronger weightingsin D, than do older returns.

Providesinterpretability: The differential Sharpe ratio isolates the contribution of the current return R, to
the exponential moving average Sharperatio. The simple form of D; makes clear how risk and reward
affect the Sharperatio. Therelationship of the Sharpe ratio to economic utility functionsis also readily
apparent. (See next section.)

45 Relation of Sharpe Ratio to Economic Utility Functions

The Sharperatioisnot astandard economic utility function U (W), sinceitsvaluedepends not just on current
wealth (or current changes in wealth), but also on past performance. It is an example of a path-dependent
performance function U(W1, Wo, ..., Wy,...,Wy) or U(R1, Ry, ..., Ry,...,Ry). This can be seen by
comparing the numerator of the differential Sharpe ratio (28)

1 At—l 2
Bt—l{—éAt—l—f-Rt - ZBf_lRt (32)
with (17). In a sense, the Sharpe ratio can be thought of as an adaptive utility function, since the relative
weightings of risk and return depend on the performance history as measured by A; and B;. The effective
coefficient of risk aversionat timetis\; = A, 1/B, 1. Notethat A\, = R; .

4.6 Other Performance Ratios

Another measure related to the Sharperatio isthe appraisal ratio (Treynor & Black 1973) or the information
ratio (Grinold & Kahn 1995), which measures risk and return rel ative to some benchmark. It is defined as

(Annualized) Residual Return

Information Ratio = (Annualized) Residua Risk

(33)

and is commonly used to measure the performance of active portfolio management strategies relative to an
index. Our methods can be easily generalized to maximize such quantities.

Since the standard Sharpe ratio normalizes average excess returns by the standard deviation of excess
returns, it does not properly distinguish between upside potential and downside risk. As discussed above,
the differential Sharpe ratio actually penalizes returnslarger than R;. Two aternative performance functions
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normalize average returns by the semi-variance (Markowitz 1959) or the downside deviation or second lower
partial moment (SLPM) (Nawrocki 1991, Nawrocki 1992, Sortino & Vandermeer 1991, Sortino & Forsey
1996, White 1996). Estimates of these performance ratios can be defined as

n

L, — ;—, with (3;)2=nilz(min{(Ri—An),O})z (34)
n i=1
A, . . 1 )

Ly = =% with (5, == (min{R;,0})% . (35)

i=1
The semi-variance gives non-zero weight to below-average returns, even if positive, while the downside
deviation gives nonzero weight only to negative excess returns. I, based on the downside deviation, tends
to bewell correlated (White 1996) with the Serling ratio, atrading system performance function widely used
in the fund management community. The Sterling ratio is commonly defined as:

Average Return Per Period (annualized)
Maximum Peak to Trough Drawn-Down

Extensions of both (34) and (35) to running, moving and differential performance ratios as devel oped above
for the Sharpe ratio are straightforward.

Sterling Ratio = (36)

5 Empirical Results

5.1 Trader Simulation
5.1.1 Data

We generatelog price series as random walks with autoregressive trend processes. The two parameter model
isthus:

p(t) = p(t—1)+3(t—1)+ket) (37)
af(t—1)+v(t) , (38)

where o and k are constants, and «(t) and »(t) are normal random deviates with zero mean and unit variance.
We define the artificial price seriesas
p(t)

0 = e (") (%)

where R isascaledefined astherangeof p(t): max(p(t))—min(p(t)) over asimulationwith 10,000 samples.®

=

—~

~

N
|

5.1.2 Long/Short Trader of Single Security

We have tested techniques for optimizing both profit and the Sharpe ratio in a variety of settings. In this
section, we present results for optimizing three simple trading systems using data generated for an artificial
market. Thesystemsarelong/short trading systemswith recurrent state similar to that describedin Section 2.1.
Two of the systems are trained via recurrent reinforcement learning to maximize the differential Sharperatio
(28) or profit. These two systems are compared to a third trading system built on a forecasting system that
minimizes forecast MSE.

For the results we present here, we set the parameters of the price seriesto a = 0.9 and £k = 3. The
artificial price series are trending on short time scales and have a high level of noise. An example of the
artificial price seriesis shown in the top panel of Figure 4.

In our simulations, we find that maximizing the differential Sharpe ratio yields more consistent results
than maximizing profits, and that both methods outperform the trading system based on forecasts.

8Thisis dlightly more than the number of hoursin ayear (8760), so the series could be thought of as representing hourly pricesin a
24 hour artificial market. Alternatively, a series of thislength could represent slightly less than five years of hourly datain amarket that
trades about 40 hours per week.
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5.1.3 Simulated Trading Results

Figures4, 5 and 6 show resultsfor asingle simulation for an artificial market as described above. Thetrading
system is initialized randomly at the beginning, and adapted using real-time recurrent learning to optimize
the differential Sharperatio (28). The transaction costs are fixed at a half percent during the whole rea-time
learning and trading process. Transient effects of theinitial learning while trading process can be seen in the
first 2000 time steps of Figure 4 and in the distribution of differential Sharpe ratios in the lower left panel of
Figure 6.

Figure 7 shows box plots summarizing test performances for ensembles of 100 experiments. In these
simulations, the 10,000 data are partitioned into an initial training set consisting of thefirst 1,000 samplesand
a subsequent test data set containing the last 9,000 samples. The trading systems are first optimized on the
training data set for 100 epochs and adapted on-line throughout the whol e test data set. Eachtrial has different
realizations of the artificial price process and different randomly-chosen initial trader parameter values. We
vary the transaction cost from 0.2%, 0.5% to 1%, and observe the trading frequency, cumulative profit and
Sharpe ratio over the test data set. Asshown, in all 100 experiments, positive Sharpe ratios are obtained.

Figures 8 and 9 compare the following three kinds of trading systems:

1. “Max.SR": maximizesthe differential Sharperatio,
2. “Max.Profit”: maximizesthe cumulative profit,
3. “Min.MSE": minimizesthe mean-squared forecast error.

In this comparison, the transaction costs are set to 0.5%. As shown, the “Max.SR” and “Max.Profit” trading
systems significantly out-perform the “Min.MSE” systems. “Max.SR” achieves slightly better mean return
than “Max.Profit” and is substantially more consistent in its performance over 100 such trials.

5.2 Portfolio Management Simulation
5.2.1 Portfolio System and Data

Additional tests of the techniques are performed for trading a portfolio of securities. The portfolio trading
systems are allowed to invest proportions of their wealth among three different securities with the restrictions
that they must be fully invested at each time step, and that no short selling isallowed. The output of asystem
isaset of portfolio weights { FL, F2, F?}, with the conditions that

3
Ff>0and Y Ff=1. (40)
a=1

The recurrent state of the systemsis similar to that described in Section 2.2.

When generating multiple price series according to the random walk model of Section 5.1.1, p, 3, ¢ and v
becomem dimensional vectorsand o and k becomem x m matrices. For these experimentswe havem = 3,
and set o to be adiagonal matrix with elements {0.85, 0.9, 0.95} and & to be diagonal with elements {3, 3, 3}.
Thus the series are independent of one another. Examples of the artificial price series are shown in the top
panel of Figure 10.

Using the portfolio management system, we compare training to maximize the differential Sharpe ratio
and training to maximize profits. We find for a variety of transaction costs, that on average, training to
maximize the differential Sharpe ratio outperformstraining to maximize profits.

5.2.2 Simulated Trading Results

Figure 10 shows a section of a single simulation of the portfolio management system. The trading system
starts from arandom initial configuration and is then adapted to optimize the differential Sharpe ratio. The
transaction costs during this simulation are set at 0.5%.
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Figure 11 shows box plots summarizing test performances for ensembles of 100 experiments. In these
simulations, thetrading systemisinitialized to arandom starting condition and then adapted on-line throughout
the entire data set. The simulation ensembles include 10 different initiaizations for each of 10 different
realizations of the artificial price series. We vary the transaction costs from 0.2%, 0.5% to 1%, and observe
thetrading frequency, cumulative profits and Sharperatio onthe dataset. The figures show that the behavior of
the portfolio management systemissimilar to that of thelong/short trader in response to increasing transaction
cost. Also, asthe middle panels of Figure 10 demonstrate, the portfolio system tends to saturate the portfolio
weights and take long/neutral positionsin the individual securities.

Figure 12 comparestraining to maximizethedifferential Sharperatio (“Max.SR”) and trainingto maximize
cumulative profits (“Max.Profit”). Statistics are collected over an ensemble of 100 experiments as described
previously. We see that as the transactions costs increase, the “Max.SR” system actually outperforms the
“Max.Profit” system in terms of average final wealth. While both systems are attempting to maximize profit,
it appearsthat in these examples, concurrently minimizing risk can have tangible effects on actual aswell as
risk-adjusted profits.

5.3 S&P 500/ TBill Asset Allocation System
5.3.1 Long/Short Asset Allocation System and Data

A long/short trading system is trained on monthly S& P 500 stock index and 3-month TBill datato maximize
the differential Sharpe ratio. The S& P 500 target series is the total return index computed by reinvesting
dividends. The S& P 500 indices with and without dividends reinvested are shown in Figure 13 along with
the 3-month treasury bill and S& P 500 dividend yields. The 84 input series include both financial and
macroeconomic data. All data are obtained from Citibase, and the macroeconomic series are lagged by one
month to reflect reporting delays.

A total of 45 years of monthly data are used, from January 1950 through December 1994. The first 20
years of data are used only for the initial training of the system. The test period is the 25 year period from
January 1970 through December 1994. The experimental results for the 25 year test period are true ex ante
simulated trading results.

For each year during 1970 through 1994, the system is trained on a moving window of the previous 20
years of data. For 1970, the system is initialized with random parameters. For the 24 subsequent years,
the previously learned parameters are used to initialize the training. In this way, the system is able to adapt
to changing market and economic conditions. Within the moving training window, the first 10 years are
used for stochastic optimization of system parameters, and the subsequent 10 years are used for validating
early stopping of training. The networks are linear, and are regularized using quadratic weight decay during
training with a regularization parameter of 0.01. For these experiments, our recurrent reinforcement learning
algorithm is employed to maximize the differential Sharperatio.

5.3.2 Experimental Results

Figure 14 showsresultsfrom 30 trial simulationsfor the S& P 500 and TBill asset allocation system during the
25 year out-of-sample test period. The transaction cost is set at 0.5%. Profits are reinvested during trading,
and multiplicative profits are used when calculating the wealth. The trading systems' average performance
is compared with the S&P 500 buy and hold strategy in the top panel. The figure also shows results for
following the strategy of taking positions from amajority vote of the 30 trading systems.®

We see in Figure 14 that the trading systems go short the S& P 500 during critical periods, such as the oil
price shock of 1974, the tight money periods of the early 1980’s, the market correction of 1984 and the 1987
crash. This ability to take advantage of high treasury bill rates or to avoid periods of substantial stock market
loss is the major factor in the long term success of these trading models. One exception is that the trading
systems remain long during the 1991 stock market correction associated with the Persian Gulf war.

9Combinations of estimators generally outperform their component estimators (Granger & Newbold 1986, Winkler & Makridakis
1983, Clemen 1989).
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To study the performance of the various strategies over time, Figure 15 shows the exponential moving
averages of theannualized returnsand Sharperatiosattained. A time constant of n = 1/24isusedto calculate
the moving averages. The trading systems achieve consistently higher annualized profits and Sharpe ratios
than the S& P 500 buy and hold strategy.

Figure 16 showsbox plots summarizing the test performance for the full 25 year test period of the trading
system over 30 trials with various realizations of the initial system parameters. The notchesin the box plots
indicate robust estimates of the 95% confidence intervals on the hypothesis that the median is equal to the
performance of the buy and hold strategy. The horizontal lines show the performance of the average, voting
and buy and hold strategies for the same test period. As can be seen in Figure 16, following the voting
strategy resultsin higher profit than the average performance of theindividual traders, but alower Sharperatio
value. The annualized monthly Sharperatios of the buy and hold strategy, the average strategy and the voting
strategy are 0.34, 0.84 and 0.83 respectively. The Sharpe ratios calculated here are for the excess returns of
the strategies over the 3-month treasury hill rate.

From these results we find the trading system outperforms the buy and hold strategy, as measured by
both accumulated wealth and Sharpe ratio, and is less risky, as measured by maximum drawdown. These
differences are statistically significant and support the proposition that thereis predictability in the U.S. stock
and treasury bill markets during the 25 year period 1970 through 1994.

6 Conclusions

We have proposed and tested amethodol ogy for training trading systems and portfoliosby optimizing objective
functions that directly measure trading and investment performance. The performance functions that we
optimize include profit and wealth, economic utility functions, the Sharpe ratio, our proposed differential
Sharperatio, and other performance ratios.

Rather than basing a trading system on forecasts or training via a supervised learning agorithm using
labelled trading data, we train our systems using reinforcement learning algorithms. Thetrading and portfolio
management systems require prior decisions as input in order to properly take into account the effects of
transactions costs, market impact and taxes. This temporal dependence on system state requires the use of
recurrent learning algorithms. Hence, wetrain our systems using reinforcement versions of standard recurrent
learning a gorithms.

Reinforcement learning algorithms find approximate sol utions to stochastic dynamic programming prob-
lems and are able to do so on-line. Although it is possible to train the systems off-line using batch learning,
we favor on-line reinforcement learning, as it is more efficient computationally. The learning algorithms
we use are thus stochastic optimization methods. We utilize a simple but unique recurrent reinforcement
learning (RRL) algorithm based on real time recurrent learning (RTRL) that maximizes immediate rewards
in an on-line mode.

To enable on-line optimization of the Sharpe ratio, we have developed the differential Sharpe ratio.
This offers certain advantages relative to the standard Sharpe ratio in terms of ease of computation and
interpretability. We compare the form of the differential Sharpe ratio to the Bernoulli and power law
economic utility functions, and point out that the Sharpe ratio behaveslike an adaptive (honstationary) utility
function, in that it depends upon past experience.

Theempirical results presented demonstrate the efficacy of several of our methods. For along/short trader
of asingle artificial price series, we find that maximizing the differential Sharpe ratio yields more consistent
results than maximizing profits, and that both methods outperform a trading system based on forecasts that
minimize MSE. For portfolios of three artificial price series, we find that ensembles of traders trained to
maximize the differential Sharpe ratio perform better than those trained to maximize profit. The Sharpe ratio
traders have smaller variationsin portfolio weights and achieve higher risk-adjusted returns.

Our simulation resultsfor the monthly S& P 500 / TBill asset allocation system demonstrate the existence
of predictable structure in U.S. stock and treasury bill market returns for the twenty-five year period 1970
through 1994. The accumulated profits, Sharpe ratios, and maximum drawdowns for an ensemble of 30
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trading systems are substantially better than for a buy and hold strategy with dividends reinvested. These
results are statistically significant.

Theoriginal presentation of our approach appearsin Moody & Wu (1996) (1997). Theresultsfor the S& P
500 / TBill asset allocation system were first presented in Moody et al. (1998), along with a comparison of
Q-Learning (Watkins 1989, Watkins & Dayan 1992) to the RRL algorithm presented here. In that paper, we
show that our RRL algorithm provides more stable results and higher profits and Sharpe ratios than does the
Q-Learning algorithm for the 25 year out-of-sample period for the S& P 500 / TBill asset allocation system.
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Figure 1. A trading system based on forecasts. The system includes a forecast module with adjustable
parameters 6 followed by a trading module with parameters’. Price forecasts for the target series are based
on aset of input variables. The forecast moduleistrained by varying 6 to minimize forecast error (typically
mean squared error), which is an intermediate quantity. A more direct approach would be to simultaneously
vary 6 and 6’ to maximize a measure of ultimate performance U(6,6'), such as trading profits, utility or
risk-adjusted return. Note that the trading module typically does not make use of the inputs used by the
forecast module, resulting in aloss of information or aforecast bottleneck. Performance of such a systemis
thus likely to be suboptimal.
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Figure 2: A trading system trained with labelled data. The system includes atrading module with parameters
# and alabelling procedure with parameters§’. Trades are based on a set of input variables. Target trades are
produced by the labelling procedure. The trading module istrained on the labelled trades using a supervised
learning approach to vary #. The ultimate performance of the system depends upon how good the labelling
algorithm is (as determined by 6’), and how well the trading module can learn to trade (by varying ) using
the input variables and labelled trades. Since the ultimate measure of performance U(#,6') is not used to
optimize 6 directly, performance of such a system isthuslikely to be suboptimal.
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Figure 3: A trading system based on recurrent reinforcement learning, the approach taken in this paper. The
system makes trading decisions directly based upon a set of input variables and the system state. A trading
performance function U(#), such as profit, utility or risk-adjusted return, is used to directly optimize the
trading system parameters 6 using reinforcement learning. The system is recurrent; the feedback of system
state (current positions or portfolio weights) enables the trading system to learn to correctly incorporate
transactions costs into its trading decisions. In comparison to the systemsin Figures 1 and 2, no intermediate
steps such as making forecasts or labelling desired trades are required.
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Figure 4: Artificial prices (top pandl), trading signals (second panel), cumulative sums of profits (third panel)

and the moving average Sharpe ratio with n = 0.01 (bottom panel). The system performs poorly while
learning from scratch during the first 2000 time periods, but its performance remains good thereafter.
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Figure 5: An expanded view of the last thousand time periods of Figure 4. The exponential moving Sharpe
ratio has aforgetting time scale of 1/n = 100 periods. A smaller  would smooth the fluctuations out.
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Figure 6: Histograms of the price changes (top), trading profits per time period (middle) and Sharpe ratios
(bottom) for the simulation shown in Figure 4. The left column is for the first 5,000 time periods, and the
right column isfor the last 5,000 time periods. The transient effects during the first 2000 time periods for the

real-time recurrent learning are evident in the lower |eft graph.
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Figure7: Boxplotsof trading frequency, cumulative sumsof profitsand Sharperatiosvstransaction costs. The
results are obtained over 100 trials with various realizations of artificial data and initial system parameters.
Increased transaction costs reduce trading frequency, profits and Sharpe ratio, as expected. The trading
frequency is the percentage of the number of time periods during which trades occur. All figures are
computed on the last 9, 000 points in the data set.
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Figure 8: Comparison of the cumulative profits of three trading systems for 9,000 time steps out-of-sample.
The transaction cost is 0.5%. The price series is plotted in the upper panel. The lower panel shows the
cumulative sum of median profits over 10 different trials. The solid curve is for the “Max.SR” system, the
dotted curveisfor “Max.Profit” system the dashed curveisfor the“Min.MSE” system.
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Figure9: Boxplotsof trading frequencies, profitsand Sharperatio of threekindsof trading systems,“Max.SR”,
“Max.Profit” and “Min.MSE”. The trading frequency is the percentage of the number of trades over the total
data points. Transaction cost is 0.5%. The results are obtained over 100 trials with various realizations of
artificial data and initial system parameters.
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Figure 10: An expanded view of 2000 time periods from a simulation of the portfolio management system
with transaction costs = 0.5%. The top panel shows the three artificial price series used in the simulation.
The middle three panels show the corresponding portfolio weights chosen by the trading system at each time
step. Note that the smoothest price seriesis also the least invested in, and that the trading system is required
to be fully invested at al times. The bottom panel shows the cumulative wealth over this time period. The
trading system tripled its wealth during this time period even though the price series showed almost no net
gain during the period.
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Figure 11: Boxplots of the average percent change in the portfolio weights, cumulative profits and Sharpe
ratios vs transaction costs for the “Max.SR” portfolio management system. The results are obtained over
100 trials with various realizations of artificial data and initial system parameters. Increased transaction
costs reduce the amount of change in portfolio weights, profits and Sharpe ratio, as expected. The changein
portfolio weights reported hereisthe average of thetime averages of the changesin each of thethree portfolio
weights. All figures are computed on the last 9, 000 pointsin the data set.
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Figure 12: Boxplots of the percent change in portfolio weights, thelog base 10 of final profits and the Sharpe
ratios of the two trading systems, “Max.SR” and “Max.Profit”. The changein portfolio weightsreported here
isthe average of the average change of each of the three portfolio weights. Transaction costs are 0.2%, 0.5%
and 1%. The results are obtained over 100 trials with various realizations of artificial dataand initial system
parameters.
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Figure 13: Time series that influence the return attainable by the S&P 500 / TBill asset alocation system.
The top panel showsthe S& P 500 series with and without dividends reinvested. The bottom panel showsthe

annualized monthly Treasury Bill and S& P 500 dividend yields.
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Figure 14: Equity curves and trading signals for the monthly S&P 500 / TBill asset allocation system
during thetest period for 30 trial simulationswith variousrealizations of theinitial randomly-selected system
parameters. The top panel shows the cumulative wealth for the average of the 30 trading systems (solid
curve), the wealth from following the voting strategy (dashed curve) and the wealth from the buy and hold
strategy (dots and dashes). The second panel showsthe voting trading position over 30 trials. The third panel
shows the average trading position taken by the 30 traders.
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Figure 15: Performanceresultsof 30trial simulationsfor themonthly S& P 500 dataduring thetest period. The
top panel showsthe exponential moving averages of annualized monthly returnsfor the voting trading system
(dashes), average trading system (solid) and the buy and hold strategy (dots and dashes). The bottom panel
shows the exponential moving average Sharpe ratios for the same strategies. A forgetting factor n = 1/24is

used to calculate the moving averages.
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Figure 16: Performance statistics for the S& P 500 / TBill asset allocation system. The boxplots show the
percentage increase of wealth, annualized monthly Sharpe ratios of nominal returns, annualized monthly
Sharpe ratios of excess returns over the three month treasury bill rate and maximum drawdown of the
“Max.SR” trading system. The results are for the monthly S& P 500 series (with dividends reinvested) and
monthly TBill series for the test period of January 1970 through December 1994. The results are obtained
over 30 trials with various redlizations of the initial randomly-selected system parameters. The horizontal
lines show the performance of the average strategy (solid line), the voting strategy (dashed line) and the S& P
500 buy and hold strategy (dots and dashes) for the same test period. The notches in the box plots indicate
robust estimates of the 95% confidenceinterval s on the hypothesisthat the median is equal to the performance
of the buy and hold strategy. The differences in performance between the ensemble of trading systems and
the buy and hold strategy are statistically significant, and demonstrate the presence of predictable structurein
the U.S. stock and treasury bill markets during the 1970 through 1994 test period.
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