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PERFORMANCE FUNCTIONS AND REINFORCEMENT
LEARNING FOR TRADING SYSTEMS AND PORTFOLIOS

Abstract

We propose to train trading systems and portfolios by optimizing objective functions that directly measure
trading and investment performance. Rather than basing a trading system on forecasts or training via a
supervised learning algorithm using labelled trading data, we train our systems using recurrent reinforcement
learning (RRL) algorithms. The performance functions that we consider for reinforcement learning are profit
or wealth, economic utility, the Sharpe ratio and our proposed differential Sharpe ratio. The trading and
portfolio management systems require prior decisions as input in order to properly take into account the
effects of transactions costs, market impact and taxes. This temporal dependence on system state requires
the use of reinforcement versions of standard recurrent learning algorithms. We present empirical results in
controlled experiments that demonstrate the efficacy of some of our methods for optimizing trading systems
and portfolios. For a long/short trader, we find that maximizing the differential Sharpe ratio yields more
consistent results than maximizing profits, and that both methods outperform a trading system based on
forecasts that minimize MSE. We find that portfolio traders trained to maximize the differential Sharpe ratio
achieve better risk-adjusted returns than those trained to maximize profit. Finally, we provide simulation
results for an S&P 500 / TBill asset allocation system that demonstrate the presence of out-of-sample
predictability in the monthly S&P 500 stock index for the 25 year period 1970 through 1994.

Key Words: Trading systems; asset allocation; portfolio optimization; reinforcement learning; recur-
rent reinforcement learning; dynamic programming; on-line learning; recursive updating; Bernoulli utility;
differential Sharpe ratio; transactions costs; state dependence; performance functions; recurrence.
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1 Introduction: Performance Functions and Reinforcement Learning
for Trading

The investor’s or trader’s ultimate goal is to optimize some relevant measure of trading system performance,
such as profit, economic utility or risk-adjusted return. In this paper, we propose to use reinforcement learning
algorithms (on-line learning methods that find approximate solutions to stochastic dynamic programming
problems) to directly optimize such trading system performance functions.1 When transactions costs are
included, the trading system must be recurrent, thus requiring a recurrent reinforcement learning (RRL)
approach. This methodology can be applied to optimizing systems designed to trade a single security or to
trade a portfolio of securities. For brevity, we refer to single security trading systems, asset allocation systems
and multi-security portfolio management systems as trading systems.

The development of our approach is presented in Sections 2 through 4 and simulation results are presented
in Section 5. In the remainder of this section, we motivate our reinforcement learning approach (Section
1.3) by contrasting it with two conventional approaches to optimizing trading systems based on supervised
learning. These include training a system to make price forecasts from which trading signals are generated
(Section 1.1) and training on labelled trading data (Section 1.2). Both supervised approaches are two-step
procedures that are not guaranteed to globally optimize trading system performance.

1.1 Trading based on Forecasts

A block diagram for a generic trading system based on forecasts is shown in Figure 1. In such a system, a
forecast module is optimized to produce price forecasts from a set of input variables. Supervised learning
techniques are used to minimize forecast error (typically mean squared error) on a training sample. The
forecasts are then used as input to a trading module that makes buy and sell decisions or adjusts portfolio
weights. Parameters of the trading module may be optimized, but are often set by hand.

Trading based on forecasts involves two steps, and minimizing forecast error is an intermediate step that
is not the ultimate objective of the system. Moreover, the common practice of using only the forecasts as
input to the trading module results in a loss of information relative to that available to the forecast module, in
effect producing a forecast bottleneck. Both of these effects may lead to suboptimal performance.

1.2 Training a Trading System on Labelled Data

It is possible to train a system to make trading decisions directly from the input variables, while avoiding the
intermediate step of making forecasts. This is more direct, and avoids the forecast bottleneck. One technique
for optimizing such a system is to use a supervised learning algorithm to train the system to make desired
trades, as shown in Figure 2. A sequence of desired target trades (or portfolio weights) used for training the
system is first determined via a labelling procedure. The data can be labelled by a human “expert” or by an
automatic labelling algorithm. The labelled trades are then used to train the trading system.

Training on labelled data is a two-step process. The procedure for labelling the data attempts to solve the
temporal credit assignment problem, while subsequently training the system on the labelled data attempts to
solve the structural credit assignment problem.2 Certain difficulties arise when trying to solve the structural
and temporal credit assignment problems separately in this way, particularly when transaction costs are
included.

The performance achievable in practice by the trading module will usually be substantially worse than that
suggested by the labelled trades. This is because most labelling procedures are based on only the target series
(possibly taking into account transaction costs), ignore the input variables and do not consider the conditional
distributions of price changes in the target series given the input variables. Moreover, since transactions costs
depend upon the actual sequence of trades made, the simulated costs associated with the labelled trades will

1The terms value function (or evaluation function) and objective function are used in the reinforcement learning and optimization
literatures, respectively. We prefer the term performance function for financial applications.

2This terminology was proposed in Sutton (1988).
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differ from those incurred in practice. Hence, a labelling procedure is not likely to give rise to a sequence of
trades that is realizable in practice or to a realistic assessment of the actual transaction costs likely to occur.
Finally, since ���
	��
	���� is not optimized directly (see Figure 2), supervised learning based on labelled data will
yield suboptimal performance.

1.3 Direct Optimization of Performance via Recurrent Reinforcement Learning

A trading system can be optimized to solve both the temporal credit assignment and structural credit assignment
problems mentioned above simultaneously using reinforcement learning (see for example Sutton & Barto
(1997) and references therein). We adopt this approach here.

Reinforcement learning algorithms find approximate solutions to stochastic dynamic programming prob-
lems (Bertsekas 1995) and can do so in an on-line mode. In reinforcement learning, target outputs are not
provided. Rather, the system takes actions (makes trades), receives feedback on its performance (an evaluation
signal) and then adjusts its internal parameters to increase its future rewards. With this approach, an ultimate
measure of trading performance ���
	�� , such as profit, utility or risk-adjusted return is optimized directly. See
Figure 3.

A simultaneous solution of the structural and temporal credit assignment problems will generally require
using a recurrent learning algorithm. Trading system profits depend upon sequences of interdependent
decisions, and are thus path-dependent. Optimal trading decisions when the effects of transactions costs,
market impact and taxes3 are included require knowledge of the current system state. Including information
related to past decisions in the inputs to a trading system results in a recurrent decision system.4 The proper
optimization of a recurrent, path-dependent decision system is quite different from the simple supervised
optimization techniques used for direct forecasts or for labelled trading data.

Reinforcement learning analogs of recurrent learning algorithms are required to train our proposed systems.
Such recurrent learning algorithms include both off-line (batch) training algorithms like backpropagation
through time (BPTT) (Rumelhart, Hinton & Williams 1986, Werbos 1990) or on-line (adaptive) algorithms
such as real-time recurrent learning (RTRL) (Williams & Zipser 1989) or dynamic backpropagation (DBP)
(Narendra & Parthasarathy 1990). The recurrent reinforcement learning algorithms that we utilize here are
novel, but straightforward. They are variants of the above mentioned algorithms that maximize immediate
rewards in an on-line fashion. We refer to them as RRL algorithms.

1.4 Related Work

Several papers that relate to ours have recently appeared. Samuelson (1990) stimulated our interest in power
law utility functions and their relation to the differential Sharpe ratio. White (1996) suggested using a
performance ratio based on the second lower partial moment to us. We became aware of the other references
listed below after developing our basic approach.

Samuelson (1990) uses logarithmic and power law utility functions, which we use in Section 3, to evaluate
simple asset allocation or market timing strategies (which he calls “across-time diversification”). Samuelson’s
analysis shows that under the assumption of a random walk price process, the optimum behavior for a trader
with a power law utility function is to hold constant proportions of risky and risk-free securities. That is,
in the absence of superior forecasting ability, across-asset-class diversification will on a risk-adjusted basis
outperform across-time diversification. In contrast, our approach assumes that superior forecasting and trading
strategies are not impossible, and that dynamic asset allocation strategies may in some cases achieve higher
utility than simple fixed allocation methods.

Timmermann & Pesaran (1995) use wealth and the Sharpe ratio as selection criteria (rather than optimiza-
tion criteria) for trading systems. The set of traders considered are based on linear forecasting models that

3For brevity, we omit further discussion of market impact and tax effects.
4Here, recurrence refers to the nature of the algorithms required to optimize the system. For example, optimizing a feed forward

NAR(p) model for one-step-ahead prediction does not require a recurrent learning algorithm, while optimizing the same NAR(p) model
to perform iterated predictions does. The fact that a forecast or decision is made by a feedforward, non-recurrent network does not mean
that optimizing it correctly can be done with a standard, non-recurrent training procedure.
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differ in the subsets of input variables included. The forecasting models are linear regressions with parameters
estimated to minimize mean squared forecast error (MSFE). The wealth and the Sharpe ratio performance
functions are not used for direct optimization of system parameters. The selection among forecasting models
is updated periodically. The authors are able to use their simulation results to document predictability in
monthly U.S. stock returns. In related work, Satchell & Timmermann (1995) provide arguments that MSFE is
a bad indicator for potential trading profits. They prove a theorem that there is not necessarily any monotonic
relationship between the size of the MSFE and the probability of correctly forecasting the sign of a variable.

In independent work, Bengio (1997) points out that global optimization of trading systems consisting
of separate forecasting and trading modules (such as that shown in Figure 1) provides better results than
separately minimizing MSFE of the forecast module and subsequently maximizing profit of the trading
module. Bengio optimizes portfolios and employs back-propagation through time to maximize final wealth.
Kang, Choey & Weigend (1997) compare optimization of the Sharpe ratio and profits using a non-recursive
supervised learning method applied to a simple asset allocation strategy. The allocation that is varied is the
amount of capital invested in a fixed trading strategy. However, the authors do not directly optimize the
trading system parameters (those that determine when to buy or sell) or take into account transaction costs.
Neuneier (1996) uses Q-Learning (Watkins 1989, Watkins & Dayan 1992) to train an asset allocation system
to maximize profit. Transaction costs consisting of both fixed and proportional parts are included in the
analysis. Simulation results are presented for an artificial exchange rate trading system and a system that
switches between cash and a portfolio of German stocks that tracks the DAX. The description of the methods
used is sketchy, and most relevant details of the empirical work are not disclosed. Finally, White (1996) has
done simulations that optimize the Sharpe ratio and other measures of risk-adjusted return based on downside
risk (see Section 4.6).

2 Structure and Optimization of Traders and Portfolios

2.1 Structure and Optimization of Traders

2.1.1 Single Asset with Discrete Position Size

In this section, we consider performance functions for systems that trade a single risky security with price
series ��� . We also consider a risk-free bond whose rate of return is known one time step ahead, which has
cumulative price series ���� . Since the trader can realize returns from either the risky security or the bond, the
trader is actually making asset allocation decisions.

The trader is assumed to take only short, neutral or long positions ��������� 1 � 0 � 1 � of constant magnitude in
the risky security � � . A conservative strategy for stock or bond investments might be restricted to � � ��� 0 � 1 � ,
while a simplified reversal trading strategy could have no neutral state, � � ����� 1 � 1 � . The constant magnitude
assumption can be easily relaxed to enable better risk control. The position ��� is established or maintained
at the end of each time interval  , and is reassessed at the end of period  "! 1. A trade is thus possible at the
end of each time period, although nonzero trading costs will discourage excessive trading. A trading system
return # � is realized at the end of the time interval �
 "� 1 �$ 
% and includes the profit or loss resulting from the
position ���'& 1 held in the risky security during that interval, any returns from positions in the risk-free bond,
and any transaction cost incurred at time  is due to a difference in the positions � �'& 1 and � � .

In order to properly incorporate the effects of transactions costs, market impact and taxes in a trader’s
decision making, the trader must have internal state information and must therefore be recurrent. An example
of a single asset trading system that could take into account transactions costs and market impact would be
one with the following decision function:5�(��)*�+�
	,� ; ���-& 1 �
./�$� with ./��)0�����1�
���-& 1 �
���'& 2 �/�2�/� ; ����43 1 �
�5�� �
����-& 1 �/�/�/� ; 67�$�
67�-& 1 �
67�-& 2 �/�/�/�8� (1)

where 	�� denotes the (learned) system parameters at time  and ./� denotes the information set at time  , which
includes present and past values of the price series � � and � �� and an arbitrary number of other external variables

5Note that the value of the risk free bond one step ahead 9;:<8= 1 is known at time > .
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denoted 6 � . More general decision functions could include the current trade’s profit/loss (for capturing capital
gains tax effects), past positions � �-&@? and past profits and losses (in analogy with the moving average
components of AB#C.EDFA models) and other factors.

2.1.2 Optimizing Profit and Wealth

Trading systems can be optimized by maximizing performance functions ���-� such as profit, wealth, utility
functions of wealth or performance ratios like the Sharpe ratio. The Sharpe and other performance ratios will
be discussed in Section 4. The simplest and most natural performance function for a risk-insensitive trader is
profit. We consider two cases: additive and multiplicative profits. The transactions cost rate (per share, per
contract, or per dollar amount, depending on context) is denoted G .

Additive profits are appropriate to consider if each trade is for a fixed number of shares or contracts
of security ��� . This is often the case, for example, when trading small futures accounts or when trading
standard US$ FX contracts in dollar-denominated foreign currencies. With the definitions H;�I)J���K�L���'& 1 andH��� )0���� �M����'& 1 for the price returns of a risky (traded) asset and a risk-free asset (like T-Bills) respectively,
the additive profit accumulated over N time periods with trading position size OMP 0 is then defined as:QSR )TO RU �8V 1

# � )WO RU �4V 1

X H �� !W� �-& 1 �
H � �MH �� �(�MGKY � � �Z� �'& 1 Y\[ (2)

with
Q

0 ) 0 and typically � R )]� 0 ) 0. We have implicitly defined the return for the trade completed at
time  as # � . Note that the transaction costs for switching between short and long positions are twice those
for switching between neutral and long/short positions. Equation 2 holds for continuous quantities also. The
wealth is defined as ^ R )0^ 0 ! QSR .

Multiplicative profits are appropriate when a fixed fraction of accumulated wealth _`P 0 is invested in
each long or short trade. Here, H;��)a�
���
bc���'& 1 � 1 � and H �� )a�
� �� bc� ��'& 1 � 1 � . If no short sales are allowed and
the leverage factor is set fixed at _d) 1, the wealth at time T is:^ R ) ^ 0

Re�8V 1

� 1 !Z#B�1�) ^ 0

Re�8V 1

X
1 !*� 1 �M���'& 1 �'H �� !Z���-& 1 H;� [ � 1 �MGfY ���"�M���'& 1 Yg�h� (3)

where #C� is the return realized for the period ending at time  . In this case, the profit is
Q R )F^ R �i^ 0. If

short sales or leverage _Zj) 1 are allowed, then the correct expression depends in detail on the timing of the
sequence of trades. For brevity, we omit the discussion for this case.

2.2 Structure and Optimization of Portfolios

2.2.1 Portfolios: Continuous Quantities of Multiple Assets

When the risk-free rate of return H �� is included in single risky-asset trading models as above, one actually
has a simple two-asset portfolio. For trading multiple assets in general (typically including a risk-free
instrument), a multiple output trading system is required. Denoting a set of k markets with price series�E����l� � : m+) 1 �2�/�/���
kn� , the market return H�l� for price series ��l� for the period ending at time  is defined as�
��l� bc�5l�'& 1 � 1 � . Defining portfolio weights of the m �po asset as �ql��r� , a trader that takes only long positions
must have portfolio weights that satisfy:� l�s 0 and tU l V 1

� l ) 1 � (4)
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With these constraints, standard Markowitz mean-variance portfolio optimization is a quadratic programming
problem. However, when optimizing the parameters of a nonlinear trading system, portfolio optimization
becomes a nonlinear programming problem.

One approach to imposing the constraints on the portfolio weights (4) without requiring that a constrained
optimization be performed is to use a trading system that has softmax outputs:� l �r��) exp u v l �-�r%w tx V 1 exp u v x �-�-% for m�) 1 �/�/�/���
ky� (5)

Here, the v@l5�r� could be linear or more complex functions of the inputs, such as a two-layer neural network
with sigmoidal internal units and linear outputs. Such a trading system can be optimized using unconstrained
optimization methods. Note however that the portfolio weights �ql obtained are invariant under shifts in the
values of the v@l of the form �cv@l{z|v@l}!i~ ; m�) 1 �/�/�/���
k�� , so multiple solutions for the v�l exist. Denoting
the sets of raw and normalized outputs collectively as the vectors ���-� and ���r� respectively, a recursive trader
will have structure ����) softmax �;�
���
	,�'& 1; ���'& 1 �
.2�
��� (6)

2.2.2 Profit and Wealth for Portfolios

When multiple assets are considered, the effective portfolio weightings change with each time step due to price
movements. Thus, maintaining constant or desired portfolio weights requires that adjustments in positions be
made at each time step. The wealth after N periods for a portfolio trading system is^ R ) ^ 0

Re�8V 1

� 1 !Z# � �) ^ 0

Re�8V 1

�`� tU l V 1

� l�-& 1
�5l�� l�'& 1 � �

1 �ZG*tUl V 1

Y � l� � ˜� l� Y ��� � (7)

where ˜�ql� is the effective portfolio weight of asset m before readjusting, defined as

˜� l� ) �ql�'& 1 �p�5l� bc��l�-& 1 �w tx V 1 � x�-& 1 �
� x� bc� x�-& 1 � � (8)

and we have defined the trading returns #C� implicitly. In (7), the first factor in the curly brackets is the increase
in wealth over the time interval  prior to rebalancing to achieve the newly specified weights ��l� . The second
factor is the reduction in wealth due to the rebalancing costs. The profit after N periods is

QIR )J^ R �W^ 0.

2.3 Optimization of Traders and Portfolios via Recurrent Reinforcement Learning

Reinforcement learning algorithms yield approximate solutions to stochastic dynamic programming problems
and are able to do so on-line (see for example Bertsekas (1995)).

Reinforcement learning adjusts the parameters of a system to maximize the expected payoff or reward
that is generated due to the actions of the system. This is accomplished through trial and error exploration of
the environment. Unlike supervised learning, the system is not presented with examples of desired strategies.
Rather, it receives a reinforcement signal from its environment (a reward) that provides information on whether
its actions are good or bad.

The structural credit assignment problem refers to the problem of assigning credit to the individual
parameters of a system. If the reward produced also depends on a series of actions of the system, then the
temporal credit assignment problem is encountered, ie. assigning credit to the individual actions of the system
through time. Reinforcement learning algorithms solve both problems simultaneously.

The performance functions that we consider are functions of profit or wealth ���r^ R � after a sequence
of N time steps, or more generally of the whole time sequence of trades ���r^ 1 ��^ 2 �/�/�/����^ � �/�/�2�c��^ R � . The
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simple form ���-^ R � includes the economic utility functions discussed in the next section. The second case is
the general form for path-dependent performance functions like the Sharpe ratio and Sterling ratio. In either
case, the performance function at time N can be expressed as a function of the sequence of trading returns���
# 1 �
# 2 �2�/�/�7�
#B�$�2�/�/���
# R � . We denote this by � R in the rest of this section.

Given a trading system model � � �p	5� , the goal is to adjust the parameters 	 in order to maximize � R .
This maximization for a complete sequence of N trades can be done off-line using dynamic programming
or batch versions of reinforcement learning algorithms. Alternatively, the optimization can be done on-line
using standard reinforcement learning techniques. Most of our simulations make use of on-line approaches
based on stochastic gradient ascent, since they offer advantages in computational efficiency.6

The gradient of � R with respect to the parameters 	 of the system after a sequence of N trades is� � R �p	5�� 	 ) RU �4V 1

� � R� #B��� � #B�� ��� � ���� 	 ! � #C�� ���-& 1

� ���-& 1� 	�� (9)

The above expression as written with scalar �(� can be applied to traders of a single risky asset described
in Section 2 by backpropagating the reinforcement signal through the pre-thresholded outputs in a manner
similar to the Adaline learning rule (Widrow & Hoff 1960). The expression can also be trivially generalized
to the vector case for portfolios, as described in Section 2.2.

The system can be optimized in batch mode by repeatedly computing the value of � R on forward passes
through the data and adjusting the trading system parameters by using gradient ascent (with learning rate � )� 	�)�� � � R �
	��� 	 (10)

or some other optimization method. Note that the quantities
� � � b � 	 are total derivatives that depend upon

the entire sequence of previous trades. To correctly compute and optimize these total derivatives requires that
a reinforcement version of a recurrent algorithm like BPTT (Rumelhart et al. 1986, Werbos 1990), RTRL
(Williams & Zipser 1989) or dynamic backpropagation (Narendra & Parthasarathy 1990) be used. These
algorithms account for the temporal dependencies in a sequence of decisions through a recursive update
equation for the parameter gradients: � � �� 	 )�� � �� 	 ! � � �� � �'& 1

� � �'& 1� 	 � (11)

A simple on-line stochastic optimization can be obtained by considering only the term in (9) that depends
on the most recently realized return #C� during a forward pass through the data:� � � �
	��� 	 ) � � �� # ��� � # �� � � � � �� 	 ! � # �� � �'& 1

� � �-& 1� 	 � � (12)

Note that this equation is correct if � R is the sum of the individual ��� ’s; otherwise, it is an approximation.
The parameters are then updated on-line using� 	 � )�� � ���1�
	��-�� 	�� � (13)

Such an algorithm performs a stochastic optimization (since the system parameters 	,� are varied during each
forward pass through the training data), and is an example of immediate reward reinforcement learning as it
only performs one-step ahead optimization. The stochastic, on-line analog of equation (11) is:� � �� 	 �+� � � �� 	 � ! � � �� � �'& 1

� � �'& 1� 	 �'& 1
� (14)

6The use of stochastic optimization methods is widely viewed in the adaptive signal processing, neural network and machine learning
communities as more computationally efficient than other batch mode nonlinear optimization methods.
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We use on-line algorithms of this recurrent reinforcement learning (RRL) type in the simulations presented
in Section 5. Section 4 develops an on-line approach for optimizing a differential Sharpe ratio. To our
knowledge, the RRL approach that we present here is unique.

Alternative reinforcement learning approaches include delayed reward algorithms, examples of which
include the actor-critic method (Barto, Sutton & Anderson 1983) and Q-Learning (Watkins 1989, Watkins &
Dayan 1992). We compare Q-Learning to our recurrent reinforcement learning algorithms in Moody, Saffell,
Liao & Wu (1998).

3 Optimizing Economic Utility

The optimization of profit and wealth described above assumes that investors are insensitive to risk. However,
most investors are more sensitive to losses than to gains, and are therefore willing to sacrifice some potential
gains in order to have less risk of loss. There is also an intrinsic asymmetry between percentage losses and
gains: a 25% loss must be followed by 33% gain in order to break even. Utility functions of wealth ���r^F�
can capture various kinds of risk/reward preferences.

In 1738, Daniel Bernoulli proposed the logarithmic utility function ���r^ � ��) log ^ � (see Bernoulli
(1954)). A more general class of utility functions that capture varying degrees of risk sensitivity are the power
law utilities: ���K�r^ � ��) ^ �� b7� for ��j) 0� 0 �r^n�-��) log ^n� for �d) 0 � (15)

These utility functions have constant relative risk aversion, defined as� �-^F��)0� � log ���p�r^F��
log ^ ) 1 �Z��� (16)

The case ��) 1 is risk-neutral, and � 1 �r^F� corresponds to absolute wealth or profit (Equation 2), while
utilities with ��P 1 describe risk-seeking or “thrill-seeking” behavior. Most investors have risk-averse utility
functions ( �n� 1), with smaller values of � corresponding to greater sensitivity to loss. The limit �`�z��B 
corresponds to absolute risk aversion.

The sensitivity to risk on a per time period or per trade basis can be seen by considering a second order
Taylor expansion of the contribution of #C� to � � �-^ R � :����� 1 !W# � � � 1� !Z# � ! ��� 1

2
# 2� for ��j) 0����� 1 !W# � � � 0 !Z# � � 1

2
# 2� for ��) 0 (17)

Taking the expectation value of � � � 1 !¡#B�-� , and defining risk to be ¢d�p# 2� � , we see that for �iP 1, risk is
positively-weighted, while for �`� 1, risk is negatively-weighted. Note that the quantity £�¤ � �r^F��) 1 ��� is
called the coefficient of risk aversion, so the risk � averse, neutral, seeking � cases have �7£�P 0 ��£d) 0 ��£L� 0 �
respectively.

4 The Sharpe Ratio and the Differential Sharpe Ratio

4.1 Optimizing the Sharpe Ratio

The Sharpe ratio is a measure of risk-adjusted return (Sharpe 1966, Sharpe 1994). Denoting as before the
trading system returns for period  (including transactions costs) as # � , the Sharpe ratio is defined to be¥ R ) Average �
#B�-�

Standard Deviation �
#C�-� (18)
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where the average and standard deviation are estimated over returns for periods  �)¦� 1 �/�/�/�;�1N�� . A trading
system can be trained to maximize the Sharpe Ratio as follows. First, we define the Sharpe ratio for § returns#�¨ in terms of estimates of the first and second moments of the returns’ distributions:¥"© ) A ©ª © �
« © �MA 2© � 1 ¬ 2 (19)

with A © ) 1§ ©U ¨\V 1

# ¨ « © ) 1§ ©U ¨\V 1

# 2¨ ª © )®­ §§�� 1 ¯ 1 ¬ 2 � (20)

The normalizing factor
ª ©

is required for an unbiased estimate of the standard deviation, but is not relevant
for optimization. The derivative with respect to the system parameters (using scalar notation for 	 , even
though it is generally a vector) is:� ¥"© �p	5�� 	 ) ©U ¨\V 1

� � ¥� A © � A ©� # ¨ ! � ¥� « © � « ©� # ¨S�`� � # ¨� � ¨ � � ¨� 	 ! � # ¨� � ¨p& 1

� � ¨p& 1� 	 �) 1§ ©U ¨\V 1
� « © �MA © # ¨ª © �
« © �MA 2© � 3 ¬ 2 �n� � # ¨� � ¨ � � ¨� 	 ! � # ¨� � ¨p& 1

� � ¨p& 1� 	 � � (21)

The above expression as written with scalar � ¨ applies to the traders of a single risky asset described in
Section 2.1, but can be trivially generalized to the vector case for portfolios, as described in Section 2.2.

The system can be optimized in batch mode by repeatedly computing the value of
¥ ©

on forward passes
through the data and adjusting the trading system parameters by using gradient ascent (with learning rate � )� 	 © )W� � ¥"© �
	��� 	 (22)

or some other optimization method. A simple incremental optimization might consider only the term in (21)
dependent on the last realized return # © . Note that the quantities

� ��¨pb � 	 are total derivatives that depend
upon the entire sequence of previous trades. To correctly compute and optimize these total derivatives requires
that a recurrent algorithm like BPTT, RTRL or dynamic backpropagation be used.

4.2 Running and Exponential Moving Average Sharpe Ratios

In order to facilitate on-line learning, an incremental Sharpe ratio is required. First, we define a running
Sharpe ratio by making use of recursive estimates of the first and second moments of the returns’ distributions:A © ) 1§ # © ! §+� 1§ A © & 1 and « © ) 1§ # 2© ! §+� 1§ « © & 1 (23)

(with A 0 )°« 0 ) 0) in the evaluation of (19). Next, we extend this definition to an exponential moving
average Sharpe ratio on time scale ± & 1 by making use of moving average estimates of the first and second
moments of the returns’ distributions: ¥ � ) AC�ªd² �
« � �MA 2� � 1 ¬ 2 (24)

with A � ) ±5# � !³� 1 �M±K�'A �-& 1«C�´) ±5# 2� !³� 1 �M±��1«B�'& 1ª�² ) ­ 1 �Z±�b 2
1 �M±¦¯ 1 ¬ 2

(25)

initialized with A ² � 0 ��)J« ² � 0 ��) 0. In (24), the normalization factor
ª�²

is required for an unbiased estimate
of the moving standard deviation. For purposes of trading system optimization, however, this constant factor
can be ignored.
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4.3 Differential Sharpe Ratios for On-Line Optimization

While both the running and moving Sharpe ratios can be used to optimize trading systems in batch or off-line
mode, proper on-line learning requires that we compute the influence on the Sharpe ratio of the return at time . With the running or moving Sharpe ratios defined above, we can derive differential Sharpe ratios for on-line
optimization of trading system performance. It is advantageous to use on-line performance functions both
to speed the convergence of the learning process (since parameter updates can be done during each forward
pass through the training data), and to adapt to changing market conditions during live trading. The update
equations for the exponential moving estimates can be rewrittenAB�µ) AB�'& 1 !Z± � AC��)�AC�-& 1 !Z±¶�p#C�S�MAB�'& 1 �« � ) « �'& 1 !Z± � « � )�« �-& 1 !Z±@�p# 2� �Z« �'& 1 �M� (26)

where we have implicitly defined the update quantities
� AB� and

� «C� . Treating AB�'& 1, «C�'& 1 and
ª ²

as
numerical constants, note that ± in the update equations (26) controls the magnitude of the influence of the
return # � on the Sharpe ratio

¥ � . Taking ±��z 0 turns off the updating, and making ± positive turns it on.
With this in mind, we can obtain a differential Sharpe ratio by expanding (24) to first order in ± :7¥ � � ¥ �'& 1 !W± � ¥ �� ± Y ² V 0 !W·��p± 2 �¸� (27)

Noting that only the first order term in this expansion depends upon the return #C� at time  (through
� AB� and� « � ), we define the differential Sharpe ratio as:¹ � ¤ � ¥ �� ± ) « �'& 1

� A � � 1
2 A �'& 1

� « ��
« �'& 1 �MA 2�'& 1 � 3 ¬ 2 � (28)

The current return # � enters this expression only in the numerator through
� A � )F# � �iA �-& 1 and

� « � )# 2� �M« �'& 1.
The influences of risk and return on the differential Sharpe ratio are readily apparent. The first term in

the numerator is positive if #B� exceeds the moving average of past returns AC�-& 1, while the second term is
negative if # 2� exceeds the moving average of past squared returns « �'& 1. Assuming that A �'& 1 P 0, the largest
possible improvement in

¹ � occurs when #�º� )�«C�-& 1 b/AB�'& 1 � (29)

Thus, the Sharpe ratio actually penalizes returns larger than # º� , which is counter-intuitive relative to most
investors’ notions of risk and reward.

Note that a second expression for a differential Sharpe ratio can be obtained by considering a perturbative
expansion of the current return # � relative to the exponential moving average of past returns A �'& 1. This is
obtained by expanding

¥ � of equation (24) in a Taylor series about # � )0A �'& 1 to second order in
� A � , and

expressing the coefficients in terms of information available at time  S� 1. The result is:¥ � � 1� 1 �M±�� 1 ¬ 2 � ¥ �'& 1 ! ±ª ² ¹ � !W·��$� � A � � 3 � �¹ � ¤ �p« �'& 1 �MA 2�-& 1 � � A � � 1
2 A �-& 1 � � A � � 2�p« �'& 1 �MA 2�-& 1 � 3 ¬ 2 � (30)

The numerators of (28) and (30) differ only by a constant. As for (28), this expression too is maximized when# º� )³« �'& 1 b/A �'& 1.

7Note that » <�¼½ » <r¾ 1 as ¿ ¼½ 0. Again, we treat À <r¾ 1, Á <r¾ 1 and ÂÄÃ as constants. As a technical point, differentiation of ÂÄÃ
with respect to ¿ can be avoided by considering an expansion with terms Â ¾ 1ÃiÅ/ÆCÇ ÂÄÃ7» <rÈ
É Å ¿ Æ .
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The differential Sharpe ratio
¹ � is used in (12) as the current contribution to the performance function � � .

Since
¥ �-& 1 in equation (27) does not depend on # � , we have

� � � b � # � ) � ¥ � b � # � � ± ��¹ � b � # � . Whether
optimizing a trading system with (28) or (30), the relevant derivatives have the same simple form:��¹ �� #C� ) « �'& 1 �ZA �'& 1 # ��
«B�'& 1 �ZA 2�-& 1 � 3 ¬ 2 � (31)

4.4 Advantages of the Differential Sharpe Ratio

The differential Sharpe ratio has several attractive properties:

Facilitates recursive updating: The incremental nature of the calculations of AC� and «B� make updating the
exponential moving Sharpe ratio straightforward. It is not necessary to recompute the average and
standard deviation of returns for the entire trading history in order to update the Sharpe ratio for the
most recent time period.

Enables efficient on-line optimization:
¹ � and

�5¹ � b � # � can be cheaply calculated using the previously
computed moving averages AC�'& 1 and «C�-& 1 and the current return #B� . This enables efficient stochastic
optimization without the need to compute complete sums as in equation (21).

Weights recent returns more: Based on the exponential moving average Sharpe ratio, recent returns receive
stronger weightings in

¹ � than do older returns.

Provides interpretability: The differential Sharpe ratio isolates the contribution of the current return # � to
the exponential moving average Sharpe ratio. The simple form of

¹ � makes clear how risk and reward
affect the Sharpe ratio. The relationship of the Sharpe ratio to economic utility functions is also readily
apparent. (See next section.)

4.5 Relation of Sharpe Ratio to Economic Utility Functions

The Sharpe ratio is not a standard economic utility function ���r^ R � , since its value depends not just on current
wealth (or current changes in wealth), but also on past performance. It is an example of a path-dependent
performance function ���-^ 1 ��^ 2 �/�2�/�c��^ � �/�2�/����^ R � or ���p# 1 �
# 2 �/�/�/�7�
# � �/�/�/���
# R � . This can be seen by
comparing the numerator of the differential Sharpe ratio (28)« �'& 1 � � 1

2
A �'& 1 !W# � � A �-& 1

2 « �-& 1
# 2� � (32)

with (17). In a sense, the Sharpe ratio can be thought of as an adaptive utility function, since the relative
weightings of risk and return depend on the performance history as measured by A � and « � . The effective
coefficient of risk aversion at time  is £f��)�AC�'& 1 b7«B�'& 1. Note that £f��)�# º & 1� .

4.6 Other Performance Ratios

Another measure related to the Sharpe ratio is the appraisal ratio (Treynor & Black 1973) or the information
ratio (Grinold & Kahn 1995), which measures risk and return relative to some benchmark. It is defined as

Information Ratio ) (Annualized) Residual Return
(Annualized) Residual Risk

� (33)

and is commonly used to measure the performance of active portfolio management strategies relative to an
index. Our methods can be easily generalized to maximize such quantities.

Since the standard Sharpe ratio normalizes average excess returns by the standard deviation of excess
returns, it does not properly distinguish between upside potential and downside risk. As discussed above,
the differential Sharpe ratio actually penalizes returns larger than # º� . Two alternative performance functions
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normalize average returns by the semi-variance (Markowitz 1959) or the downside deviation or second lower
partial moment (SLPM) (Nawrocki 1991, Nawrocki 1992, Sortino & Vandermeer 1991, Sortino & Forsey
1996, White 1996). Estimates of these performance ratios can be defined as. 1 © ) A ©ÊË &© with � Ê Ë &© � 2 ) 1§+� 1

©U ¨\V 1

� min ���
#�¨f�MA © ��� 0 �7� 2 (34). 2 © ) A ©Ê Ì &© with � Ê Ì &© � 2 ) 1§ ©U ¨\V 1

� min �,#�¨
� 0 �c� 2 � (35)

The semi-variance gives non-zero weight to below-average returns, even if positive, while the downside
deviation gives nonzero weight only to negative excess returns. . 2 © , based on the downside deviation, tends
to be well correlated (White 1996) with the Sterling ratio, a trading system performance function widely used
in the fund management community. The Sterling ratio is commonly defined as:

Sterling Ratio ) Average Return Per Period (annualized)
Maximum Peak to Trough Drawn-Down

(36)

Extensions of both (34) and (35) to running, moving and differential performance ratios as developed above
for the Sharpe ratio are straightforward.

5 Empirical Results

5.1 Trader Simulation

5.1.1 Data

We generate log price series as random walks with autoregressive trend processes. The two parameter model
is thus: Í �
 1�´) Í �
 �� 1 �@!ZÎÏ�
 "� 1 �"!ZÐ�Ñ,�p 1� (37)ÎÏ�
 1�´) Ò�ÎÏ�
 "� 1 �"!Z_S�p 1�¸� (38)

where Ò and Ð are constants, and Ñ;�
 1� and _"�
 1� are normal random deviates with zero mean and unit variance.
We define the artificial price series as �f�
 1��) exp ­ Í �
 1�#Ó¯ (39)

where # is a scale defined as the range of

Í �
 1� : max � Í �
 1�
�7� min � Í �p 1�$� over a simulation with 10,000 samples.8

5.1.2 Long/Short Trader of Single Security

We have tested techniques for optimizing both profit and the Sharpe ratio in a variety of settings. In this
section, we present results for optimizing three simple trading systems using data generated for an artificial
market. The systems are long/short trading systems with recurrent state similar to that described in Section 2.1.
Two of the systems are trained via recurrent reinforcement learning to maximize the differential Sharpe ratio
(28) or profit. These two systems are compared to a third trading system built on a forecasting system that
minimizes forecast MSE.

For the results we present here, we set the parameters of the price series to ÒJ) 0 � 9 and ÐM) 3. The
artificial price series are trending on short time scales and have a high level of noise. An example of the
artificial price series is shown in the top panel of Figure 4.

In our simulations, we find that maximizing the differential Sharpe ratio yields more consistent results
than maximizing profits, and that both methods outperform the trading system based on forecasts.

8This is slightly more than the number of hours in a year (8760), so the series could be thought of as representing hourly prices in a
24 hour artificial market. Alternatively, a series of this length could represent slightly less than five years of hourly data in a market that
trades about 40 hours per week.
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5.1.3 Simulated Trading Results

Figures 4, 5 and 6 show results for a single simulation for an artificial market as described above. The trading
system is initialized randomly at the beginning, and adapted using real-time recurrent learning to optimize
the differential Sharpe ratio (28). The transaction costs are fixed at a half percent during the whole real-time
learning and trading process. Transient effects of the initial learning while trading process can be seen in the
first 2000 time steps of Figure 4 and in the distribution of differential Sharpe ratios in the lower left panel of
Figure 6.

Figure 7 shows box plots summarizing test performances for ensembles of 100 experiments. In these
simulations, the 10,000 data are partitioned into an initial training set consisting of the first 1,000 samples and
a subsequent test data set containing the last 9,000 samples. The trading systems are first optimized on the
training data set for 100 epochs and adapted on-line throughout the whole test data set. Each trial has different
realizations of the artificial price process and different randomly-chosen initial trader parameter values. We
vary the transaction cost from 0 � 2%, 0 � 5% to 1%, and observe the trading frequency, cumulative profit and
Sharpe ratio over the test data set. As shown, in all 100 experiments, positive Sharpe ratios are obtained.

Figures 8 and 9 compare the following three kinds of trading systems:

1. “Max.SR”: maximizes the differential Sharpe ratio,

2. “Max.Profit”: maximizes the cumulative profit,

3. “Min.MSE”: minimizes the mean-squared forecast error.

In this comparison, the transaction costs are set to 0 � 5%. As shown, the “Max.SR” and “Max.Profit” trading
systems significantly out-perform the “Min.MSE” systems. “Max.SR” achieves slightly better mean return
than “Max.Profit” and is substantially more consistent in its performance over 100 such trials.

5.2 Portfolio Management Simulation

5.2.1 Portfolio System and Data

Additional tests of the techniques are performed for trading a portfolio of securities. The portfolio trading
systems are allowed to invest proportions of their wealth among three different securities with the restrictions
that they must be fully invested at each time step, and that no short selling is allowed. The output of a system
is a set of portfolio weights ��� 1� �
� 2� �
� 3� � , with the conditions that� l� s 0 and

3U l V 1

� l� ) 1 � (40)

The recurrent state of the systems is similar to that described in Section 2.2.
When generating multiple price series according to the random walk model of Section 5.1.1,

Í �1Î��
Ñ and _
become k dimensional vectors and Ò and Ð become k°Ô�k matrices. For these experiments we have kÕ) 3,
and set Ò to be a diagonal matrix with elements � 0 � 85 � 0 � 9 � 0 � 95 � and Ð to be diagonal with elements � 3 � 3 � 3 � .
Thus the series are independent of one another. Examples of the artificial price series are shown in the top
panel of Figure 10.

Using the portfolio management system, we compare training to maximize the differential Sharpe ratio
and training to maximize profits. We find for a variety of transaction costs, that on average, training to
maximize the differential Sharpe ratio outperforms training to maximize profits.

5.2.2 Simulated Trading Results

Figure 10 shows a section of a single simulation of the portfolio management system. The trading system
starts from a random initial configuration and is then adapted to optimize the differential Sharpe ratio. The
transaction costs during this simulation are set at 0 � 5%.
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Figure 11 shows box plots summarizing test performances for ensembles of 100 experiments. In these
simulations, the trading system is initialized to a random starting condition and then adapted on-line throughout
the entire data set. The simulation ensembles include 10 different initializations for each of 10 different
realizations of the artificial price series. We vary the transaction costs from 0 � 2% � 0 � 5% to 1%, and observe
the trading frequency, cumulative profits and Sharpe ratio on the data set. The figures show that the behavior of
the portfolio management system is similar to that of the long/short trader in response to increasing transaction
cost. Also, as the middle panels of Figure 10 demonstrate, the portfolio system tends to saturate the portfolio
weights and take long/neutral positions in the individual securities.

Figure 12 compares training to maximize the differential Sharpe ratio (“Max.SR”) and training to maximize
cumulative profits (“Max.Profit”). Statistics are collected over an ensemble of 100 experiments as described
previously. We see that as the transactions costs increase, the “Max.SR” system actually outperforms the
“Max.Profit” system in terms of average final wealth. While both systems are attempting to maximize profit,
it appears that in these examples, concurrently minimizing risk can have tangible effects on actual as well as
risk-adjusted profits.

5.3 S&P 500 / TBill Asset Allocation System

5.3.1 Long/Short Asset Allocation System and Data

A long/short trading system is trained on monthly S&P 500 stock index and 3-month TBill data to maximize
the differential Sharpe ratio. The S&P 500 target series is the total return index computed by reinvesting
dividends. The S&P 500 indices with and without dividends reinvested are shown in Figure 13 along with
the 3-month treasury bill and S&P 500 dividend yields. The 84 input series include both financial and
macroeconomic data. All data are obtained from Citibase, and the macroeconomic series are lagged by one
month to reflect reporting delays.

A total of 45 years of monthly data are used, from January 1950 through December 1994. The first 20
years of data are used only for the initial training of the system. The test period is the 25 year period from
January 1970 through December 1994. The experimental results for the 25 year test period are true ex ante
simulated trading results.

For each year during 1970 through 1994, the system is trained on a moving window of the previous 20
years of data. For 1970, the system is initialized with random parameters. For the 24 subsequent years,
the previously learned parameters are used to initialize the training. In this way, the system is able to adapt
to changing market and economic conditions. Within the moving training window, the first 10 years are
used for stochastic optimization of system parameters, and the subsequent 10 years are used for validating
early stopping of training. The networks are linear, and are regularized using quadratic weight decay during
training with a regularization parameter of 0 � 01. For these experiments, our recurrent reinforcement learning
algorithm is employed to maximize the differential Sharpe ratio.

5.3.2 Experimental Results

Figure 14 shows results from 30 trial simulations for the S&P 500 and TBill asset allocation system during the
25 year out-of-sample test period. The transaction cost is set at 0.5%. Profits are reinvested during trading,
and multiplicative profits are used when calculating the wealth. The trading systems’ average performance
is compared with the S&P 500 buy and hold strategy in the top panel. The figure also shows results for
following the strategy of taking positions from a majority vote of the 30 trading systems.9

We see in Figure 14 that the trading systems go short the S&P 500 during critical periods, such as the oil
price shock of 1974, the tight money periods of the early 1980’s, the market correction of 1984 and the 1987
crash. This ability to take advantage of high treasury bill rates or to avoid periods of substantial stock market
loss is the major factor in the long term success of these trading models. One exception is that the trading
systems remain long during the 1991 stock market correction associated with the Persian Gulf war.

9Combinations of estimators generally outperform their component estimators (Granger & Newbold 1986, Winkler & Makridakis
1983, Clemen 1989).

17



To study the performance of the various strategies over time, Figure 15 shows the exponential moving
averages of the annualized returns and Sharpe ratios attained. A time constant of ±�) 1 b 24 is used to calculate
the moving averages. The trading systems achieve consistently higher annualized profits and Sharpe ratios
than the S&P 500 buy and hold strategy.

Figure 16 shows box plots summarizing the test performance for the full 25 year test period of the trading
system over 30 trials with various realizations of the initial system parameters. The notches in the box plots
indicate robust estimates of the 95% confidence intervals on the hypothesis that the median is equal to the
performance of the buy and hold strategy. The horizontal lines show the performance of the average, voting
and buy and hold strategies for the same test period. As can be seen in Figure 16, following the voting
strategy results in higher profit than the average performance of the individual traders, but a lower Sharpe ratio
value. The annualized monthly Sharpe ratios of the buy and hold strategy, the average strategy and the voting
strategy are 0.34, 0.84 and 0.83 respectively. The Sharpe ratios calculated here are for the excess returns of
the strategies over the 3-month treasury bill rate.

From these results we find the trading system outperforms the buy and hold strategy, as measured by
both accumulated wealth and Sharpe ratio, and is less risky, as measured by maximum drawdown. These
differences are statistically significant and support the proposition that there is predictability in the U.S. stock
and treasury bill markets during the 25 year period 1970 through 1994.

6 Conclusions

We have proposed and tested a methodology for training trading systems and portfolios by optimizing objective
functions that directly measure trading and investment performance. The performance functions that we
optimize include profit and wealth, economic utility functions, the Sharpe ratio, our proposed differential
Sharpe ratio, and other performance ratios.

Rather than basing a trading system on forecasts or training via a supervised learning algorithm using
labelled trading data, we train our systems using reinforcement learning algorithms. The trading and portfolio
management systems require prior decisions as input in order to properly take into account the effects of
transactions costs, market impact and taxes. This temporal dependence on system state requires the use of
recurrent learning algorithms. Hence, we train our systems using reinforcement versions of standard recurrent
learning algorithms.

Reinforcement learning algorithms find approximate solutions to stochastic dynamic programming prob-
lems and are able to do so on-line. Although it is possible to train the systems off-line using batch learning,
we favor on-line reinforcement learning, as it is more efficient computationally. The learning algorithms
we use are thus stochastic optimization methods. We utilize a simple but unique recurrent reinforcement
learning (RRL) algorithm based on real time recurrent learning (RTRL) that maximizes immediate rewards
in an on-line mode.

To enable on-line optimization of the Sharpe ratio, we have developed the differential Sharpe ratio.
This offers certain advantages relative to the standard Sharpe ratio in terms of ease of computation and
interpretability. We compare the form of the differential Sharpe ratio to the Bernoulli and power law
economic utility functions, and point out that the Sharpe ratio behaves like an adaptive (nonstationary) utility
function, in that it depends upon past experience.

The empirical results presented demonstrate the efficacy of several of our methods. For a long/short trader
of a single artificial price series, we find that maximizing the differential Sharpe ratio yields more consistent
results than maximizing profits, and that both methods outperform a trading system based on forecasts that
minimize MSE. For portfolios of three artificial price series, we find that ensembles of traders trained to
maximize the differential Sharpe ratio perform better than those trained to maximize profit. The Sharpe ratio
traders have smaller variations in portfolio weights and achieve higher risk-adjusted returns.

Our simulation results for the monthly S&P 500 / TBill asset allocation system demonstrate the existence
of predictable structure in U.S. stock and treasury bill market returns for the twenty-five year period 1970
through 1994. The accumulated profits, Sharpe ratios, and maximum drawdowns for an ensemble of 30
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trading systems are substantially better than for a buy and hold strategy with dividends reinvested. These
results are statistically significant.

The original presentation of our approach appears in Moody & Wu (1996) (1997). The results for the S&P
500 / TBill asset allocation system were first presented in Moody et al. (1998), along with a comparison of
Q-Learning (Watkins 1989, Watkins & Dayan 1992) to the RRL algorithm presented here. In that paper, we
show that our RRL algorithm provides more stable results and higher profits and Sharpe ratios than does the
Q-Learning algorithm for the 25 year out-of-sample period for the S&P 500 / TBill asset allocation system.
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Figure 1: A trading system based on forecasts. The system includes a forecast module with adjustable
parameters 	 followed by a trading module with parameters 	E� . Price forecasts for the target series are based
on a set of input variables. The forecast module is trained by varying 	 to minimize forecast error (typically
mean squared error), which is an intermediate quantity. A more direct approach would be to simultaneously
vary 	 and 	�� to maximize a measure of ultimate performance ���
	��$	E�\� , such as trading profits, utility or
risk-adjusted return. Note that the trading module typically does not make use of the inputs used by the
forecast module, resulting in a loss of information or a forecast bottleneck. Performance of such a system is
thus likely to be suboptimal.
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Figure 2: A trading system trained with labelled data. The system includes a trading module with parameters	 and a labelling procedure with parameters 	�� . Trades are based on a set of input variables. Target trades are
produced by the labelling procedure. The trading module is trained on the labelled trades using a supervised
learning approach to vary 	 . The ultimate performance of the system depends upon how good the labelling
algorithm is (as determined by 	�� ), and how well the trading module can learn to trade (by varying 	 ) using
the input variables and labelled trades. Since the ultimate measure of performance ���
	��$	 � � is not used to
optimize 	 directly, performance of such a system is thus likely to be suboptimal.
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Figure 3: A trading system based on recurrent reinforcement learning, the approach taken in this paper. The
system makes trading decisions directly based upon a set of input variables and the system state. A trading
performance function ���
	�� , such as profit, utility or risk-adjusted return, is used to directly optimize the
trading system parameters 	 using reinforcement learning. The system is recurrent; the feedback of system
state (current positions or portfolio weights) enables the trading system to learn to correctly incorporate
transactions costs into its trading decisions. In comparison to the systems in Figures 1 and 2, no intermediate
steps such as making forecasts or labelling desired trades are required.
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Figure 4: Artificial prices (top panel), trading signals (second panel), cumulative sums of profits (third panel)
and the moving average Sharpe ratio with ±T) 0 � 01 (bottom panel). The system performs poorly while
learning from scratch during the first 2000 time periods, but its performance remains good thereafter.
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Figure 5: An expanded view of the last thousand time periods of Figure 4. The exponential moving Sharpe
ratio has a forgetting time scale of 1 bc±q) 100 periods. A smaller ± would smooth the fluctuations out.
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Figure 6: Histograms of the price changes (top), trading profits per time period (middle) and Sharpe ratios
(bottom) for the simulation shown in Figure 4. The left column is for the first 5,000 time periods, and the
right column is for the last 5,000 time periods. The transient effects during the first 2000 time periods for the
real-time recurrent learning are evident in the lower left graph.
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Figure 7: Boxplots of trading frequency, cumulative sums of profits and Sharpe ratios vs transaction costs. The
results are obtained over 100 trials with various realizations of artificial data and initial system parameters.
Increased transaction costs reduce trading frequency, profits and Sharpe ratio, as expected. The trading
frequency is the percentage of the number of time periods during which trades occur. All figures are
computed on the last 9 Ö 000 points in the data set.
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Figure 9: Boxplots of trading frequencies,profits and Sharpe ratio of three kinds of trading systems,“Max.SR”,
“Max.Profit” and “Min.MSE”. The trading frequency is the percentage of the number of trades over the total
data points. Transaction cost is 0 × 5%. The results are obtained over 100 trials with various realizations of
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Figure 10: An expanded view of 2000 time periods from a simulation of the portfolio management system
with transaction costs = 0 × 5%. The top panel shows the three artificial price series used in the simulation.
The middle three panels show the corresponding portfolio weights chosen by the trading system at each time
step. Note that the smoothest price series is also the least invested in, and that the trading system is required
to be fully invested at all times. The bottom panel shows the cumulative wealth over this time period. The
trading system tripled its wealth during this time period even though the price series showed almost no net
gain during the period.
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Figure 11: Boxplots of the average percent change in the portfolio weights, cumulative profits and Sharpe
ratios vs transaction costs for the “Max.SR” portfolio management system. The results are obtained over
100 trials with various realizations of artificial data and initial system parameters. Increased transaction
costs reduce the amount of change in portfolio weights, profits and Sharpe ratio, as expected. The change in
portfolio weights reported here is the average of the time averages of the changes in each of the three portfolio
weights. All figures are computed on the last 9 Ö 000 points in the data set.
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Figure 12: Boxplots of the percent change in portfolio weights, the log base 10 of final profits and the Sharpe
ratios of the two trading systems, “Max.SR” and “Max.Profit”. The change in portfolio weights reported here
is the average of the average change of each of the three portfolio weights. Transaction costs are 0 × 2% Ö 0 × 5%
and 1%. The results are obtained over 100 trials with various realizations of artificial data and initial system
parameters.
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Figure 13: Time series that influence the return attainable by the S&P 500 / TBill asset allocation system.
The top panel shows the S&P 500 series with and without dividends reinvested. The bottom panel shows the
annualized monthly Treasury Bill and S&P 500 dividend yields.
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Figure 14: Equity curves and trading signals for the monthly S&P 500 / TBill asset allocation system
during the test period for 30 trial simulations with various realizations of the initial randomly-selected system
parameters. The top panel shows the cumulative wealth for the average of the 30 trading systems (solid
curve), the wealth from following the voting strategy (dashed curve) and the wealth from the buy and hold
strategy (dots and dashes). The second panel shows the voting trading position over 30 trials. The third panel
shows the average trading position taken by the 30 traders.
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Figure 15: Performance results of 30 trial simulations for the monthly S&P 500 data during the test period. The
top panel shows the exponential moving averages of annualized monthly returns for the voting trading system
(dashes), average trading system (solid) and the buy and hold strategy (dots and dashes). The bottom panel
shows the exponential moving average Sharpe ratios for the same strategies. A forgetting factor Ø+Ù 1 Ú 24 is
used to calculate the moving averages.
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Figure 16: Performance statistics for the S&P 500 / TBill asset allocation system. The boxplots show the
percentage increase of wealth, annualized monthly Sharpe ratios of nominal returns, annualized monthly
Sharpe ratios of excess returns over the three month treasury bill rate and maximum drawdown of the
“Max.SR” trading system. The results are for the monthly S&P 500 series (with dividends reinvested) and
monthly TBill series for the test period of January 1970 through December 1994. The results are obtained
over 30 trials with various realizations of the initial randomly-selected system parameters. The horizontal
lines show the performance of the average strategy (solid line), the voting strategy (dashed line) and the S&P
500 buy and hold strategy (dots and dashes) for the same test period. The notches in the box plots indicate
robust estimates of the 95% confidence intervals on the hypothesis that the median is equal to the performance
of the buy and hold strategy. The differences in performance between the ensemble of trading systems and
the buy and hold strategy are statistically significant, and demonstrate the presence of predictable structure in
the U.S. stock and treasury bill markets during the 1970 through 1994 test period.
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