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Abstract Efficient management of mobile resources from an energyppetise in
modern smart-phones is paramount nowadays. Today's muitiilees are equipped
with a wide range of sensing, computational, storage andmamtation resources.
The diverse range of sensors such as microphones, camecaterameters, gy-
roscopes, GPS, digital compass and proximity sensors atiobile apps to be
context-aware whereas the ability to have connectivityosineverywhere has boot-
strapped the birth of rich and interactive mobile applmasi and the integration of
cloud services. However, the intense use of those resocaresasily be translated
into power-hungry applications. The way users interachwheir mobile handsets
and the availability of mobile resources is context depahdeonsequently, under-
standing how users interact with their applications andgrdating context-aware
resources management techniques in the core features dfikeroperating system
can provide benefits such as energy savings and usability. ChHapter describes
how context drives the way users interact with their hargdaet how it determines
the availability and state of hardware resources in ordegpdain different context-
aware resources management systems and the differenpetenincorporate this
feature in mobile operating systems.

1 Introduction

Lithium-ion battery technologies have not experiencedghmme evolution as the
rest of hardware components in mobile handsets. The bai#gacity is limited by
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design factors such as size and weight, thus the only atteeriaft at the moment to
extend their battery life is reducing the power consumpditthe hardware level and
designing more energy efficient applications and operatirsgems. However, de-
spite the recent achievements in improving the energy effasi by both hardware
and software vendors, mobile handsets still suffer froneegnergy limitations. As
the consumption of energy can be attributed to the use atpkat hardware com-
ponents (mainly sensors, displays and wireless interfatieeye is a clear need to
discover new ways of reducing the use of such component®utitompromising
the user experience and services delivered by mobile aiglits.

Generally, there’s a energy-usability trade-off when ngamg networking and
sensing resources in mobile systems. Typical softwareggnsaving techniques
aim at keeping hardware resources in low power mode for ag &mnpossible.
However, transitions between power modes can imply an gneogt depending
on the power features of the resource. As an example, celhtierfaces present
three power modes: DCH (Dedicated Channel) FACH (Forwarde8s Channel,
an intermediate power mode popularly known“tsl-energy”) and IDLE. In the
case of WCDMA technologies, a large fraction of energy is ae$h these inter-
mediate but still high-power states after the completioa tfpical transfer in case
there is going to be an immediate transmission once thertuoree is finished in
order to improve the user experience in cellular network& $M technologies, the
time spent in the FACH state is much smaller compared to 3G.(6%secs) [1]. In
fact, these transitions are typically related to appl@airunning on the device and
the interaction patterns of the user [2] [3].

On the other hand, the quality of resources such as cellatararks can vary de-
pending on the location, time of the day and even season gkine[4]. Users tend
to run a specific set of application (and consequently, tlregss an specific set of
hardware resources) depending on the social or persomatyattey are perform-
ing. Consequently, this dependency has implications irettexgy consumption of
the handset since both the state of resources and the wayios=act with their
handsets and applications are social and context-deperfkean example, a mo-
bile user can experience frequent periods of network blaiskim certain locations
(specially when moving) so launching a network-intensesgidtreaming applica-
tion in these situations might not be the best idea.

Incorporating contextual information and energy-awassres a key feature of
mobile operating systems has been barely explored despi@odrmous potential.
In this chapter, we will show how mobile operating systems egploit contextual
information to adapt the system to the environment and tbeestseeds in order to
extend the battery life of the handset without compromishregusers’ experience.
In other words, the operating system can learn from usetesantion and mobil-
ity patterns to know what kind of resource is likely to be deahed by the user
at an specific context and the state of these resources. tiors@€cwe will show
how users interaction is driven by context while section @&%cribes the depen-
dency of resources availability (e.g. wireless interfaged location sensors) with
context. Finally, section 4 describes two ongoing projé¢ictd are trying to incor-
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porate context-aware features at the operating systerhtleveanage resources:
CondOS [5] and ErdOS [6].

2 Areusers interaction with their handsets driven by context?

Several studies have tried to explore the impact of conadxifiormation on mo-
bile systems. As an exampleiveLabis an event-based resources logger for jail
broken iPhone devices used to measure real-world smarplsage and wireless
networks [7]. Despite the fact that the results obtainedatestatistically represen-
tative, they indicate that both users’ interaction with tleice and the state of the
resources depend on contextual factors such as time ane [§jac

Vallina-Rodriguezt al.performed a study using a background application to col-
lect traces directly from 18 mature Android users during 2kge[2]. The dataset
contains contextual information and more than 25 state aade statistics from
multiple resources and applications, sampled every 10nskscd his analysis uses
machine learning techniques to understand the dependeheigveen resources
caused by users interaction and both spatial and temporehdoThe paper demon-
strates that energy demand and resource availability depearmously on each
participant’s pattern of usage both in terms of which aians they ran and when
and where they were doing so. This interaction can be verghiarand dynamic
both in time and space.

Spatial context affects how users interact with their hatglsFigure 1 shows
three scatterplots of the average percentage of daily usfabe 3G interface, tele-
phony and the screen versus its standard deviation whilesées are subscribed to
their three most popular cells. Useagd, U5, U8, U9, U14 andU18 have a strong
routine due to their low variance and are quite likely to iat¢ with certain re-
sources in those locations. These users present a moretatddiinteraction pat-
tern than other users who are likely to interact with thesorgces in non-frequent
location and in transitions between them (e.g. while conimgit

However, temporal context also provides useful hints albow resources are
used. Figure 2 plots the average usage and availabilityffefeint mobile resources
such as battery, telephony, network, screen and CPU forgers yer hour of day.
Each one of the x-axis bins represent an hour of the day armbtber indicates their
averaged value during duration of the experiment. Thesdtsa®veal that battery
usage, charging opportunities and power limitations aflédedined for some indi-
viduals in the temporal domain while others are more randeémn.instance, users
such adJ2 andU5) and yet others present a much burstier pattern for speeHic r
sources.

While most resources available in mobile handsets can beveszd and re-
allocated once used by a process, energy can be only redovben the user man-
ually charges the handset. As a consequence, an energg-aparating system
must be able to estimate when energy will be consumed, hovh riergy will be
available and when it will be recovered by predicting futah@rging opportunities



4 Narseo Vallina-Rodriguez and Jon Crowcroft

Percentage of daily cellular traffic while Percentage of daily phone calls while Percentage of daily interaction with the handsets while
subscribed at the most popular cells subscribed at the most popular cells subscribed at the most popular cells
50| LessprevcTase /| 50 Less prepicTanLe /803 50} Less prRepicTABLE
Gion / . REGION 2 . REGION
. i ¢ J® ey W,
40 ‘ ) 40 ! , 40 /
= . o8 = wr ) 3 2 S
%} g Jouss ¥13 - o8 g $16
Y = / , Y
&30 / & 30 / T & 30 euls
[ vy v @ S 0 ue & R e
20| ST U1 20| e U9 20| S
S ’ U
s 14
0 o 7 ey ) or MORE PREDICTABLE oS R
ui . o il S Heaion £ REGion
«
Y6
20 80 100 0 20 80 100 0 20 80 100

0 60 40 60 0 6
Mean (%) Mean (%) Mean (%)

Fig. 1: User classification by their percentage of the usage/interagfith the 3G interface, tele-

phony service and screen while subscribed at the most common dedlg (b be users’ workplace

and home). The axis represents the daily average usage ang dxés the standard deviation. This
information can be used to identify the places where the enssggumption will be higher and

also to infer the predictability of the user interaction anel skate of a resource.
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Fig. 2: Average usage and availability of different mobile resourcesubersUl to U10 per
hour of day. As in Figure 1, this information can be used to ifigpeaks of usage and temporal
patterns on those resources.

and their uncertainty. Charging actions are in fact contiediendent and relatively
predictable. Oliver [9] used classification methods to tdgithree distinct types of
charging patterns among a large dataset of 17.300 Blagkhsers. Those clusters
are defined a%pportunistic chargers’, “light-consumers”and“nigh time charg-
ers”. In their results, they evaluated that it is possible to jutetie energy level on
a mobile handset within 7% error within an hour and within 28tor within 24

hours.
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Figure 3 shows theorrelogramsor autocorrelation plotof the battery capacity
and the CPU load for three users for a 7 day lag. Note that @lognam is a plot
of the sample autocorrelations versus the time lags. Thid &f analysis helps to
identify randomness and periodicities in a dataset. Theetmgram clearly reveals
that U3 presents a clear charging periodicity of 24 hours approtéipavhile U8
does not have such a marked routine. However, those resgiitly llepend on the
resource analysed. As we can observe, the CPU load is notpeat all indicating
that CPU load might be more difficult to predict than batteagacity. This confirms
that an efficient resources management technique must beersteic and must try
to identify the randomness, patterns and predictabilitgaxfh individual user and
device.
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Fig. 3: Correlogram for the CPU load and the battery capacity foraidér U3 andU8 during
a period of 7 days. The battery capacity correlogram showsa plttern and a periodicity on
the energy consumption and recharging cycle every 24 hoursxpmately while the CPU load is
highly random.

Nevertheless, Banerjest al. in [10] claim that, despite the fact that there is a
great variation among users, most of recharges happen Wadattery has substan-
tial energy left and a considerable portion of the rechaageslriven by context (e.qg.
location and time). In a similar way, Raeft al. proposed a system for context-aware
battery management that warns the mobile user when it dedegower limitation
before the next charging opportunity is going to happen.[Thijs stops the system
from compromising the execution and performance of cruaglications and ser-
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vices such as telephony and messaging by non-crucial ohéssystem uses the
current set of applications running, the battery dischmaygaté and phone call logs
as inputs of their forecasting algorithms. The resultsdat# that their algorithm
can predict battery consumption and charging opportunii@y for users with a
low usage entropy. The main difficulty is predicting phonéscbecause of their
dependency of the almost unpredictable social factors lamdariability of calling
patterns between weekends and weekdays.

As a conclusion, contextual information can be used to wstded how mobile
users interact with their devices. This can enable innesatiays to manage re-
sources as we will see in the following sections. Howevergthtropy of users’ inter-
action patterns and habits require identifying new techeso efficiently leverage
this information without impacting negatively on the useperience. The operating
system can infer which applications are likely to be exetigthe user at a given
context and which resources might be required by them. Asutreéhe operating
system can proactively pre-load these applications anthedtardware resources
that will be required by them in the right power mode whileting off (or setting in
low-power modes) those hardware components and applsatiat are not likely
to be accessed.

3 Context-aided mobile resour ce management

In addition to users’ interaction patterns with mobile hsetd, the state and avail-
ability of mobile resources depend on contextual aspeuts.clear examples are:

e GPS The number of visible satellites by the receiver affecesttime to fix their
location from thecold-start? phase and its accuracy. However, satellites are con-
stantly moving in their orbits, the number of satellitesiblis for the receiver
depends on time of day and the day [13]. Other aspects sudflestions and
radio obstacles also affect the time required by the receiftbus the energy
required) to fix their location. Nevertheless, in the casagsisted-GPS, chips
can vary depending on the availability of a cellular netwtwkquickly access
the ephemeris of the satellites [14] thus reducing conaldgrthe time to fix the
location.

e Cellular interfacesThe energy consumption of cellular interfaces and theat-qu
ity of service depend on the receiving signal strength ofréitko link [15]. As
the signal-to-noise ratidSNR) increases, more retransmissions at the link layer

1 Battery discharging rate might arguably not be the best inditatmeasure energy consumption

in mobile handsets. This signal is very noisy since it depends aiwiaae and users’ habits and
requires complex methods to be properly calibrated [12]

2 |f the GPS chip has not been used in a long time, theriTthvee To First Fix(TTFF) can be
longer because it needs to download the satellites ephemerislmanac before it can make the
calculations. Usually, the GPS-receiver also needs 4 sasdilitaccurately fix its location. This is
usually referred to asold start In cases when the chip was recently used (in the order of minutes
or even few hours), the time to fix would be even faster {@&m startandhot startphases).
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are required and therefore, more energy is consumed. As weeaa in Fig-
ure 4, co-located nodes present different network coveandeuality depending
on the location and the mobile operator. The signal streisgitn fact, context-
dependent. As any radio technology, the quality of the liak be affected by
other aspects such as provider’s network deployment, whdkte node is in-
doors or outdoors, node’s mobility, radio obstacles andraderferences [16].

3.1 Wirdlessinterfaces

Mobile handsets present different wireless interfacesrdmage from cellular net-
works such as GPRS to LTE and IEEE 802.11 (i.e. WiFi) techgiek The key
differentiators between these interfaces are their avisithhand their power states.
The operating system could switch the type of network dejmgnoh which service
is being requested by the user and the applications. The ®Setact the optimal
link for a wireless communication taking into account thergy-delay trade-off
and applications requirements [1], [17], [18]. As a restllg system can adapt to
channel conditions by leveraging contextual [19], local &istoric information to
decide whether and when it must defer a transmission in dodgave energy.

As we can see in network coverage maps collected by crowdisgumeans
such asOpenSignalMag20], the network availability and quality depend on lo-
cation.3GTest[21] is a cross-platform application that checks the stditeetiu-
lar networks and the performance of network-based appitsit The traces from
30.000 mobile users all over the world confirm the impact oftertual aspects on
the performance of cellular networks. Network propertiaa gary depending on
the time-of-day and location for a specific operator, as &iaal. [22] had also pre-
viously demonstrated for a more geographically limitediemment such as Hong
Kong. A detailed knowledge of the network properties cam helidentify bottle-
necks in wireless network and also performance limitatems bugs in hardware,
operating system and popular network-centric applicatiom fact, the latency of
the radio link depends on the current power state of the @gsemachine. Based on
historic data, the operating system can seamlessly enableéng mechanisms to
applications accessing wireless interfaces and also stipgadraffic shaping tech-
nigues to adapt the applications’ traffic to the conditiohthe wireless interface at
a given location.

On the other hand, the availability of WiFi access pointse@uced to specific
locations as we can see for London city center (UK) in FigurkekEE 802.11 net-
works usually present a lower latency than cellular netwddt transmitting data
but they present a higher cost when the device is assoctatithg access point. As
a consequence, reducing the energy cost of scanning anciasgpto the access
point is essential. Because of this reason, most of the wateksribed in this section
try to leverage contextual information to smartly wake ue WNiFi interface from
sleep mode when it is likely to have an access point.
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(a) Operator 1 (b) Operator 2

Fig. 4: Signal strength perceived by two identical co-located hasdseseveral locations in west
and centre of Cambridge (UK) with different network operatdrighter points indicate better
signal strength.
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Fig. 5: Open IEEE 802.11g Access Points in London city center (UKpgShot obtained from
WiFi Map UK [23]

The operating system can adapt the AP’s discovery enqudriesnimise the en-
ergy consumption while maximising the chances of havingeativity. The works
by Agarwaet al[24] andBlue-Fi[25] are two good examples to illustrate this claim.
These papers describe how to save energy by exploiting o#iseurces such as
Bluetooth radios and contextual information to serve asgangechannel for IEEE
802.11 technologies. The results show that it is possibleat@ between 23% to
48% of energy compared to the present IEEE 802.11 standanctipy modes
with negligible impact on performance. The system can pteghen there will be
Wi-Fi connectivity by combining contextual information taimed from Bluetooth
scans contact-patterns and cell-tower information. LikeyContext-for-wirelesss
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a context-aware intelligent switching algorithm betweeifrMand cellular networks

to reduce the energy consumption substantially [2@jntext-for-wirelesgeverages

contextual information such as time, historic data, catlluetwork conditions and
mobility to formulate the selection of wireless interfacesa statistical decision
problem and to predict future network conditions.

3.2 Location Sensors

Mobile applications tend to become context-aware. By simgbking at the ap-
plications market of mobile platforms such Asdroid andiPhone it is possible
to find a large number of context-aware applications andilmecaaware online ser-
vices such assoogle Mapsand Foursquare[27]. Applications often need location
data to update locally relevant information, to provide evise requested by the
user and also to find nearby friends and places of interest.

Modern smartphones include different types of locatiorseenwith different
resolution and energy demands such as cellular networddblasation providers,
WiFi-based, A-GPS (Assisted-GPS), gyroscopes and compa&sslocation tech-
niques are being investigated such as audio fingerprinjsg@fhal-strenght finger-
prints [29]. and geo-magnetism fingerprints [30]. Othewsohs leverage phone
sensors, audio beaconing infrastructures and opporitiniser-intersection (in
space-time) to develop an electronic escort service fatadllike routing pack-
ets in Delay-Tolerant Networks (DTNs) [31]. All these teologies are mainly fo-
cused on providing more efficient indoor localisation. Hearemost context-aware
applications are based on standard sensors. They usuziily p-GPS over its alter-
natives (e.g. network-based location providers sucBlatool32] andLocation-
api [19]) because of its accuracy despite its higher energy. @sdtular network
based location services present a mean error in the ordedQwh Ican be in the
order of several km) and, given a location they can repofedint locations be-
cause of radio link changes. As a consequence, the researchunity tried to find
solutions to save energy when accessing location infoomatiithout sacrificing
accuracy. [33] describes four alternative techniques t& Géhsing to reduce the
energy consumption:

e Substitution and Suppression makes use of alternative location-sensing mech-
anisms (e.g. network-based location sensing or combinediuaccelerometers
and compass) that consumes less power than GPS. Substitietiddes when
to use more energy-efficient sensors instead of more ergasyy ones such as
GPS. As a consequence, the system can automatically dedheasnergy con-
sumption of mobile sensing applications. On the other hamplpression utilises
less power-intensive sensors. As an example, it is possiliee accelerometers
to suppress unnecessary GPS sensing if the user is static.
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e Piggybacking synchronises the location sensing requests from multipiaing
location-based applicatiohs

e Adaption adjusts sensing parameters such as time and distance depend
the remaining battery capacity. This technique tries toffiadristics to adapt the
sampling rate without sacrificing accuracy.

e Probabilistic Models. Some methodologies rely on probabilistic models of
users’ location to infer future locations to reduce the nandf sensing reads.

Continuous location-sensing can be very costly in termsnef@y. Several re-
search projects tried to combine in a different way thoskrtepies, mainly looking
at the energy-accuracy tradeoff as it is summarised in Teble

Sensor-based optimisations

Sensors Used

Name GPS Accel. GSM Piggybacking Probabilistiddaptation
Models

EnLoc
A-Loc
EnTracked
RAPS
Zhuang

Caps

LaN AR

NN
Lan Al
A N NN
ENENEN

Table 1: Location sensing optimisations. Most of the works aimt to tackletminuous location
sensing challenge by combining different techniques. Thithlghlights the different method-
ologies used by each one of the solutions and the sensors thesirge u

EnLoc[35] provides a location sensing adaptive framework thati@ts mo-
bility patterns of the user and decides which sensor to usedéanto account
the accuracy-energy trade-off of the different locationssgs available in mobile
phones. The authors take advantage of udavgical Mobility Tree(LMT). This
model allows sampling at a few uncertainty points which maysubfficient for pre-
dicting future locations. EnLoc utilises dynamic programgnto find the optimal
localisation accuracy for a given energy budget: it decideish localisation sensor
will be the best one for a given scenario and energy budget.

Similarly, EnTracked36] estimates and predicts the system state and mobility

of the user* to schedule position updates in order to minimise the powasaemp-
tion while optimising robustnesEnTrackeduses the GPS-estimated uncertainty to

3 The energy consumption becomes even more significant if multigibcations are requesting
location reads independently. [33]is the only one thatiapphis technique. Android OScation
Providersfollow a similar philosophy [34]

4 The system only supports pedestrians as possible movement model anacoskerometer to
infer users’ mobility
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quickly schedule a new measurement if a potential bad meamnt is performed.
Other solutions exploit Hidden Markov Models to predict thebility of the users
and they also take advantage of Bluetooth scans to idetdific Scenarios based on
devices in the same location [37]. A more sophisticatediorrsf the system was
recently proposed in [38]. In this case, they use sensots asicadio fingerprints,
accelerometer and compass with the collaboration of a s&rwestimate the time
to sleep of the GPS receiver before the next positioningisgns

A-Loc[39] incorporates probabilistic models of user locatiod aensor errors.
It was implemented as a middleware solution for Android desiwhich requires
applications’ collaboration. A-Loc selects the most egezfjicient sensor to meet
applications accuracy requirements which must be eithesiBed explicitly by ap-
plications or automatically by the system. The system usegtobabilistic models
to choose among different localisation methods and tureesrikrgy expenditure to
dynamically meet the error requirements.

Other systems such &APS(Rate adaptive GPS-based positioning for smart-
phones) [40] take inspiration from the observation that @&&iracy in urban areas
can be poor due to moving objects, trees’ shade and buildifigctions. To solve
this issue, RAPS uses location-time history of the user tonase user velocity
and adaptively turn on GPS in case the estimated uncertaithe prediction ex-
ceeds the accuracy threshold. RAPS presents three diffeppnoaches: it allows
synchronising GPS readings between neighbouring mobilieeketo reduce power
consumption, it blocks GPS reads when the user is subsdidbeellular base sta-
tions where it is unlikely to get a GPS read (e.g. an area wihereiser is usually
indoors) and it exploits accelerometer data to estimateugdecity. It also proposes
sharing position readings among nearby devices using @tiein order to further
reduce GPS activation. However, RAPS is mainly designegédestrian use, and
a significant portion of the energy savings come from avgi&@#S activation when
it is likely to be unavailable. The authors recently progbsewer approaches such
as [41]. In this case, they try to combine the accuracy andggrmomplementary
features of GPS and network-based solution. This papeisisthan the observation
that users exhibit consistency in their everyday routeginigaa sequence of Cell-
IDs. The system can provide an accurate estimation of usesision by monitoring
the cell-ID transitions and using a history of GPS readingmined within a cell.
They use the Smith-Waterman algorithm for sequence majdbétween similar
historic data. They look for a sub-sequence in the datalteentatches and they
pick up the sequence that matches the best and they turn ONVG&Sthere is no
good matching. However, such system has the limitation bbeong able to detect
small detours in common routes.

4 Context-aware mobile operating systems

In previous sections we have seen that the most commonlyhaedvare compo-
nents by applications in mobile phones are context-dep#rideéerms of availabil-
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ity, energy cost as also users’ interaction patterns. @umebile operating systems
are also multitasking. By executirgs in the terminal of an Android handset we
can identify more than 60 processes running simultaneolMsyy of these pro-
cesses are context-aware and they are accessing sharattesssuch as sensors
and wireless interfaces. However, battery capacity istelmain limitation in mo-
bile systems and, as a consequence, mobile devices anetlikekperience power
limitations at any time depending on how intensely the uggeract with them.
Two mobile operating systems already aim to leverage ctuéxnformation to
prolong the battery life on mobile handsets: CondOS [5] artES [6].

CondOS has been conceived after observing that contexeaess is already
a reality in modern mobile platforms and applications. Meliandsets support a
diverse range of sensing hardware and they are capable @ftsm@the algorithms
required to process raw sensed data. However, the way ¢oatérformation is
generated and provided to applications can be more effibieimtegrating context-
aware resources management techniques in the operatitggsydf applications
manage and generate their own context independently, therpmnsumption can
increase. It is necessary to provide a central content geovthat coordinates all
the context requests and the operating system is the righéefdbr that. They con-
sider that raw-sensed data must be converted‘ountextual data units”(CDUS)
by the operating system. A CDU is defined as a higher level alas&raction com-
pared to the current contextual data provided by modern legiatforms. Those
objects contain a unit of meaningful context data to appbca such asvalkingor
commuting. The authors also list the potential benefits that can beeeeti with a
context-aware OS:

e Memory Managemen#ctions such asrunning” and“walking” may suggest
the user to load a music player or a workout app. On the otlret, fections such
as“driving” may suggest loading a navigator. The operating system esmose
users’ interacted previously with applications in ordepto-load them and set
the hardware resources in the right power mode to improvaskeexperience.

e Scheduling Context information can help to schedule processes winiliging
the impact on battery life and user experience. CondOS stggleat context
can directly influence process priorities based on the Upezferences and the
applications that are likely to be executed at a given locati

e 1/0O. Contextual data can help to adapt naotifications such asiriggng mecha-
nism or the appropriate input method to the situation (eoicessearch features
might be useful while the user is walking but they might note best choice
in a noisy environments or in the opera). The operating systen also adapt
manage wireless interfaces aided with contextual infoilonats we have already
seen in Section 3.1.

e Security Security can be adapted to the location. For example, ibgcaquire-
ments can be relaxed at home, enabling interaction andnghdaita with other
devices in the home network. On the other hand, in publicgddbe security
policies can be more rigid in order to reduce the potentialisty and privacy
risks.
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e Energy savingsAs we have seen in the previous sections, mobile operagsg s
tems can predict future charging opportunities from catt@xinformation. The
operating system can manage applications and resourcesén to meet the
energy goals that users’ interaction might impose. Moredvaving a central
source of contextual information can potentially save gynday reducing the
number of requests to the hardware resource. Applicatianscollaborate and
share interests on resources in a similar fashion as Andd&ddoes with its
“location providers” [34].

Mobile operating systems need to make efficient and autonenatlocation
decisions whilst maximising the users experience. So#veould guarantee en-
ergy efficiency in addition to the traditional OS perspezinf maximising perfor-
mance [42]. Recently, energy-aware operating systenacsdtt the attention of the
research community again with mobile operating systembk ascCinder [43] and
ErdOS [6]. However, those two projects follow different lpsbphies about how
energy management should be performed, and by whom.

Cinder follows the philosophy of ECOSystem [44] and Odydg&}. They try
to leverage the interaction between applications and tipgraystem without nec-
essarily being context-aware. In the case of Odyssey,@gijuns adapt to the avail-
able energy and resources to provide different quality ofise to the users in
runtime while ECOSystem fairly allocates energy sharestttipte hardware com-
ponents and application&inder [43] allocates energy to applications using two
abstractions callegeserveandtapsto form a graph of resource consumption. When
an application consumes a resource, the Cinder kernel esdhe right values in
the corresponding reserve and its scheduler only allovesatty to run if they have
enough reserves to run. The rate at which the reserves arg bensumed is con-
trolled by thetaps(a special-purpose thread whose only job is to transfeggriss-
tween reserves at proportional or constant rates). Oncpgitation has consumed
all its reserves, the kernel prevents its threads to perfoome actions. Nevertheless,
Cinder allowsreserve debitbetween tasks for performing additional actions. Note
that most of the modern mobile OSs usually give priority teefound processes
over the rest of the apps and non-system background praciesseler to improve
the user experience and also to prolong the battery life.

A different approach is followed bgrdOS[6]. This operating systefrdoes not
require interaction and communication means between @gifgns and OS. It is
completely seamless to applications. ErdOS also levereg@extual information
to manage resources efficiently customised for each us#@&mwas motivated by
the observation that resources’ state (e.g. GPS and aefiatworks) and the us-
age patterns and habits of mobile users are diverse andyrightext-dependent.
As mobile systems present energy peaks caused by periodghahkeraction from
the users, managing and allocating computing resourcgsplations proactively
based on predictions of the resources state and the usengindis is more flexi-
ble and efficient than algorithmic resources managemerdrder to support this
feature, ErdOS monitors resources state, applicatiomsires demands and users’

5 ErdOS is conceived as an Android OS extension
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interaction patterns with applications. It learns fromrsSkeehaviour and habits (de-
fined as thausers’ activityabstraction) to predict the future resources demands and
the resources availability in an event-based fashion.dh tesers generally remain
subscribed to a small set of base stations and the majorityterfaction with their
resources or applications takes place there. ErdOS buildsation-based model

of resources usage and resources demands per locationeintorgdredict power
limitations and peaks of energy consumption. Such a modghtielp to detect
malware and buggy applications by identifying situatiorfeve resources demand
are out of the norm.

Additionally, the authors consider that computation sHoubt be exclusively
limited to local resources. Accessing resources in neigtibg handsets oppor-
tunistically can be beneficial both in terms of energy andilisaby enabling ac-
cess to resources that have the right power mode [46]. Byidensg the social
activity of mobile phone users, we can see that large patadra user’s daily life
are spent in close proximity of other mobile phone users @éthices that incor-
porate similar hardware resources. Indeed, if we considenanuter travelling by
bus and using a location-based service on her mobile phioais is a high proba-
bility that a significant number of co-commuters are alsmgsheir phone’'s GPS
and cellular networks to interact with similar servicesdiibnally, in social events
such as music concerts or sport events, large numbers aiceted users may use
their phone to access the internet simultaneously. Thiblesanore opportunities
for sharing resources opportunistically and, as a consegyenore opportunities to
reduce the energy consumption. As a consequence, Erd@Sdraxploit this op-
portunity for improving the energy efficiency of mobile pleonsage while making
acceptable compromises in the QoS, by trying to aggreghtee sand coordinate
resources of multiple users at close proximity. Nevertdgleontextual information
can play an important role in making ErdOS even more enefigyeit by allowing
the system to adapt the resources discovery enquiries angfitacy and security
policies to the probability of discovering devices at a gil@cation.

5 Summary

Mobile handsets are power-hungry devices because of tegratton of power-

hungry hardware resources such as touchscreen display$oeaiibn sensors.
Moreover, they support Internet data services anytime dsijranywhere so they
are always connected to the network. All those resourcetstrap a rich ecosys-
tem of mobile applications but their design is clearly dnivgy usability factors

rather than energy efficiency. However, managing mobileuees from an energy-
efficient perspective without diminishing the user expeeeis clearly one of the
most challenging problems in mobile computing nowadaysvdPananagement
considerations often require certain actions to be dedeaeoided or slowed down
to prolong battery life. In this chapter, we have seen thatedual information can
be a useful source of data to manage hardware resources fiiciengy in mobile
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systems. It can allow the operating system to dynamicaéglict the power states of
the hardware components and applications behaviour aea ¢fr¢ation. However,
those techniques can impact on the user experience withatmgskts and there is
still an important work to be done in this space.
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