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Abstract Efficient management of mobile resources from an energy perspective in
modern smart-phones is paramount nowadays. Today’s mobilephones are equipped
with a wide range of sensing, computational, storage and communication resources.
The diverse range of sensors such as microphones, cameras, accelerometers, gy-
roscopes, GPS, digital compass and proximity sensors allowmobile apps to be
context-aware whereas the ability to have connectivity almost everywhere has boot-
strapped the birth of rich and interactive mobile applications and the integration of
cloud services. However, the intense use of those resourcescan easily be translated
into power-hungry applications. The way users interact with their mobile handsets
and the availability of mobile resources is context dependent. Consequently, under-
standing how users interact with their applications and integrating context-aware
resources management techniques in the core features of a mobile operating system
can provide benefits such as energy savings and usability. This chapter describes
how context drives the way users interact with their handsets and how it determines
the availability and state of hardware resources in order toexplain different context-
aware resources management systems and the different attempts to incorporate this
feature in mobile operating systems.

1 Introduction

Lithium-ion battery technologies have not experienced thesame evolution as the
rest of hardware components in mobile handsets. The batterycapacity is limited by
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design factors such as size and weight, thus the only alternative left at the moment to
extend their battery life is reducing the power consumptionat the hardware level and
designing more energy efficient applications and operatingsystems. However, de-
spite the recent achievements in improving the energy efficiency by both hardware
and software vendors, mobile handsets still suffer from severe energy limitations. As
the consumption of energy can be attributed to the use of particular hardware com-
ponents (mainly sensors, displays and wireless interfaces), there is a clear need to
discover new ways of reducing the use of such components without compromising
the user experience and services delivered by mobile applications.

Generally, there’s a energy-usability trade-off when managing networking and
sensing resources in mobile systems. Typical software energy saving techniques
aim at keeping hardware resources in low power mode for as long as possible.
However, transitions between power modes can imply an energy cost depending
on the power features of the resource. As an example, cellular interfaces present
three power modes: DCH (Dedicated Channel) FACH (Forward Access Channel,
an intermediate power mode popularly known as“tail-energy” ) and IDLE. In the
case of WCDMA technologies, a large fraction of energy is wasted in these inter-
mediate but still high-power states after the completion ofa typical transfer in case
there is going to be an immediate transmission once the current one is finished in
order to improve the user experience in cellular networks. In GSM technologies, the
time spent in the FACH state is much smaller compared to 3G (6 vs. 12 secs) [1]. In
fact, these transitions are typically related to applications running on the device and
the interaction patterns of the user [2] [3].

On the other hand, the quality of resources such as cellular networks can vary de-
pending on the location, time of the day and even season of theyear [4]. Users tend
to run a specific set of application (and consequently, they access an specific set of
hardware resources) depending on the social or personal activity they are perform-
ing. Consequently, this dependency has implications in theenergy consumption of
the handset since both the state of resources and the way users interact with their
handsets and applications are social and context-dependent. As an example, a mo-
bile user can experience frequent periods of network blackouts in certain locations
(specially when moving) so launching a network-intense video streaming applica-
tion in these situations might not be the best idea.

Incorporating contextual information and energy-awareness as a key feature of
mobile operating systems has been barely explored despite its enormous potential.
In this chapter, we will show how mobile operating systems can exploit contextual
information to adapt the system to the environment and the users’ needs in order to
extend the battery life of the handset without compromisingthe users’ experience.
In other words, the operating system can learn from user’s interaction and mobil-
ity patterns to know what kind of resource is likely to be demanded by the user
at an specific context and the state of these resources. In section 2 we will show
how users interaction is driven by context while section 3.1describes the depen-
dency of resources availability (e.g. wireless interfacesand location sensors) with
context. Finally, section 4 describes two ongoing projectsthat are trying to incor-
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porate context-aware features at the operating system level to manage resources:
CondOS [5] and ErdOS [6].

2 Are users’ interaction with their handsets driven by context?

Several studies have tried to explore the impact of contextual information on mo-
bile systems. As an example,LiveLab is an event-based resources logger for jail
broken iPhone devices used to measure real-world smartphone usage and wireless
networks [7]. Despite the fact that the results obtained arenot statistically represen-
tative, they indicate that both users’ interaction with thedevice and the state of the
resources depend on contextual factors such as time and space [8].

Vallina-Rodriguezet al.performed a study using a background application to col-
lect traces directly from 18 mature Android users during 2 weeks [2]. The dataset
contains contextual information and more than 25 state and usage statistics from
multiple resources and applications, sampled every 10 seconds. This analysis uses
machine learning techniques to understand the dependencies between resources
caused by users interaction and both spatial and temporal context. The paper demon-
strates that energy demand and resource availability depend enormously on each
participant’s pattern of usage both in terms of which applications they ran and when
and where they were doing so. This interaction can be very variable and dynamic
both in time and space.

Spatial context affects how users interact with their handsets. Figure 1 shows
three scatterplots of the average percentage of daily usageof the 3G interface, tele-
phony and the screen versus its standard deviation while theusers are subscribed to
their three most popular cells. UsersU1, U5, U8, U9, U14 andU18 have a strong
routine due to their low variance and are quite likely to interact with certain re-
sources in those locations. These users present a more predictable interaction pat-
tern than other users who are likely to interact with their resources in non-frequent
location and in transitions between them (e.g. while commuting).

However, temporal context also provides useful hints abouthow resources are
used. Figure 2 plots the average usage and availability of different mobile resources
such as battery, telephony, network, screen and CPU for ten users per hour of day.
Each one of the x-axis bins represent an hour of the day and thecolour indicates their
averaged value during duration of the experiment. These results reveal that battery
usage, charging opportunities and power limitations are well defined for some indi-
viduals in the temporal domain while others are more random.For instance, users
such asU2 andU5) and yet others present a much burstier pattern for specific re-
sources.

While most resources available in mobile handsets can be recovered and re-
allocated once used by a process, energy can be only recovered when the user man-
ually charges the handset. As a consequence, an energy-aware operating system
must be able to estimate when energy will be consumed, how much energy will be
available and when it will be recovered by predicting futurecharging opportunities
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Fig. 1: User classification by their percentage of the usage/interaction with the 3G interface, tele-

phony service and screen while subscribed at the most common cells (likely to be users’ workplace

and home). Thex axis represents the daily average usage and they axis the standard deviation. This

information can be used to identify the places where the energyconsumption will be higher and

also to infer the predictability of the user interaction and the state of a resource.

Fig. 2: Average usage and availability of different mobile resources for usersU1 to U10 per

hour of day. As in Figure 1, this information can be used to identify peaks of usage and temporal

patterns on those resources.

and their uncertainty. Charging actions are in fact context-dependent and relatively
predictable. Oliver [9] used classification methods to identify three distinct types of
charging patterns among a large dataset of 17.300 Blackberry users. Those clusters
are defined as“opportunistic chargers”, “light-consumers”and“nigh time charg-
ers”. In their results, they evaluated that it is possible to predict the energy level on
a mobile handset within 7% error within an hour and within 28%error within 24
hours.
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Figure 3 shows thecorrelogramsor autocorrelation plotsof the battery capacity
and the CPU load for three users for a 7 day lag. Note that a correlogram is a plot
of the sample autocorrelations versus the time lags. This kind of analysis helps to
identify randomness and periodicities in a dataset. The correlogram clearly reveals
that U3 presents a clear charging periodicity of 24 hours approximately while U8
does not have such a marked routine. However, those results highly depend on the
resource analysed. As we can observe, the CPU load is not periodic at all indicating
that CPU load might be more difficult to predict than battery capacity. This confirms
that an efficient resources management technique must be user-centric and must try
to identify the randomness, patterns and predictability ofeach individual user and
device.
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Fig. 3: Correlogram for the CPU load and the battery capacity for users U1, U3 andU8 during

a period of 7 days. The battery capacity correlogram shows a clear pattern and a periodicity on

the energy consumption and recharging cycle every 24 hours approximately while the CPU load is

highly random.

Nevertheless, Banerjeeet al. in [10] claim that, despite the fact that there is a
great variation among users, most of recharges happen when the battery has substan-
tial energy left and a considerable portion of the rechargesare driven by context (e.g.
location and time). In a similar way, Raviet al.proposed a system for context-aware
battery management that warns the mobile user when it detects a power limitation
before the next charging opportunity is going to happen [11]. This stops the system
from compromising the execution and performance of crucialapplications and ser-
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vices such as telephony and messaging by non-crucial ones. This system uses the
current set of applications running, the battery discharging rate1 and phone call logs
as inputs of their forecasting algorithms. The results indicate that their algorithm
can predict battery consumption and charging opportunities only for users with a
low usage entropy. The main difficulty is predicting phone calls because of their
dependency of the almost unpredictable social factors and the variability of calling
patterns between weekends and weekdays.

As a conclusion, contextual information can be used to understand how mobile
users interact with their devices. This can enable innovative ways to manage re-
sources as we will see in the following sections. However, the entropy of users’ inter-
action patterns and habits require identifying new techniques to efficiently leverage
this information without impacting negatively on the user experience. The operating
system can infer which applications are likely to be executed by the user at a given
context and which resources might be required by them. As a result, the operating
system can proactively pre-load these applications and setthe hardware resources
that will be required by them in the right power mode while turning off (or setting in
low-power modes) those hardware components and applications that are not likely
to be accessed.

3 Context-aided mobile resource management

In addition to users’ interaction patterns with mobile handsets, the state and avail-
ability of mobile resources depend on contextual aspects. Two clear examples are:

• GPS. The number of visible satellites by the receiver affects the time to fix their
location from thecold-start2 phase and its accuracy. However, satellites are con-
stantly moving in their orbits, the number of satellites visible for the receiver
depends on time of day and the day [13]. Other aspects such as reflections and
radio obstacles also affect the time required by the receivers (thus the energy
required) to fix their location. Nevertheless, in the case ofassisted-GPS, chips
can vary depending on the availability of a cellular networkto quickly access
the ephemeris of the satellites [14] thus reducing considerably the time to fix the
location.

• Cellular interfaces. The energy consumption of cellular interfaces and their qual-
ity of service depend on the receiving signal strength of theradio link [15]. As
thesignal-to-noise ratio(SNR) increases, more retransmissions at the link layer

1 Battery discharging rate might arguably not be the best indicator to measure energy consumption
in mobile handsets. This signal is very noisy since it depends on hardware and users’ habits and
requires complex methods to be properly calibrated [12]
2 If the GPS chip has not been used in a long time, then theTime To First Fix(TTFF) can be
longer because it needs to download the satellites ephemeris and almanac before it can make the
calculations. Usually, the GPS-receiver also needs 4 satellites to accurately fix its location. This is
usually referred to ascold start. In cases when the chip was recently used (in the order of minutes
or even few hours), the time to fix would be even faster (i.e.warm startandhot startphases).
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are required and therefore, more energy is consumed. As we can see in Fig-
ure 4, co-located nodes present different network coverageand quality depending
on the location and the mobile operator. The signal strengthis in fact, context-
dependent. As any radio technology, the quality of the link can be affected by
other aspects such as provider’s network deployment, whether the node is in-
doors or outdoors, node’s mobility, radio obstacles and radio interferences [16].

3.1 Wireless interfaces

Mobile handsets present different wireless interfaces that range from cellular net-
works such as GPRS to LTE and IEEE 802.11 (i.e. WiFi) technologies. The key
differentiators between these interfaces are their availability and their power states.
The operating system could switch the type of network depending on which service
is being requested by the user and the applications. The OS can select the optimal
link for a wireless communication taking into account the energy-delay trade-off
and applications requirements [1], [17], [18]. As a result,the system can adapt to
channel conditions by leveraging contextual [19], local and historic information to
decide whether and when it must defer a transmission in orderto save energy.

As we can see in network coverage maps collected by crowd-sourcing means
such asOpenSignalMap[20], the network availability and quality depend on lo-
cation.3GTest[21] is a cross-platform application that checks the state of cellu-
lar networks and the performance of network-based applications. The traces from
30.000 mobile users all over the world confirm the impact of contextual aspects on
the performance of cellular networks. Network properties can vary depending on
the time-of-day and location for a specific operator, as Tanet al. [22] had also pre-
viously demonstrated for a more geographically limited environment such as Hong
Kong. A detailed knowledge of the network properties can help to identify bottle-
necks in wireless network and also performance limitationsand bugs in hardware,
operating system and popular network-centric applications. In fact, the latency of
the radio link depends on the current power state of the wireless machine. Based on
historic data, the operating system can seamlessly enable caching mechanisms to
applications accessing wireless interfaces and also supporting traffic shaping tech-
niques to adapt the applications’ traffic to the conditions of the wireless interface at
a given location.

On the other hand, the availability of WiFi access points is reduced to specific
locations as we can see for London city center (UK) in Figure 5. IEEE 802.11 net-
works usually present a lower latency than cellular networks for transmitting data
but they present a higher cost when the device is associatingto the access point. As
a consequence, reducing the energy cost of scanning and associating to the access
point is essential. Because of this reason, most of the worksdescribed in this section
try to leverage contextual information to smartly wake up the WiFi interface from
sleep mode when it is likely to have an access point.
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(a) Operator 1 (b) Operator 2

Fig. 4:Signal strength perceived by two identical co-located handsets in several locations in west

and centre of Cambridge (UK) with different network operators. Lighter points indicate better

signal strength.

Fig. 5: Open IEEE 802.11g Access Points in London city center (UK). Snapshot obtained from

WiFi Map UK [23]

The operating system can adapt the AP’s discovery enquiriesto minimise the en-
ergy consumption while maximising the chances of having connectivity. The works
by Agarwaet al [24] andBlue-Fi [25] are two good examples to illustrate this claim.
These papers describe how to save energy by exploiting otherresources such as
Bluetooth radios and contextual information to serve as a paging channel for IEEE
802.11 technologies. The results show that it is possible tosave between 23% to
48% of energy compared to the present IEEE 802.11 standard operating modes
with negligible impact on performance. The system can predict when there will be
Wi-Fi connectivity by combining contextual information obtained from Bluetooth
scans contact-patterns and cell-tower information. Likewise,Context-for-wirelessis
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a context-aware intelligent switching algorithm between WiFi and cellular networks
to reduce the energy consumption substantially [26].Context-for-wirelessleverages
contextual information such as time, historic data, cellular network conditions and
mobility to formulate the selection of wireless interfacesas a statistical decision
problem and to predict future network conditions.

3.2 Location Sensors

Mobile applications tend to become context-aware. By simply looking at the ap-
plications market of mobile platforms such asAndroid and iPhone, it is possible
to find a large number of context-aware applications and location-aware online ser-
vices such asGoogle MapsandFoursquare[27]. Applications often need location
data to update locally relevant information, to provide a service requested by the
user and also to find nearby friends and places of interest.

Modern smartphones include different types of location sensors with different
resolution and energy demands such as cellular network-based location providers,
WiFi-based, A-GPS (Assisted-GPS), gyroscopes and compass. New location tech-
niques are being investigated such as audio fingerprints [28], signal-strenght finger-
prints [29]. and geo-magnetism fingerprints [30]. Other solutions leverage phone
sensors, audio beaconing infrastructures and opportunistic user-intersection (in
space-time) to develop an electronic escort service formulated like routing pack-
ets in Delay-Tolerant Networks (DTNs) [31]. All these technologies are mainly fo-
cused on providing more efficient indoor localisation. However, most context-aware
applications are based on standard sensors. They usually prefer A-GPS over its alter-
natives (e.g. network-based location providers such asSkyhook[32] andLocation-
api [19]) because of its accuracy despite its higher energy cost. Cellular network
based location services present a mean error in the order of 300m (can be in the
order of several km) and, given a location they can report different locations be-
cause of radio link changes. As a consequence, the research community tried to find
solutions to save energy when accessing location information without sacrificing
accuracy. [33] describes four alternative techniques to GPS sensing to reduce the
energy consumption:

• Substitution and Suppression makes use of alternative location-sensing mech-
anisms (e.g. network-based location sensing or combined use of accelerometers
and compass) that consumes less power than GPS. Substitution decides when
to use more energy-efficient sensors instead of more energy-costly ones such as
GPS. As a consequence, the system can automatically decrease the energy con-
sumption of mobile sensing applications. On the other hand,suppression utilises
less power-intensive sensors. As an example, it is possibleto use accelerometers
to suppress unnecessary GPS sensing if the user is static.
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• Piggybacking synchronises the location sensing requests from multiple running
location-based applications3.

• Adaption adjusts sensing parameters such as time and distance depending on
the remaining battery capacity. This technique tries to findheuristics to adapt the
sampling rate without sacrificing accuracy.

• Probabilistic Models. Some methodologies rely on probabilistic models of
users’ location to infer future locations to reduce the number of sensing reads.

Continuous location-sensing can be very costly in terms of energy. Several re-
search projects tried to combine in a different way those techniques, mainly looking
at the energy-accuracy tradeoff as it is summarised in Table1:

Sensor-based optimisations

Sensors Used

Name GPS Accel. GSM Piggybacking Probabilistic
Models

Adaptation

EnLoc X X X X

A-Loc X X X X

EnTracked X X

RAPS X X X X X

Zhuang X X X X X

Caps X X X

Table 1:Location sensing optimisations. Most of the works aimt to tackle thecontinuous location

sensing challenge by combining different techniques. This table highlights the different method-

ologies used by each one of the solutions and the sensors they are using.

EnLoc [35] provides a location sensing adaptive framework that exploits mo-
bility patterns of the user and decides which sensor to use taking into account
the accuracy-energy trade-off of the different location sensors available in mobile
phones. The authors take advantage of users’Logical Mobility Tree(LMT). This
model allows sampling at a few uncertainty points which may be sufficient for pre-
dicting future locations. EnLoc utilises dynamic programming to find the optimal
localisation accuracy for a given energy budget: it decideswhich localisation sensor
will be the best one for a given scenario and energy budget.

Similarly, EnTracked[36] estimates and predicts the system state and mobility
of the user4 to schedule position updates in order to minimise the power consump-
tion while optimising robustness.EnTrackeduses the GPS-estimated uncertainty to

3 The energy consumption becomes even more significant if multiple applications are requesting
location reads independently. [33] is the only one that applies this technique. Android OSLocation
Providersfollow a similar philosophy [34]
4 The system only supports pedestrians as possible movement model and uses accelerometer to
infer users’ mobility
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quickly schedule a new measurement if a potential bad measurement is performed.
Other solutions exploit Hidden Markov Models to predict themobility of the users
and they also take advantage of Bluetooth scans to identify static scenarios based on
devices in the same location [37]. A more sophisticated version of the system was
recently proposed in [38]. In this case, they use sensors such as radio fingerprints,
accelerometer and compass with the collaboration of a server to estimate the time
to sleep of the GPS receiver before the next positioning sensing.

A-Loc [39] incorporates probabilistic models of user location and sensor errors.
It was implemented as a middleware solution for Android devices which requires
applications’ collaboration. A-Loc selects the most energy-efficient sensor to meet
applications accuracy requirements which must be either specified explicitly by ap-
plications or automatically by the system. The system uses the probabilistic models
to choose among different localisation methods and tunes the energy expenditure to
dynamically meet the error requirements.

Other systems such asRAPS(Rate adaptive GPS-based positioning for smart-
phones) [40] take inspiration from the observation that GPSaccuracy in urban areas
can be poor due to moving objects, trees’ shade and building reflections. To solve
this issue, RAPS uses location-time history of the user to estimate user velocity
and adaptively turn on GPS in case the estimated uncertaintyin the prediction ex-
ceeds the accuracy threshold. RAPS presents three different approaches: it allows
synchronising GPS readings between neighbouring mobile devices to reduce power
consumption, it blocks GPS reads when the user is subscribedto cellular base sta-
tions where it is unlikely to get a GPS read (e.g. an area wherethe user is usually
indoors) and it exploits accelerometer data to estimate user velocity. It also proposes
sharing position readings among nearby devices using Bluetooth in order to further
reduce GPS activation. However, RAPS is mainly designed forpedestrian use, and
a significant portion of the energy savings come from avoiding GPS activation when
it is likely to be unavailable. The authors recently proposed newer approaches such
as [41]. In this case, they try to combine the accuracy and energy complementary
features of GPS and network-based solution. This paper is based on the observation
that users exhibit consistency in their everyday routes, having a sequence of Cell-
IDs. The system can provide an accurate estimation of user’sposition by monitoring
the cell-ID transitions and using a history of GPS readings obtained within a cell.
They use the Smith-Waterman algorithm for sequence matching between similar
historic data. They look for a sub-sequence in the database that matches and they
pick up the sequence that matches the best and they turn ON GPSwhen there is no
good matching. However, such system has the limitation of not being able to detect
small detours in common routes.

4 Context-aware mobile operating systems

In previous sections we have seen that the most commonly usedhardware compo-
nents by applications in mobile phones are context-dependent in terms of availabil-
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ity, energy cost as also users’ interaction patterns. Current mobile operating systems
are also multitasking. By executingps in the terminal of an Android handset we
can identify more than 60 processes running simultaneously. Many of these pro-
cesses are context-aware and they are accessing shared resources such as sensors
and wireless interfaces. However, battery capacity is still the main limitation in mo-
bile systems and, as a consequence, mobile devices are likely to experience power
limitations at any time depending on how intensely the usersinteract with them.
Two mobile operating systems already aim to leverage contextual information to
prolong the battery life on mobile handsets: CondOS [5] and ErdOS [6].

CondOS has been conceived after observing that context-awareness is already
a reality in modern mobile platforms and applications. Mobile handsets support a
diverse range of sensing hardware and they are capable of executing the algorithms
required to process raw sensed data. However, the way contextual information is
generated and provided to applications can be more efficientby integrating context-
aware resources management techniques in the operating systems. If applications
manage and generate their own context independently, the power consumption can
increase. It is necessary to provide a central content provider that coordinates all
the context requests and the operating system is the right place for that. They con-
sider that raw-sensed data must be converted into“contextual data units”(CDUs)
by the operating system. A CDU is defined as a higher level dataabstraction com-
pared to the current contextual data provided by modern mobile platforms. Those
objects contain a unit of meaningful context data to applications such aswalkingor
commuting). The authors also list the potential benefits that can be achieved with a
context-aware OS:

• Memory Management. Actions such as“running” and“walking” may suggest
the user to load a music player or a workout app. On the other hand, actions such
as“driving” may suggest loading a navigator. The operating system can see how
users’ interacted previously with applications in order topro-load them and set
the hardware resources in the right power mode to improve theuser experience.

• Scheduling. Context information can help to schedule processes while limiting
the impact on battery life and user experience. CondOS suggests that context
can directly influence process priorities based on the users’ preferences and the
applications that are likely to be executed at a given location.

• I/O. Contextual data can help to adapt notifications such as the ringing mecha-
nism or the appropriate input method to the situation (e.g. voice search features
might be useful while the user is walking but they might not bethe best choice
in a noisy environments or in the opera). The operating system can also adapt
manage wireless interfaces aided with contextual information as we have already
seen in Section 3.1.

• Security. Security can be adapted to the location. For example, security require-
ments can be relaxed at home, enabling interaction and sharing data with other
devices in the home network. On the other hand, in public places the security
policies can be more rigid in order to reduce the potential security and privacy
risks.
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• Energy savings. As we have seen in the previous sections, mobile operating sys-
tems can predict future charging opportunities from contextual information. The
operating system can manage applications and resources in order to meet the
energy goals that users’ interaction might impose. Moreover, having a central
source of contextual information can potentially save energy by reducing the
number of requests to the hardware resource. Applications can collaborate and
share interests on resources in a similar fashion as AndroidOS does with its
“location providers” [34].

Mobile operating systems need to make efficient and autonomous allocation
decisions whilst maximising the users experience. Software should guarantee en-
ergy efficiency in addition to the traditional OS perspective of maximising perfor-
mance [42]. Recently, energy-aware operating systems attracted the attention of the
research community again with mobile operating systems such as Cinder [43] and
ErdOS [6]. However, those two projects follow different philosophies about how
energy management should be performed, and by whom.

Cinder follows the philosophy of ECOSystem [44] and Odyssey[45]. They try
to leverage the interaction between applications and operating system without nec-
essarily being context-aware. In the case of Odyssey, applications adapt to the avail-
able energy and resources to provide different quality of service to the users in
runtime while ECOSystem fairly allocates energy shares to multiple hardware com-
ponents and applications.Cinder [43] allocates energy to applications using two
abstractions calledreserveandtapsto form a graph of resource consumption. When
an application consumes a resource, the Cinder kernel reduces the right values in
the corresponding reserve and its scheduler only allows threads to run if they have
enough reserves to run. The rate at which the reserves are being consumed is con-
trolled by thetaps(a special-purpose thread whose only job is to transfer energy be-
tween reserves at proportional or constant rates). Once an application has consumed
all its reserves, the kernel prevents its threads to performmore actions. Nevertheless,
Cinder allowsreserve debitsbetween tasks for performing additional actions. Note
that most of the modern mobile OSs usually give priority to foreground processes
over the rest of the apps and non-system background processes in order to improve
the user experience and also to prolong the battery life.

A different approach is followed byErdOS[6]. This operating system5 does not
require interaction and communication means between applications and OS. It is
completely seamless to applications. ErdOS also leveragescontextual information
to manage resources efficiently customised for each user. ErdOS was motivated by
the observation that resources’ state (e.g. GPS and cellular networks) and the us-
age patterns and habits of mobile users are diverse and highly context-dependent.
As mobile systems present energy peaks caused by periods of high interaction from
the users, managing and allocating computing resources to applications proactively
based on predictions of the resources state and the users’ demands is more flexi-
ble and efficient than algorithmic resources management. Inorder to support this
feature, ErdOS monitors resources state, applications resource demands and users’

5 ErdOS is conceived as an Android OS extension
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interaction patterns with applications. It learns from users’ behaviour and habits (de-
fined as theusers’ activityabstraction) to predict the future resources demands and
the resources availability in an event-based fashion. In fact, users generally remain
subscribed to a small set of base stations and the majority ofinteraction with their
resources or applications takes place there. ErdOS builds alocation-based model
of resources usage and resources demands per location in order to predict power
limitations and peaks of energy consumption. Such a model might help to detect
malware and buggy applications by identifying situations where resources demand
are out of the norm.

Additionally, the authors consider that computation should not be exclusively
limited to local resources. Accessing resources in neighbouring handsets oppor-
tunistically can be beneficial both in terms of energy and usability by enabling ac-
cess to resources that have the right power mode [46]. By considering the social
activity of mobile phone users, we can see that large portions of a user’s daily life
are spent in close proximity of other mobile phone users withdevices that incor-
porate similar hardware resources. Indeed, if we consider acommuter travelling by
bus and using a location-based service on her mobile phone, there is a high proba-
bility that a significant number of co-commuters are also using their phone’s GPS
and cellular networks to interact with similar services. Additionally, in social events
such as music concerts or sport events, large numbers of co-located users may use
their phone to access the internet simultaneously. This enables more opportunities
for sharing resources opportunistically and, as a consequence, more opportunities to
reduce the energy consumption. As a consequence, ErdOS tries to exploit this op-
portunity for improving the energy efficiency of mobile phone usage while making
acceptable compromises in the QoS, by trying to aggregate, share and coordinate
resources of multiple users at close proximity. Nevertheless, contextual information
can play an important role in making ErdOS even more energy efficient by allowing
the system to adapt the resources discovery enquiries and the privacy and security
policies to the probability of discovering devices at a given location.

5 Summary

Mobile handsets are power-hungry devices because of the integration of power-
hungry hardware resources such as touchscreen displays andlocation sensors.
Moreover, they support Internet data services anytime (almost) anywhere so they
are always connected to the network. All those resources bootstrap a rich ecosys-
tem of mobile applications but their design is clearly driven by usability factors
rather than energy efficiency. However, managing mobile resources from an energy-
efficient perspective without diminishing the user experience is clearly one of the
most challenging problems in mobile computing nowadays. Power management
considerations often require certain actions to be deferred, avoided or slowed down
to prolong battery life. In this chapter, we have seen that contextual information can
be a useful source of data to manage hardware resources more efficiently in mobile



The case for context-aware resources management in mobile operating systems 15

systems. It can allow the operating system to dynamically predict the power states of
the hardware components and applications behaviour at a given location. However,
those techniques can impact on the user experience with the handsets and there is
still an important work to be done in this space.

References

1. N. Balasubramanian, A. Balasubramanian, and A. Venkataramani, “Energy consumption in
mobile phones: a measurement study and implications for network applications,” inProceed-
ings of the 9th ACM SIGCOMM conference on Internet measurementconference, IMC ’09,
(New York, NY, USA), pp. 280–293, ACM, 2009.

2. N. Vallina-Rodriguez, P. Hui, J. Crowcroft, and A. Rice, “Exhausting battery statistics: under-
standing the energy demands on mobile handsets,” inProceedings of the second ACM SIG-
COMM workshop on Networking, systems, and applications on mobile handhelds, MobiHeld
’10, (New York, NY, USA), pp. 9–14, ACM, 2010.

3. I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Measuring serendipity: connecting
people, locations and interests in a mobile 3G network,” inProceedings of the 9th ACM SIG-
COMM conference on Internet measurement conference, IMC ’09, (New York, NY, USA),
pp. 267–279, ACM, 2009.

4. Q. Xu, A. Gerber, Z. M. Mao, and J. Pang, “AccuLoc: practicallocalization of performance
measurements in 3G networks,” inProceedings of the 9th international conference on Mobile
systems, applications, and services, MobiSys ’11, (New York, NY, USA), pp. 183–196, ACM,
2011.

5. D. Chu, A. Kansal, J. Liu, and F. Zhao, “Mobile Apps: It’s Time toMove Up to CondOS,”
USENIX HotOS, 2011.

6. N. Vallina-Rodriguez and J. Crowcroft, “Erdos: Achieving Energy Savings in Mobile OS,”
in Proceedings of the 6th ACM International Workshop on Mobility in the Evolving Internet
Architectures, MobiArch’11, 2011.

7. C. Shepard, A. Rahmati, C. Tossell, L. Zhong, and P. Kortum, “LiveLab: measuring wire-
less networks and smartphone users in the field,”SIGMETRICS Perform. Eval. Rev., vol. 38,
pp. 15–20, January 2011.

8. H. Falaki, R. Mahajan, S. Kandula, D. Lymberopoulos, R. Govindan, and D. Estrin, “Diversity
in smartphone usage,” inProceedings of the 8th international conference on Mobile systems,
applications, and services, MobiSys ’10, (New York, NY, USA), pp. 179–194, ACM, 2010.

9. E. Oliver, “Diversity in Smartphone Energy Consumption,” inACM workshop on wireless of
the students, by the students, for the students, 2010.

10. N. Banerjee, A. Rahmati, M. D. Corner, S. Rollins, and L. Zhong, “Users and batteries: inter-
actions and adaptive energy management in mobile systems,” inProceedings of the 9th inter-
national conference on Ubiquitous computing, UbiComp ’07, (Berlin, Heidelberg), pp. 217–
234, Springer-Verlag, 2007.

11. N. Ravi, J. Scott, L. Han, and L. Iftode, “Context-aware Battery Management for Mobile
Phones,” inPERCOM ’08: Proceedings of the 2008 Sixth Annual IEEE International Confer-
ence on Pervasive Computing and Communications, (Washington, DC, USA), pp. 224–233,
IEEE Computer Society, 2008.

12. M. Dong and L. Zhong, “Self-constructive high-rate system energy modeling for battery-
powered mobile systems,” inProceedings of the 9th international conference on Mobile sys-
tems, applications, and services, MobiSys ’11, (New York, NY, USA), pp. 335–348, ACM,
2011.

13. M. Wing, A. Eklund, and L. Kellogs, “Consumer-grade global positioning system (GPS) ac-
curacy and reliability,” inJournal of forestry, vol. 103, pp. 169–173, 2005.



16 Narseo Vallina-Rodriguez and Jon Crowcroft

14. G. M. Djuknic and R. E. Richton, “Geolocation and Assisted GPS,” Computer, vol. 34,
pp. 123–125, February 2001.

15. R. Chakravorty, S. Katti, J. Crowcroft, and I. Pratt, “Flow Aggregation for Enhanced TCP over
Wide-Area Wireless,” inin Proc. IEEE INFOCOM, pp. 1754–1764, 2003.

16. X. Chen, H. Zhai, J. Wang, and Y. Fang, “A Survey on ImprovingTCP Performance over
Wireless Networks,” inIn Resource Management in Wireless Networking, Cardei M, Cardei
I, Du D-Z (eds, pp. 657–695, Kluwer Academic Publishers, 2005.

17. M.-R. Ra, J. Paek, A. B. Sharma, R. Govindan, M. H. Krieger, and M. J. Neely, “Energy-delay
tradeoffs in smartphone applications,” inProceedings of the 8th international conference on
Mobile systems, applications, and services, MobiSys ’10, (New York, NY, USA), pp. 255–
270, ACM, 2010.

18. C. Pluntke, L. Eggert, and N. Kiukkonen, “Saving mobile device energy with multipath TCP,”
in Proceedings of the sixth international workshop on MobiArch, MobiArch ’11, (New York,
NY, USA), pp. 1–6, ACM, 2011.

19. Location-Api. http://location-api.com/.
20. OpenSignalMap. http://opensignalmap.com/.
21. J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl, “Anatomizing application

performance differences on smartphones,” inProceedings of the 8th international conference
on Mobile systems, applications, and services, MobiSys ’10, (New York, NY, USA), pp. 165–
178, ACM, 2010.

22. W. L. Tan, F. Lam, and W. C. Lau, “An Empirical Study on the Capacity and Performance of
3G Networks,”IEEE Transactions on Mobile Computing, vol. 7, pp. 737–750, June 2008.

23. “Wifi Map UK.” http://www.wifimapuk.com/home/.
24. Y. Agarwal, C. Schurgers, and R. Gupta, “Dynamic power management using on demand

paging for networked embedded systems,” inProceedings of the 2005 Asia and South Pacific
Design Automation Conference, ASP-DAC ’05, (New York, NY, USA), pp. 755–759, ACM,
2005.

25. G. Ananthanarayanan and I. Stoica, “Blue-Fi: enhancingWi-Fi performance using bluetooth
signals,” inProceedings of the 7th international conference on Mobile systems, applications,
and services, MobiSys ’09, (New York, NY, USA), pp. 249–262, ACM, 2009.

26. A. Rahmati and L. Zhong, “Context-for-wireless: context-sensitive energy-efficient wireless
data transfer,” inProceedings of the 5th international conference on Mobile systems, applica-
tions and services, MobiSys ’07, (New York, NY, USA), pp. 165–178, ACM, 2007.

27. FourSquare. https://foursquare.com/.
28. S. P. Tarzia, P. A. Dinda, R. P. Dick, and G. Memik, “Indoor localization without infrastructure

using the acoustic background spectrum,” inProceedings of the 9th international conference
on Mobile systems, applications, and services, MobiSys ’11, (New York, NY, USA), pp. 155–
168, ACM, 2011.

29. C.-W. You, P. Huang, H.-h. Chu, Y.-C. Chen, J.-R. Chiang, and S.-Y. Lau, “Impact of sensor-
enhanced mobility prediction on the design of energy-efficient localization,”Ad Hoc Netw.,
vol. 6, pp. 1221–1237, November 2008.

30. J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, P. Razavai, and M. Wiseman, “Indoor location
sensing using geo-magnetism,” inProceedings of the 9th international conference on Mobile
systems, applications, and services, MobiSys ’11, (New York, NY, USA), pp. 141–154, ACM,
2011.

31. I. Constandache, X. Bao, M. Azizyan, and R. R. Choudhury, “Did you see Bob?: human local-
ization using mobile phones,” inProceedings of the sixteenth annual international conference
on Mobile computing and networking, MobiCom ’10, (New York, NY, USA), pp. 149–160,
ACM, 2010.

32. SkyHook Wireless. http://www.skyhookwireless.com/.
33. Z. Zhuang, K.-H. Kim, and J. P. Singh, “Improving energy efficiency of location sensing on

smartphones,” inProceedings of the 8th international conference on Mobile systems, applica-
tions, and services, MobiSys ’10, (New York, NY, USA), pp. 315–330, ACM, 2010.

34. Android Developers. http://developer.android.com/reference/android/location/LocationManager.html.



The case for context-aware resources management in mobile operating systems 17

35. I. Constandache, S. Gaonkar, M. Sayler, R. R. Choudhury, and L. Cox, “EnLoc: Energy-
Efficient Localization for Mobile Phones,” inIEEE INFOCOM 2009 - The 28th Conference
on Computer Communications, no. 4, pp. 2716–2720, IEEE, Apr. 2009.

36. M. B. Kjaergaard, J. Langdal, T. Godsk, and T. Toftkjaer, “Entracked: energy-efficient robust
position tracking for mobile devices,” inProceedings of the 7th international conference on
Mobile systems, applications, and services, MobiSys ’09, (New York, NY, USA), pp. 221–
234, ACM, 2009.

37. T. Farrell, R. Cheng, and K. Rothermel, “Energy-efficientmonitoring of mobile objects with
uncertainty-aware tolerances,” inProceedings of the 11th International Database Engineering
and Applications Symposium, (Washington, DC, USA), pp. 129–140, IEEE Computer Society,
2007.

38. M. B. Kjaergaard, S. Bhattacharya, H. Blunck, and P. Nurmi, “Energy-efficient trajectory
tracking for mobile devices,” inProceedings of the 9th international conference on Mobile
systems, applications, and services, MobiSys ’11, (New York, NY, USA), pp. 307–320, ACM,
2011.

39. K. Lin, A. Kansal, D. Lymberopoulos, and F. Zhao, “Energy-accuracy trade-off for continuous
mobile device location,” inProceedings of the 8th international conference on Mobile systems,
applications, and services, MobiSys ’10, (New York, NY, USA), pp. 285–298, ACM, 2010.

40. J. Paek, J. Kim, and R. Govindan, “Energy-efficient rate-adaptive GPS-based positioning for
smartphones,” inProceedings of the 8th international conference on Mobile systems, applica-
tions, and services, MobiSys ’10, (New York, NY, USA), pp. 299–314, ACM, 2010.

41. J. Paek, K.-H. Kim, J. P. Singh, and R. Govindan, “Energy-efficient positioning for smart-
phones using Cell-ID sequence matching,” inProceedings of the 9th international conference
on Mobile systems, applications, and services, MobiSys ’11, (New York, NY, USA), pp. 293–
306, ACM, 2011.

42. C. S. Ellis and M. Watt, “Every Joule is Precious Energy in Computing,”ACM SIGOPS, 2000.
43. A. Roy, S. M. Rumble, R. Stutsman, P. Levis, D. Mazières, and N. Zeldovich, “Energy man-

agement in mobile devices with the cinder operating system,” inProceedings of the sixth
conference on Computer systems, EuroSys ’11, (New York, NY, USA), pp. 139–152, ACM,
2011.

44. C. S. Ellis, “The case for higher-level power management,” inProceedings of the The Sev-
enth Workshop on Hot Topics in Operating Systems, HOTOS ’99, (Washington, DC, USA),
pp. 162–, IEEE Computer Society, 1999.

45. B. Noble, M. Price, M. Satyanarayanan, and C.-M. U. P. P. D. O. C. SCIENCE., “A program-
ming interface for application-aware adaptation in mobile computing,” 2nd USENIX Sympo-
sium on Mobile and Location-Independent Computing, vol. 8, no. 4, pp. 345–363, 1995.

46. N. Vallina-Rodriguez, C. Efstratiou, G. Xie, and J. Crowcroft, “Enabling opportunistic re-
sources sharing on mobile operating systems: Benefits and challenges,” in ACM S3 Workshop,
2011.


