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Abstract

Privacy policies often place requirements on the purposes for which a governed entity may use
personal information. For example, regulations, such as HIPAA, require that hospital employees use
medical information for only certain purposes, such as treatment. Thus, using formal or automated
methods for enforcing privacy policies requires a semantics of purpose requirements to determine
whether an action is for a purpose or not. We provide such a semantics using a formalism based
on planning. We model planning using a modified version of Markov Decision Processes, which
exclude redundant actions for a formal definition of redundant. We use the model to formalize
when a sequence of actions is only for or not for a purpose. This semantics enables us to provide
an algorithm for automating auditing, and to describe formally and compare rigorously previous
enforcement methods.
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1 Introduction

Purpose is a key concept for privacy policies. For example, the European Union requires that [The95]:

Member States shall provide that personal data must be [. . . ] collected for specified,
explicit and legitimate purposes and not further processed in a way incompatible with
those purposes.

The United States also has laws placing purpose requirements on information in some domains such
as HIPAA [Off03] for medical information and the Gramm-Leach-Bliley Act [Uni10] for financial
records. These laws and best practices motivate organizations to discuss in their privacy policies
the purposes for which they will use information.

Some privacy policies warn users that the policy provider may use certain information for
certain purposes. For example, the privacy policy of a medical provider states, “We may disclose
your [protected health information] for public health activities and purposes [. . . ]” [Was03]. Such
warnings do not constrain the behavior of the policy provider.

Other policies that prohibit using certain information for a purpose do constrain the behavior
of the policy provider. Examples include the privacy policy of Yahoo! Email, which states that
“Yahoo!’s practice is not to use the content of messages stored in your Yahoo! Mail account for
marketing purposes” [Yah10b, emphasis added].

Some policies even limit the use of certain information to an explicit list of purposes. The privacy
policy of The Bank of America states, “Employees are authorized to access Customer Information
for business purposes only.” [Ban05, emphasis added]. The HIPAA Privacy Rule [Off03] requires
that covered entities (e.g., health care providers and business partners) only use or disclose protected
health information about a patient with that patient’s written authorization or:

[. . . ] for the following purposes or situations: (1) To the Individual [. . . ]; (2) Treatment,
Payment, and Health Care Operations; (3) Opportunity to Agree or Object; (4) Incident
to an otherwise permitted use and disclosure; (5) Public Interest and Benefit Activities;
and (6) Limited Data Set for the purposes of research, public health or health care
operations.

These examples show that verifying that an organization obeys a privacy policy requires a
semantics of purpose requirements. In particular, enforcement requires the ability to determine
that the organization under scrutiny obeys at least two classes of purpose requirements. As shown
in the example rule from Yahoo!, the first requirement is that the organization does not use certain
sensitive information for a given purpose. The second, as the example rule from HIPAA shows, is
that the organization uses certain sensitive information only for a given list of purposes. We call
the first class of requirements prohibitive (not-for) and the second class restrictive (only-for). Each
class requires determining whether the organization’s behavior is for a purpose or not, but they
differ in whether this indicates a violation or compliance, respectively.

For example, consider a physician accessing a medical record. Under the HIPAA Privacy Rule,
the physician may access the record only for certain purposes such as treatment, research, and
billing. Thus, for an auditor (either internal or external) to determine whether the physician has
obeyed the Privacy Rule requires the auditor to determine the purposes for which the physician
accessed the record. The auditor’s ability to determine the purposes behind actions is limited since
the auditor can only observe the behavior of the physician. As a physician may perform the exact
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same actions for different purposes, the auditor can never be sure of the purposes behind an action.
However, if the auditor determines that the record access could not have possibly been for any of
the purposes allowed under the Privacy Rule, then the auditor knows that the physician violated
the policy.

Manual enforcement of these privacy policies is labor intensive and error prone. Thus, to
reduce costs and make their operations more trustworthy, organizations would like to automate
the enforcement of the privacy policies governing their operations; tool support for this activity is
beginning to emerge in the market. For example, Fair Warning offers automated services for the
detection of privacy breaches in a hospital setting [Fai]. Meanwhile, previous research has purposed
formal methods to enforce purpose requirements [AKSX02, BBL05, HA05, AF07, BL08, PGY08,
JSNS09, NBL+10, EKWB11].

However, each of these endeavors start by assuming that actions or sequences of actions are
labeled with the purposes they are for. They avoid analyzing the meaning of purpose and provide
no method of performing this labeling other than through intuition alone. The absence of a formal
semantics to guide this determination has hampered the development of methods for ensuring
policy compliance. Such a definition would provide insights into how to develop tools that identify
suspicious accesses in need of detailed auditing and algorithms for determining which purposes an
action could possibly be for. Such a definition would also show which enforcement approaches are
most accurate. More fundamentally, such a definition could frame the scientific basis of a societal
and legal understanding of purpose and of privacy policies that use the notion of purpose. Such
a foundation can, for example, guide implementers as they codify in software an organization’s
interpretation of internal and government-imposed privacy policies.

1.1 Solution Approach

The goal of this work is to study the meaning of purpose in the context of enforcing privacy policies
and propose formal definitions suitable for automating the enforcement of purpose requirements.
Since post-hoc auditing provides the perspective often required to determine the purpose of an
action, we focus on automated auditing. However, we believe our semantics is applicable to other
formal methods and may also clarify informal reasoning.

We find that planning is central to the meaning of purpose. We see the role of planning in the
definition of the sense of the word “purpose” most relevant to our work [OED89]:

The object for which anything is done or made, or for which it exists; the result or effect
intended or sought; end, aim.

Similarly, work on cognitive psychology calls purpose “the central determinant of behavior” [DKP96,
p19]. If our auditors are concerned with rational auditees (the person or organization being au-
dited), then we may assume the auditee uses a plan to determine what actions it will perform in
its attempt to achieve its purposes. We (as have philosophers [Tay66]) conclude that if an auditee
selects to perform an action a while planning to achieve the purpose p, then the auditee’s action a
is for the purpose p. In this paper, we make these notions formal.

1.2 Overview of Contributions

We first present an example that illustrates key factors in determining whether an action is for a
purpose or not. We find that the auditor should model the auditee as an agent that interacts with
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an environment model. The environment model shows how the actions the auditee can perform
affect the state of the environment. It also models how well each state satisfies each purpose that
the modeled auditee might possibly find motivating. Limiting consideration to one purpose, the
environment model becomes a Markov Decision Process (MDP) where the degree of satisfaction of
that purpose is the reward function of the MDP. If the auditee is motivated to act by only that
purpose, then the auditee’s actions must correspond to an optimal plan for this MDP and these
actions are for that purpose. Additionally, we use a stricter definition of optimal than standard
MDPs to reject redundant actions that neither decrease nor increase the total reward. We formalize
this model in Section 3.

For example, consider a physician ordering a medical test and an auditor attempting to de-
termine whether the physician could have ordered this test for the purpose of treatment (and is
therefore in compliance with the HIPAA Privacy Rule). The auditor would examine an MDP
modeling the physician’s environment with the quality of treatment as the reward function to be
optimized. If no optimal plans for this MDP involve ordering the test, then the auditor can conclude
definitively that the physician did not order the test for treatment.

We make this auditing process formal in Section 4 where we discuss the ramifications of the
auditor only observing the behaviors of the auditee and not the underlying planning process of the
auditee that resulted in these behaviors. We show that in some circumstances, the auditor can still
acquire enough information to determine that the auditee violated the privacy policy. To do so,
the auditor must first use our MDP model to construct all the possible behaviors that the privacy
policy allows and then compare it with all the behaviors of the auditee that could have resulted
in the observed auditing log. Section 5 presents an algorithm for auditing based on our formal
definitions, illustrating the relevance of our work.

The semantics discussed thus far is sufficient to put the previous work on enforcing privacy
policies on firm semantic ground. In Section 6, we do so and discuss the strengths and weaknesses
of each such approach. In particular, we find that each approach may be viewed as a method of
enforcing the policy given the set of all possible allowed behaviors, an intermediate result of our
analysis. We compare the previous auditing approaches, which differ in their trade-offs between
auditing complexity and accuracy of representing this set of behaviors.

Most auditees are actually interested in multiple purposes and select plans that simultaneously
satisfy as many of the desired purposes as possible. Handling the interactions between purposes
complicates our semantics. In particular, actions selected by a single plan may be for different
purposes. In Section 7, we present examples showing when our semantics can extend to handle
multiple purposes and when difficulties arise in determining which purposes an action is for when
an auditee is attempting to satisfy various purposes at once. Currently, the state-of-the-art in the
understanding of human planning limits our abilities to improve upon our semantics. However,
as this understanding improves, one may replace our MDP-like formalism with more detailed ones
while retaining our general framework of defining purpose in terms of planning.

We end by discussing other related work, future work, and conclusions. Our contributions
include:

• The first semantic formalism of when a sequence of actions is for a purpose,

• An auditing algorithm for this formalism,

• The resituating of previous policy enforcement methods in our formalism and a comparative
study of their expressiveness, and
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• The first attempt to formally consider the effects on auditing caused by interactions among
multiple purposes.

Although motivated by our goal to formalize the notions of use and purpose prevalently found
in privacy policies, our work is more generally applicable to a broad range of policies, such as fiscal
policies governing travel reimbursement.

2 Motivation of Our Approach

We start with an informal example that suggests that an action is for a purpose if the action
is part of a plan for achieving that purpose. Consider a physician working at a hospital who, as
a specialist, also owns a private practice that tests for bone damage using a novel technique for
extracting information from X-ray images. After seeing a patient and taking an X-ray, the physician
forwards the patient’s medical record including the X-ray to his private practice to apply this new
technology. As this action entails the transmission of protected health information, the physician
will have violated HIPAA if this transmission is not for one of the purposes HIPAA allows. The
physician would also run afoul of the hospital’s own policies governing when outside consultations
are permissible unless this action was for a legitimate purpose. Finally, the patient’s insurance will
only reimburse the costs associated with this consultation if a medical reason (purpose) exists for
them. The physician claims that this consultation was for reaching a diagnosis. As such, it is for
the purpose of treatment and, therefore, allowed under each of these policies. The hospital auditor,
however, has selected this action for investigation since the physician’s making a referral to his own
private practice makes the alternate motivation of profit possible.

Whether or not the physician violated these policies depends upon details not presented in the
above description. For example, we would expect the auditor to ask questions such as: (1) Was
the test relevant to the patient’s condition? (2) Did the patient benefit medically from having the
test? (3) Was this the best option for the patient? We will introduce these details as we introduce
each of the factors relevant to the purposes behind the physician’s actions.

States and Actions. Sometimes the purposes for which an action is taken depend upon the
previous actions and the state of the system. In the above example, whether or not the test is
relevant depends upon the condition of the patient, that is, the state that the patient is in.

While an auditor could model the act of transmitting the record as two (or more) different
actions based upon the state of the patient, modeling two concepts with one formalism could
introduce errors. A better approach is to model the state of the system. The state captures the
context in which the physician takes an action and allows for the purposes of an action to depend
upon the actions that precede it.

The physician’s own actions also affect the state of the system and, thus, the purposes for which
his actions are. For example, had the physician transmitted the patient’s medical record before
taking the X-ray, then the transmission could not have been for treatment since the physician’s
private practice only operates on X-rays and would have no use for the record without the X-ray.

The above example illustrates that when an action is for a purpose, the action is part of a
sequence of actions that can lead to a state in which some goal associated with the purpose is
achieved. In the example, the goal is reaching a diagnosis. Only when the X-ray is first added to
the record is this goal reached.
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Non-redundancy. Some actions, however, may be part of such a sequence without actually being
for the purpose. For example, suppose that the patient’s X-ray clearly shows the patient’s problem.
Then, the physician can reach a diagnosis without sending the record to the private practice. Thus,
while both taking the X-ray and sending the medical record might be part of a sequence of actions
that leads to achieving a diagnosis, the transmission does not actually contribute to achieving the
diagnosis: the physician could omit it and the diagnosis could still be reached.

From this example, it may be tempting to conclude that an action is for a purpose only if
that action is necessary to achieve that purpose. However, consider a physician who has a choice
between two specialists to whom to send the medical record and must do so to reach a diagnosis.
In this scenario, the physician’s sending the record to the first specialist is not necessary since he
could send it to the second. Likewise, sending the record to the second specialist is not necessary.
Yet, the physician must send the record to one or the other specialist and that transmission will
be for the purpose of diagnosis. Thus, an action may be for a purpose without being necessary for
achieving the purpose.

Rather than necessity, we use the weaker notion of non-redundancy found in work on the
semantics of causation (e.g., [Mac74]). Given a sequence of actions that achieves a goal, an action
in it is redundant if that sequence with that action removed (and otherwise unchanged) also achieves
the goal. An action is non-redundant if removing that action from the sequence would result in
the goal no longer being achieved. Thus, non-redundancy may be viewed as necessity under an
otherwise fixed sequence of actions.

For example, suppose the physician decides to send the medical record to the first specialist.
Then, the sequence of actions modified by removing this action would not lead to a state in which
a diagnosis is reached. Thus, the transmission of the medical record to the first specialist is non-
redundant. However, had the X-ray revealed to the physician the diagnosis without needing to
send it to a specialist, the sequence of actions that results from removing the transmission from
the original sequence would still result in a diagnosis. Thus, the transmission would be redundant.

Quantitative Purposes. Above we implicitly presumed that the diagnosis from each specialist
had equal quality. This need not be the case. Indeed, many purposes are actually fulfilled to
varying degrees. For example, the purpose of marketing is never completely achieved since there is
always more marketing to do. Thus, we model a purpose by assigning to each state-action pair a
number that describes how well that action fulfills that purpose when performed in that state. We
require that the physician selects the test that maximizes the quality of the diagnosis as determined
by total purpose score accumulated over all his actions.

Probabilistic Systems. The success of many medical tests and procedures is probabilistic. For
example, with some probability the physician’s test may fail to reach a diagnosis. The physician
would still have transmitted the medical record for the purpose of diagnosis even if the test failed
to reach one. This possibility affects our semantics of purpose: now an action may be for a purpose
even if that purpose is never achieved.

To account for such probabilistic events, we model the environment in which the physician
operates as probabilistic. For an action to be for a purpose, we require that there be a non-zero
probability of the purpose being achieved and that the physician attempts to maximize the expected
reward. In essence, we require that the physician attempts to achieve a diagnosis. Thus, the
auditee’s plan determines the purposes behind his actions rather than just the actions themselves.
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3 Planning for a Purpose

In this section, we present a formalism for planning that accounts for quantitative purposes, prob-
abilistic systems and non-redundancy. We start by modeling the environment in which the auditee
operates as a Markov Decision Process (MDP)—a natural model for probabilistic systems. The
reward function of the MDP quantifies the degree of satisfaction of a purpose upon taking an ac-
tion from a state. If the auditee is motivated to action by only that purpose, then the auditee’s
actions must correspond to an optimal plan for this MDP and these actions are for that purpose.
We develop a stricter definition of optimal than standard MDPs, which we call NMDPs for Non-
redundant MDP, to reject redundant actions that neither decrease nor increase the total reward.
We end with an example illustrating the use of an NMDP to model an audited environment.

3.1 Markov Decision Processes

An MDP may be thought of as a probabilistic automaton where transitions are labeled with a
reward in addition to an action. Rather than having accepting or goal states, the “goal” of a MDP
is maximizing the total reward over time.

An MDP is a tuple m = 〈Q,A, t, r, γ〉 where Q is a set of states, A is a set of actions, t : Q×A →
D(Q) a transition function from a state and an action to a distribution over states (represented
as D(Q)), r : Q × A → R a reward function, and γ a discount factor such that 0 < γ < 1. For
each state q in Q, the agent using the MDP to plan selects an action a from A to perform. Upon
performing the action a in the state q, the agent receives the reward r(q, a). The environment
then transitions to a new state q′ with probability µ(q′) where µ is the distribution provided by
t(q, a). The goal of the agent is to select actions to maximize its expected total discounted reward
E

[
∑∞

i=0 γiρi

]

where i ∈ N (the set of natural numbers) ranges over time modeled as discrete steps,
ρi is the reward at time i, and the expectation is taken over the probabilistic transitions.

We formalize the agent’s plan as a stationary strategy (commonly called a “policy”, but we
reserve that word for privacy policies). A stationary strategy is a function σ from the state space
Q to the set A of actions (i.e., σ : Q → A) such that at a state q in Q, the agent always selects to
perform the action σ(q). Given a strategy σ for an MDP m, its expected total discounted reward
is

Vm(σ, q) = r(q, σ(q)) + γ
∑

q′∈Q

t(q, σ(q))(q′) ∗ Vm(σ, q′)

The agent selects one of the strategies that optimizes this equation. We denote this set of optimal
strategies as opt(〈Q,A, t, r, γ〉), or when the transition system is clear from context, as opt(r).
Such strategies are sufficient to maximize the agent’s expected total discounted reward despite
only depending upon the MDP’s current state.

Given the strategy σ and the actual results of the probabilistic transitions yielded by t, the agent
exhibits an execution. We represent this execution as an infinite sequence e = [q1, a1, q2, a2, . . .] of
alternating states and actions starting with a state, where qi is the ith state that the agent was in
and ai is the ith action the agent took, for all i in N. We say an execution e is consistent with a
strategy σ iff ai = σ(qi) for all i in N where ai is the ith action in e and qi is the ith state in e. We
call a finite prefix of an execution a behavior. A behavior is consistent with a strategy if it can be
extended to an execution consistent with that strategy.

Under this formalism, the auditee plays the role of the agent optimizing the MDP to plan. We
presume that each purpose may be modeled as a reward function. That is, we assume the degree
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to which a purpose is satisfied may be captured by a function from states and actions to a real
number. The higher the number, the higher the degree to which that purpose is satisfied. When the
auditee wants to plan for a purpose p, it uses a reward function, rp, such that rp(q, a) is the degree
to which taking the action a from state q aids the purpose p. We also assume that the expected
total discounted reward can capture the degree to which a purpose is satisfied over time. We say
that the auditee plans for the purpose p when the auditee adopts a strategy σ that is optimal for
the MDP 〈Q,A, t, rp, γ〉. The appendix provides additional background information on MDPs.

3.2 Non-redundancy

MDPs do not require that strategies be non-redundant. Even given that the auditee had an
execution e from using a strategy σ in opt(rp), some actions in e might not be for the purpose p.
The reason is that some actions may be redundant despite being costless. The MDP optimization
criterion behind opt prevents redundant actions from delaying the achievement of a goal as the
reward associated with that goal would be further discounted making such redundant actions
sub-optimal. However, the optimization criterion is not affected by redundant actions when they
appear after all actions that provide non-zero rewards. Intuitively, the hypothetical agent planning
only for the purpose in question would not perform such unneeded actions even if they have zero
reward. Thus, to create our formalism of non-redundant MDPs (NMDPs), we replace opt with a
new optimization criterion opt∗ that prevents these redundant actions while maintaining the same
transition structure as a standard MDP.

To account for redundant actions, we must first contrast that with doing nothing. Thus, we
introduce a distinguished action N that stands for doing nothing. For all states q, N labels a
transition with zero reward (i.e., r(q,N) = 0) that is a self-loop (i.e., t(q,N)(q) = 1). (We could
put N on only the subset of states that represent possible stopping points by slightly complicating
our formalism.) Since we only allow deterministic stationary strategies and N only labels self-loops,
this decision is irrevocable: once nothing is done, it is done forever. As selecting to do nothing
results in only zero rewards henceforth, it may be viewed as stopping with the previously acquired
total discounted reward.

Given an execution e, let active(e) denote the prefix of e before the first instance of the nothing
actions. active(e) will be equal to e in the case where e does not contain the nothing action.

We use the idea of nothing to make formal when one execution intuitively contain more actions
than another despite both being of infinite length. An execution e1 is a proper sub-execution of an
execution e2 if and only if active(e1) is a proper subsequence of active(e2) using the standard notion
of subsequence. Note if e1 does not contain the nothing action, it cannot be a proper sub-execution
of any execution.

To compare strategies, we construct all the executions they could produce. To do so, let a
contingency κ be a function from Q×A×N to Q such that κ(q, a, i) is the state that results from
taking the action a in the state q the ith time. We say that a contingency κ is consistent with
an MDP iff κ only picks states to which the transition function t of the MDP assigns a non-zero
probability to (i.e., for all q in Q, a in A, and i in N, t(q, a)(κ(q, a, i)) > 0). Given an MDP m,
let m(q, κ) be the possibly infinite state model that results of having κ resolve all the probabilistic
choices in m and having the model start in state q. Let m(q, κ, σ) denote the execution that results
from using the strategy σ and state q in the non-probabilistic model m(q, κ). Henceforth, we only
consider contingencies consistent with the model under discussion.

Given two strategies σ and σ′, we write σ′ ≺ σ if and only if for all contingencies κ and states
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Figure 1: The environment model mex that the physician used. Circles represent states, block
arrows denote possible actions, and squiggly arrows denote probabilistic outcomes. Self-loops of
zero reward under all actions, including the special action N, are not shown.

q, m(q, κ, σ′) is a proper sub-execution of or equal to m(q, κ, σ), and for at least one contingency
κ′ and state q′, m(q′, κ′, σ′) is a proper sub-execution m(q′, κ′, σ). Intuitively, σ′ proves that σ
produces a redundant execution under κ′ and q′. We define opt∗(r) to be the subset of opt(r)
holding only strategies σ such that for no σ′ ∈ opt(r) does σ′ ≺ σ. The following theorem, proved
in the appendix, shows that non-redundant optimal strategies always exist.

Theorem 1. For all environment models m, opt∗(m) is not empty.

3.3 Example

Suppose an auditor is inspecting a hospital and comes across a physician referring a medical record
to his own private practice for analysis of an X-ray as described in Section 2. As physicians may
only make such referrals for the purpose of treatment (treat), the auditor may find the physi-
cian’s behavior suspicious. To investigate, the auditor may formally model the hospital using our
formalism.

The auditor would construct the NMDP mex = 〈Qex, Aex, tex, r
treat
ex , γex〉 shown in Figure 1. The

figure conveys all components of the NMDP except γex. For instance, the block arrow from the
state 1 labeled take and the squiggly arrows leaving it denote that after the agent performs the
action take from state 1, the environment will transition to the state 2 with probability 0.9 and to
state 4 with probability of 0.1 (i.e., tex(1, take)(2) = 0.9 and tex(1, take)(4) = 0.1). The number over
the block arrow further indicates the degree to which the action satisfies the purpose of treat. In
this instance, it shows that rtreat

ex (1, take) = 0. This transition models the physician taking an X-ray.
With probability 0.9, he is able to make a diagnosis right away (from state 2); with probability 0.1,
he must send the X-ray to his practice to make a diagnosis. Similarly, the transition from state 4
models that his practice’s test has a 0.8 success rate of making a diagnosis; with probability 0.2,
no diagnosis is ever reached.

Using the model, the auditor computes opt(rtreat
ex ), which consists of those strategies that max-

imizes the expected total discounted degree of satisfaction of the purpose of treatment where the
expectation is over the probabilistic transitions of the model. opt(rtreat

ex ) includes the appropriate
strategy σ1 where σ1(1) = take, σ1(4) = send, σ1(2) = σ1(3) = σ1(5) = diagnose, and σ1(6) = N.
Furthermore, opt(rtreat

ex ) excludes the redundant strategy σ2 that performs a redundant send where
σ2 is the same as σ1 except for σ2(2) = send. Performing the extra action send delays the reward

8



of 12 for achieving a diagnosis resulting in its discounted reward being γ2
ex ∗ 12 instead of γex ∗ 12

and, thus, the strategy is not optimal.
However, opt(rtreat

ex ) does include the redundant strategy σ3 that is the same as σ1 except for
σ3(6) = send. opt(rtreat

ex ) includes this strategy despite the send actions from state 6 being redundant
since no positive rewards follow the send actions. Fortunately, opt∗(rtreat

ex ) does not include σ3 since
σ1 is both in opt(rtreat

ex ) and σ1 ≺ σ3. To see that σ1 ≺ σ3 note that for every contingency κ and
state q, the mex(q, κ, σ1) has the form b followed by an finite sequence of nothing actions (interleaved
with the state 6) for some finite prefix b. For the same κ, mex(q, κ, σ3) has the form b followed by an
infinite sequence of send actions (interleaved with the state 6) for the same b. Thus, mex(q, κ, σ1)
is a proper sub-execution of mex(q, κ, σ3).

4 Auditing

In the above example, the auditor constructed a model of the environment in which the auditee
operates. The auditor must use the model to determine if the auditee obeyed the policy. We
first discuss this process for auditing restrictive policy rules and revisit the above example. Then,
we discuss the process for prohibitive policy rules. In the next section, we provide an auditing
algorithm that automates comparing the auditee’s behavior, as recorded in a log, to the set of
allowed behaviors.

4.1 Auditing Restrictive Rules

Suppose that an auditor would like to determine whether an auditee performed some logged actions
only for the purpose p. The auditor can compare the logged behavior to the behavior that a
hypothetical agent would perform when planning for the purpose p. In particular, the hypothetical
agent selects a strategy from opt∗(〈Q,A, t, rp, γ〉) where Q, A, and t models the environment of
the auditee; rp is a reward function modeling the degree to which the purpose p is satisfied; and γ
is an appropriately selected discounting factor. If the logged behavior of the auditee would never
have been performed by the hypothetical agent, then the auditor knows that the auditee violated
the policy.

In particular, the auditor must consider all the possible behaviors the hypothetical agent could
have performed. For a model m, let behv∗(rp) represent this set where a finite prefix b of an
execution is in behv∗(rp) if and only if there exists a strategy σ in opt∗(rp), a contingency κ, and
a state q such that b is a subsequence of m(q, κ, σ).

The auditor must compare behv∗(rp) to the set of all behaviors that could have caused the
auditor to observe the log that he did. We presume that the log ℓ was created by a process log that
records features of the current behavior. That is, log:B → L where B is the set of behaviors and
L the set of logs, and ℓ = log(b) where b is the prefix of the actual execution of the environment
available at the time of auditing. The auditor must consider all the behaviors in log−1(ℓ) as
possible where log−1 is the inverse of the logging function. In the best case for the auditor, the log
records the whole prefix b of the execution that transpired until the time of auditing, in which case
log−1(ℓ) = {ℓ}.

If log−1(ℓ) ∩ behv∗(rp) is empty, then the auditor may conclude that the auditee did not plan
for the purpose p, and, thus, violated the rule that auditee must only perform the actions recorded
in ℓ for the purpose p; otherwise, the auditor must consider it possible that the auditee planned for
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the purpose p.
If log−1(ℓ) ⊆ behv∗(rp), the auditor might be tempted to conclude that the auditee surely obeyed

the policy rule. However, as illustrated in the second example below, this is not necessarily true.
The problem is that log−1(ℓ) might have a non-empty intersection with behv∗(rp′) for some other
purpose p′. In this case, the auditee might have been actually planning for the purpose p′ instead of
p. Indeed, given the likelihood of such other purposes for non-trivial scenarios, we consider proving
compliance practically impossible. However, this incapability is of little consequence: log−1(ℓ) ⊆
behv∗(rp) does imply that the auditee is behaving as though he is obeying the policy. That is, in
the worse case, the auditee is still doing the right things even if for the wrong reasons.

4.2 Example

Below we revisit the example of Section 3.3. We consider two cases. In the first, the auditor shows
that the physician violated the policy. In the second, auditing is inconclusive.

Violation Found. Suppose after constructing the model as above in Section 3.3, the auditor
maps the actions recorded in the access log ℓ1 to the actions of the model mex, and finds log−1(ℓ1)
holds only a single behavior: b1 = [1, take, 2, send, 3, diagnose, 6,N, 6]. Next, using opt∗(rtreat

ex ), as
computed above, the auditor constructs the set behv∗(rtreat

ex ) of all behaviors an agent planning for
treatment might exhibit. The auditor would find that b1 is not in behv∗(rtreat

ex ).
To see this, note that every execution e1 that has b1 as a prefix is generated from a strategy

σ such that σ(2) = send. The strategy σ2 from Section 3.3 is one such strategy. None of these
strategies are members of opt(rtreat

ex ) for the same reason as σ2 is not a member. Thus, b1 cannot be
in behv∗(rtreat

ex ). As log−1(ℓ) ∩ behv∗(rtreat
ex ) is empty, the audit reveals that the physician violated

the policy.

Inconclusive. Now suppose that the auditor sees a different log ℓ2 such that log−1(ℓ2) = {b2}
where b2 = [1, take, 4, send, 5, diagnose, 6,N, 6]. In this case, our formalism would not find a violation
since b2 is in behv∗(rtreat

ex ). In particular, the strategy σ1 from above produces the behavior b2 under
the contingency that selects the bottom probabilistic transition from state 1 to state 4 under the
action take.

Nevertheless, the auditor cannot be sure that the physician obeyed the policy. For example,
consider the NMDP m′

ex that is mex altered to use the reward function rprofit
ex instead of rtreat

ex . rprofit
ex

assigns a reward of zero to all transitions except for the send actions from states 2 and 4, to which
it assigns a reward of 9. σ1 is in opt∗(rprofit

ex ) meaning that not only the same actions (those in
b2), but even the exact same strategy can be either for the allowed purpose treat or the disallowed
purpose profit. Thus, if the physician did refer the record to his practice for profit, he cannot be
caught as he has tenable deniability of his ulterior motive of profit.

4.3 Auditing Prohibitive Rules

In the above example, the auditor was enforcing the rule that the physician’s actions be only for
treatment. Now, consider auditing to enforce the rule the that physician’s actions are not for
personal profit. After seeing the log ℓ, the auditor could check whether log−1(ℓ) ∩ behv∗(rprofit

ex ) is
empty. If so, then the auditor knows that the policy was obeyed. If not, then the auditor cannot
prove nor disprove a violation. In the above example, just as the auditor is unsure whether the
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actions were for the required purpose of treatment, the auditor is unsure whether the actions are
not for the prohibited purpose of profit.

An auditor might decide to investigate some of the cases where log−1(ℓ) ∩ behv∗(rprofit
ex ) is not

empty. In this case, the auditor could limit his attention to only those possible violations of a
prohibitive rule that cannot be explained away by some allowed purpose. For example, in the
inconclusive example above, the physician’s actions can be explained with the allowed purpose of
treatment. As the physician has tenable deniability, it is unlikely that investigating his actions
would be a productive use of the auditor’s time. Thus, the auditor should limit his attention to
those logs ℓ such that both log−1(ℓ) ∩ behv∗(rprofit

ex ) is non-empty and log−1(ℓ) ∩ behv∗(rtreat
ex ) is

empty.
A similar additional check using disallowed purposes could be applied to enforcing restrictive

rules. However, for restrictive rules, this check would identify cases where the auditee’s behavior
could have been either for the allowed purpose or a disallowed purpose. Thus, it would serve
to find additional cases to investigate and increase the auditor’s workload rather than reduce it.
Furthermore, the auditee would have tenable deniability for these possible ulterior motives, making
these investigations a poor use of the auditor’s time.

5 Auditing Algorithm

We would like to automate the auditing process described above. To this end, we present in Figure 2
an algorithm Audit that aids the auditor in comparing the log to the set of allowed behaviors. As
we are not interested in the details of the logging process and would like to focus on the planning
aspects of our semantics, we limit our attention to the case where log(b) = b. As proved below
(Theorem 2), Audit(m, b) returns true if and only if log−1(b) ∩ behv∗(m) is empty. In the case of
a restrictive rule, the auditor may conclude that the policy was violated when Audit returns true.
In case of a prohibitive rule, the auditor may conclude the policy was obeyed when Audit returns
true.

Audit operates in two steps. The first checks to make sure that the behavior b is not inherently
redundant (lines 01–05). If it is, then log−1(b)∩ behv∗(m) will be empty and the algorithm returns
true. Audit checks b by comparing the actions taken in each state to doing nothing. If the expected
total discounted reward for doing nothing in a state q is higher than that for doing the action a in
q, then a introduces redundancy into any strategy σ such that σ(q) = a. Thus, if b = [. . . , q, a, . . .],
we may conclude that log−1(b) ∩ behv∗(m) is empty.

The second step compares the optimal values of two MDPs. One of the them is the NMDP m
treated as an MDP, which is already optimized during the first step. The other m′ is constructed
from m (lines 07–17) so that only the actions in the log b are selected during optimization. If the
expected total discounted reward of each of these MDPs is unequal, then log−1(b) ∩ behv∗(m) is
empty.

Below we formalize these ideas. Lemma 1 justifies our two step approach while Lemmas 2
and 3 justify how we perform the first and second step, respectively. They allow us to conclude
the correctness of our algorithm in Theorem 2. We defer proofs and additional propositions to the
appendix.
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Audit(〈Q,A, t, r, γ〉, [q0 , a1, q1, . . . an, qn]):
01 V ∗

m := solveMDP(〈Q,A, t, r, γ〉)
02 for(i := 0; i < n; i++):
03 if(ai+1 6= N):

04 if(r[qi][ai+1] + γ
∑|Q|

j=0 t[qi][ai+1][j] ∗ V ∗
m[j] ≤ 0):

05 return true
06 r∗ := 0
07 for(j := 0; j < |Q|; j++):
08 for(k := 0; k < |A|; k++):
09 r′[j][k] := r[j][k]
10 if(r∗ < absoluteValue(r[j][k]):
11 r∗ := absoluteValue(r[j][k])
12 ω := 2 ∗ r∗/(1 − γ) + 1
13 for(i := 0; i < n; i++):
14 for(k := 0; k < |A|; k++):
15 if(k 6= ai+1):
16 r′[qi][k] := −ω
17 m′ := 〈Q,A, t, r′, γ〉
18 V ∗

m′ := solveMDP(〈Q,A, t, r′, γ〉)
19 for(j := 0; j < |Q|; j++):
20 if(V ∗

m[j] = V ∗
m′ [j]):

21 return false
22 return true

Figure 2: The algorithm Audit. solveMDP may be any MDP solving algorithm. The algorithm
assumes functions are represented as arrays and states and actions are represented as indexes into
these arrays.
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5.1 Useless States and the Two Steps

We say an action is useless at a state if taking it would always lead to redundancy. Formally, let
the set Um be the subset of Q×A such that 〈q, a〉 is in Um if and only if a 6= N and for all strategies
σ, Qm(σ, q, a) ≤ 0 where Qm(σ, q, a) = r(q, a) + γ

∑

q′ t(q, a)(q′) ∗ Vm(σ, q′).
We call 〈q, a〉 in set Um useless since any strategy σ such that σ(q) = a could be replaced by

a strategy σ′ that is the same as σ except for having σ′(q) = N without lowering the expected
total discounted reward. To make this formal, let U(σ) be a strategy such that U(σ)(q) = N if
〈q, σ(q)〉 ∈ U and U(σ)(q) = σ(q) otherwise. The following justifies calling these pairs useless: for
all σ and q, Vm(σ, q) ≤ Vm(Um(σ), q) (Proposition 1).

We are also interested in the set strg(b) of strategies that could have resulted in the behavior b:
strg(b) = {σ ∈ Q → A | ∀i < n.ai+1 = σ(qi) } where b = [q0, a1, q1, a2, . . . , an, qn].

Lemma 1. For all environment models m and all behaviors b = [q0, a1, q1, . . . , an, qn], log−1(b) ∩
behv∗(m) is empty if and only if (1) there exists i such that 0 ≤ i < n and 〈qi, ai+1〉 ∈ Um or (2)
strg(b) ∩ opt(m) is empty,

Thus, checking whether log−1(b) ∩ behv∗(m) is empty has been reduced to checking the two
conditions (1) and (2). We explain how to check each of these in the next two sections.

5.2 Step 1: Inherent Redundancy

Rather than construct Um explicitly, we use the following lemma to check condition (1). The lemma
uses the definition Q∗

m(q, a) = r(q, a) + γ
∑

q′ t(q, a)(q′) ∗ V ∗
m(q′) where V ∗

m(q) = maxσ Vm(σ, a).

Lemma 2. For all environment models m, states q, and actions a, 〈q, a〉 is in Um if and only if
a 6= N and Q∗

m(q, a) ≤ 0.

5.3 Step 2: Checking Optimality

To check (2), we construct a model m′ from m that limits the optimization to selecting a strategy
that can cause the observed behavior b. To do so, we adjust the reward function of m so that the ac-
tions taken in b are always taken by the optimal strategies of m′. That is, if b = [q0, a1, q1, . . . , an, qn],
then for each qi and ai+1, we replace the reward for taking an action a′ other than ai+1 from the
state q with a negative reward −ω that is so low as to assure that the action a′ would not be used
by any optimal strategy. We use ω > 2r∗/(1−γ) where r∗ is the reward with the largest magnitude
appearing in m since the total discounted reward is bounded from below by −r∗/(1− γ) and from
above by r∗/(1 − γ) (recall that

∑∞
i=0 γir∗ = r∗/(1 − γ)).

We formally define m′ to be fix(m, b) where fix(m, []) = m and

fix(〈Q,A, t, r, γ〉, [q0, a1, q1, . . . , an, qn]) = fix(〈Q,A, t, r′, γ〉, [q1, . . . , an, qn])

where r′(q0, a) = −ω for all a 6= a1 and r′(q0, a1) = r(q0, a1). The construction fix has the
following useful property: strg(b) ∩ opt(m) is empty if and only if opt(fix(m, b)) ∩ opt(m) is empty
(Proposition 11). This property is useful since testing whether opt(m)∩opt(fix(m, b)) is empty may
be reduced to simply comparing their optimal values: opt(m)∩opt(fix(m, b)) is empty if and only if
for all states q, maxσ Vfix(m,b)(σ, q) 6= maxσ Vm(σ, q) (Proposition 12). Fortunately, algorithms exist
for finding the optimal value of MDPs (see, e.g., [RN03]).

These two propositions combine to yield the next lemma, which justifies how we conduct testing
for the second condition of Lemma 1 in the second step of Audit.
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Lemma 3. For all environment models m and behaviors b, strg(b) ∩ opt(m) is empty if and only
if for all q, maxσ Vfix(m,b)(σ, q) 6= maxσ Vm(σ, q).

These lemmas combine with reasoning about the actual code of the program to yield its cor-
rectness.

Theorem 2. For all environment models m and behaviors b, audit(m, b) returns true if and only
if log−1(b) ∩ behv∗(m) is empty.

The running time of the algorithm is dominated by the two MDP optimizations. These may be
done exactly by reducing the optimization to a system of linear equations [d’E63]. Such systems
may be solved in polynomial time [Kha79, Kar84]. However, in practice, large systems are often
difficult to solve. Fortunately, a large number of algorithms for making iterative approximations
exist whose run time depends on the quality of the approximation. (See [LDK95] for a discussion.)

6 Applying our Formalism to Past Methods

Past methods of enforcing purpose requirements have not provided methods of assigning purposes
to sequences of actions. Rather, they presume that the auditor (or someone else) already has a
method of determining which behaviors are for a purpose. In essence, these methods presuppose
that the auditor already has the set of allowed behaviors behv∗(rp) for the purpose p that he is en-
forcing. These methods differ in their intensional representations of the set behv∗(rp). Thus, some
may represent a given set exactly while others may only be able to approximate it. These differ-
ences mainly arise from the different mechanisms they use to ensure that the auditee only exhibits
behaviors from behv∗(rp). We use our semantics to study how reasonable these approximations
are.

Byun et al. use role-based access control [San96] to consider purposes [BBL05, BL08, NBL+10].
They associate purposes with sensitive resources and with roles, and their method only grants the
user access to the resource when the purpose of the user’s role matches the resource’s purpose.
The method does not, however, explain how to determine which purposes to associate with which
roles. Furthermore, a user in a role can perform actions that do not fit the purposes associated with
his role allowing him to use the resource for a purpose other than the intended one. Thus, their
method is only capable of enforcing policies when there exists some subset A of the set of actions
A such that behv∗(rp) is equal to the set of all interleavings of A with Q of finite but unbounded
length (i.e., behv∗(rp) = (Q × A)∗:Q where : is append raised to work over sets in the standard
pairwise manner). The subset A corresponds to those actions that use a resource with the same
purpose as the auditee’s role. Despite these limitations, their method can implement the run-time
enforcement used at some organizations, such as a hospital that allows physicians access to any
record to avoid denying access in time-critical emergencies. However, it does not allow for the fine-
grain distinctions used during post-hoc auditing done at some hospitals to ensure that physicians
do not abuse their privileges.

Al-Fedaghi uses the work of Byun et al. as a starting point but concludes that rather than as-
sociating purposes with roles, one should associate purposes with sequences of actions [AF07].
Influenced by Al-Fedaghi, Jafari et al. adopt a similar position calling these sequences work-
flows [JSNS09]. The set of workflows allowed for a purpose p corresponds to behv∗(rp). They
do not provide a formal method of determining which workflows belong in the allowed set. They do
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not consider probabilistic transitions and the intuition they supply suggests that they would only
include workflows that successfully achieves or improves the purpose. Thus, our approach appears
more lenient by including some behaviors that fail to improve the purpose.

Others have adopted a hybrid approach allowing for the roles of an auditee to change based
on the state of the system [PGY08, EKWB11]. These changes effectively allow role-based access
control to simulate the workflow methods to be just as expressive while introducing a level of
indirection inhabited by dynamic roles.

Agrawal et al. use a query intrusion model to enforce purpose requirements that operates in
a manner similar to intrusion detection [AKSX02]. Their method flags a request for access as a
possible violation if the request claims to be for a purpose despite being dissimilar to previous
requests for the same purpose. To avoid false positives, the set of allowed behaviors behv∗(rp)
would have to be small or have a pattern that the query intrusion model could recognize.

Jif is a language extension to Java designed to enforce requirements on the flows of information in
a program [CMVZ09]. Hayati and Abadi explain how to reduce purpose requirements to information
flow properties that Jif can enforce [HA05]. Their method requires that inputs are labeled with
the purposes for which the policy allows the program to use them and that each unit of code be
labeled with the purposes for which that code operates. If information can flow from an input
statement labeled with one purpose to code labeled for a different purpose, their method produces
a compile-time type error. (For simplicity, we ignore their use of sub-typing to model sub-purposes.)
In essence, their method enforces the rule if information i flows to code c, then i and c must be
labeled with the same purpose. The interesting case is when the code c uses the information i to
perform some observable action ac,i, such as producing output. Under our semantics, we treat the
program as the auditee and view the policy as limiting these actions. By directly labeling code,
their method does not consider the contexts in which these actions occur. Rather the action ac,i

is aways either allowed or not based on the purpose labels of c and i. By not considering context,
their method is subject to the same limitations as the method of Byun et al. with the subset A
being equal to the set of all actions ac,i such that c and i have the same label. However, using
more advanced type systems (e.g., typestate [SY86]), they might be able extend their method to
consider the context in which code is executed and increase the method’s expressiveness.

7 Multiple Purposes

So far, our formalism allows our hypothetical agent to consider only a single purpose. However,
auditees may perform an action for more than one purpose. In many cases, the auditor may simply
ignore any action that is not governed by the privacy policy and not relevant to the plans the
auditee is employing that uses governed actions.

In the physician example above, the physician already implicitly considered many other purposes
before even seeing this current patient. For example, the physician presumably performed many
actions not mentioned in the model in between taking the X-ray, sending it, and making a diagnosis,
such as going on a coffee break. As these actions are not governed by the privacy policy and neither
improves nor degrades the diagnosis even indirectly, the auditor may safely ignore them. Thus, our
semantics can handle multiple purposes in this limited fashion.

However, in other cases, the interactions between purposes become important. Below we discuss
two complementary ways that an auditee can consider multiple purposes that produce interactions.
In the first, the auditee considers one purpose after another. In the second, the auditee attempts to
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optimize for multiple purposes simultaneously. We find that our semantics may easily be extended to
handle the first, but difficulties arise for the second. We end the section by considering what features
a formalism would need to handle simultaneous consideration of purposes and the challenges they
raise for auditing.

7.1 Sequential Consideration

Yahoo!’s privacy policy states that they will not contact children for the purpose of market-
ing [Yah10a]. Suppose Yahoo! decides to change the name of games.yahoo.com to fun.yahoo.com

because they believe the new name will be easier to market. They notify users of games.yahoo.com,
including children, of the upcoming change so that they may update their bookmarks.

In this example, the decision to change names, made for marketing, causes Yahoo! to contact
children. However, we do not feel this is a violation of Yahoo!’s privacy policy. A decision made
for marketing altered the expected future of Yahoo! in such a way that customer service would
suffer if Yahoo! did nothing. Thus, to maintain good customer service, Yahoo! made the decision to
notify users without further consideration of marketing. Since Yahoo! did not consider the purpose
of marketing while making this decision, contacting the children was not for marketing despite
Yahoo! considering the implications of changing the name for marketing while making its decision
to contact children.

Bratman describes such planning in his work formalizing intentions [Bra87]. He views it as a
sequence of planning steps in which the intention to act (e.g., to change the name) at one step may
affect the plans formed at later steps. In particular, each step of planning starts with a model of the
environment that is refined by the intentions formed by each of the previous planning steps. The
step then creates a plan for a purpose that further refines the model with new intentions resulting
from this plan. Thus, a purpose of a previous step may affect the plan formed in a later step for
a different purpose by constraining the choices available at the later step of planning. We adopt
the stance that an action selected at a step is for the purpose optimized at that step but not other
previous purposes affecting the step.

7.2 Simultaneous Consideration

At other times, an auditee might consider more than one purpose in the same step. For example, the
physician may have to both provide quality treatment and respect the patient’s financial concerns.
In this case, the physician may not be able to simultaneously provide the highest quality care at
the lowest price. The two competing concerns must be balanced and the result may not maximize
the satisfaction of either of them.

The traditional way of modeling the simultaneous optimization of multiple rewards is to combine
them into a single reward using a weighted average over the rewards. Each reward would be
weighted by how important it is to the auditee performing the optimization. This amalgamation of
the various purpose rewards makes it difficult to determine for which purpose various actions are
selected.

One possibility is to analyze the situation using counterfactual reasoning (see, e.g., [Mac74]).
For example, given that the auditee performed an action a while optimizing a combination of
purposes p1 and p2, the auditor could ask if the auditee would have still performed the action a
even if the auditee had not considered the purpose p1 and had only optimized the purpose p2. If
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flyDC, 0, 1flyNY, 1, 0

driveDC,
0, 2

2, 0
driveNY,

Figure 3: Model of a traveler deciding whether to fly or drive. Since every transition is deterministic,
we represent each as a single arrow. Each is labeled with the action name, the rewards for business
and the rewards for lecturing in that order. Self-loops of zero reward are not shown including all
those labeled with the nothing action N.

not, than the auditor could determine that the action was for p1. However, as the next example
shows, such reasoning is not sufficient to determine the purposes of the actions.

To show the generality of purposes, we consider an example involving travel reimbursement.
Consider a Philadelphian who needs to go to New York City for a business meeting with his employer
and is invited to give a lecture at a conference in Washington, D.C., with his travel expenses
reimbursed by the conference. He could drive to either New York or Washington (modeled as the
actions driveNY and driveDC, respectively). However, due to time constraints he cannot drive to
both of them. To attend both events, he needs to fly to both (modeled as actions flyNY and flyDC).
As flying is more expensive, both driving actions receives a higher reward than flying (2 instead of
1), but flying is better than not going (0). Figure 3 models the traveler’s environment.

Given these constraints, he decides to fly to both only to find auditors at both events scrutinizing
his decision. For example, an auditor working for the conference could find that his flight to
Washington was not for the lecture since the traveler would have driven had it not been for work.
If the conference’s policy requires that reimbursed flights are only for the lecture, the auditor might
deny reimbursement. However, the employer seems even less likely to reimburse the traveler for his
flight to Washington since the flight is redundant for getting to New York.

However, under the semantics discussed above, each flight would be for both purposes since only
when the traveler considers both does he decide to take either flight. While having the conference
reimburse the traveler for his flight to Washington seems reasonable, the idea that they should also
reimburse him for his flight to New York appears counterintuitive.

Our approach of sequential planning also cannot explain this example. To plan sequentially,
the traveler must consider one of the two events first. If, for example, he considers New York first,
he will decided to drive to New York and then decline the invitation to Washington. Only by
considering both events at once, does he decide to fly.

We believe resolving this conflict requires extending our semantics to consider requirements that
an action be for a purpose (as opposed to not for or only for). Furthermore, we believe that the
optimization of combinations of purposes does not accurately model human planning with multiple
purposes. Intuitively, the traveler selects flyDC not for work but also not only for the conference.
Rather flyDC seems be for the conference under the constraint that it must not prevent the traveler
from attending the meeting. In the next section, we consider the possibility of modeling human
planning more accurately.
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7.3 Modeling Human Planning

While MDPs are useful for automated planning, they are not specialized for modeling planning
by humans, leading to the search for more tailored models [Sim55, GS02]. Simon proposed to
model humans as having bounded rationality to account for their limitations and their lack of
information [Sim55]. Work on formalizing bounded rationality has resulted in a variety of planning
principles ranging from the systematic (e.g., Simon’s satisficing) to the heuristic (e.g., [Gig02]).
However, “[a] comprehensive, coherent theory of bounded rationality is not available” [Sel02, p14]
and there still is “a significant amount of unpredictability in how an animal or a human being will
undertake to solve a problem” such as planning [DKP96, p40].

We view creating semantics more closely tied to human planning interesting future work. How-
ever, modeling human planning may prove complex enough to justify accepting the imperfections
of semantics such as ours or even heuristic based approaches for finding violations such as the query
intrusion model discussed above [AKSX02].

Despite these difficulties, one could look for discrepancies between a semantics of purpose re-
quirements and experimental results on planning. In this manner one could judge how closely a
semantics approximates human planning in the ways relative to purpose requirements.

In particular, our semantics appears to hold human auditees to too high of a standard: they are
unlikely to always be able to pick the optimal strategy for a purpose. When enforcing a restrictive
rule, this strictness could result in the auditor investigating some auditees who honestly planned
for the only allowed purpose, but failed to find the optimal policy. While such investigations would
be false positives, they do have the pleasing side-effect of highlighting areas in which an auditee
could improve his planning.

In the case of enforcing prohibitive rules, this strictness could cause the auditor to miss some
violations that do not optimize the prohibited purpose, but, nevertheless, are for the purpose. The
additional checks proposed at the end of Section 4.3 could be useful for detecting these violations: if
the auditee’s actions are not consistent with a strategy that optimizes any of the allowed purposes
but does improve to some degree the prohibited purpose, the actions may warrant extra scrutiny.

While our semantics is limited by our understanding of human planning, it still reveals concepts
crucial to the meaning of purpose. Ideas such as planning and non-redundancy will guide future
investigations on the topic.

8 Related Work

We have already covered the most closely related work in Section 6. Below we discuss work on
related problems and work on purpose from other fields.

Minimal Disclosure. The works most similar to ours in approach have been on minimal disclo-
sure, which requires that the amount of information used in granting a request for access should
be as little as possible while still achieving the purpose behind the request. Massacci, Mylopou-
los, and Zannone define minimal disclosure for Hippocratic databases [MMZ06]. Barth, Mitchell,
Datta, and Sundaram study minimal disclosure in the context of workflows [BMDS07]. They model
a workflow as meeting a utility goal if it satisfies a temporal logic formula. Minimizing the amount
of information disclosed is similar to an agent maximizing his reward and thereby not performing
actions that have costs but no benefits. However, in addition to having different research goals, we
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consider several factors that these works do not, including quantitative purposes that are satisfied
to varying degrees and probabilistic behavior resulting in actions being for a purpose despite the
purpose not being achieved.

Expressing Privacy Policies with Purpose. Work on understanding the components of pri-
vacy policies has shown that purpose is a common component of privacy rules (e.g., [BA05, BA08]).
Some languages for specifying access-control policies allow the purpose of an action to partially de-
termine if access is granted [PS03, Cra02, BKKF05, BKK06]. However, these languages do not
give a formal semantics to the purposes. Instead they rely upon the system using the policy to
determine whether an action is for a purpose or not.

Philosophical Foundations. Taylor provides a detailed explanation of the importance of plan-
ning to the meaning of purpose, but does not provide any formalism [Tay66].

The sense in which the word “purpose” is used in privacy policies is also related to the ideas of
desire, motivation, and intention discussed in works of philosophy (e.g., [Ans57]). The most closely
related to our work is that of Bratman’s on intentions from which we get our model of sequential
planning [Bra87]. In his work, an intention is an action an agent plans to take where the plan
is formed while attempting to maximize the satisfaction of the agent’s desires; Bratman’s desires
correspond to our purposes. Roy formalized Bratman’s work using logics and game theory [Roy08].
However, these works are concerned with when an action is rational rather than determining the
purposes behind the action.

We borrow the notion of non-redundancy from Mackie’s work on formalizing causality using
counterfactual reasoning [Mac74]. In particular, Mackie defines a cause to be a non-redundant part
of a sufficient explanation of an effect. Roughly speaking, we replace the causes with actions and
the effect with a purpose. The extension to our semantics proposed in Section 7.2, may be seen
as another instance of non-redundancy. This time, we replace the causes with purposes and the
effect with an action. This suggests that for an action to be for a purpose, we expect both that the
action was non-redundant for improving that purpose and that the purpose was non-redundant in
motivating the action. That is, we expect planning to be parsimonious.

Planning. Psychological studies have produced models of human thought (e.g., [ABB+04]). How-
ever, these are too low-level and incomplete for our needs [DKP96]. The GOMS formalism provides
a higher level model, but is limited to selecting behavior using simple planning approaches [JK96].
Simon’s approach of bounded rationality [Sim55] and related heuristic-based approaches [GS02]
model more complex planning, but with less precise predictions.

9 Conclusions and Future Work

We use planning to present the first formal semantics for determining when a sequence of actions
is for a purpose. In particular, our semantics uses an MDP-like model for planning, which allows
us to automate auditing for both restrictive and prohibitive purpose requirements. Furthermore,
our semantics highlights that an action can be for a purpose even if that purpose is never achieved,
a point present in philosophical works on the subject (e.g., [Tay66]), but whose ramifications on
policy enforcement had been unexplored. Lastly, our framework allows us to explain and compare
previous methods of policy enforcement in terms of a formal semantics.
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However, we recognize the limitations of this model: it imperfectly models human planning and
only captures some forms of planning for multiple purposes. Nevertheless, we believe the essence
of our work is correct: an action is for a purpose if the actor selects to perform that action while
planning for the purpose. Future work will instantiate our semantic framework with more complete
models of human planning.

Fundamentally, our work shows the difficulties of enforcement due to issues such as the tenable
deniability of ulterior motives. These difficulties justify policies prohibiting conflicts of interest
and requiring the separation of duties despite possibly causing inefficiencies. For example, many
hospitals would err on the side of caution and disallow referral from a physician to his own private
practice or require a second opinion to do so, thereby restraining the ulterior motive of profit.
Indeed, despite the maxim that privacy is security with a purpose, due to these difficulties, purpose
possibly plays the role of guidance in crafting more operational internal policies that organizations
enforce rather than the role of a direct input to the formal auditing process itself. In light of
this possibility, one may view our work as a way to judge the quality of these operational policies
relevant to the intent of the purpose requirements found in the actual privacy policy.

We further believe that our formalism may aid organizations in designing their processes to avoid
the possibility of or to increase the detectability of policy violations. For example, the organization
can decrease violations by aligning employee incentives with the allowed purposes.

Acknowledgments. We appreciate the discussions we have had with Lorrie Faith Cranor and
Joseph Y. Halpern on this work. We thank Dilsun Kaynar and Divya Sharma for many helpful
comments on this paper.
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A Details of MDPs

One may find a discussion of MDPs in most introductions to artificial intelligence (e.g., [RN03]).
For an MDP m = 〈Q,A, t, r, γ〉, the discount factor γ accounts for the preference of people for
receiving rewards sooner than later. It may be thought of as similar to inflation. We require that
γ < 1 to ensure that the expected total discounted reward is bounded.

The value of a state q under a strategy σ is

Vm(σ, q) = E

[

∞
∑

i=0

γir(qi, σ(qi))

]

The Bellman equation shows that

Vm(σ, q) = r(q, σ(q)) + γ
∑

q′∈Q

t(q, σ(q))(q′) ∗ Vm(σ, q′)

A strategy σ∗ is optimal if and only if for all states q, Vm(σ∗, q) = maxσ Vm(σ, q). At least one
optimal policy always exists. Furthermore, if σ∗ is optimal, then

σ∗(q) = argmax
a∈A



r(s, a) + γ
∑

q′∈Q

t(q, σ(q))(q′) ∗ Vm(σ, q′)





B Proof of Theorem 1

The proper sub-execution relation is a strict partial order. This follows directly from the proper-
subsequence relation ⊏ being a strict partial order. We write ⊳ for proper sub-execution and E for
proper sub-execution or equal.

Now, we show that ≺ is also strict partial ordering.

• Irreflexivity: for no σ is σ ≺ σ. For σ ≺ σ to be true, there would have to exist a σ ∈ opt such
that for at least one contingency κ′ and q′, m(q′, κ′, σ′) is a proper sub-execution of itself.
However, this is impossible since the sub-execution relation is strict partial order.

• Asymmetry: for all σ1 and σ2, if σ1 ≺ σ2, then it is not the case that σ2 ≺ σ1. To show a
contradiction, suppose σ1 ≺ σ2 and σ2 ≺ σ1 are both true. It would have to be the case that
for all contingencies κ and states q, m(q, κ, σ1) E m(q, κ, σ2) and m(q, κ, σ2) E m(q, κ, σ1).
Since ⊳ is a strict partial order, this implies that for all q and κ, m(q, κ, σ1) = m(q, κ, σ2).
Thus, there cannot exist a contingency κ′ and state q′ such that m(q′, κ′, σ2) ⊳ m(q′, κ′, σ1).
Then σ2 ≺ σ1 cannot be true, a contradiction.

• Transitivity: for all σ1, σ2, and σ3, if σ1 ≺ σ2 and σ2 ≺ σ3, then σ1 ≺ σ3. Suppose σ1 ≺ σ2

and σ2 ≺ σ3. Then for all for all contingencies κ and states q, m(q, κ, σ1) E m(q, κ, σ2) and
m(q, κ, σ2) E m(q, κ, σ3). Since E has transitivity, this implies that m(q, κ, σ1) E m(q, κ, σ3)
for all κ and q.

Furthermore, it must be the case that there exists a contingency κ′ and state q′ such that
m(q′, κ′, σ1) ⊳m(q′, κ′, σ2). From above, m(q′, κ′, σ2) E m(q′, κ′, σ3). Thus, by the transitivity
of E, m(q′, κ′, σ1) ⊳ m(q′, κ′, σ3) as needed.
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Since ≺ is a strict partial ordering and Q → A is finite, Q → A is well-founded under ≺. Q → A
being finite also means that opt(m) is finite. It is also known to be non-empty [RN03].

Suppose opt∗(m) were empty. This would mean for every σ of opt(m), there exists σ′ in opt(m)
such that σ′ ≺ σ. Since opt(m) is finite but non-empty, this could only happen if ≺ contained
cycles. However, this is a contradiction since ≺ is a strict partial order and Q → A is well-founded
under it. Thus, opt∗(m) is not empty.

C Proofs about Useless States

Proposition 1. For all environment models m, sets U such that U ⊆ Um, strategies σ, and states
q, Vm(σ, q) ≤ Vm(U(σ), q).

Proof. Let exec(b) be all the executions with the behavior b as a prefix. Let BU be the set of all
behaviors b such that for some j, b = [q0, a1, q1 . . . , qj , aj+1, qj+1] such that 〈qj, aj+1〉 is in U but
for not i < j is 〈qi−1, ai〉 in U . We may use BU and exec(b) to partition the space of executions E.
Thus,

Vm(σ, q) = E

[

∞
∑

i=0

γir(qi, σ(qi))

]

=
∑

e∈E

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

=
∑

b∈BU

∑

e∈exec(b)

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

(1)

(Note: as E is uncountable, taking a summation over it is ill advised. We could take an integral
instead. Alternatively, one could take the sum over executions of bounded length. This will
introduce an error term. However, as the bound increases the magnitude of this term will drop
exponentially fast due to the factor γ. In essence, this is how most practical algorithms for solving
MDPs operate. See [RN03].)

For any b in BU , consider e ∈ exec(b). Since e is in exec(b), it must have the following form

[q0, a1, q1 . . . , qj, aj+1, qj+1, . . .]

where 〈qj, aj+1〉 ∈ U but for i < j is 〈qi, ai+1〉 /∈ U where b = [q0, a1, q1 . . . , qj, aj+1, qj+1].
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For σ ∈ strg(b), we reason as shown as follows.

∑

e∈exec(b)

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

=
∑

e∈exec(b)

Pr[e|σ]





j−1
∑

i=0

γir(qi, σ(qi)) +

∞
∑

i=j

γir(qi, σ(qi))





=





∑

e∈exec(b)

Pr[e|σ]

j−1
∑

i=0

γir(qi, σ(qi))



 + γj





∑

e∈exec(b)

Pr[e|σ]
∞

∑

i=j

γi−jr(qi, σ(qi))





=





∑

e∈exec(b)

Pr[e|σ]

j−1
∑

i=0

γir(qi, σ(qi))



 + γj
E





∞
∑

i=j

γir(qi, σ(qi))





=





∑

e∈exec(b)

Pr[e|σ]

j−1
∑

i=0

γir(qi, σ(qi))



 + γjVm(σ, qj)(2)

Furthermore,
∑

e∈exec(b)

Pr[e|σ]

j−1
∑

i=0

γir(qi, σ(qi)) = Pr[b|σ]

j−1
∑

i=0

γir(qi, σ(qi))

Thus, the left term is equal under σ and U(σ):

∑

e∈exec(b)

Pr[e|σ]

j−1
∑

i=0

γir(qi, σ(qi)) = Pr[b|σ]

j−1
∑

i=0

γir(qi, σ(qi))(3)

= Pr[b|σ]

j−1
∑

i=0

γir(qi, U(σ)(qi))(4)

=
∑

e∈exec(b)

Pr[e|U(σ)]

j−1
∑

i=0

γir(qi, U(σ)(qi))(5)

where line 4 follows since σ(qi) = U(σ)(qi) for 〈qi, ai+1〉 /∈ U .
Since 〈qj , aj+1〉 ∈ U , we know that Qm(σ, qj , aj+1) ≤ 0. Furthermore, since σ ∈ strg(b), it is the

case that σ(qj) = aj+1. Thus, Vm(σ, qj) = Qm(σ, qj , σ(qj)) ≤ 0. Furthermore, since 〈qj , aj+1〉 ∈ U ,
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Vm(U(σ), qj) = Qm(σ, qj ,N) = 0. Thus, we may conclude

∑

e∈exec(b)

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

=





∑

e∈exec(b)

Pr[e|σ]

j−1
∑

i=0

γir(qi, σ(qi))



 + γjVm(σ, qj)(6)

=





∑

e∈exec(b)

Pr[e|U(σ)]

j−1
∑

i=0

γir(qi, U(σ)(qi))



 + γjVm(σ, qj)(7)

≤





∑

e∈exec(b)

Pr[e|U(σ)]

j−1
∑

i=0

γir(qi, U(σ(qi)))



 + γjVm(U(σ), qj)(8)

(9)

=
∑

e∈exec(b)

Pr[e|U(σ)]

[

∞
∑

i=0

γir(qi, U(σ)(qi))

]

(10)

where lines 6 and 10 come from the reasoning leading to line 2, and line 7 comes from the reasoning
leading to line 5.

Note that the above also trivially holds when σ /∈ strg(b) since Pr[e|σ] = 0 and Pr[e|U(σ)] = 0
for all e ∈ exec(b). Thus, for all σ, we have

∑

e∈exec(b)

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

≤
∑

e∈exec(b)

Pr[e|U(σ)]

[

∞
∑

i=0

γir(qi, U(σ)(qi))

]

(11)

Thus,

Vm(σ, q) =
∑

b∈BU

∑

e∈exec(b)

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

(12)

≤
∑

b∈BU

∑

e∈exec(b)

Pr[e|σ]

[

∞
∑

i=0

γir(qi, σ(qi))

]

(13)

= Vm(U(σ), q)(14)

where line 12 and 14 comes from the reasoning of line 1, and line 13 comes from equation 11.

D Proof of Lemma 1

First we prove that this log−1(b)∩behv∗(m) in the lemma may be replaced with strgm(b)∩opt∗(m).
Then, we prove the modified statement with two propositions. We have one corresponding to the
if direction and one to the only if direction.

Proposition 2. For environment models m, if for all observable behaviors b, log(b) = b, then
strg(b) ∩ opt∗(m) is empty if and only if log−1(b) ∩ behv∗(m) is empty.
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Proof. Since log−1(b) = {b}, log−1(b)∩behv∗(m) is empty if and only b /∈ behv∗(m). b is in behv∗(m)
if and only if there exists a strategy σ in opt∗(m) such that there exists a contingency κ, and a
state q such that b is a subsequence of m(q, κ, σ).

For all σ in opt∗(m), ∃κ, q.b ⊏ m(q, κ, σ) is equivalent to ∀i ∈ [0, n).σ(qi) = ai+1 where b =
[q0, a1, q1, a2, . . . , an, qn]. To see this, note b was observed and, thus, it must have been produced
by a contingency consistent with m.

∀i ∈ [0, n).σ(qi) = ai+1 is equivalent to σ ∈ strg(b). Thus, b is in behv∗(m) if and only if there
exists a strategy σ in opt∗(m) such that σ is in strg(b). Thus, log−1(b) ∩ behv∗(m) is not empty if
and only if strg(b) ∩ opt∗(m) is not empty.

Proposition 3. For all environment models m and behaviors b = [q0, a1, q1, . . . , an, qn], strg(b) ∩
opt∗(m) is not empty if (1) for all i such that 0 ≤ i < n, 〈qi, ai+1〉 /∈ Um and (2) strg(b) ∩ opt(m)
is not empty.

Proof. Suppose the conditions (1) and (2) are true. Since strg(b)∩opt(m) is not empty, there exists
some σ1 in both of them. Since σ1 is in strg(b), for all 0 ≤ i < n, σ1(qi) = ai+1. Thus, by condition
(2), 〈qi, σ1(qi)〉 /∈ Um. This further implies that ai+1 is not N.

Let σ2 = Um(σ1). σ2 is in strg(b) because for all 0 ≤ i < n, σ1(qi) = σ2(qi) since 〈qi, σ1(qi)〉 /∈
Um. Furthermore, by Proposition 1, for all q, Vm(σ1, q) ≤ Vm(σ2, q). Thus, σ2 is in opt(m) as well.

To show that σ2 is also in opt∗(m), suppose it were not. Since σ2 is in opt(m), this im-
plies that there exists σ′ in opt(m) such that σ′ ≺ σ2. For this to be true, there must exist κ′

and state q′ such that active(m(q′, κ′, σ′)) ⊏ active(m(q′, κ′, σ2). Thus, for some i, m(q′, κ′, σ2)
must have the form [q0, a1, q1, . . . , qi−1, ai, qi, ai+1, qi+1, . . .], and m(q′, κ′, σ′) must have the form
[q0, a1, q1, . . . , qi−1, ai, qi,N, qi, . . .] where ai+1 is not N. Since σ2(qi) = ai+1, by the construction of
σ2, 〈qi, ai+1〉 is not in Um. Thus, there exists some σ3 such that Qm(σ3, qi, ai+1) > 0.

Since σ2 is in opt(m), Qm(σ2, qi, ai+1) ≥ Qm(σ3, qi, ai+1) > 0. Thus, we have Vm(σ2, qi) =
Qm(σ2, qi, ai+1) > 0. However, Vm(σ′, qi) = 0 meaning that σ′ is not in opt(m), a contradiction.

Proposition 4. For all environment models m and behaviors b = [q0, a1, q1, . . . , an, qn], if strg(b)∩
opt∗(m) is not empty, then (1) for all i such that 0 ≤ i < n, 〈qi, ai+1〉 /∈ Um and (2) strg(b)∩opt(m)
is not empty.

Proof. Condition (2) follows from the fact that opt∗(m) ⊆ opt(m).
To prove condition (1), suppose strg(b) ∩ opt∗(m) is not empty but condition (1) does not

hold. Then there exists σ1 in strg(b) ∩ opt∗(m). Furthermore, there exists some i′ such that
〈qi′ , ai′+1〉 ∈ Um. Since σ1 ∈ strg(b), it must be the case that for all i < n, ai+1 = σ(qi). Thus,
σ1(qi′) = ai′+1. By Proposition 1, for all q, Vm(σ1, q) ≤ Vm(Um(σ1), q). Furthermore, U(σ1) ≺ σ1.
To see this, recall that Um is not empty. Thus, any contingency κ′ that results in state qi′ ,
m(q0, κ

′, Um(σ1)) ⊏ m(q0, κ
′, σ1) since only Um(σ1) does nothing at qi′ . For κ that do not lead to

qi′ , the two executions will be the same.
Since Um(σ1) ≺ σ1 and U(σ1) is in opt(m), σ1 cannot be in opt∗(b), a contradiction.

E Proof of Lemma 2

If 〈q, a〉 is in Um, then a 6= N and for all strategies σ, Qm(σ, q, a) ≤ 0. Thus, the lemma is true if
the following is true: Q∗(q, a) ≤ 0 iff ∀σ.Qm(σ, q, a) ≤ 0.
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To show this, note that ∀σ.Qm(σ, q, a) ≤ 0 iff maxσ Qm(σ, q, a) ≤ 0. Furthermore,

max
σ

Qm(σ, q, a) = max
σ

r(q, a) + γ
∑

q′

t(q, a)(q′) ∗ Vm(σ, q′)

= r(q, a) + γ
∑

q′

t(q, a)(q′) ∗ max
σ

Vm(σ, q′)

= r(q, a) + γ
∑

q′

t(q, a)(q′) ∗ V ∗(q′)

= Q∗
m(q, a)

Thus, ∀σ.Qm(σ, q, a) ≤ 0 iff Q∗
m(q, a) ≤ 0.

F Properties of fix

Proposition 5. For all environment models m, strategies σ, and states q, Vfix(m,b)(σ, q) ≤ Vm(σ, q).

Proof. Let m = 〈Q,A, t, r, γ〉 and fix(m, b) = 〈Q,A, t, r′, γ〉.

Vm(σ, q) = E

[

∞
∑

i=0

γir(qi, σ(qi))

]

(15)

≤ E

[

∞
∑

i=0

γir′(qi, σ(qi))

]

(16)

= Vfix(m,b)(σ, q)(17)

where line 16 follows from the fact that for all q and a, r′(q, a) ≤ r(q, a).

Proposition 6. For all environment models m, behaviors b, σ ∈ strg(b), and states q, Vfix(m,b)(σ, q) =
Vm(σ, q)

Proof. Let m = 〈Q,A, t, r, γ〉 and fix(m, b) = 〈Q,A, t, r′, γ〉. Let b = [q0, a1, q1, . . . , an, qn].
Since σ is in strg(b), for all i such that 0 ≤ i < n, σ(qi) = ai+1. Thus, r′(qi, ai+1) = r(qi, ai+1).

For all q that is not equal to qi for any i, r′(q, a) = r(q, a) for all a. Thus, for all a and q,
r′(q, σ(q)) = r(q, σ(q)). This implies

Vm(σ, q) = E

[

∞
∑

i=0

γir(qi, σ(qi))

]

= E

[

∞
∑

i=0

γir′(qi, σ(qi))

]

= Vfix(m,b)(σ, q)

Proposition 7. For all environment models m, behaviors b, and σ1 /∈ strg(b), there exists a
σ2 ∈ strg(b) such that for all states q, Vfix(m,b)(σ1, q) ≤ Vfix(m,b)(σ2, q).
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Proof. Let fix(m, b) = 〈Q,A, t, r′, γ〉. Let b = [q0, a1, q1, . . . , an, qn]. Since σ1 is not in strg(b),
there must exist some i such that σ1(qi) 6= ai+1. Let the set I hold all such indexes i: I =
{ i ∈ [0, n) | σ1(qi) 6= ai+1 }. Let σ2 be the strategy such that σ2(q) = ai+1 if q = qi for some i ∈ I
and σ2(q) = σ1(q) otherwise. By construction, σ2 is in strg(b).

By the construction of fix(m, b), for all i ∈ I, r′(qi, σ1(qi)) = −ω ≤ r′(qi, ai+1) = r′(qi, σ2(qi)).
Thus, for all q, r′(q, σ1(q)) ≤ r′(q, σ2(q)). Thus, for all states q, Vfix(m,b)(σ1, q) ≤ Vfix(m,b)(σ2, q).

Proposition 8. For all environment models m, behaviors b, σ1 /∈ strg(b), and σ2 ∈ strg(b), there
exists a state q such that Vfix(m,b)(σ1, q) < Vfix(m,b)(σ2, q).

Proof. Let b = [q0, a1, q1, . . . , an, qn]. Since σ1 is not in strg(b), there must exist some i such that
σ1(qi) 6= ai+1. By the construction of fix(m, b), r′(qi, σ1(qi)) = −ω. Recall that ω > 2r∗/(1 − γ)
where r∗ is the reward with the largest magnitude. Thus,

Vfix(m,b)(σ1, qi) = r(qi, σ1(qi)) + γ
∑

q′

t(qi, σ1(qi))(q
′) ∗ Vm(σ, q′)(18)

= −ω + γ
∑

q′

t(qi, σ1(qi))(q
′) ∗ Vm(σ, q′)(19)

≤ −ω + γ
∑

q′

t(qi, σ1(qi))(q
′) ∗ r∗/(1 − γ)(20)

= −ω + γ ∗ r∗/(1 − γ)(21)

≤ −ω + r∗/(1 − γ)(22)

< −[2r∗/(1 − γ)] + r∗/(1 − γ)(23)

= −r∗/(1 − γ)(24)

≤ Vm(σ2, q)(25)

= Vfix(m,b)(σ2, q)(26)

where line 21 follows from t(q, σ1(q) being a probability distribution over states, line 25 follows from
the definition of r∗ and known bounds (e.g., [RN03]), and line 26 follows from by Proposition 6.

Proposition 9. For all environment models m and behaviors b, opt(fix(m, b)) is a subset of strg(b).

Proof. Suppose σ1 were not in strg(b). By Proposition 8, for all σ2 ∈ strg(b), there exists a state q
such that Vfix(m,b)(σ1, q) < Vfix(m,b)(σ2, q). Thus, σ1 is not in opt(fix(m, b)).

Proposition 10. For all environment models m, behaviors b, and strategies σ in opt(fix(m, b)),
Vfix(m,b)(σ, q) = Vm(σ, q).

Proof. Let σ be in opt(fix(m, b)). σ must be in strg(m, b) by Proposition 9. Thus, Vfix(m,b)(σ, q) =
Vm(σ, q) by Proposition 6.

G Proof of Lemma 3

This lemma follows directly from the Propositions 11 and 12 below.

Proposition 11. For all environment models m and behaviors b, strg(b)∩opt(m) = opt(fix(m, b))∩
opt(m).
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Proof. Consider the set strg-opt(m, b) = strg(b) − opt(fix(m, b)). For all σ in strg-opt(m, b), σ is
in strg(b) but not opt(fix(m, b)). By being in strg(b), Vfix(m,b)(σ, q) = Vm(σ, q) by Proposition 6.
Thus, since σ is not in opt(fix(m, b)), σ is not in opt(m) either by Proposition 5. This means that
strg-opt(m, b) ∩ opt(m) is empty.

Furthermore, opt(fix(m, b)) ⊆ strg(b) by Proposition 9. Thus, strg(b) = opt(fix(m, b))∪(strg(b)−
opt(fix(m, b))) = opt(fix(m, b)) ∪ strg-opt(m, b). Thus,

strg(b) ∩ opt(m) = (opt(fix(m, b)) ∪ strg-opt(m, b)) ∩ opt(m)

= (opt(fix(m, b)) ∩ opt(m)) ∪ (strg-opt(m, b) ∩ opt(m))

= opt(fix(m, b)) ∩ opt(m)

Proposition 12. For all environment models m and behaviors b, opt(m) ∩ opt(fix(m, b)) is empty
if and only if for all q, maxσ Vfix(m,b)(σ, q) 6= maxσ Vm(σ, q).

Proof. Suppose that opt(m) ∩ opt(fix(m, b)) is not empty. Then there exists σ∗ in both of them.
Thus,

max
σ

Vfix(m,b)(σ, q) = Vfix(m,b)(σ
∗, q)(27)

= Vm(σ∗, q)(28)

= max
σ

Vm(σ, q)(29)

where line 28 follows from Proposition 10 and lines 27 and 29 follow from σ∗ being in both opt(m)
and opt(fix(m, b)).

Suppose that for all q, maxσ Vm(σ, q0) = maxσ Vfix(m,b)(σ, q0). Let σ∗ be in opt(fix(m, b)). For
all q,

Vm(σ∗, q) = Vfix(m,b)(σ
∗, q)(30)

= max
σ

Vfix(m,b)(σ, q0)(31)

= max
σ

Vm(σ, q)(32)

where line 30 follows from Proposition 10 and line 31 from σ∗ ∈ opt(fix(m, b)). Thus, σ∗ is in
opt(m) and opt(m) ∩ opt(fix(m, b)) is not empty.

H Proof of Theorem 2

Line 05 will return true if there exists i such that ai+1 6= N and Q∗
m(qi, ai+1) ≤ 0. By Lemma 2,

this implies that 〈qi, ai+1 is in Um. By Lemma 1, this implies that log−1(b) ∩ behv∗(m) is empty
under condition (1).

Lines 06–16 constructs m′ = fix(m, b). It constructs r′ from r by first setting r′ = r. On lines
13–16, it then sets r′(qi, k) to be −ω for all k such that k 6= ai+1. Thus, r′(qi, ai+1) will be left as
r(qi, ai+1) as needed.
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If Line 05 does not Line 21 will return false if there exists j such that V ∗
m(j) = V ∗

m(j). In
this case, it cannot be that for all q, maxσ Vm(σ, q0) = maxσ Vfix(m,b)(σ, q0). Thus, by Lemma 3,
strg(b) ∩ opt(m) is not empty and condition (2) is false of Lemma 1. Since the function would had
returned already at Line 05 if condition (1) were true, we know it is false. Thus, by Lemma 1,
log−1(b) ∩ behv∗(m) is not empty.

If Line 22 is reached, true is returned. This can only happen if condition (2) is true. This
implies that log−1(b) ∩ behv∗(m) is empty by Lemma 1.

Thus, the algorithm is correct whether it returns true or false.
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