
The Clarity of Languages for Access-Control Policies

by

Michael Carl Tschantz

A Thesis submitted in partial fulfillment of the requirements for Honors

in the Department of Department of Computer Science at Brown University

Providence, Rhode Island

May 2005

c© Copyright 2005 by Michael Carl Tschantz

Permission to copy or distribute all or part of this work is granted without fee provided that such

copying or distribution is not for profit or commercial advantage and that copies and distributions

bear this notice and the full citation. To copy or distribute otherwise, or republish, requires prior

specific permission and/or a fee.

Sections 4.1 and 4.2 of this work were previously published in “The Soundness and Completeness of

Margrave with Respect to a Subset of XACML” by Michael Matthew Greenberg, Casey Marks, Leo

Alexander Meyerovich, and Michael Carl Tschantz (Technical Report CS-05-0, Providence: Brown

University, April, 2005).

Abstract

Languages for the specification of access-control policies should support language features that allow

for policies to be written in a clear manner. This work presents a set of language features found

in current access-control languages and formalizes a set of intuitive properties the author believes

to be relevant to policy clarity. The author analyzes access-control languages with respect to the

presented features and properties.

i

Acknowledgements

I thank my advisor, Shriram, and second reader, Professor Steve Reiss. Conversations with Pro-

fessor Kathi Fisler and Ms Vicky Weissman have aided me. I have benefited from the work of

Messrs. Michael M. Greenberg, Casey Marks, and Leo A. Meyerovich.

ii

Notation

P(S) is the powerset of a set S.

S∗ is the set containing all sequences of zero or more elements of a set S.

◦ is the empty sequence.

s s∗ is the sequence with head s and tail s∗.

⊥ is bottom, logical contradiction.

iii

Contents

1 Introduction 1

2 Features of Access-Control Languages 3

2.1 Common Features of Access-Control Languages . 3

2.2 Motivating Example . 4

2.3 The Structure of Requests . 5

2.4 The Decision Set . 6

2.5 Policy Connectives . 6

2.6 Explicit Denial . 7

2.7 Checking for the Absence of Attributes . 8

3 Properties Relevant to Clarity 9

3.1 Formalization of Access-Control Languages . 9

3.2 Determinism and Nondeterminism . 10

3.3 Homomorphism . 10

3.4 Continuity . 12

3.5 Safety . 13

4 Simplified XACML 14

4.1 Syntax . 14

4.2 Semantics . 16

4.3 Analysis . 19

5 Restrictions of First-Order Logic 21

5.1 Syntax . 21

5.2 Semantics . 22

5.3 Analysis . 23

6 Related Work 25

7 Conclusion 26

Bibliography 27

iv

Chapter 1

Introduction

Web applications and multi-user systems make controlling the actions a user may perform on each

resource critical for the security of a computer system. Since the requirements of these controls

often change and apply to multiple applications, programmers increasingly abstract them from the

application code to form an access-control policies written in domain-specific languages. In general,

an access-control policy dictates a function from requests for access to decisions about whether access

should be granted or not.

Completing requirements of expressive power and computational speed makes the design of lan-

guages for the specification of access-control languages a balancing act. Attempts to produce lan-

guages for the expression of such policies has largely followed one of two routes: 1) using some subset

of first-order logic or 2) producing a highly specialized, ad hoc language.

The first approach modifies an unspecialized logic language, such as first-order logic or Data-

log, for the requirements of access-control. Designers of languages that use first-order logic as a

starting point must restrict it to a computationally tractable yet sufficient expressive subset (see

e.g., [7]). Those starting with a subset of first-order logic, such as Datalog, must argument it with

the primitives needed for access-control (see e.g., [2]).

The second approach, has produced very limited languages such as XACML (an OASIS stan-

dard [9] with backing from Sun Microsystems and others) and EPEL (an IBM standard [10]). For

example, to express with XACML the common paradigm of hierarchical role-based access control

(RBAC) [11], one must use a cumbersome encoding [1]. However, in some ways the policies written

in XACML are more transparent than policies written in languages based on first-order logic.

Formalizing the intuition that some languages produce clearer policies than others is the subject

of the paper. The set of properties produced by this formalization will be helpful to both language

designers and users. Designers can use them a set of goals for their language to meet. Users

completing which language to select may find use them to select among those languages that are

expressive enough for their policies.

First, some of the design decisions that must be made while designing an access-control language

are presented in Chapter 2. Properties that formalize intuitions about the clarity of access-control

1

2

languages form Chapter 3. In Chapters 4 and 5, XACML and a language based on first-order

logic are presented and analyzed. Related works are presented in Chapter 6 and the conclusion in

Chapter 7.

Chapter 2

Features of Access-Control

Languages

Many different access-control languages have been proposed. Although they each support a different

set of language features, they have enough in common to permit comparison. First, this section

informally presents these similarities. Second, it presents an example policy and three interpretations

consistent with the common features. Lastly, the language features that must be selected or discarded

to disambiguate the policy are delineated.

2.1 Common Features of Access-Control Languages

An access-control language must provide a way of describing the different forms of access and the

environment in which they could occur. This information forms a request. Many languages break

requests into four different parts:

Subject the person or process making the request,

Resource the object, subsystem, person, or process that would be affected (e.g., a file name or a

process id),

Action the command or change that would be executed on the resource by the subject (depending

on the granularity of the control this could be course like “write” or fine like “write ‘x’ at line

10”), and

Environment describes any other relevant information such as the time of day, location, or the

the previous actions of the subject.

The first three of these make up the form of requested access while the last gives the context in

which this access would be exercised.

3

4

Languages must also provide a set of decisions to convey if a request should be granted or not.

Such a set must include some decisions that grant access and some that prohibit access. A policy

will associate with each request a decision (or in the case of nondeterministic policies, a policy will

relate each request with some number of decisions).

The policy of a firm often consists of fragments from a variety of sources such as the legal

department, accounting, and executives. All of these fragments may be encoded as a formal policy

in an access-control language. Given a set of such policies, one would like the language to provide

policy connectives to compose these various policies into one policy. Thus, we assume that access-

control languages provide a set of such policy connectives and that policies may consist of other

policies. Policies contained within a policy, will be called sub-policies of containing policy. Policies

that do not contain any sub-policies will be called atomic policies.

Within this framework, many choices for how a policy expresses the association of decisions with

requests are possible. To demonstrate the consequences of these choices, an example is presented

next.

2.2 Motivating Example

Consider the following informal policy written in natural language:

1. If the subject is a faculty member, then permit that subject to assign grades.

2. If the subject is a student, then do not permit that subject to assign grades.

3. If the subject is not a faculty member, then permit that subject to enroll in courses.

One might represent that policy as follows:

faculty(s) =⇒ Permitted(s, grades, assign) (2.1)

student(s) =⇒ ¬Permitted(s, grades, assign) (2.2)

¬faculty(s) =⇒ Permitted(s, courses, enroll) (2.3)

Let the above formalization be ℘ and the first line of the policy be sub-policy ℘1, the second, ℘2,

and the third ℘3.

Consider the following natural-language request:

A student requests to enroll in courses.

For the time, assume that requests simply lists the subject, resource, and action by name if possible

and by variable if the name is unknown, along with any other known facts. what is know about the

subject, resource, and action. The following is a representation of the natural-language request:

(s, courses, enroll) with student(s) (2.4)

Given this request, does the policy grant access? At least three interpretations of the policy are

possible:

5

1. One might conclude that by ℘3, access is granted. The request does not show the subject being

a faculty member, and, thus, the last line applies and decision to permit access is produced.

However, this relies on the assumption that since the request does not show the subject being

a faculty, that the subject is in fact not a faculty. One could drop this assumption.

2. One could conclude that the policy does not apply to the request. One would reason that ℘1

and ℘2 do not apply since they are dealing with assigning grades and not enrolling in courses.

Furthermore, one could conclude that ℘3 does not apply since the request does not prove that

the subject is not on the faculty. To do so, the request would have been

(s, courses, enroll) with student(s) ∧ ¬faculty(s) (2.5)

After concluding that the policy does not apply to the request, one could then conclude that

access is granted by default, is prohibited by default, or that it is nondeterministic.

3. One could conclude by reasoning different than that used in the first interpretation that the

request is granted. As in the second interpretation, one could conclude that the request allow

does not establish if the subject is a member of the faculty or not. However, one might then

go on to note that if the subject was a faculty member, the first two lines together would yield

a contradiction: ℘1 would imply that the subject could enroll in courses and ℘2 would imply

that the subject could not. Thus, one could conclude that a student who is on the faculty

is impossible. Since the subject of the request is clearly a student, he must not be faculty

member. Thus, ℘3 applies and access is granted.

Which of these interpretations is the one intended by the policy depends what choices are made

about the language.

2.3 The Structure of Requests

In the above example, requests had a simple form. Under the second interpretation, this form allowed

requests to contain too little information to determine which of the sub-policies of ℘ applied. Other

forms might provide more or less ambiguous requests. For example, if every request had to provide

the subject by name and provide a list every possible subject and if that subject was faculty member

and/or a student, the above ambiguous would not exist.

Although such requirements might be practical in a small system with a center database of

users, it might not be for a large distributed system. In general, collecting information germane to

a request might be time consuming. Furthermore, discovering the smallest set of information which

is germane can also be time consuming for complex policies. Thus, systems might want to allow

requests to be ambiguous by not containing all the information that is possible relevant. In such

system, care must be taken to ensure that access is not mistakenly granted, a subject formalized in

Section 3.5.

6

2.4 The Decision Set

The set of decisions of a languages often contains permit, which implies that the request should

be granted, and deny, which implies that the request should not to be granted. However, some

languages might provide more decisions or refinements of permit and deny that convey additional

information about why a request was granted or not.

Some languages may include a decision of not applicable to indicate that the policy remains

sentient on a request. For example, under the second interpretation of ℘, the policy appeared not

to apply to the given request. In this case, the decision of not applicable might be returned by some

languages.

Despite being syntactically correct, some requests might not have a logical interpretation under

a given policy. For example, a request of

(s, grades, assign) with faculty(s) ∧ student(s) (2.6)

under the third interpretation of ℘ seems to contradict the policy itself. Other times, a request might

contain illogical values or require undefined computation (such as division by zero). Furthermore,

for generality, a system might like to assign a decision to inputs that are not syntactically requests.

In such cases, a decision of error or some refinement of it might be appropriate.

One may view the fact that an error state is reached given a syntactically correct request to be

a weakness in the policy. However, one may also take it to be a statement about the world in which

the policy is being used: that no such requests can exist. In sense, error decisions can be used to

enforce preconditions much as exceptions do in programming languages.

Whether the decisions of not applicable and error entail granting or preventing access might vary

from language to language. However, to err on the side of caution, it seems more reasonable to not

grant access despite that access is not explicitly denied.

Some languages, in practice, treat not applicable as a weak deny. Such languages stipulate that

if two sub-policies of one policy are checked one returns not applicable and the other some other

result, that the other decision overrides the not applicable. Decisions of error are often treated in

the opposite manner, as a strong deny that overrides other policies producing permit, deny, or not

applicable. However, many different ways exist resolve conflicts when combining policies.

2.5 Policy Connectives

It is unclear if the request given on line 2.6 should be permitted or denied since ℘1 and ℘2 contradict

one another on this issue. The method of combining the three sub-policies of ℘ determines how to

resolve this conflict. Policy connectives play the role of proving the needed method of combination.

Some languages, like the hypothetical language in which ℘ is written, might have only one policy-

connective that is implicitly applied. Other languages, allow different policies and sub-policies to

use different ones. For example, if a policy has sub-policies nested inside of sub-policies, the outer

liner may be resolved differently than the inner layer.

7

Some of the possible policy connectives are:

Permit Overrides If any of the sub-policies produces a permit, return only permit. Otherwise, if

any produces a deny, return only deny. Else, return not applicable.

Deny Overrides If any of the sub-policies produces a deny, return only deny. Otherwise, if any

produces a permit, return only permit. Else, return not applicable.

First Applicable Return the the decision reached by the first sub-policy to reach one other than

not applicable.

All Seen Return a set containing the decisions reached by all the sub-policies.

Either Permit or Deny Nondeterministically select one of the produced decisions to return.

Error Return a error if the sub-policies produces both permit and deny. Otherwise return permit

if produced, or deny if produced. Else, return not applicable.

And Conjoin the sub-policies together by logical And and return the implied decision(s).

Additional more complex connectives may be found in the work of De Capitani di Vimercati et

al. [3]. The nature of the connectives available in a language can greatly impact the clarity of

policies written in it.

Notice that many of the above connective behave the same in the absence of the decision of

deny. One might conclude from this observation, that allowing the explicit denial of a request as an

desirable complication of the language.

2.6 Explicit Denial

Policies must provide a way to associate each decision with a subset of requests. Under most

languages, some requests will explicitly be placed into one of these subsets. The other requests will

be placed into one of these subset by default. For safety, this default subset should be associated

with decision that does not grant access creating a closed policy [3]. The decision of not applicable

is intended for this purpose.

With requests being not granted by default, the language must provide some way to specify

requests to be granted. Some languages may choose to only allow statements of this type and to

disallow statements explicitly implying that access should not be granted for some set of request.

The uniformity of statements in such languages, might make the policy easier to read.

Some languages may also allow for the policy to explicitly specify requests for which access should

not granted. Such constructs could be useful in determining which decision should be issued if more

than one prohibits access (e.g., deny or error). Furthermore, such statements could quickly rule

out exceptional cases. For example, such a construct is employed in ℘: ℘2 explicitly states that

some requests are to be be denied. These benefits comes at the cost of the complication of policy

combination noted above.

8

2.7 Checking for the Absence of Attributes

Consider the meaning of ¬faculty(s) in ℘3. This is testing not for the presence of an attribute,

but rather the absence of one. Much like explicit denial, some languages may opt not support this

construct. Indeed in some contexts, such as certificate passing systems in which a certificate may

be withheld, testing for the absence of an attribute may be impossible or impractical.1

If a language does allow for the checking for the absence of attributes, must decides on a semantics

for the absence of an attribute. Does the absence of a statement affirming the presence of that

attribute from request satisfy the check or is the presence of the negation of the presence of that

attribute required? For example, one could take ¬faculty(s) to means either that the request does

contain faculty(s) or that the request contains ¬faculty(s). The difference is whether the absence

of an attribute from a request implies that the actual absence of the attribute. If yes, we will call

the absence of attributes implicit ; if not, the absence of attributes must be made explicit.

One may conclude that ℘3 does apply to the request (the antecedent holds) under implicit absence

of attributes, but it does not under explicit absence. Notice that the applicability of ℘1 and ℘2 does

not depend on of the implicit explicit absence of attributes is used.

1One may argue that certificate passing systems may use negative certificates to achieve the checking of attribute
absence. Whether this captures the notion of the absence of an attribute or just the presence of another related
attribute is unclear. For example, one could conceivable hold both a positive and a negative certificate for an
attribute. Furthermore, having to issue both positive and negative certificates for attributes is undesirable.

Chapter 3

Properties Relevant to Clarity

In Chapter 2, a variety of informal notations were introduced. The general features that access-

control languages have in common were presented and the several of the constructs found in some

but not all languages were delineated. In this chapter, the definition of an access-control language is

formalized in such a way as to accommodate all the features discussed thus far. This formalization

is then used to present several properties relevant to clarity that some access-control language may

process.

3.1 Formalization of Access-Control Languages

Define an access-control languages to be a tuple L = (Q, P, G, N, 〈〈·〉〉) with

Q a set of requests,

P a set of policies,

G the set of decisions that stipulate that access should be granted (granting decisions),

N the set of decisions that stipulate that access should be prevented (non-granting decisions),

〈〈·〉〉 a function from P to a relation between Q and G ∪ N ,

and G ∩ N = ∅. When clear from context, the above symbols will be referenced without explicitly

relating them to L and D will be used for G ∪ N . The function 〈〈·〉〉 : P → P(Q × D) gives the

meaning of policy p and we write q〈〈p〉〉d for q ∈ Q, p ∈ P , and d ∈ D, when p assigns a decision of d

to the request q. Given L define the partial order ≤ on D to be such that d ≤ d′ if either d, d′ ∈ N ,

d, d′ ∈ G, or d ∈ N and d′ ∈ G.

We assume that policies may be constructed from either atomic policies or other policies combined

by some policy connective, which indicates how the sub-policies should be combined to make one

policy. Let p be policy that consists of the sub-policies pi with 1 ≤ i ≤ n. Let the sub-policies

9

10

be connected by the policy connective ⊕. Although the actual syntax of languages differ, p =

⊕(p1, p2, . . . , pn) will represent this condition.1

Since policies are composed of sub-policies, 〈〈·〉〉 can be extended to provide the meaning of the

sub-policies by allowing for contextual information like variable bindings to be considered. Let Σ be

the set of all such contextual information. Let 〈〈p〉〉σ be the meaning of sub-policy p under the con-

textual information σ ∈ Σ. If p = ⊕(p1, p2, . . . , pn), then 〈〈p〉〉σ = 〈〈⊕〉〉σ(〈〈p1〉〉σ , 〈〈p2〉〉σ , . . . , 〈〈pn〉〉σ).2

3.2 Determinism and Nondeterminism

Definition 3.1. Given a language L = (Q, P, G, N, 〈〈·〉〉), if

∀p ∈ P, ∀q ∈ Q, ∀d, d′ ∈ D, q〈〈p〉〉d ∧ q〈〈p〉〉d′ =⇒ d = d′ (3.1)

then L is deterministic. Otherwise, it is nondeterministic.

For a deterministic language, we can define J·Kσ : P → (Q → D) to be λq . d ∈ D s.t. q〈〈p〉〉σd.

For deterministic language, J·K may be given instead of 〈〈·〉〉 to define the language.

For the remainder of the paper, we assume that all languages are deterministic unless otherwise

noted.3

3.3 Homomorphism

Consider the third interpretation of ℘. Under this interpretation, the meaning of ℘ can only to

determined by looking at the interactions of the different sub-policies as whole. Notice that any one

of these sub-policies would produce a decision of not applicable in isolation, and yet together they

interact to produce a permit decision. The third interpretation inhabits using local reasoning about

each sub-policy for reasoning about the whole policy. This increases the possibility of unintended

results from combining sub-policies into a policy.

The alternative, as found in the first two interpretations, is for the sub-policies to be combined in

such a way that only the result of each in isolation matters. This property is formalized as follows:

Definition 3.2. We say that the policy connective ⊕ of a language L is homomorphic iff

∃� : D∗ → D, ∀p1, p2, . . . , pn ∈ P, ∀σ ∈ Σ, ∀q ∈ Q,

J⊕(p1, p2, . . . , pn)Kσ(q) = �(Jp1K
σ(q), Jp2K

σ(q), . . . , JpnKσ(q)) (3.2)

If all the connectives of L are homomorphic, then L has the homomorphic property.

1I assume that the set of connectives in a given language L = (Q, P, G, N, 〈〈·〉〉) is clear from the structure of P

and 〈〈·〉〉. If this is not the case for a language, one could explicitly add it to the definition of an access-control
language.

2As with the set of connectives, I assume that Σ may be inferred given a language, but could be explicitly included
if needed.

3If it were not for the existence of a nondeterministic language, XACML with obligations, I would not have
considered them at all.

11

One might be tempted to define the homomorphic property as follows:

Definition 3.3. A policy connective ⊕ is weakly homomorphic iff

∃� : (Q → D)∗ → (Q → D), ∀p1, p2, . . . , pn ∈ P, ∀σ ∈ Σ,

J⊕(p1, p2, . . . , pn)Kσ = �(Jp1K
σ, Jp2K

σ, . . . , JpnKσ) (3.3)

If all the connectives of L are weakly homomorphic, then L has the weak homomorphic property.

Theorem 3.4. If if a policy connective ⊕ of an access-control language L is homomorphic, then it

is weakly homomorphic.

Proof. To prove that ⊕ is weakly homomorphic, � : (Q → D)∗ → (Q → D) found in Equation 3.3

will be constructed from the � : D∗ → D known to exist since ⊕ is homomorphic. Let

�(f1, f2, . . . , fn) = λq . �(f1(q), f2(q), . . . , fn(q)) (3.4)

Then

�(Jp1K
σ, Jp2K

σ, . . . , JpnKσ) = λq . �(Jp1K
σ(q), Jp2K

σ(q), . . . , Jp3K
σ(q)) (3.5)

= λq . J⊕(p1, p2, . . . , pn)Kσ(q) (3.6)

= J⊕(p1, p2, . . . , pn)Kσ (3.7)

Theorem 3.5. A policy connective ⊕ being weakly homomorphic does not imply that ⊕ is homo-

morphic.

Proof. Consider a rather odd language that has only one unary policy connective, ⊕, atomic policies

of the form (v) where v is a value, and requests are sets of values. Let the semantics be such that

J⊕(p1)K = λq .

permit if Jp1K({v′}) = permit

deny else
(3.8)

for some distringished value v′, and

J(v)K = λq .

permit if v ∈ q

deny else
(3.9)

for atomic policies. Such a langauge is weakly homomorphic but not homomorphic.

The language is weakly homomorphic since for � such that

�(f1) =

permit if f1({v′}) = permit

deny else
(3.10)

clearly, J⊕(p1)K = �(Jp1K).

12

The language is not homomorphic. Assume that it is. Then there exist such a � : D∗ → D to

satifiy Equantion 3.2. For a requests {v} and {v′}, where v 6= v′,

permit = J⊕((v′))K({v′}) = �(J(v′)K({v′})) = �(permit) (3.11)

deny = J⊕((v))K({v}) = �(J(v)K({v})) = �(permit) (3.12)

A constradaction is reached since permit 6= deny. Thus, the langauge is not homomorphic.

The weak homomorphic propriety will ensure that sub-policies with the same meaning in isolation

will behave the same under the connective. Thus, a language with the weak homomorphic property

is more clear than one without it since only the isolated meaning of the sub-policy must known to

reason about its use under the connective. However, such a language may still have complicated

connectives that will not allow a reader to reason about each sub-policy in isolation with respect to

a request. A reader is likely to examine a policy by repeatedly asking what-if questions of the form

“What if this request is given to the sub-policies” and observing the decision that each sub-policy

yields from such a question. Thus, the homomorphic property, not just the weak homomorphic

property, is important to clarity since it allows such a reader to put together all the decisions

observed to acquire the decision the whole policy would yield.

3.4 Continuity

As noted at the end of Section 2.5, the decision of deny complicates the policy connectives. One

of the reasons for this is that under connectives like deny overrides, a back and forth pattern can

arise when considering the decision of the whole policy from the sub-policies. Consider reading each

sub-policy one after the other. If the first one yields a decision of not applicable, the decision would

a non-granting one if no other sub-policies existed. If the next sub-policy yields permit, this would

change to a granting one. Finally, if the third sub-policy yields deny, the decision would change back

to a non-granting one.

Note that this back and forth pattern is not exhibited by permit overrides since it is impossible be

to go from a granting decision to a non-granting one under permit overrides. Thus, the formalization

of this pattern focuses on the transition from a granting to a non-granting decision.

Definition 3.6. Given L, a connective ⊕ is continuous iff

∀p1, p2, . . . , pn, pn+1 ∈ P, ∀σ ∈ Σ, ∀q ∈ Q,

J⊕(p1, p2, . . . , pn)Kσ(q) ≤ J⊕(p1, p2, . . . , pi, pn+1, pi+1, . . . , pn)Kσ(q) (3.13)

We say L is continuous if every connective is continuous.

Adding another sub-policy to a continuous connective cannot change the decision from a granting

one to a non-granting one.

13

3.5 Safety

In a system employing access control, the subsystem generating requests must collect the relative

information to include in a request. Since collecting facts to embed in the request might be compu-

tationally expensive, the request generator, should be optimized to include only relevant facts. Since

which facts are relevant is often unclear, a optimization might allow for the generator to produce

an incomplete request in hopes that it will provide enough information to produce a different deci-

sion. Furthermore, overzealous optimizations and other coding errors, might result in requests being

generated that do not contain all the relevant facts. Since unduly preventing access is preferred to

unduly granting access, such incomplete requests should only result in access being granted if the

complete one would have:

Definition 3.7. Let ⊆ be a partial ordering on requests of a language L. A policy is safe with

respect to ⊆ iff

∀q, q′ ∈ Q, ∀p ∈ P, q ⊆ q′ =⇒ JpK(q) ≤ JpK(q′). (3.14)

Due to differences in the contents of a requests, for each language a different partial ordering ⊆

will be of interest. The relation should be such that if q ⊆ q′, then q′ contains more information

than q.

For example, consider a language in which requests of sets of facts and the set of decisions is

{permit, deny}. Then setting ⊆ to be the subset partial ordering will be of interest since it matches

the intuition of information content (assuming a non-contradictory set of facts). If the language is

safe with respect to such a defined ⊆, then one may omit facts from the request with out causing

access to be granted which otherwise would not.

Although safety is not as closely tied to policy clarity as the homomorphic property or continuity,

safe policies will still be easier to understand than the unsafe ones. With a safe policy, one does not

need to consider the consequences of adding additional information to a granted request. For an

unsafe policy, the system generating the requests and policy readers will incur the extra burden of

including all relevant facts to prevent unintended grants of access. Informally, under a safe language,

undue access will not be granted provided that the requests tell no lies; whereas under an unsafe

language, the requests must additionally tell the whole truth.

Chapter 4

Simplified XACML

This and the next chapter presents access-control languages and applies to them the ideas of Chap-

ters 2 and 3.

The eXtensible Access Control Markup Language (XACML) in it entirety does not fit well

into the definition of access-control language given in Section 3.1 [9]. Full XACML includes a

feature called obligations, which act as annotations on the the decisions of permit and deny. These

annotations specifies actions that the system enforcing access-control must preform before granting

or access or upon prohibiting access. Thus, an XACML policy may have effects beyond that of just

granting or prohibiting access that the model presented fails to address.

However, the subset of XACML checkable by the verification and change impact tool Margrave [5]

fits well in the framework presented. This subset is expressive enough to capture RBAC0 [11]. This

subset is presented and analyzed.

The syntax of Section 4.1 and Semantics of Section 4.2 were previously reported by M. Greenberg

et al. [6].

4.1 Syntax

For readability we will not use an XML style syntax for our subset of XACML, but rather a scheme-

like syntax.

XACML has two syntaxes: one for specifications of policies and one for requests. Since the

former has a key word “Policy”, we will call it the spec syntax. The latter is called the request

syntax.

4.1.1 XACML Spec Syntax

The start nonterminal is S.

14

15

S ::= C

C ::= Ps | Pol

Ps ::= (PolicySet Ca T C∗)

Ca ::= First-Applicable | Deny-Overrides | Permit-Overrides

T ::= ((Sub) (Res) (Act))

Sub ::= Any | Allow+

Res ::= Any | Allow+

Act ::= Any | Allow+

Allow ::= (AVC+)

AVC ::= (id val)

Pol ::= (Policy Ca T R∗)

R ::= (Rule T Effect)

Effect ::= Permit | Deny

The elements of the syntax category R are called “Rules”; Ps, “PolicySets”; Pol, “Policies”; and

T, “targets”. The elements of syntax categories of Sub, Res, and Act are called the “subtargets”.

The elements of syntax categories of Ps, Pol, and R are called the “laws”.

Example 4.1. The following is an XACML policy:

(Policy First-Applicable

((Any) (Any) (Any))

(Rule (((role fac)) (Any) (Any)) Deny)

(Rule ((Any) (Any) (Any)) Permit))

4.1.2 XACML request syntax

Q ::= ((S) (R) (A))

S ::= AVP∗

R ::= AVP∗

A ::= AVP∗

AVP ::= (id val)

4.1.3 Parsing

To make the semantics more understandable, we assume the existence of a parser. Informally, we

assume that is parser can take a string generated by the grammar and produce denotational object

suggested by the strings form, mostly lists. Since the above syntax matches the list notation in

Scheme, this parser is equivalent to the Scheme command quote.

16

S ∈∈S Sub R ∈∈R Res A ∈∈A Act

(S, R, A) ∈∈ (Sub, Res, Act)
(4.1)

X ∈∈ Any ∀X ∈ {S, R, A} (4.2)

∃i s.t. S ∈∈ Allowi

S ∈∈S (Allow1, Allow2, . . . , Allown)
(4.3)

∃i s.t. R ∈∈ Allowi

R ∈∈R (Allow1, Allow2, . . . , Allown)
(4.4)

∃i s.t. A ∈∈ Allowi

A ∈∈A (Allow1, Allow2, . . . , Allown)
(4.5)

∀i X ∈∈X AVCi

X ∈∈X (AVC1, AVC2, . . . , AVCn)
where X ∈ {S, R, A} (4.6)

∃j s.t. AVPj = AVC

(AVP1, AVP2, . . . , AVPn) ∈∈X AVC
where X ∈ {S, R, A} (4.7)

Table 4.1: The Match Relationship

4.2 Semantics

Let P be the set of all policies (members of the syntactic category C of the language Spec). P

includes both XACML Policies and PolicySets.1 Let Q be the set of all requests (members of the

syntactic category Q). Let D be the set of all decisions (D = {permit, deny, na}). We will use the

symbol used for the nonterminal in syntax in the natural semantics to refer to any element of the

syntax category.

At the core of the semantics of XACML is the notation of a request matching the target of a

rule, policy, or policy set. We will denote this relation by q ∈∈ t where q ∈ Q and t is a target. We

will define ∈∈ using a natural semantics given below in Table 4.1.

The semantics of the Margrave subset of XACML is given in a natural semantics that makes

use of the relation ∈∈. The results of evaluating a Rule is given in Table 4.2 in terms of the |=r

relationship. The |=r relation is then used to define the |= relation, which gives the semantics of our

subset of XACML. The default behavior of |= is given in Table 4.3. The behavior of |= under each of

the combining algorithms are given in Table 4.4 for permit-overrides, in Table 4.5 for deny-overrides,

and in Table 4.6 for first-applicable.

1The word “policy” when uncapitalized will refer to access-control policies in general. When “policy” is capitalized,
it will refer to the XACML tag Policy and the associated structure.

17

Q /∈∈ T

((Rule T Effect), Q) |=r na
(4.8)

Q ∈∈ T

((Rule T Permit), Q) |=r permit
(4.9)

Q ∈∈ T

((Rule T Deny), Q) |=r deny
(4.10)

Table 4.2: The Rule Relationship |=r

〈(Policy Ca T), Q〉 |= na (4.11)

〈(PolicySet Ca T), Q〉 |= na (4.12)

Q /∈∈ T

〈(Policy Ca T R∗), Q〉 |= na
(4.13)

Q /∈∈ T

〈(PolicySet Ca T C∗), Q〉 |= na
(4.14)

Table 4.3: Default na Judgments

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r permit

〈(Policy Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= permit
(4.15)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= permit

〈(PolicySet Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= permit
(4.16)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r deny ∀j 6= i, 〈Cj , Q〉 6|=r permit

〈(Policy Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= deny
(4.17)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= deny ∀j 6= i, 〈Cj , Q〉 6|= permit

〈(PolicySet Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= deny
(4.18)

Q ∈∈ T ∀i, 〈Ci, Q〉 |=r na

〈(Policy Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= na
(4.19)

Q ∈∈ T ∀i, 〈Ci, Q〉 |= na

〈(PolicySet Permit-Overrides T C1, C2, . . . , Cn), Q〉 |= na
(4.20)

Table 4.4: Permit-Overrides Judgments

18

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r deny

〈(Policy Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= deny
(4.21)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= deny

〈(PolicySet Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= deny
(4.22)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |=r permit ∀j 6= i, 〈Cj , Q〉 6|=r deny

〈(Policy Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= permit
(4.23)

Q ∈∈ T ∃i s.t. 〈Ci, Q〉 |= permit ∀j 6= i, 〈Cj , Q〉 6|= deny

〈(PolicySet Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= permit
(4.24)

Q ∈∈ T ∀i, 〈Ci, Q〉 |=r na

〈(Policy Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= na
(4.25)

Q ∈∈ T ∀i, 〈Ci, Q〉 |= na

〈(PolicySet Deny-Overrides T C1, C2, . . . , Cn), Q〉 |= na
(4.26)

Table 4.5: Deny-Overrides Judgments

Q ∈∈ T 〈R1, Q〉 |= permit

〈(Policy First-Applicable T R1, R2, . . . , Rn), Q〉 |= permit
(4.27)

Q ∈∈ T 〈C1, Q〉 |= permit

〈(PolicySet First-Applicable T C1, C2, . . . , Cn), Q〉 |= permit
(4.28)

Q ∈∈ T 〈R1, Q〉 |= deny

〈(Policy First-Applicable T R1, R2, . . . , Rn), Q〉 |= deny
(4.29)

Q ∈∈ T 〈C1, Q〉 |= deny

〈(PolicySet First-Applicable T C1, C2, . . . , Cn), Q〉 |= deny
(4.30)

Q ∈∈ T 〈R1, Q〉 |= na 〈(Policy First-Applicable T R2, . . . , Rn), Q〉 |= D

〈(Policy First-Applicable T R1, R2, . . . , Rn), Q〉 |= D
∀D ∈ D

(4.31)

Q ∈∈ T 〈C1, Q〉 |= na 〈(PolicySet First-Applicable T C2, . . . , Cn), Q〉 |= D

〈(PolicySet First-Applicable T C1, C2, . . . , Cn), Q〉 |= D
∀D ∈ D

(4.32)

Table 4.6: First-Applicable Judgments

19

4.3 Analysis

The syntax and semantics of XACML defines Lxacml = (Q, P, G, N, 〈〈·〉〉) where Q and P are given by

the syntaxes, G = {permit}, N = {na, deny}, and 〈〈·〉〉 is given by the semantics. The language has

the policy connectives permit-overrides, deny-overrides, and first-applicable, and has no contextual

information. The atomic policies are rules. XACML allows for explicit denials and the checking of

the implicit absence of attributes.

Theorem 4.2. Lxacml is deterministic.

Proof. The Semantics of atomic policies is given in Table 4.2. Inspection of the judgments clearly

shows that only one of them can hold at a time. Thus, atomic policies are deterministic.

Semantics of the policy connective permit-overrides is given by Table 4.4 combined with Table 4.3.

Note that the antecedents of all the judgments in these tables are disjoint, that is, for any policy

and request at most one them can hold. Furthermore, at least one of them always holds. Thus,

permit-overrides is deterministic. The same argument holds for deny-overrides and first-applicable

using Tables 4.5 and 4.6. Thus, all the connectives are deterministic.

Thus, an XACML policy may be viewed as a function from requests to decisions with J·K in place

of 〈〈·〉〉.

Theorem 4.3. Lxacml is homomorphic.

Proof. By inspecting the judgments for permit-overrides, deny-overrides, and first-applicable clearly

each judgment depends solely on the decisions yielded by the sub-policies under the same request.

Thus, one can find needed functions from decision sequences to a decision to prove them homomor-

phic. These functions are:

permit-overrides

por(d d∗) =

permit if d = permit ∨ por(d∗) = permit

deny else if d = deny ∨ por(d∗) = deny

na else

(4.33)

por(◦) = na (4.34)

deny-overrides

dor(d d∗) =

deny if d = deny ∨ dor(d∗) = deny

permit else if d = permit ∨ dor(d∗) = permit

na else

(4.35)

dor(◦) = na (4.36)

20

first-applicable

fa(d d∗) =

d if d = permit ∨ d = deny

fa(d∗) else
(4.37)

fa(◦) = na (4.38)

where ◦ represents the empty sequence.

Theorem 4.4. Lxacml is not continuous.

Proof. Consider the policy p′ in Example 4.1 and the policy p that would be p′ without the first rule.

Let the request q be (((role fac)) () ()). JpK(q) = permit, but Jp′K(q) = deny. Thus, adding a

rule to p results in a request going from being granted to not being granted.

Theorem 4.5. Let q ⊆ q′ if q′ contains every attribute-value pair that q contains.

XACML is not safe with respect to ⊆.

Proof. Consider the policy p shown in Example 4.1 and request q = (() () ()) and

q′ = (((role fac)) () ()). Clearly q ⊆ q′. Yet

JpK(q) = permit � deny = JpK(q′) (4.39)

Chapter 5

Restrictions of First-Order Logic

Whereas XACML is an attempt to create a access-control language from scratch, other languages are

modifications of first-order logic. A series of schemata for such languages is presented by J. Halpern

and V. Weissman [7]. Here I present and analyze the the languages produced by the least restrictive

of these schemata. Let the set of languages produced by this schema be called FOL. Languages in FOL

are each a restriction of a many-sorted first-order logic with a different vocabulary (set of parameters

including quantifier symbols, predicate symbols, constant symbols, and function symbols). Let

FOL(Φ) be the language in FOL with the vocabulary Φ. We assume that Φ includes the shorts

S for subjects, R for resources, A for actions, and the predicate symbol Permitted of the sort

S × R × A → {T, F}. Furthermore, Φ may include sorts for environmental concerns such as the

current time or location.

5.1 Syntax

An atomic policy in FOL(Φ) is of one of the following forms:

(∀x1 ∈ X1, x2 ∈ X2, . . . xm ∈ Xm, (f =⇒ Permitted(s, r, a))) (5.1)

(∀x1 ∈ X1, x2 ∈ X2, . . . xm ∈ Xm, (f =⇒ ¬Permitted(s, r, a))) (5.2)

where each xi is a variable over the sort Xi, s is a term over the sort S, r is a term over the sort R,

a is a term over the sort A, and f is a first-order logic formal over Φ. A policy is either a atomic

policy or an expression of the form

(and p∗) (5.3)

where p∗ is any number of policies.

Example 5.1. Let Φ′ be such that it contains

1. the sorts S = {shriram, carl, steve}, R = {grades, courses}, and A = {assign, enroll};

21

22

2. and the predicates Permitted : S ×R×A → {T, F}, faculty : S → {T, F}, and student : S →

{T, F}.

Then the following policy is in FOL(Φ′):

(and (∀s ∈ S, faculty(s) =⇒ Permitted(s, grades, assign)) (5.4)

(∀s ∈ S, student(s) =⇒ ¬Permitted(s, grades, assign)) (5.5)

(∀s ∈ S,¬faculty(s) =⇒ Permitted(s, courses, enroll))) (5.6)

Requests in FOL(Φ) are of the form (s, r, a, e) where s ∈ S is the subject making the request;

r ∈ R, the requested resource; a ∈ A, the requested action to be preformed by the subject on the

resource; and e is a first-order expression over Φ giving information about the environment.

Example 5.2.

(carl, courses, enroll, student(carl) ∧ faculty(shriram) ∧ ¬student(shriram)) (5.7)

is a request in FOL(Φ′) where Φ′ is defined in Example 5.1.

5.2 Semantics

Let M(p) for policies p be defined as

M((and p1 p2 . . . pn)) =
n
∧

i=1

M(pi) (5.8)

M((and)) = T (5.9)

M(p) = p where p is an atomic policy (5.10)

p defines a relation 〈〈p〉〉 between requests and {permit, deny} as follows:

(s, r, a, e)〈〈p〉〉permit ⇐⇒ (M(p) ∧ e) ` Permitted(s, r, a) (5.11)

(s, r, a, e)〈〈p〉〉deny ⇐⇒ (M(p) ∧ e) ` ¬Permitted(s, r, a) (5.12)

where ` is the proves relation for many-sorted first-order logic over Φ.

However, to define a deterministic version of 〈〈·〉〉, we will let the set of decisions be expended to

D = {na, permit, deny, error} and define

JpK = λ(s, r, a, e) .

error if (M(p) ∧ e) `⊥,

permit else if (M(p) ∧ e) ` Permitted(s, r, a),

deny else if (M(p) ∧ e) ` ¬Permitted(s, r, a),

na else.

(5.13)

The first case takes care of when (s, r, a, e)〈〈p〉〉permit and (s, r, a, e)〈〈p〉〉deny, and the last case takes

care of when 〈〈p〉〉 relates (s, r, a, e) to neither permit or deny.

23

5.3 Analysis

The language FOL(Φ) for a vocabulary Φ defines the access-control language (Q, P, G, N, J·K) where

Q and P are given by the syntax above, G = {permit}, N = {na, deny, error}, and J·K is defined

above. Since J·K was defined to be deterministic, FOL(Φ) is deterministic. From the syntax, the

languages of FOL has only policy connective, and. No contextual information is used by J·K. FOL

allows for explicit denials and the checking of the explicit absence of attributes.

Theorem 5.3. For some values of Φ, FOL(Φ) is not homomorphic.

Proof. Let Φ′ be as in the Example 5.1. Assume that and is homomorphic for FOL(Φ′). Since J·K

does not make use of contextual information, then there exists u : D∗ → D such that

∀p1, p2, . . . , pn ∈ P, ∀q ∈ Q, J(and p1 p2 . . . pn)K(q) = u(Jp1K(q), Jp2K(q), . . . , JpnK(q)) (5.14)

Consider the policy p in Example 5.1. Let p1 be the first sub-policy in p, p2, the second, and p3, the

third. Let q be the request found in Example 5.2. Note that

Jp1K(q) = na (5.15)

Jp2K(q) = na (5.16)

Jp3K(q) = na (5.17)

JpK(q) = permit. (5.18)

where the last line holds by the same reasoning as used in the third interpretation of ℘ in Chapter 2.

Thus, we must conclude that u(na, na, na) = permit.

Now consider the request q′ = (steve, courses, enroll, student(carl) ∧ faculty(shriram) ∧

¬student(shriram)). Now

Jp1K(q
′) = na (5.19)

Jp2K(q
′) = na (5.20)

Jp3K(q
′) = na (5.21)

JpK(q′) = na. (5.22)

Thus, we must conclude that u(na, na, na) = na. However, this is contradiction since u(na, na, na) =

na 6= permit = u(na, na, na). Thus, no such u may exist and and is not homomorphic.

Given two requests, q = (s, r, a, e) and q′ = (s′, r′, a′, e′), if s 6= s′, r 6= r′, a 6= a′ we consider the

two requests incomparable. If s = s′, r = r′, and a = a′, then we would like ⊆ to order requests

containing more information as higher than those with less information. Thus, one might conclude

that q ⊆ q′ if e′ =⇒ e. However, suppose e′ =⇒ ⊥. Then e′ contains no information and yet it

implies e. Similarly, if M(p) ∧ e′ =⇒ ⊥, then e′ contains no information with respect to p. Thus,

we define ⊆p as follows:

Let (s, r, a, e) ⊆p (s′, r′, a′, e′) iff

24

1. s = s′, r = r′, and a = a′; and

2. M(p) ∧ e′ implies M(p) ∧ e but not ⊥, or M(p) ∧ e implies ⊥.

Theorem 5.4. For all vocabularies Φ, all p ∈ P for FOL(Φ) = (Q, P, G, N, J·K) are safe with respect

to ⊆p.

Proof. Assume p ∈ P is not safe. Then there must exist q, q′ ∈ Q such that q ⊆p q′ and JpK(q) �

JpK(q′).

Since G = {permit}, JpK(q) = permit and (M(p) ∧ e) ` Permitted(s, r, a). Furthermore, since

N = {na, deny, error}, JpK(q′) must be either na, deny, or error.

Since q ⊆p q′, two cases arise:

1. M(p) ∧ e′ implies M(p) ∧ e but not ⊥. Since (M(p) ∧ e) ` Permitted(s, r, a) and e′ =⇒ e,

(M(p) ∧ e′) ` Permitted(s, r, a). Thus, JpK(q′) is either permit or error. However, if JpK(q′) =

error, then M(p) ∧ e′ =⇒ ⊥, a contradiction. Furthermore, JpK(q′) = permit is also a contra-

diction.

2. M(p) ∧ e implies ⊥. In this case, JpK(q) = error, a contradiction.

Under both cases, contradictions are reached, and thus, P must be safe w.r.t. ⊆p.

Chapter 6

Related Work

De Capitani di Vimercati et al. discuses the language construct of explicit denial and how it intro-

duces the need for policy connectives that reduce the clarity of the language [3]. The authors list

various policy connectives that are possible, many of which are more complex than those I present.

The paper includes discussion a few access-control languages including XACML and a language

grounded in first-order logic. The paper does not, however, attempt to systemically compare them.

The work of Mark Evered and Serge Bögeholz concerns the quality of an access-control lan-

guage [4]. After conducting a case study of the access-control requirements of a Health Information

System, they propose a list criteria for an access-control languages. They state that languages should

be concise, clear, aspect-oriented (i.e., separate from the application code), fundamental (i.e., inte-

grated with the middleware, not an ad hoc addition), positive (i.e., lists what is allowed, not what

is prohibited), supportive of needs-to-know, and efficient. Although they compare four languages

based on these criteria, they do not formalize the criteria.

J. Malcolm examines the clarity of command languages (languages for interacting with a shell, or

scripting languages) [8]. Primarily, he uses the number of lines and the number of tokens in the code

to preform a benchmarking task to compare languages. However, he does comment on the desirable

ability to break a program into discrete parts as opposed to having to “understand the whole at

once” (p56). Although he does not formalize this notion, it captures much the same intuition behind

the homomorphic property.

25

Chapter 7

Conclusion

Chapter 2 delineated various language constructs and features found in access-control languages.

Chapter 3 presented properties that access-control languages can have that are relevant to the

clarity of the language. Chapters 4 and 5 tested preceding framework. The two languages (or more

correctly, the one language and one language schema) differ as follows under the framework:

Decision Set Both had permit, deny, and not applicable, but only FOL had error.

Policy Connectives XACML provided three connectives: permit-overrides, deny-overrides, and

first-applicable; whereas, FOL only provided one: and.

Checking for the Absence of Attributes XACML employed implicit checking while FOL sup-

ported explicit checking.

Homomorphism XACML was homomorphic and allowed for reasoning about a policy by reasoning

about the sub-policies separately; whereas, FOL was not homomorphic and requires reasoning

about the whole policy at once.

Safety FOL provided safety for the most natural definition of the “contains more information”

ordering; whereas XACML did not, which implies that missing information from an XACML

request could result in unintended access being granted.

These differences are not orthogonal. Clearly the connectives selected determines if the language

will have the homomorphic property. Furthermore, implicit checking of attributes will result in the

lose of safety.

As noted in Chapter 4, the current framework for the comparison of clarity among languages

must be generalized to treat language with more exotic constructs like obligations. Furthermore,

user studies should be conconducted to confirm that the properties listed in Chapter 3 are indeed

relevent to langauge clarity. Lastly, this framework must be coupled with one for measuring the

expressive power of an access-control language before fair judgment may be passed on languages.

26

Bibliography

[1] Anne Anderson. Core and hierarchical role based access control (RBAC) profile of XACML,

version 2.0. Technical report, OASIS, September 2004.

[2] Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management, applied to electronic

health records. In CSFW ’04: Proceedings of the 17th IEEE Computer Security Foundations

Workshop (CSFW’04), page 139, Washington, DC, USA, 2004. IEEE Computer Society.

[3] Sabrina De Capitani di Vimercati, Pierangela Samarati, and Sushil Jajodia. Policies, models,

and languages for access control. In Subhash Bhalla, editor, Databases in Networked Information

Systems: 4th International Workshop, volume 3433 of Lecture Notes in Computer Science.

Springer-Verlag GmbH, March 2005.

[4] Mark Evered and Serge Bögeholz. A case study in access control requirements for a health

information system. In CRPIT ’32: Proceedings of the second workshop on Australasian infor-

mation security, Data Mining and Web Intelligence, and Software Internationalisation, pages

53–61, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

[5] Kathi Fisler, Shriram Krishnamurthi, Leo A. Meyerovich, and Michael Carl Tschantz. Verifi-

cation and change impact-analysis of access-control policies. In 27th International Conference

on Software Engineering ICSE ’05, St. Louis, Missouri, May 2005. To appear.

[6] Michael Matthew Greenberg, Casey Marks, Leo Alexander Meyerovich, and Michael Carl

Tschantz. The soundness and completeness of margrave with respect to a subset of xacml.

Technical Report CS-05-05, Brown University, April 2005.

[7] J. Halpern and Vicky Weissman. Using first-order logic to reason about policies. In 16th IEEE

Computer Security Foundations Workshop (CSFW ’03), pages 187–201, 2003.

[8] James A. Malcolm. Brevity and clarity in command languages. SIGPLAN Not., 16(10):53–59,

1981.

[9] T. Moses. eXtensible Access Control Markup Language (XACML) version 1.0. Technical report,

OASIS, February 2003.

27

28

[10] Calvin Powers and Matthias Schunter. Enterprise privacy authorization language (EPAL 1.2).

W3C Member Submission, November 2003.

[11] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based access

control models. IEEE Computer, 29(2):38–47, 1996.

