
Multi-period Online Optimization in TAC SCM:
The Supplier Offer Acceptance Problem

Sarah Bell, Michael Benisch, Margaret Benthall, Amy Greenwald, and Michael Carl Tschantz
Department of Computer Science

Brown University, Box 1910
Providence, RI 02912

{sjb,mbenisch,mbenthal,amy,mtschant}@cs.brown.edu

Abstract

We formalize the supplier offer acceptance problem in
TAC SCM as a multi-stage stochastic program. In addition,
we suggest a heuristic for solving this problem using the
rollout method, following one or two stage approximations
of the multi-stage stochastic program as the base policy dur-
ing rollouts. We also describe a heuristic based on the no-
tion of marginal utility which is designed to scale our ap-
proach to problems with numerous decision variables.

1. Introduction

Many combinatorial optimization problems, such as job
scheduling, facility location, and vehicle routing, involve
making decisions under uncertainty. Not only are the ef-
fects of such decisions not known ahead of time, often they
are not revealed until some time after decisions are made.

Increasingly, industrial applications are coming to rely
on automated agents to make complex decisions. In the do-
main of supply chain management, for example, manufac-
turers are automating the process of procuring raw materi-
als by moving these negotiations online [8]. In spite of any
inherent uncertainty in decision-making (e.g., whether or
not ordered materials will arrive on time), automated agents
often make decisions based on (inaccurate) deterministic
models, which serve to simplify the decision-making pro-
cess in time-critical applications. An agent’s failure to prop-
erly address uncertainty, however, limits its ability to avoid
risk and detracts from its overall performance [3].

Furthermore, information that is not yet available may
be revealed over discrete time periods. For example, a pro-
curement agent may know that purchased materials will ar-
rive within N days but not learn the actual arrival date un-
til it occurs. In such cases, an agent faces the additional
challenge of reasoning about future decisions without com-
plete information about the effects of its current decisions.
In this paper, we study strategies for making decisions that

involve looking ahead to handle multiple periods of un-
certainty. Typically, an optimization problem’s complexity
scales exponentially with the number of future periods of
uncertainty; thus, we focus on approximation schemes.

A straightforward means of approximating a solution to
an optimization problem with uncertainty extending over
multiple periods of decision-making is as follows: formu-
late a simplified version of the control problem and solve
this simplified problem repeatedly as each new set of in-
formation is revealed. To simplify the control problem, the
(exponential) set of all possible future outcomes, or scenar-
ios, is collapsed into a (relatively) small number of scenar-
ios. One of the goals of this research is to show that this
approach can be used to compute near-optimal solutions,
given an exemplary choice of scenarios. We now describe
three examples of this approach.

An extreme example of this approach is the just-in-time
policy, in which the simplified control problem is determin-
istic: probability zero is attributed to all uncertain outcomes,
which effectively ignores all future uncertainty. In manufac-
turing, just-in-time production dictates the ordering of com-
ponents and the building of finished products only after or-
ders for those products are in hand. Benisch et al. studied
a manufacturing production problem in which the number
of scenarios in the problem formulation was reduced by ig-
noring all uncertainty beyond the second period. In particu-
lar, in each period, the simplified control problem is a two
stage stochastic program (i.e., two periods of lookahead).

In this paper, we suggest yet another approach, which
is to formulate the simplified control problem as a discrete
time Markov Decision Process (MDP), so that a decision-
maker can consider the impact of its current decisions in fu-
ture periods well beyond the second period. To solve this
MDP, we generate future scenarios via Monte Carlo simu-
lations, or rollouts, so that current decisions are based on
the likelihood of future scenarios. In these simulations, we
must rely on some policy to dictate future decisions: e.g.,
the just-in-time policy. Here, we use approximate solutions
of the two stage stochastic program as rollout policies.

We apply these ideas to part of the component procure-
ment problem in the Trading Agent Competition in Supply
Chain Management (TAC SCM). Broadly speaking, com-
ponent procurement refers to the securing of resources by a
self-interested entity in an economic environment. In TAC
SCM, a manufacturing agent acquires component parts by
negotiating with suppliers. The agent orders materials, the
supplier delivers them, and the agent transforms those com-
ponents into finished products that it sells to its customers.
The 2003 version of TAC SCM failed to emphasize the
question of component procurement due to an artifact in the
game design.1 The rule changes instituted in 2004 address
this issue, and as a result, we expect the procurement prob-
lem to be central to the upcoming competition. The pro-
curement problem encompasses two subproblems: what re-
quests to place with suppliers and which supplier offers to
accept. We will focus on the latter, referred to herein as the
Supplier Offer Acceptance Problem (SOAP).

2. The Supplier Offer Acceptance Problem

The Supplier Offer Acceptance Problem involves decid-
ing which supplier offers to accept, given a fixed set of cus-
tomer orders, taking into account the possibility that each
component ordered may actually arrive any day on or af-
ter its contractual due date (which suggests ordering early)
and the holding costs incurred for storing component inven-
tory (which suggests ordering late). Supplier defaults pose
a significant challenge to TAC SCM agents because they
must balance the cost associated with ordering extra com-
ponents against the risk of incurring late penalties if com-
ponents are out of stock.

A supplier offer is characterized by a supplier, a com-
ponent, a quantity, a price, and a due date. When deciding
upon the set of supplier offers to accept, in addition to the
tradeoff between supplier defaults and holding costs, a TAC
SCM agent also factors into this decision the following:

• the set of customer orders: are there outstanding or-
ders for high-margin products whose production relies
on these components?

• the set of supplier orders: is sufficient stock of these
components already on order?

• current component inventory: is there sufficient stock
of these components already in inventory?

• current product inventory: can the order to which these
components would be applied be filled from inventory?

• future supplier offers: might offers for the same com-
ponent, quantity, and due date arrive tomorrow at
cheaper prices from more reliable suppliers?

1 Some might argue that the 2003 version of TAC SCM emphasized
only component procurement due to an artifact in the game design.

Supplier Offer Acceptance Problem
Inputs:

Set of Customer Orders
Set of Supplier Orders
Set of Supplier Offers
Supplier Offer Model
Supplier Default Model
Component Inventory
Product Inventory
Holding Costs

Outputs:
Production Schedule: map from Cycles to Products
Delivery Schedule: map from Products to Customer Orders
Acceptance Policy: map from Supplier Offers to {YES,NO}

Objective:
Maximize Revenue
Minimize Penalties, Holding Costs, and Component Costs

Figure 1. SOAP

Ultimately, the output of SOAP is not only an acceptance
policy—a decision about each supplier offer; rather, it also
includes a production and delivery schedule, since the TAC
SCM production and delivery optimization problems (see
Benisch, et al. [2]) are nested inside SOAP. The objective
is to compute an acceptance policy, together with produc-
tion and delivery schedules, that maximize revenue, mini-
mize penalties, and minimize holding and component costs.
See Figure 1.

2.1. An MDP Formulation

Figure 2 illustrates SOAP formulated as a Markov de-
cision process (MDP). The states in the MDP are charac-
terized by customer orders, product and component inven-
tory, past supplier orders, current supplier offers, and time.
The actions in the MDP correspond to the different sub-
sets of supplier offers that the agent may choose to accept
and the different possible production and delivery sched-
ules that it can execute. Each action is associated with vari-
ous rewards and transitions, the latter of which some are de-
terministic (1, 2, and 3) and some are not (4 and 5).

1. build products scheduled for production, subtract the
associated components from inventory, and add the
products to inventory

2. ship products to customers, subtract them from inven-
tory, and add revenue to the reward function

3. subtract holding costs from the reward function for all
components and products in inventory

4. receive component orders from suppliers, add them to
inventory, and subtract the associated component costs
from the reward function

5. receive a new set of supplier offers

orders and
schedules

orders and
schedulescomponent inventory

product inventory
supplier offers
supplier orders
customer orders

component inventory
product inventory
supplier offers
supplier orders
customer orders

component inventory
product inventory
supplier offers
supplier orders
customer orders

and
supplier

arrive
offers

schedules
orders and

components

arrive
offers
supplier
and

components
more

Figure 2. An MDP formulation of SOAP

2.2. An SP Formulation

In this section we describe SOAP formally, and in full
generality, as a recursive, stochastic program (SP). The pur-
pose of this description is to provide intuition into the prob-
lem structure, and to present a sense of its complexity. In
the sections that follow, we describe tractable approxima-
tions of this formulation of SOAP that can be used to solve
time-constrained variants of this problem with discrete and
bounded inputs, as in TAC SCM.

At a high level, stochastic programs view problems in
multiple stages. Decisions must be made in stage n before
pertinent information about stage n + 1 is revealed, but the
objectives in stage n + 1 are dependent on the decisions
in stage n. Given stochastic information available about the
outcomes in stage n+1, the goal is to find the stage n deci-
sions that maximize the profits of stage n plus the expected
profits of stage n + 1.

Variables
Wlµ 1 if the µth supplier offer of day l is accepted; 0 otherwise
Ylj quantity of product j scheduled for production on day l

Zli 1 if order i is delivered on day l; 0 otherwise

Constants Re: Supplier Offers
M the set of all possible supplier offers

Mlµ the µth supplier offer of day l; note that the number of offers
received on day l is |Ml|

~Stlµ 1 if the µth supplier offer of day l is delivered on day t where
l < t and µ ≤ |Ml|; 0 otherwise

q′lµk quantity of component k in the µth supplier offer of day l

p′
lµ price of the µth supplier offer of day l

hk holding cost for components of type k

Constants Re: Customer Orders
O number of customer orders
D total number of days in the game
E number of days before a late order is canceled
qi quantity of products in order i

di due date of products in order i

pi revenue for delivering order i on or before di + E

ρli penalty incurred if order i is delivered on day l

ρ̂i penalty incurred if order i is canceled entirely

πli revenue earned by delivering order i on day l

πli =

8

>

<

>

:

qipi l ≤ di

qipi − ρli di < l ≤ di + E

0 l > di + E

ak number of components of type k in initial inventory
bj number of products of type j in initial inventory
cj cycles expended to produce one product of type j

fij 1 if order i is for products of type j; 0 otherwise
gjk 1 if products of type j are built using components of type k;

0 otherwise
Cl number of cycles on day l

J number of different product types
K number of different component types

Abbreviations
h′

j daily holding cost for products of type j;
in TAC SCM 2004,

h
′
j =

X

{k | gjk=1}

hk

γkn amount of component k in inventory on day n

γkn = ak +

n
X

l=1

|Ml|
X

µ=1

n−1
X

t=l

~Stlµq
′
lµk −

n
X

l=1

X

{j | gjk=1}

Ylj

γ′
jn amount of product j in inventory on day n

γ
′
jn = bj +

n
X

l=1

0

@Ylj −
X

{i | fij=1}

Zli

1

A

ζi(Z) 1 if order i is not delivered before being canceled; 0 other-
wise

ζi(Z) = 1 −

min(di+E,D)
X

l=1

Zli

Let X : x, where X is a matrix with n rows, denote the
matrix whose first n rows are those of X and the last, the
(n + 1)th, row is x. Let 〈〉 denote the empty vector and
〈〈〉〉 be a matrix with a single empty column. The notation
X v Y means X has dimensions equal to Y ’s, with each
entry of X either 1 or 0.

Equations Given the notation described above, the follow-
ing mathematical program describes SOAP recursively:

Q(n, ~S, M, W,Y, Z) = max
wyz

O
X

i=1

(Z :z)niπni−

n
X

l=1

|Ml|
X

µ=1

~Snlµp
′
lµ

−

K
X

k=1

hkγkn +
J
X

j=1

h
′
jγ

′
jn

!

+
X

SvM

Pr(S|~S, M, W) ×

Z

2M
Pr(m)Q(n + 1, ~S :S, M :m, W :w, Y :y,Z :z) dm (1)

Q(D + 1, ~S, M, W,Y, Z) =
O
X

i=1

ζi(Z)ρ̂i (2)

subject to the following constraints:

n
X

t=1

(Z :z)ti ≤ 1 ∀i ∈ {1..O} (3)

J
X

j=1

cj(Y :y)nj ≤ Cn (4)

X

{i | fij=1}

n
X

t=1

qi(Z :z)ti ≤ bj +
n−1
X

t=1

(Y :y)tj ∀j ∈ {1..J}

(5)

X

{j | gjk=1}

n
X

t=1

(Y :y)tj ≤ ak +

n−1
X

l=1

|Ml|
X

µ=1

n−1
X

t=l

~Stlµq
′
lµk

∀k ∈ {1..K} (6)

For 1 ≤ n ≤ D, the objective (Equation 1) is to max-
imize revenue and minimize penalties, holding costs, and
component costs not only in the current stage, but also
the expected value of these quantities in future stages. For
n = D + 1, the objective function (Equation 2) simply cal-
culates the penalties for canceled orders.

The objective functions are subject to the following con-
straints: No customer order can be delivered more than once
(Equation 3). The total number of production cycles used to
produce all product types on day n cannot exceed the ma-
chine’s capacity on day n (Equation 4). The total quantity
of product j associated with orders delivered by day n can-
not exceed the total inventory of product j produced by day
n−1 plus any initial inventory (Equation 5). The total quan-
tity of component k used through day n cannot exceed the
total quantity of component k delivered by day n − 1 plus
any initial inventory of component k (Equation 6).

The goal on day n is to maximize Q(n, ~S, M, W, Y, Z)

where ~S, M , W , Y , and Z, which are all of length n, de-
scribe the agent’s past actions and observations.

3. Approximation Techniques

In this section we present a class of approximation tech-
niques that can be used to solve problems like SOAP with
a reasonable amount of computation. The algorithms in this
class vary according to their degrees of lookahead, from 0
days to c � D days to C closer to D days. Regardless of
the degree of lookahead, these techniques can be applied in
an online fashion, so that solutions are repeatedly reopti-
mized as more and more uncertainty is resolved.

3.1. 0-Day Lookahead

The first approximation method we propose is straight-
forward: solve a deterministic simplification of the control
problem in each period, by assigning probability 0 or prob-
ability 1 to any uncertain events. In the TAC SCM schedul-
ing problem [2], assigning probability 0 to uncertain events
yields to a just-in-time policy, where components are or-
dered from suppliers and manufactured into finished prod-
ucts only after customer orders are in hand.

A deterministic simplification of SOAP might ignore the
possibility of supplier defaults as well as any future sup-
plier offers: i.e., optimize with respect to the supplier offers
in hand, assuming (i) the probability of default on any of
these offers is zero and (ii) any orders on which the suppli-
ers have already defaulted will arrive tomorrow with proba-
bility 1. This version of SOAP incorporates both optimistic
and pessimistic viewpoints.

This problem is a special case of the stochastic program
presented in Section 2.2:

• In every iteration beyond the first, set Pr(m) equal to
one for m = 〈〉 and zero for all m 6= 〈〉; that is, we
assume no supplier offers will arrive after today.

• In every iteration beyond the first, set Pr(S|~S, M, W)
equal to zero for all S except for the one whose ar-
rival dates match the due dates of all supplier offers,
except those offers that were converted to orders and
had due dates of today but were not delivered today.
These untimely orders will have an arrival date of to-
morrow in S. That is, we assume all components are
delivered on time after today.

An algorithm that solves this deterministic version of SOAP
obtains scheduling decisions far into the future without rea-
soning about any of future uncertainty.

3.2. 1-Day Lookahead

A more accurate solution technique is to formulate and
(at least approximately) solve the two-stage stochastic pro-
gram, with 1 day of lookahead, rather than 0, ignoring
uncertainty about the future beyond the second period.

Benisch et al. tackle the production and delivery scheduling
problems in TAC SCM with this technique, and show that it
outperforms the aforementioned just-in-time policy [2].

In the SP that solves SOAP, the first stage represents the
current day, when the information available to the agent in-
cludes customer orders, product and component inventory,
past supplier orders, and current supplier offers. The sec-
ond stage represents the next day, when the agent learns on
which orders the suppliers have defaulted, and receives a
new set of supplier offers. In the proposed simplification
of SOAP, we assume there is zero probability of default on
these second stage supplier offers, and that no supplier of-
fers are due to arrive beyond stage two. Moreover, we as-
sume that any orders on which the suppliers have already
defaulted are certain to arrive by the day after tomorrow.

This problem is a special case of the stochastic program
presented in Section 2.2:

• In every iteration beyond the second, set Pr(m) equal
to one for m = 〈〉 and zero for all m 6= 〈〉, that is, as-
sume no supplier offers will arrive after tomorrow.

• In every iteration beyond the second, set
Pr(S|~S, M, W) equal to zero for all S except
for the one whose arrival dates match the due dates of
all supplier offers, except those offers that were con-
verted to orders and had due dates of either today or
tomorrow but were not delivered today or in the sce-
nario describing tomorrow. These untimely orders
will have an arrival date of the the day after tomor-
row in S. That is, we assume all components are
delivered on time, after tomorrow.

A solution to this simplification of SOAP would obtain
long-term scheduling decisions by reasoning about only a
very small part of the massive space of future scenarios.

One computational bottleneck to solving stochastic pro-
grams is the calculation of expected profits in the second
stage. This calculation typically involves enumerating all
possible scenarios (second stage outcomes); however, in
many problems there are combinatorially many scenarios,
making it prohibitively expensive to calculate the expected
profits of the second stage. One common means of ap-
proximating this calculation is the so-called expected value
method (EV), which is to solve a deterministic variant of
the problem assuming all stochastic inputs have determin-
istic values equal to their expected values (see, for exam-
ple, Birge and Louveaux [6]). Shapiro, et al. [1, 11, 12]
recently proposed an alternative approximation technique
called Sample Average Approximation (SAA), which re-
duces the number of scenarios. They suggest using only a
subset of the scenarios, randomly sampled according to the
scenario distribution, to represent the full scenario space.
An important theoretical justification for this method is that
as the sample size increases, the solution converges to an

optimal solution in the expected sense. Indeed, the conver-
gence rate is exponentially fast [12]. Benisch et al. [2] show
that SAA outperforms EV in TAC SCM scheduling.

In summary, Benisch et al. [2] show that in TAC SCM
production scheduling, SAA outperforms EV, which in turn
outperforms just-in-time production. In particular, higher
objective values can be achieved with 1 day of lookahead,
rather than 0 days of lookahead. In this paper, we hypoth-
esize that algorithms which rely on even more extensive
lookahead can outperform SAA on SOAP. Intuitively, this
hypothesis seems plausible; however, in practice, with such
massive scenario spaces, approximate solutions could be so
coarse that it would be better to outright ignore the future.

3.3. D-day Lookahead

Using the two-stage stochastic programming approach,
we lack the ability to reason about uncertainty beyond one
day (or, more generally, some small number of days, say
c � D) into the future. Thus, we cannot consider the pos-
sibility that orders on which the supplier defaults might ar-
rive an arbitrary number of days after their designated ar-
rival dates. Towards this end, we propose an approximation
scheme with C closer to D days of lookahead. Our tech-
nique combines rollout methods (see Bertsekas [5]) with
marginal utility calculations (see, for example, [10]). To-
wards this end, we propose an approximation scheme with
C closer to D days of lookahead.

The technique we propose is designed to approximate
the optimal set of decisions today by simulating future sce-
narios. To picture this, recall the MDP formulation in Fig-
ure 2. In simpler problems, such as packet routing [7] and
vehicle dispatching [9], where future uncertainty is inde-
pendent of current actions, one can simply sample the fu-
ture: e.g., assume packets or customers arrive according to
some exogenous stochastic process, such as a Poisson pro-
cess. But in SOAP, and MDPs in general, we cannot sim-
ulate future scenarios without relying on some policy that
describes our actions at all states.

Given such a policy, say π, we can “rollout” each action
a at each state s as follows: simulate a at s, its immediate
rewards, the likely future states that ensue, and repeat, abid-
ing by π at all future states. Now, we can choose the best ac-
tion a∗ among all actions: i.e., that which accrues the great-
est long-term rewards. The policy improvement theorem [4]
states that the policy π∗, where π∗(s) = a∗ for all states s,
is an improvement over π in expectation.2 We propose to
rollout, and thereby improve the policy of, only those states
that are visited. Via experimentation, we can determine the
effectiveness of rollouts in SOAP.

2 The policy improvement theorem holds for sufficiently many simula-
tions as well, with high probability.

In SOAP (and in more general problems), there are a
number of reasonable candidates for the base policy π in
this rollout method. For example, we could choose π to
be the policy that is obtained by solving the deterministic
simplification of SOAP with 0-days of lookahead. Alterna-
tively, and time-permitting, we could choose π to be a pol-
icy that is obtained with 1-day of lookahead, in which case
we might approximate the solution to the two-stage stochas-
tic program using the EV or SAA. The appropriate choice
of rollout policy is an empirical question, which depends on
time-critical factors, and to which the success of the over-
all procedure is ultimately tied.

The rollout method, which relies on repeated simula-
tions, can yield an effective approximation (in small enough
problems) at states with few actions. However, in SOAP,
given N supplier offers, there are 2N actions (even with-
out taking into account scheduling decisions). Thus, we
have developed an additional heuristic to solve instances of
SOAP with large numbers of supplier offers.

Our heuristic is based on the idea of marginal utility.
The marginal utility of a supplier offer is the difference be-
tween the utility of accepting and rejecting the offer. The
marginal utility calculation can be approximated with a se-
ries of rollouts as described above: i.e., evaluate the action
accept, evaluate the action reject, and compute the differ-
ence between the values of these two actions.

One simple heuristic is the following: include all of-
fers with positive marginal utility. However, because sev-
eral components are substitutes for one another, this heuris-
tic can accept too many supplier offers. It is more accurate
to compute the marginal utility of all supplier offers, accept
the one with the highest marginal utility, and repeat until
none of the remaining offers have positive marginal utility.

But this heuristic fails in SOAP because components
are not only substitutes, they also complement one another.
Starting from an empty inventory, no supplier offer would
ever be accepted using this heuristic, since no supplier offer
viewed in isolation yields positive marginal utility: all sup-
plier offers incur costs, but revenues can only be accrued by
selling products built using multiple components.

As a heuristic for SOAP, it is more effective to calculate
the marginal cost of eliminating each supplier offer from an
initial collection that includes the entire set of offers.3 Of-
fers without positive marginal utility are those which con-
tain components enough of which cannot be assembled into
products because complementary components or machine
cycles are unavailable.

Finally, our heuristic: remove from the initial collection
of supplier offers that with the highest marginal cost, recal-

3 Whereas marginal utility is the difference between the value of accept-
ing and rejecting a supplier offer, marginal cost is the negation of this
quantity: i.e., the difference between the value of rejecting and accept-
ing a supplier offer.

SELECTOFFERS(O)
1 while O 6= ∅
2 do o∗ ← NIL

3 m∗ ←∞
4 for o in O

5 do m← MarginalUtility(o)
6 if m < m∗

7 then o∗ ← o

8 m∗ ← m

9 if m∗ > 0
10 then return O

11 else O ← O \ {o∗}
12 return ∅

Figure 3. O denotes the set of supplier offers,
o∗ denotes the worst offer evaluated thus far,
and m∗ denotes the marginal utility of o∗.

culate the marginal costs of all the remaining supplier of-
fers with respect to this new set of offers, and repeat un-
til none of the remaining offers have positive marginal cost:
i.e., all of the remaining offers have positive marginal util-
ity. This procedure is detailed in Figure 3.

Using the proposed marginal utility heuristic, solving
SOAP requires only O(N2) rollouts, rather than O(2N)
rollouts, where N = |O|.

4. Conclusion

We have formalized the supplier offer acceptance prob-
lem (SOAP) in TAC SCM as a multi-stage stochastic pro-
gram. In addition, we have suggested a heuristic for solv-
ing this problem using the rollout method, following one or
two stage approximations of the multi-stage stochastic pro-
gram as the base policy during rollouts. The main idea of
the rollout method is look ahead into the future by simu-
lating the long-term effects of each of the possible imme-
diate actions, and to choose the best one. Not surprisingly,
this method is only applicable to problems with small ac-
tion sets, such as blackjack [13], in practice. Thus, we have
also designed a heuristic based on the notion of marginal
utility which should allow our approach to scale to prob-
lems with large numbers of 0/1 decision variables.

While the rollout method with lookahead requires a sig-
nificant increase in computation over the stochastic pro-
gramming formulations with little or no lookahead, en-
hanced with the marginal utility heuristic it lends itself well
to parallelization. What is more, it is conceivable that it
would be rather obvious whether to accept or to reject some
fraction of the supplier offers, so that a preprocessing step
could handle these easy cases, thereby limiting the num-

ber of (hard) decisions the rollout algorithm would make.
With these improvements, our method could be effective
in TAC SCM and other real-time decision-making environ-
ments. Indeed the proposed ideas are not limited to SOAP;
we also plan to experiment with them in the framework of
TAC Classic [14] in the near future.

In TAC SCM, additional work must be done to tie to-
gether SOAP with the bidding problem and the problem of
deciding from which suppliers to request which supplies.

References

[1] AHMED, S., AND SHAPIRO, A. The sample average ap-
proximation method for stochastic programs with integer re-
course. Submitted for publication (2002).

[2] BENISCH, M., GREENWALD, A., NARODITSKIY, V., AND

TSCHANTZ, M. A stochastic programming approach to TAC
SCM. In ACM Electronic Commerce Conference (New York,
May 2004), pp. 152–160.

[3] BERRY, P. Uncertainty in scheduling: Probability, problem
reduction, abstractions and the user, 1993.

[4] BERTSEKAS, D. P. Differential training of rollout policies.
In Proc. of the 35th Allerton Conference on Communication,
Control, and Computing (Allerton Park, Ill., October 1997).

[5] BERTSEKAS, D. P., AND CASTANON, D. A. Rollout al-
gorithms for stochastic scheduling problems. Journal of
Heuristics 5, 1 (April 1999), 89–108.

[6] BIRGE, J., AND LOUVEAUX, F. Introduction to Stochastic
Programming. Springer, New York, NY, 1997.

[7] BRODER, A., FRIEZE, A., AND UPFAL, E. A general
approach to dynamic packet routing with bounded buffers,
2001.

[8] ESSMEYER, H. E-transaction enablers business models,
trends and issues. Available at http://citeseer.ist.
psu.edu/401398.html.

[9] GENDREAU, M., AND POTVIN, J.-Y. Dynamic vehicle
routing and dispatching.

[10] GREENWALD, A., AND BOYAN, J. Bidding under uncer-
tainty: Theory and experiments. In Proceedings of the 20th
Conference on Uncertainty in Artificial Intelligence (July
2004), p. To Appear.

[11] KLEYWEGT, A., SHAPIRO, A., AND HOMEN-DE-MELLO,
T. The sample average approximation method for stochas-
tic discrete optimization. SIAM Journal of Optimization 12
(2001), 479–502.

[12] SHAPIRO, A., AND HOMEN-DE-MELLO, T. On rate con-
vergence of monte carlo approximations of stochastic pro-
grams. SIAM Journal on Optimization 11 (2001), 70–86.

[13] SUTTON, R., AND BARTO, A. Reinforcement Learning: An
Introduction. MIT Press, Massachusetts, 1998.

[14] WELLMAN, M., WURMAN, P., O’MALLEY, K.,
BANGERA, R., LIN, S., REEVES, D., AND WALSH,
W. A trading agent competition. IEEE Internet Comput-
ing (April 2001).

