
Manipulability of PageRank under Sybil StrategiesAlie Cheng � Eri Friedman yAbstratThe sybil attak is one of the easiest and most om-mon methods of manipulating reputation systems. Inthis paper, we analytially quantify the inrease inreputation due to reating sybils under the PageRankalgorithm. We ompute expliit bounds for the possi-ble PageRank value inrease, and we use these boundsto estimate the rank inrease. Finally, we measure thee�et of sybil reation on nodes in a web subgraph.We �nd that the resulting rank and value inreasesagree losely with our analyti values.1 IntrodutionRanking systems are an important tool in a widerange of online settings, suh as online shopping (Ama-zon.om, eBay) as a means of inferring reputation ofsellers or goods, in the peer-to-peer setting, to weedout untrustworthy or freeloading users, and the areaof online searh, as a means of ranking webpages.However, many ranking systems are vulnerableto manipulation, and users often have inentives toheat. A higher ranking may o�er an eonomi ben-e�t - for example, one study of the eBay reputationsystem found that buyers are willing to pay a pre-mium of 8% for buying from sellers with high rep-utation [11℄. Websites are likely to gain signi�antweb traÆ from a high ranking in relevant keywordsearhes, and there are online ompanies whih helpsites improve their searh engine rankings.PageRank is urrently one of the most widely usedreputation systems. It is applied in peer-to-peer net-works in the EigenTrust algorithm [7℄, and in websearh, as the foundation for the Google searh al-gorithm [9℄. Although PageRank has proven to be afairly e�etive ranking system, it is easily manipula-ble by a variety of strategies, suh as ollusion or thesybil attak [12, 5℄.�Center for Applied Mathematis, Cornell University, al-ie�am.ornell.eduyShool of Operations Researh & Industrial Engineer-ing and Center for Applied Mathematis, Cornell University,ejf27�ornell.edu0Work supported by NSF. ITR-0325453

We fous primarily on the sybil attak, desribedby Doueur [4℄. In this attak, a single user reatesseveral fake users - alled sybils - who are able tolink to (or perform false transations with) eah otherand the original user. For example, in the web, auser an reate new webpages and manipulate the linkstruture between them. In many online settings, newidentities are heap to reate, and it may be diÆultto distinguish between sybils and real users. In thease of PageRank, users have already been observedperforming sybil-like strategies, suh as forming linkfarms [5℄.It is easy to see that PageRank is vulnerable tosybil attaks. However, as we showed in earlier work,almost all pratial reputation systems are vulner-able to sybil attaks [3℄. It may be unrealisti torestrit one's attention only to sybilproof reputationsystems, and reputation systems may vary widely intheir exploitability. For example, the indegree rep-utation funtion (where a user's reputation value isjust his indegree) is easily exploitable - a user mayinrease his indegree to any desired value by reat-ing sybils. On the other hand, a reputation funtionbased on maximum ow is not sybilproof with respetto rank, but is more diÆult to manipulate. Thus, itbeomes important to gauge the degree of vulnerabil-ity of di�erent reputation systems. In order to sys-tematially ompare PageRank to other reputationsystems, we develop a method of estimating the po-tential PageRank rank and value improvement of anode in a web-like graph.In this paper, we begin this researh program witha formal and experimental analysis of the vulnerabil-ity of PageRank to sybil attaks. We provide analytiestimates of this vulnerability, whih only depend onthe overall PageRank distribution in the graph andthen hek the tightness of our analysis on empiri-al web graph data. We �nd a very lose agreementand are led to believe that our estimates an be ap-plied to estimate the vulnerability of a wide range ofreputation graphs, diretly from the distribution ofPageRanks, obviating the need for large sale simula-tions.1



2 Related WorkOur work is related to [12℄ whih onsiders the ef-fet of ollusion on PageRank. Collusion is a strat-egy where users mutually agree to alter their outlinkstruture in order to improve their reputations. Col-lusive strategies and sybil strategies di�er in at leasttwo ritial ways. First, a sybil reator an gain rep-utation at the expense of his sybils, while olludersare unlikely to ooperate unless both an raise theirreputations. Seond, sybil strategies are likely to beless onstrained in size - a user an often easily re-ate a large sybil group, while it may be more diÆultto �nd an equal number of users to form a olludinggroup.Other related work inludes Gyongyi and Garia-Molina who give a fairly exhaustive list of strate-gies to falsely boost reputation on the web [5℄. ThePageRank algorithm itself has generated a lot of inter-est and study. Bianhini, Gori, and Sarselli onsiderthe total PageRank within a ommunity of nodes, andgive methods for a ommunity to boost its total rep-utation [2℄. A survey paper by Langville and Meyergives a general overview of the PageRank algorithm,and disusses many issues inluding PageRank stabil-ity and eÆient omputation [8℄.3 PreliminariesGiven a set of users V , we represent the setting as adireted graph G = (V;E) . The edges E representdiret trust between users. For example, in the web,an edge (i; j) 2 E may represent a hyperlink from sitei to site j. Let n = jV j. Let d(i) be the outdegreeof the node i 2 V . We require that every node haspositive outdegree. Sine this isn't always the asefor real world graphs, we will insert a self-loop for allnodes with outdegree 0. Aside from these nodes, wewill assume that no other nodes have self-loops.3.1 PageRankThe PageRank values on a network graph G are givenby the stationary probabilities of the following ran-dom walk on G: with probability 1� �, a walker at anode i walks along an outgoing edge of i, hoosing theedge uniformly with probability 1d(i) , and with proba-bility �, jumps to a node hosen uniformly at random.Let v be the vetor of stationary probabilities - vi isthe stationary probability of the node i. The resultingPageRank ranking is given by the order of the valuesof v, sorted from highest to lowest (note that a highervalue vi orresponds to a lower numbered rank). For

onveniene, we will typially not talk about the sta-tionary vetor of probabilities v, but will instead use� = nv. Clearly, � yields the same ranking as v. Fora node i, we will refer to �i as its PageRank value andits order on a highest to lowest list sorting the �j 's asits rank.Given G, we an onstrut the adjaeny matrixof G, A, Aij = 1 if (i; j) 2 E, and 0 otherwise. LetM(G) be the matrix of G with M(G)ij = Ajid(j) .Note that � is the prinipal eigenvetor (with eigen-value 1) of the matrix (1� �)M(G) + �n�!1 �!1 T , where�!1 is the vetor of all ones. That is, � satis�es thefollowing matrix equation:(1� �)M(G)� + ��!1 = �We may sometimes �nd it onvenient to expressthe above as a salar equation: for a node i 2 V ,�i = (1� �)Xj!i �jd(j) + �;where j ! i to denotes (j; i) 2 E (i.e. j points toi). We an also onsider the iterative version of theabove equations, whih is justi�ed in [8℄.�0j = 1;8j;�ti = (1� �)Xj!i �t�1jd(j) + �3.2 Sybil StrategiesIn a sybil strategy, a node reates k sybils, and manip-ulates his own outlinks and those of his sybils. Moreformally,De�nition 1 Given a graph G = (V;E) and a nodei 2 V , a sybil strategy for the node i, is a newgraph G0 = (V 0; E0), suh that V 0 = V [ S, whereS = fs1; : : : ; skg is a set of sybils (disjoint from theoriginal node set) and E0 is suh that for all j 2 V; j 6=i, for all x 2 V , (j; x) 2 E , (j; x) 2 E0.A sybil olletive is the node set S [ fig (i andits sybils). Let ri be the rank of i in G, �i be thePageRank value of i in G. Let �i be the new PageRankvalue for i in G0 and r0i be the new rank. Then astrategy is suessful for i with respet to value if�i > �i. It is suessful with respet to rank if r0i < ri.We say that a reputation funtion is value (orrank) sybilproof if for all graphs G, no node has a su-essful sybil strategy with respet to value (or rank).It is straightforward to ome up with an exam-ple where a node an inrease its PageRank through2



reating sybils. In [3℄, we showed that no nontrivialsymmetri reputation system (i.e. one that is invari-ant under a relabelling of the nodes) an be sybil-proof. The version of PageRank that we desribed inthe previous setion is learly symmetri, so there isa network where a node ould bene�t from reatingsybils. Further, by this result, we know that adjust-ing some of the parameters of PageRank (suh as thevalue of �) in a nontrivial way while maintaining sym-metry annot yield a sybilproof mehanism. However,it is easy to show that even an asymmetri version ofPageRank (suh as the version used in EigenTrust)may be manipulated with sybils.Note that a sybil reator may hoose any on�g-uration of edges within the sybil olletive. However,for the purposes of this paper, we fous on one parti-ular sybil strategy. In this strategy, a node i removeshis outlinks, reates k sybils, and links to eah of hissybils. The sybils in turn link only to the sybil reatori. Figure 4 (in the appendix) depits a node applyingthis strategy with 3 sybils.Bianhini et. al. show that this on�guration on-entrates the maximum amount of reputation on thesybil reator [2℄. Intuitively, any random walk insidethe sybil olletive must hit i on every other step.Further, removing any links from the olletive tonodes outside of the olletive improves their overallPageRank - a random walk whih enters the olletivemust remain there until a random jump.4 AnalysisOur main results are analyti bounds for the valueinrease upon reating sybils whih are presented be-low. We then ompare these bounds with empirialdata.4.1 Value InreaseWe give the following upper and lower bounds forvalue inrease:Theorem 2 Let � be the old PageRank value vetor,and � be the new PageRank vetor when node i reatesk sybils by the above strategy, keeping all other nodes�xed. Then, if i has no self-loop in G, we have thefollowing bounds:�i + k 1� �2� � � �i � �i + �(1� �)k�(2� �)Sine we typially talk about the ratio between �and �, we give the orresponding bounds for the value

ination ratio �i=�i:1 +�1� �2� �� k�i � �i�i � 1�(2� �) +�1� �2� �� k�iA proof of this theorem is inluded in the ap-pendix.These bounds allow us understand how the valueinrease hanges as we inrease the number of sybilsor vary �. Further, for given values of � and �, wean estimate the number of sybils needed to inreasea node's reputation by some given amount.Inreasing k inreases both the upper and lowerbounds, and appears to yield larger inreases in thevalue ination ratio when �i is small. For example, for� = 0:15, we have 1 + 0:46( k�i ) � �i�i � 3:6+ 0:46( k�i ),meaning that for a node with value �i equal to themean value 1, doubling one's value requires between1 and 3 sybils. For a node with the median value,whih is � 0:3 in our data sample, it requires only 1sybil.The above bounds are tight. The upper bound isattained for nodes i that are ontained in no yles.One an show (using similar tehniques as in the proofof the theorem), that in this ase, the reputation ofi's reommenders (those nodes j with j ! i) are un-hanged when i removes its outlinks. With a simpleomputation (or by following the proof of the abovetheorem), the equality follows.The lower bound is attained for subgraphs in a\petal" on�guration, where the node i points only tonodes who point only bak at i (as in the sybil on�g-uration). This on�guration attains the lower boundbeause i's reommenders were previously \sybil-like",in that they attained most of their reputation fromi and returned as muh reputation as possible to i.One i removes its outlinks, the value of the links(j; i) to i beome very small.However, most nodes may not lie in either of theextremes desribed above. Indeed, it is reasonableto expet (due to the observed high lustering in theweb [1℄) that some nodes lie on short yles, leadingto on�gurations similar to the \petal". At the sametime, many of the edges out of i are likely not part ofshort yles, suggesting on�gurations as in the upperbound.4.1.1 Data for k = 1In this setion and the ones that follow we use adataset from a webrawl on the stanford.edu domain,available at [6℄. The total number of nodes is n =281903. We preproess the graph to insert self-loopsfor eah node with outdegree 0, to guarantee that the3
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Figure 1: Old PageRank value (x axis) versus newvalue/old value ratio for the ase of 1 sybil, jumpparameter � = 0:15. The lines are given by the theo-retial upper and lower bounds.matrix M(G) of the graph (de�ned above) is indeedstohasti. In the �rst experiment, we selet 10000nodes uniformly at random from the graph, and foreah node seleted, we reate a single sybil for thatnode under the above sybil strategy, keeping all othernodes �xed. We set the jump parameter � to 0:15.In Figure 1, we plot the old PageRank value �i ver-sus the ratio �i�i . For the sake of visual larity, we uto� the graph at �i = 3, whih still inludes the vastmajority of the nodes (� 97%). Not only are nodesable to ahieve an average linear fator inrease of4:7, the upper and lower bounds of the data appear tomath losely with the omputed bounds. For largervalues of �i, we observe that both the upper and lowerbounds appear to be tight, and the data points areroughly evenly distributed between the bounds. Forsmaller values, the upper bound appears tight, whilethe lower bound is not. One possible explanation forthis disrepany is that the lower bound (as disussedin the previous setion) is attained when the originalnode is in a sybil-like struture, where the node is on-tained nearly exlusively in small yles (i.e. manypaths out of the node are small yles). However,being in suh a struture may also suggest a higherreputation value than a typial node, so nodes thatnearly attain the lower bound may tend also to have

higher reputation. In fat, the entral node of a petalwill have a PageRank value �i � 1, and we note thatthe lower bound appears tight in this regime in ourplot.Further, we an note that aside from the devia-tion from the lower bound for lower reputation nodes,the nodes appear fairly evenly spread between thebounds, suggesting, as we stated earlier, that mostnodes are an \average" between the extremes of be-ing in no yles and being in many short yles.4.1.2 Data for k = 1; 2; 5; 10For this experiment, we selet 1000 nodes uniformlyat random from the graph. For eah node seleted,we set up a sybil strategy for that node with k =1; 2; 5; 10. We set the jump parameter to � = 0:15.We plot the ratio of new PageRank to old PageRankin Figure 5, in the appendix. The data points ap-pear roughly of the same shape as in the k = 1 ase,and the boundaries of the data points agree with ouromputed bounds. Further, as in our bounds, we anobserve that lower value nodes tend to gain larger in-reases with k and higher value nodes tend to havemore modest inreases.4.2 Rank InreaseIn many settings (suh as web page ranking) one aresonly about the ranking implied by the PageRank val-ues and not the atual values themselves. Given theformulas from Theorem 2, and some knowledge aboutthe PageRank distribution, we may attempt to givea rough estimate of the rank inrease.In this setion we evaluate the rank inreases fora large lass of graphs based on an analysis of a largeweb graph. Pandurangan et.al. estimate the proba-bility density of PageRank in a large web subgraph,and �nd a density of � x2:1 , where  is a onstant[10℄.If we assume that the PageRank density is F (x) =x2:1 , then Pr(�i � x) = dx1:1 for some onstant d. Fora node i, if its PageRank value is �i, a rough estimateof its rank would be nPr(�i � x) = ndx1:1 . We foundthat our dataset mathes the rough estimates abovefairly losely - for nodes with rank < 40000, the valueto rank funtion is � 1v�1:1, and for nodes with rank> 50000, the value to rank funtion is � 2v�0:86.Let ri be the old rank of i and r0i be the newrank. Let r(x) = x�1:1 be the PageRank value torank funtion (for some onstant ). Then, the newrank to old rank ratio r0iri � r(�i)r(�i) = (�i�i )1:1, using the4



PageRank value ratio bounds, satis�es the bounds 11�(2��) + ( 1��2�� ) k�i !1:1 � ��i�i�1:1 �  11 + ( 1��2�� ) k�i !1:1. For � = 0:15, and k = 1, the above bounds are( �i3:6�i+0:46 )1:1 � (�i�i )1:l � ( �i�i+0:46 )1:1. For large �i,we expet a lower bound in the rank inrease of 0:28and an upper bound of � 1. For nodes with small�i, say �i < 1, whih aounts for more than 80%of the nodes in our graph, we have a lower boundof approximately 0:13, and an upper bound of 0:66.From our analysis of the bounds for the value ratioin the previous setion, we expet the lower bound tobe muh more aurate than the upper bound in thesmall �i regime.Given these tools, we an estimate the number ofsybils needed for the median node (with rank n2 ) torise to the top k, for any k. Take the rank funtionr(v) to be r(v) = v1:1 for a onstant . Let r1 = n2be the rank of the median node. r2 = k. We anestimate the orresponding values for a graph of sizen: v1 = r�1(r1) = ( 2n )1=1:1, v2 = r�1(r2) = ( k )1=1:1.The value ratio v2v1 = ( n2k ):91. Plugging in the valueratio from the theorem inequalities (for � = 0:15),we have k � �i:46 ( n2k ):91. Therefore, for a graph with� 300000 nodes, and median �i = 0:3, it requires� 500 sybils to rise to the top 100. In a graph with nnodes and median value �i < 1, it would require lessthan � 76 sybils for the median node to rise to thetop 1% of nodes.4.2.1 Data for k = 1The experimental setup is idential to the one de-sribed in setion 3.1.1. We plot the old rank ver-sus the new rank in Figure 3. We �nd that all butthe very highest or very lowest ranked nodes are ableto improve (or derease) in rank by a fator of ap-proximately 0:14 times - approximately a 6-fold im-provement. This value agrees well with our omputedlower bound (for small �) of 0:13. Further, we an ob-serve that for nodes with original rank > 50000 (thesenodes have �i > 1), the improvement in rank is muhmore spread out, and less signi�ant - whih may beexplained by the fat that the PageRank value ratiosare more spread out, and attain the upper and lowerbounds in the large �i regime.4.2.2 Data for k = 1; 2; 5; 10The experimental setup here is idential to the onedesribed in setion 3.1.2. We plot the old rank versus
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Figure 2: Old rank (x axis) versus new rank for thease k = 1; � = 0:15the new rank in Figure 6 (in the appendix) for k =1; 2; 5; 10.We see a muh more dramati improvement inrank than value resulting from inreasing the numberof sybils. We �nd average ratios of old rank to newrank, rir0i of 7:1 for k = 1, 16:4 for k = 2, 40 for k = 5,and 90:9 for k = 10. As expeted, as in the value aseand suggested by our bounds, sybil reation tends tobe more e�etive for higher ranked nodes.4.3 Varying � and sybil strategiesOne way to vary the PageRank algorithm is to alterthe parameter �, whih determines the probability ofmaking a random jump at eah step of the randomwalk. Our value bounds show that as � inreases,the potential inrease in value delines. Intuitively,if � is high, the e�et of reating sybils may be re-dued, sine a random walk does not remain trappedin sybil olletives for a long time. By repeating theprevious experiments for various values of �, we foundthat the value inrease does deline preditably as �inreases. However, we found that nodes were stillable to ahieve omparable rank improvements as weinreased �.We also onsidered two di�erent sybil strategies.In one, users do not remove their outlinks to non-sybil nodes. In the other, users move their outlinks5



to a sybil node. In both of these ases, we observedan improvement in PageRank value and rank, thoughslightly less than in the original strategy.5 Future WorkOur analysis shows that PageRank is extremely ma-nipulable, even with simple strategies using a smallnumber of sybils. We provided tight analyti approx-imations that an be used to estimate the manipula-bility of Pagerank in a variety of settings.One issue that we haven't onsidered is the or-relations between web pages on similar topis. Forexample, typially - and partiularly in the web set-ting - a node is ompeting with a subset of nodesrelating to the same topi (e.g. an eletronis retailerprobably doesn't are about ranking above a politi-al weblog). Therefore, one potential further area ofstudy is an analysis of how muh the improvementsobserved above allow a typial node to beat its mostlikely ompetitors. Further the subset of ompetitorsmay look very di�erent from a uniformly random sub-set of the web. For example, a subset of nodes all re-lating to the same topi may be more lustered thana random subset of the web. Is sybil reation moree�etive or less in this setting?In this paper, we fous entirely on the PageRankalgorithm, and �nd that it is easily manipulable. How-ever, there are many other potential reputation sys-tems, and we do not expet all of them to be as eas-ily manipulable with sybils. Similar studies on themanipulability of other reputation systems may al-low diret omparison of the manipulability of variousreputation systems.In partiular, one would expet that there wouldbe a trade o� between the quality of the ranking sys-tem its manipulability. For example, as shown in[3℄, the \shortest path" ranking system is immuneto sybil attaks; however, it is most likely less e�e-tive at ranking than PageRank. The development ofrobust and eÆient ranking mehanisms is an impor-tant open problem.Referenes[1℄ Lada Adami. The small world web. In S. Abite-boul and A.-M. Veroustre, editors, Researh andAdvaned Tehnology for Digital Libraries, Le-ture Notes in Comp. Si.,1696, pages 443{452.1999.
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Figure 3: On the left: a single node with both outlinks and inlinks from the rest of the graph (loud). Onthe right: the node removed its outlink, and reated 3 sybils, arranged in the \petal" formation.6 AppendixIn this setion, we wish to prove the following theo-rem:Theorem 3 Let � be the old PageRank value vetor,and � be the new PageRank vetor when node i reatesk sybils by strategy A, keeping all other nodes �xed.Then, if d(i) > 0, we have the following bounds:�i � �i + �(1� �)k�(2� �)�i � �i + k 1� �2� �Let G = (V;E), be a direted graph with V =f1; : : : ; ng. For j 2 V , let d(j) be the outdegree ofthe node j. We de�ne M(G) be the n � n matrixsuh that M(G)ij = � 1d(j) if (i; j) 2 E0 otherwiseDe�ne ~M; v;w suh thatM(G) = � ~M wvT 0 �WLOG let i = n. Let G0 = (V;E0) be the graphwhere n removes its outlinks and reates a self loop.Let G00 be the graph where n has k sybils as in strat-egy A.Let � be the original PageRank vetor for G, withk�k1 = n, and let �0 be the PageRank vetor forG0, with k�0k1 = n. Let � be the n + k vetor suhthat �x = �0x for all x < n, �n = 1��2��k + 12���0n and

�x = 12�� + 1��2�� �0nk for all x > n. By onsidering thematries M(G0);M(G00) in blok form as above, aneasy omputation shows that (1��)M(G00)�+��!1 = �.Therefore, � is the unique PageRank vetor of G00(normalized to n+ k).It suÆes then to show that (2� �)�n � �0n � �n�Lemma 4 �0j � �j for all j < n.Proof: Note that the outdegrees of nodes j < nin G0 are equal to their outdegrees in G, so we anwrite the outdegree of x for x < n as d(x). Re-all the iterative version of PageRank: (�0j)t = (1 ��)Px!j (�0x)t�1d(x) + �, for t � 1, and (�0j)0 = 1 for allj. Sine (�0j)t ! �0j as t ! 1, it suÆes to showthat (�0j)t � �tj for all t, and for all j < n. This istrivially true for t = 0. By indution, assume that(�0x)t�1 � �t�1x for all x < n. Consider some nodej < n.(�0j)t = (1� �) Xx:(x;j)2E0 (�0x)t�1d(x) + �� (1� �) Xx:(x;j)2E;x<n (�x)t�1d(x) + �� �tjThe �rst inequality follows from indution and thefat that n doesn't point to any j < n in G0.Plugging in �j for eah �0j in the PageRank for-mula for �n gives the upper bound. For the lowerbound, we have the following lemma:Lemma 5 �0n � (2� �)�n.7



Proof: Note that we require the assumption thatd(n) > 0 for this lemma. Consider a node i 6= n. Inthe graph G0, we have�0i = (1� �) Xj!i;j 6=n �0jd(j) + �;by the fat that n points to no nodes other than itselfin G0. Applying the previous lemma, we have�0i � (1� �) Xj!i;j 6=n �jd(j) + �:Note that �i = (1��)Pj!i;j 6=i �jd(j)+(1��)Æni �nd(n)+�,where Æni = 1 if (n; i) 2 E, and 0 otherwise. There-fore, we have �0i � �i � (1� �)Æni �nd(n) :We an sum the inequality over all i 6= n:Xi6=n �0i �Xi6=n �i � (1� �)�n;where we note that there are exatly d(n) nodes amongi 6= n with Æni = 1 (n had no self-loops in the originalgraph). Adding �i + �0i to both sides, we have�i +Xi2V �0i � �0i +Xi2V �i � (1� �)�n:Finally, by normalization, Pi2V �i = Pi2V �0i = n,so �i � �0i�(1��)�n. Rearranging, we get the desiredinequality: (2� �)�i � �0i
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Figure 4: Old PageRank value (x axis) versus oldvalue/new value ratio (y axis) for k = 1; 2; 5; 10. Thelines are the theoretial upper bounds for the variousvalues of k
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Figure 5: Old rank versus new rank for k = 1; 2; 5; 10,� = 0:158


