
Manipulability of PageRank under Sybil StrategiesAli
e Cheng � Eri
 Friedman yAbstra
tThe sybil atta
k is one of the easiest and most 
om-mon methods of manipulating reputation systems. Inthis paper, we analyti
ally quantify the in
rease inreputation due to 
reating sybils under the PageRankalgorithm. We 
ompute expli
it bounds for the possi-ble PageRank value in
rease, and we use these boundsto estimate the rank in
rease. Finally, we measure thee�e
t of sybil 
reation on nodes in a web subgraph.We �nd that the resulting rank and value in
reasesagree 
losely with our analyti
 values.1 Introdu
tionRanking systems are an important tool in a widerange of online settings, su
h as online shopping (Ama-zon.
om, eBay) as a means of inferring reputation ofsellers or goods, in the peer-to-peer setting, to weedout untrustworthy or freeloading users, and the areaof online sear
h, as a means of ranking webpages.However, many ranking systems are vulnerableto manipulation, and users often have in
entives to
heat. A higher ranking may o�er an e
onomi
 ben-e�t - for example, one study of the eBay reputationsystem found that buyers are willing to pay a pre-mium of 8% for buying from sellers with high rep-utation [11℄. Websites are likely to gain signi�
antweb traÆ
 from a high ranking in relevant keywordsear
hes, and there are online 
ompanies whi
h helpsites improve their sear
h engine rankings.PageRank is 
urrently one of the most widely usedreputation systems. It is applied in peer-to-peer net-works in the EigenTrust algorithm [7℄, and in websear
h, as the foundation for the Google sear
h al-gorithm [9℄. Although PageRank has proven to be afairly e�e
tive ranking system, it is easily manipula-ble by a variety of strategies, su
h as 
ollusion or thesybil atta
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We fo
us primarily on the sybil atta
k, des
ribedby Dou
eur [4℄. In this atta
k, a single user 
reatesseveral fake users - 
alled sybils - who are able tolink to (or perform false transa
tions with) ea
h otherand the original user. For example, in the web, auser 
an 
reate new webpages and manipulate the linkstru
ture between them. In many online settings, newidentities are 
heap to 
reate, and it may be diÆ
ultto distinguish between sybils and real users. In the
ase of PageRank, users have already been observedperforming sybil-like strategies, su
h as forming linkfarms [5℄.It is easy to see that PageRank is vulnerable tosybil atta
ks. However, as we showed in earlier work,almost all pra
ti
al reputation systems are vulner-able to sybil atta
ks [3℄. It may be unrealisti
 torestri
t one's attention only to sybilproof reputationsystems, and reputation systems may vary widely intheir exploitability. For example, the indegree rep-utation fun
tion (where a user's reputation value isjust his indegree) is easily exploitable - a user mayin
rease his indegree to any desired value by 
reat-ing sybils. On the other hand, a reputation fun
tionbased on maximum 
ow is not sybilproof with respe
tto rank, but is more diÆ
ult to manipulate. Thus, itbe
omes important to gauge the degree of vulnerabil-ity of di�erent reputation systems. In order to sys-temati
ally 
ompare PageRank to other reputationsystems, we develop a method of estimating the po-tential PageRank rank and value improvement of anode in a web-like graph.In this paper, we begin this resear
h program witha formal and experimental analysis of the vulnerabil-ity of PageRank to sybil atta
ks. We provide analyti
estimates of this vulnerability, whi
h only depend onthe overall PageRank distribution in the graph andthen 
he
k the tightness of our analysis on empiri-
al web graph data. We �nd a very 
lose agreementand are led to believe that our estimates 
an be ap-plied to estimate the vulnerability of a wide range ofreputation graphs, dire
tly from the distribution ofPageRanks, obviating the need for large s
ale simula-tions.1



2 Related WorkOur work is related to [12℄ whi
h 
onsiders the ef-fe
t of 
ollusion on PageRank. Collusion is a strat-egy where users mutually agree to alter their outlinkstru
ture in order to improve their reputations. Col-lusive strategies and sybil strategies di�er in at leasttwo 
riti
al ways. First, a sybil 
reator 
an gain rep-utation at the expense of his sybils, while 
olludersare unlikely to 
ooperate unless both 
an raise theirreputations. Se
ond, sybil strategies are likely to beless 
onstrained in size - a user 
an often easily 
re-ate a large sybil group, while it may be more diÆ
ultto �nd an equal number of users to form a 
olludinggroup.Other related work in
ludes Gyongyi and Gar
ia-Molina who give a fairly exhaustive list of strate-gies to falsely boost reputation on the web [5℄. ThePageRank algorithm itself has generated a lot of inter-est and study. Bian
hini, Gori, and S
arselli 
onsiderthe total PageRank within a 
ommunity of nodes, andgive methods for a 
ommunity to boost its total rep-utation [2℄. A survey paper by Langville and Meyergives a general overview of the PageRank algorithm,and dis
usses many issues in
luding PageRank stabil-ity and eÆ
ient 
omputation [8℄.3 PreliminariesGiven a set of users V , we represent the setting as adire
ted graph G = (V;E) . The edges E representdire
t trust between users. For example, in the web,an edge (i; j) 2 E may represent a hyperlink from sitei to site j. Let n = jV j. Let d(i) be the outdegreeof the node i 2 V . We require that every node haspositive outdegree. Sin
e this isn't always the 
asefor real world graphs, we will insert a self-loop for allnodes with outdegree 0. Aside from these nodes, wewill assume that no other nodes have self-loops.3.1 PageRankThe PageRank values on a network graph G are givenby the stationary probabilities of the following ran-dom walk on G: with probability 1� �, a walker at anode i walks along an outgoing edge of i, 
hoosing theedge uniformly with probability 1d(i) , and with proba-bility �, jumps to a node 
hosen uniformly at random.Let v be the ve
tor of stationary probabilities - vi isthe stationary probability of the node i. The resultingPageRank ranking is given by the order of the valuesof v, sorted from highest to lowest (note that a highervalue vi 
orresponds to a lower numbered rank). For


onvenien
e, we will typi
ally not talk about the sta-tionary ve
tor of probabilities v, but will instead use� = nv. Clearly, � yields the same ranking as v. Fora node i, we will refer to �i as its PageRank value andits order on a highest to lowest list sorting the �j 's asits rank.Given G, we 
an 
onstru
t the adja
en
y matrixof G, A, Aij = 1 if (i; j) 2 E, and 0 otherwise. LetM(G) be the matrix of G with M(G)ij = Ajid(j) .Note that � is the prin
ipal eigenve
tor (with eigen-value 1) of the matrix (1� �)M(G) + �n�!1 �!1 T , where�!1 is the ve
tor of all ones. That is, � satis�es thefollowing matrix equation:(1� �)M(G)� + ��!1 = �We may sometimes �nd it 
onvenient to expressthe above as a s
alar equation: for a node i 2 V ,�i = (1� �)Xj!i �jd(j) + �;where j ! i to denotes (j; i) 2 E (i.e. j points toi). We 
an also 
onsider the iterative version of theabove equations, whi
h is justi�ed in [8℄.�0j = 1;8j;�ti = (1� �)Xj!i �t�1jd(j) + �3.2 Sybil StrategiesIn a sybil strategy, a node 
reates k sybils, and manip-ulates his own outlinks and those of his sybils. Moreformally,De�nition 1 Given a graph G = (V;E) and a nodei 2 V , a sybil strategy for the node i, is a newgraph G0 = (V 0; E0), su
h that V 0 = V [ S, whereS = fs1; : : : ; skg is a set of sybils (disjoint from theoriginal node set) and E0 is su
h that for all j 2 V; j 6=i, for all x 2 V , (j; x) 2 E , (j; x) 2 E0.A sybil 
olle
tive is the node set S [ fig (i andits sybils). Let ri be the rank of i in G, �i be thePageRank value of i in G. Let �i be the new PageRankvalue for i in G0 and r0i be the new rank. Then astrategy is su

essful for i with respe
t to value if�i > �i. It is su

essful with respe
t to rank if r0i < ri.We say that a reputation fun
tion is value (orrank) sybilproof if for all graphs G, no node has a su
-
essful sybil strategy with respe
t to value (or rank).It is straightforward to 
ome up with an exam-ple where a node 
an in
rease its PageRank through2




reating sybils. In [3℄, we showed that no nontrivialsymmetri
 reputation system (i.e. one that is invari-ant under a relabelling of the nodes) 
an be sybil-proof. The version of PageRank that we des
ribed inthe previous se
tion is 
learly symmetri
, so there isa network where a node 
ould bene�t from 
reatingsybils. Further, by this result, we know that adjust-ing some of the parameters of PageRank (su
h as thevalue of �) in a nontrivial way while maintaining sym-metry 
annot yield a sybilproof me
hanism. However,it is easy to show that even an asymmetri
 version ofPageRank (su
h as the version used in EigenTrust)may be manipulated with sybils.Note that a sybil 
reator may 
hoose any 
on�g-uration of edges within the sybil 
olle
tive. However,for the purposes of this paper, we fo
us on one parti
-ular sybil strategy. In this strategy, a node i removeshis outlinks, 
reates k sybils, and links to ea
h of hissybils. The sybils in turn link only to the sybil 
reatori. Figure 4 (in the appendix) depi
ts a node applyingthis strategy with 3 sybils.Bian
hini et. al. show that this 
on�guration 
on-
entrates the maximum amount of reputation on thesybil 
reator [2℄. Intuitively, any random walk insidethe sybil 
olle
tive must hit i on every other step.Further, removing any links from the 
olle
tive tonodes outside of the 
olle
tive improves their overallPageRank - a random walk whi
h enters the 
olle
tivemust remain there until a random jump.4 AnalysisOur main results are analyti
 bounds for the valuein
rease upon 
reating sybils whi
h are presented be-low. We then 
ompare these bounds with empiri
aldata.4.1 Value In
reaseWe give the following upper and lower bounds forvalue in
rease:Theorem 2 Let � be the old PageRank value ve
tor,and � be the new PageRank ve
tor when node i 
reatesk sybils by the above strategy, keeping all other nodes�xed. Then, if i has no self-loop in G, we have thefollowing bounds:�i + k 1� �2� � � �i � �i + �(1� �)k�(2� �)Sin
e we typi
ally talk about the ratio between �and �, we give the 
orresponding bounds for the value

in
ation ratio �i=�i:1 +�1� �2� �� k�i � �i�i � 1�(2� �) +�1� �2� �� k�iA proof of this theorem is in
luded in the ap-pendix.These bounds allow us understand how the valuein
rease 
hanges as we in
rease the number of sybilsor vary �. Further, for given values of � and �, we
an estimate the number of sybils needed to in
reasea node's reputation by some given amount.In
reasing k in
reases both the upper and lowerbounds, and appears to yield larger in
reases in thevalue in
ation ratio when �i is small. For example, for� = 0:15, we have 1 + 0:46( k�i ) � �i�i � 3:6+ 0:46( k�i ),meaning that for a node with value �i equal to themean value 1, doubling one's value requires between1 and 3 sybils. For a node with the median value,whi
h is � 0:3 in our data sample, it requires only 1sybil.The above bounds are tight. The upper bound isattained for nodes i that are 
ontained in no 
y
les.One 
an show (using similar te
hniques as in the proofof the theorem), that in this 
ase, the reputation ofi's re
ommenders (those nodes j with j ! i) are un-
hanged when i removes its outlinks. With a simple
omputation (or by following the proof of the abovetheorem), the equality follows.The lower bound is attained for subgraphs in a\petal" 
on�guration, where the node i points only tonodes who point only ba
k at i (as in the sybil 
on�g-uration). This 
on�guration attains the lower boundbe
ause i's re
ommenders were previously \sybil-like",in that they attained most of their reputation fromi and returned as mu
h reputation as possible to i.On
e i removes its outlinks, the value of the links(j; i) to i be
ome very small.However, most nodes may not lie in either of theextremes des
ribed above. Indeed, it is reasonableto expe
t (due to the observed high 
lustering in theweb [1℄) that some nodes lie on short 
y
les, leadingto 
on�gurations similar to the \petal". At the sametime, many of the edges out of i are likely not part ofshort 
y
les, suggesting 
on�gurations as in the upperbound.4.1.1 Data for k = 1In this se
tion and the ones that follow we use adataset from a web
rawl on the stanford.edu domain,available at [6℄. The total number of nodes is n =281903. We prepro
ess the graph to insert self-loopsfor ea
h node with outdegree 0, to guarantee that the3
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Figure 1: Old PageRank value (x axis) versus newvalue/old value ratio for the 
ase of 1 sybil, jumpparameter � = 0:15. The lines are given by the theo-reti
al upper and lower bounds.matrix M(G) of the graph (de�ned above) is indeedsto
hasti
. In the �rst experiment, we sele
t 10000nodes uniformly at random from the graph, and forea
h node sele
ted, we 
reate a single sybil for thatnode under the above sybil strategy, keeping all othernodes �xed. We set the jump parameter � to 0:15.In Figure 1, we plot the old PageRank value �i ver-sus the ratio �i�i . For the sake of visual 
larity, we 
uto� the graph at �i = 3, whi
h still in
ludes the vastmajority of the nodes (� 97%). Not only are nodesable to a
hieve an average linear fa
tor in
rease of4:7, the upper and lower bounds of the data appear tomat
h 
losely with the 
omputed bounds. For largervalues of �i, we observe that both the upper and lowerbounds appear to be tight, and the data points areroughly evenly distributed between the bounds. Forsmaller values, the upper bound appears tight, whilethe lower bound is not. One possible explanation forthis dis
repan
y is that the lower bound (as dis
ussedin the previous se
tion) is attained when the originalnode is in a sybil-like stru
ture, where the node is 
on-tained nearly ex
lusively in small 
y
les (i.e. manypaths out of the node are small 
y
les). However,being in su
h a stru
ture may also suggest a higherreputation value than a typi
al node, so nodes thatnearly attain the lower bound may tend also to have

higher reputation. In fa
t, the 
entral node of a petalwill have a PageRank value �i � 1, and we note thatthe lower bound appears tight in this regime in ourplot.Further, we 
an note that aside from the devia-tion from the lower bound for lower reputation nodes,the nodes appear fairly evenly spread between thebounds, suggesting, as we stated earlier, that mostnodes are an \average" between the extremes of be-ing in no 
y
les and being in many short 
y
les.4.1.2 Data for k = 1; 2; 5; 10For this experiment, we sele
t 1000 nodes uniformlyat random from the graph. For ea
h node sele
ted,we set up a sybil strategy for that node with k =1; 2; 5; 10. We set the jump parameter to � = 0:15.We plot the ratio of new PageRank to old PageRankin Figure 5, in the appendix. The data points ap-pear roughly of the same shape as in the k = 1 
ase,and the boundaries of the data points agree with our
omputed bounds. Further, as in our bounds, we 
anobserve that lower value nodes tend to gain larger in-
reases with k and higher value nodes tend to havemore modest in
reases.4.2 Rank In
reaseIn many settings (su
h as web page ranking) one 
aresonly about the ranking implied by the PageRank val-ues and not the a
tual values themselves. Given theformulas from Theorem 2, and some knowledge aboutthe PageRank distribution, we may attempt to givea rough estimate of the rank in
rease.In this se
tion we evaluate the rank in
reases fora large 
lass of graphs based on an analysis of a largeweb graph. Pandurangan et.al. estimate the proba-bility density of PageRank in a large web subgraph,and �nd a density of � 
x2:1 , where 
 is a 
onstant[10℄.If we assume that the PageRank density is F (x) =
x2:1 , then Pr(�i � x) = dx1:1 for some 
onstant d. Fora node i, if its PageRank value is �i, a rough estimateof its rank would be nPr(�i � x) = ndx1:1 . We foundthat our dataset mat
hes the rough estimates abovefairly 
losely - for nodes with rank < 40000, the valueto rank fun
tion is � 
1v�1:1, and for nodes with rank> 50000, the value to rank fun
tion is � 
2v�0:86.Let ri be the old rank of i and r0i be the newrank. Let r(x) = 
x�1:1 be the PageRank value torank fun
tion (for some 
onstant 
). Then, the newrank to old rank ratio r0iri � r(�i)r(�i) = (�i�i )1:1, using the4



PageRank value ratio bounds, satis�es the bounds 11�(2��) + ( 1��2�� ) k�i !1:1 � ��i�i�1:1 �  11 + ( 1��2�� ) k�i !1:1. For � = 0:15, and k = 1, the above bounds are( �i3:6�i+0:46 )1:1 � (�i�i )1:l � ( �i�i+0:46 )1:1. For large �i,we expe
t a lower bound in the rank in
rease of 0:28and an upper bound of � 1. For nodes with small�i, say �i < 1, whi
h a

ounts for more than 80%of the nodes in our graph, we have a lower boundof approximately 0:13, and an upper bound of 0:66.From our analysis of the bounds for the value ratioin the previous se
tion, we expe
t the lower bound tobe mu
h more a

urate than the upper bound in thesmall �i regime.Given these tools, we 
an estimate the number ofsybils needed for the median node (with rank n2 ) torise to the top k, for any k. Take the rank fun
tionr(v) to be r(v) = 
v1:1 for a 
onstant 
. Let r1 = n2be the rank of the median node. r2 = k. We 
anestimate the 
orresponding values for a graph of sizen: v1 = r�1(r1) = ( 2
n )1=1:1, v2 = r�1(r2) = ( 
k )1=1:1.The value ratio v2v1 = ( n2k ):91. Plugging in the valueratio from the theorem inequalities (for � = 0:15),we have k � �i:46 ( n2k ):91. Therefore, for a graph with� 300000 nodes, and median �i = 0:3, it requires� 500 sybils to rise to the top 100. In a graph with nnodes and median value �i < 1, it would require lessthan � 76 sybils for the median node to rise to thetop 1% of nodes.4.2.1 Data for k = 1The experimental setup is identi
al to the one de-s
ribed in se
tion 3.1.1. We plot the old rank ver-sus the new rank in Figure 3. We �nd that all butthe very highest or very lowest ranked nodes are ableto improve (or de
rease) in rank by a fa
tor of ap-proximately 0:14 times - approximately a 6-fold im-provement. This value agrees well with our 
omputedlower bound (for small �) of 0:13. Further, we 
an ob-serve that for nodes with original rank > 50000 (thesenodes have �i > 1), the improvement in rank is mu
hmore spread out, and less signi�
ant - whi
h may beexplained by the fa
t that the PageRank value ratiosare more spread out, and attain the upper and lowerbounds in the large �i regime.4.2.2 Data for k = 1; 2; 5; 10The experimental setup here is identi
al to the onedes
ribed in se
tion 3.1.2. We plot the old rank versus
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Figure 2: Old rank (x axis) versus new rank for the
ase k = 1; � = 0:15the new rank in Figure 6 (in the appendix) for k =1; 2; 5; 10.We see a mu
h more dramati
 improvement inrank than value resulting from in
reasing the numberof sybils. We �nd average ratios of old rank to newrank, rir0i of 7:1 for k = 1, 16:4 for k = 2, 40 for k = 5,and 90:9 for k = 10. As expe
ted, as in the value 
aseand suggested by our bounds, sybil 
reation tends tobe more e�e
tive for higher ranked nodes.4.3 Varying � and sybil strategiesOne way to vary the PageRank algorithm is to alterthe parameter �, whi
h determines the probability ofmaking a random jump at ea
h step of the randomwalk. Our value bounds show that as � in
reases,the potential in
rease in value de
lines. Intuitively,if � is high, the e�e
t of 
reating sybils may be re-du
ed, sin
e a random walk does not remain trappedin sybil 
olle
tives for a long time. By repeating theprevious experiments for various values of �, we foundthat the value in
rease does de
line predi
tably as �in
reases. However, we found that nodes were stillable to a
hieve 
omparable rank improvements as wein
reased �.We also 
onsidered two di�erent sybil strategies.In one, users do not remove their outlinks to non-sybil nodes. In the other, users move their outlinks5



to a sybil node. In both of these 
ases, we observedan improvement in PageRank value and rank, thoughslightly less than in the original strategy.5 Future WorkOur analysis shows that PageRank is extremely ma-nipulable, even with simple strategies using a smallnumber of sybils. We provided tight analyti
 approx-imations that 
an be used to estimate the manipula-bility of Pagerank in a variety of settings.One issue that we haven't 
onsidered is the 
or-relations between web pages on similar topi
s. Forexample, typi
ally - and parti
ularly in the web set-ting - a node is 
ompeting with a subset of nodesrelating to the same topi
 (e.g. an ele
troni
s retailerprobably doesn't 
are about ranking above a politi-
al weblog). Therefore, one potential further area ofstudy is an analysis of how mu
h the improvementsobserved above allow a typi
al node to beat its mostlikely 
ompetitors. Further the subset of 
ompetitorsmay look very di�erent from a uniformly random sub-set of the web. For example, a subset of nodes all re-lating to the same topi
 may be more 
lustered thana random subset of the web. Is sybil 
reation moree�e
tive or less in this setting?In this paper, we fo
us entirely on the PageRankalgorithm, and �nd that it is easily manipulable. How-ever, there are many other potential reputation sys-tems, and we do not expe
t all of them to be as eas-ily manipulable with sybils. Similar studies on themanipulability of other reputation systems may al-low dire
t 
omparison of the manipulability of variousreputation systems.In parti
ular, one would expe
t that there wouldbe a trade o� between the quality of the ranking sys-tem its manipulability. For example, as shown in[3℄, the \shortest path" ranking system is immuneto sybil atta
ks; however, it is most likely less e�e
-tive at ranking than PageRank. The development ofrobust and eÆ
ient ranking me
hanisms is an impor-tant open problem.Referen
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Figure 3: On the left: a single node with both outlinks and inlinks from the rest of the graph (
loud). Onthe right: the node removed its outlink, and 
reated 3 sybils, arranged in the \petal" formation.6 AppendixIn this se
tion, we wish to prove the following theo-rem:Theorem 3 Let � be the old PageRank value ve
tor,and � be the new PageRank ve
tor when node i 
reatesk sybils by strategy A, keeping all other nodes �xed.Then, if d(i) > 0, we have the following bounds:�i � �i + �(1� �)k�(2� �)�i � �i + k 1� �2� �Let G = (V;E), be a dire
ted graph with V =f1; : : : ; ng. For j 2 V , let d(j) be the outdegree ofthe node j. We de�ne M(G) be the n � n matrixsu
h that M(G)ij = � 1d(j) if (i; j) 2 E0 otherwiseDe�ne ~M; v;w su
h thatM(G) = � ~M wvT 0 �WLOG let i = n. Let G0 = (V;E0) be the graphwhere n removes its outlinks and 
reates a self loop.Let G00 be the graph where n has k sybils as in strat-egy A.Let � be the original PageRank ve
tor for G, withk�k1 = n, and let �0 be the PageRank ve
tor forG0, with k�0k1 = n. Let � be the n + k ve
tor su
hthat �x = �0x for all x < n, �n = 1��2��k + 12���0n and

�x = 12�� + 1��2�� �0nk for all x > n. By 
onsidering thematri
es M(G0);M(G00) in blo
k form as above, aneasy 
omputation shows that (1��)M(G00)�+��!1 = �.Therefore, � is the unique PageRank ve
tor of G00(normalized to n+ k).It suÆ
es then to show that (2� �)�n � �0n � �n�Lemma 4 �0j � �j for all j < n.Proof: Note that the outdegrees of nodes j < nin G0 are equal to their outdegrees in G, so we 
anwrite the outdegree of x for x < n as d(x). Re-
all the iterative version of PageRank: (�0j)t = (1 ��)Px!j (�0x)t�1d(x) + �, for t � 1, and (�0j)0 = 1 for allj. Sin
e (�0j)t ! �0j as t ! 1, it suÆ
es to showthat (�0j)t � �tj for all t, and for all j < n. This istrivially true for t = 0. By indu
tion, assume that(�0x)t�1 � �t�1x for all x < n. Consider some nodej < n.(�0j)t = (1� �) Xx:(x;j)2E0 (�0x)t�1d(x) + �� (1� �) Xx:(x;j)2E;x<n (�x)t�1d(x) + �� �tjThe �rst inequality follows from indu
tion and thefa
t that n doesn't point to any j < n in G0.Plugging in �j for ea
h �0j in the PageRank for-mula for �n gives the upper bound. For the lowerbound, we have the following lemma:Lemma 5 �0n � (2� �)�n.7



Proof: Note that we require the assumption thatd(n) > 0 for this lemma. Consider a node i 6= n. Inthe graph G0, we have�0i = (1� �) Xj!i;j 6=n �0jd(j) + �;by the fa
t that n points to no nodes other than itselfin G0. Applying the previous lemma, we have�0i � (1� �) Xj!i;j 6=n �jd(j) + �:Note that �i = (1��)Pj!i;j 6=i �jd(j)+(1��)Æni �nd(n)+�,where Æni = 1 if (n; i) 2 E, and 0 otherwise. There-fore, we have �0i � �i � (1� �)Æni �nd(n) :We 
an sum the inequality over all i 6= n:Xi6=n �0i �Xi6=n �i � (1� �)�n;where we note that there are exa
tly d(n) nodes amongi 6= n with Æni = 1 (n had no self-loops in the originalgraph). Adding �i + �0i to both sides, we have�i +Xi2V �0i � �0i +Xi2V �i � (1� �)�n:Finally, by normalization, Pi2V �i = Pi2V �0i = n,so �i � �0i�(1��)�n. Rearranging, we get the desiredinequality: (2� �)�i � �0i

0 0.5 1 1.5 2
4

6

8

10

12

14

16

18

20

22

24

n
e
w

 P
R

 v
a
lu

e
/o

ld
 P

R
 v

a
lu

e

old PageRank value

k=1
3.6 + 1*(.46/x)
k=2
3.6 + 2*(.46/x)
k=5
3.6 + 5*(.46/x)
k=10
3.6 + 10*(.46/x)

Figure 4: Old PageRank value (x axis) versus oldvalue/new value ratio (y axis) for k = 1; 2; 5; 10. Thelines are the theoreti
al upper bounds for the variousvalues of k
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Figure 5: Old rank versus new rank for k = 1; 2; 5; 10,� = 0:158


