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Introduction

Many players know that the secret to winning the game of Nim (and other

“impartial” combinatorial games) is to write the sizes of the game’s piles in

base 2 and then add them together without carry. The proof of this well-

known procedure (described below) is both straightforward and convincing.

Nonetheless, the procedure still appears magical, as though a rabbit has been

pulled out of a hat. Astute students (and frustrated professors) often ask why

the winning strategy for such games involves base 2 and not some other base.

After all, the number of piles in Nim is completely arbitrary – it can be 3, 11,

or 500 – and there seems to be no inherent reason for the emergence of base 2.

Minimal insight is offered by most published proofs, which themselves tend

to either appear almost wizardly in nature (i.e., assume the base-2 method

and show that it miraculously solves the problem) or employ combinatorial

arguments that supply little abstract intuition (at least to the authors of this

article).

However, as we will explain in this article, the reason for a base-2 based
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Figure 1: The game of Nim. Players alternate removing (an arbitrary number

of) tokens from a pile (of a player’s choosing). The game ends when no tokens

remain, with the player who removed the last token the winner.

winning strategy in games like Nim follows directly from a well known result

about abelian groups together with a mirroring argument. This argument

also indicates why other bases do not naturally arise in these games, and

has been extended to understand other classes of games (see [11]). Based

on our own informal surveys (i.e., asking our colleagues), this argument does

not appear to be known by the general mathematical public and even to a

number of mathematicians who study combinatorial games!

The Game of Nim and Its Solution

The complete mathematical theory for the game of Nim (Figure 1) was pre-

sented by Charles Bouton [4] in 1901. This theory was extended to “impartial

games” by Sprague [12] and Grundy [8] and then by Guy [9].

Every position (i.e., configuration) in Nim may be characterized by a

vector of non-negative integers x = (x1, x2, . . . , xn), with xi denoting the

number of tokens in pile i, and n the total number of piles at the start of the

game. A legal move consists of choosing a pile i ∈ {0, 1, . . . , n} and reducing

its height xi to some new value x′i, where 0 ≤ x′i < xi. A player who has no

legal moves available loses the game. Note that this occurs when all xi = 0.

The well-known, but surprising, optimal strategy for Nim is based on

writing out all the xi’s in base 2, then adding them together without carry

2



(i.e., taking their bitwise XOR sum). For example, if the current position

in a three-pile game of Nim is x = (15, 5, 8), we write x1 = 15 = 11112,

x2 = 5 = 01012, x3 = 8 = 10002. Their binary sum without carry is

00102 = 2. This number, known as the “nim-value” of the position, provides

the key to defining a winning strategy: If the nim-value of the current position

is non-zero (as in the example), then a player can win by making a move so

that the resulting position has nim-value zero (it’s straightforward to check

that such a move is always possible.) Any move the opponent makes from this

(zero-value) position will necessarily return the other player to some non-zero

position. By iteratively following this procedure, a player starting at a non-

zero position will always remain at non-zero positions, while the opponent

is always forced into zero positions. Since the final (losing) position of the

game (i.e. where no tokens remain) has nim-value zero, one sees that this is

an optimal winning strategy. Simple!

However, the appearance of base 2 in the analysis can be quite surprising.

Nothing about the game of Nim itself (i.e., the game rules, the configuration

of the tokens, etc.) seems to give any obvious indication as to why binary

representations should play such a crucial role in the winning strategy.

Impartial Games and Sprague-Grundy Theory

The game of Nim is not alone in this regard. Nim is a member of a large

class of so-called impartial combinatorial games where base 2 plays a key

role in the optimal winning strategy for little obvious reason. Examples

of such impartial games include Kayles and Grundy’s game. This class of

games is distinguished by the fact that the set of allowed moves from any

given position is the same for both players (in contrast, games like chess or

checkers do not qualify as impartial since each player can only move his/her

own pieces.)

To see how base 2 emerges in this broader context of impartial games, we

begin by recalling a celebrated result by Sprague [12], Grundy [8] and Guy

[9], who showed that every position in an impartial game can be assigned a
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nim-value that renders it equivalent to a single Nim pile of that size. (We

note that while it may not be trivial to determine this assignment, such an

assignment does exist and can be computed.) We will not concern ourselves

here with how one explicitly computes the nim-value of a particular position

in an impartial game; instead we simply note that it can be done.

That said, we next consider the notion of a so-called disjunctive sum of

games. (While this idea may at first appear a bit contrived, its relevance will

become apparent shortly.) Imagine one has a whole collection of impartial

games G1, G2, ...GN (not necessarily all the same) all lined up in a row. Let’s

imagine playing a combined game (G) that involves all games in the collection

in the following manner: On his/her turn, a player selects one game in the

collection and makes a single legal move in that game. Play then switches

to the other player, who also selects a game and makes one move. Play

alternates between the two players in this fashion until eventually one player

is unable to make a legal move in any game, and thus loses. Formally, this

combined game G constitutes the disjunctive sum of the individual games,

and is denoted G = G1 + G2 + . . . + GN .

Here now is the interesting feature which lies at the heart of the Sprague-

Grundy theory and highlights the key role of base 2: Knowing the nim-values

of the positions in each individual game allows one to determine a winning

strategy for the disjunctive sum of games G, as follows. Look at the current

position in each game Gi in G and note its nim-value (gi). Then just re-

express each nim-value in base 2 and add them all together without carry

(just like we did with the Nim piles). The result (denoted g) is the nim-value

of this sum of the games. As in Nim, if the nim-value g is non-zero, then

a player can straightforwardly guarantee a win by always making moves to

new positions in G whose nim-values are zero. Thus, once again we observe

the appearance of base 2 (i.e., binary addition without carry) in the optimal

winning strategy, this time in the more general context of disjunctive sums

of impartial games.

As an aside, one might pause here to inquire about the relevance of the
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Figure 2: The game of Kayles.

notion of disjunctive sums of games – after all, how often does one actually

play a collection of impartial games simultaneously? The answer is that

disjunctive sums turn up more often than we might have guessed, since games

sometimes naturally decompose into sets of smaller games. We have already

seen one example of this, in fact, when we discussed Nim. One can think

of an n-pile game of Nim as really being nothing more than the disjunctive

sum of n individual single-pile Nim games. (This viewpoint turns out to be

remarkably useful, as we shall see shortly.)

As a second illustration, consider another well-known impartial game,

Kayles (Figure 2). In Kayles, N pins are lined up in a row, and players take

turns knocking them down; in a given turn a player can either knock down a

single pin or two adjacent pins (“adjacent” means side-by-side with no gaps

in between). The player whose turn it is when all pins have been knocked

down is the loser. How can we analyze such a game? Notice that as the

players make their moves, the standing pins become separated into clusters

(i.e., continuous sets of pins separated by gaps created by knocked-over pins).

We can think of each cluster as constituting an individual Kayles game in its

own right, and view the full game as the disjunctive sum of these individual

games. So if one knows the nim-value for each cluster individually, one simply

needs to do a base-2 addition without carry to determine the nim-value for

the sum of games, and hence one has an optimal strategy.

In summary, not only Nim, but all disjunctive sums of impartial games,

or impartial games that can be decomposed into a disjunctive sum, have nim-
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values that add as binary addition without carry. The question we would like

to address here is ”Why?”.

Abelian Groups, Mirroring, and the Emergence

of Base 2

The underlying reason for the emergence of base 2 in Nim and other impartial

games is surprising and it was the authors’ attempt to understand its origin

that led to this paper. The key insight comes from realizing that there is a

group structure underlying the Sprague-Grundy theory.

Before proceeding, think back for a moment to Bouton’s analysis of Nim:

one started with a set of individual piles (i.e., a disjunctive sum of games)

and then associated to each one a particular nim-value, along with an op-

eration (base-2 addition without carries) for adding these individual game

values together. This directly led to an optimal strategy: from any non-zero

position, always move your opponent to a zero-value position. With this in

mind, our goal now is to understand the origin of base 2 in such impartial

games. To begin, let’s suppose that we didn’t know about Bouton’s solution

of Nim or Sprague-Grundy theory, but wanted to find a simple way to com-

pute (disjunctive) sums of impartial games. So what we seek is a mapping

from G → F , where G is the set of all (finite) impartial games and F is a set

with a binary operation ⊕ for adding games together that will allow us to

compute an optimal strategy. (To stave off any possible confusion, however

remote, please note that our use of the term ”binary” here has nothing to do

with base 2; it merely signifies that the operator ⊕ takes two inputs.)

What are some of the properties that the binary operation ⊕ and set F

should have?

First, the operation ⊕ must clearly be abelian and associative, since the

order in which we add games in their disjunctive sum cannot matter (e.g.,

if we associate f1 ∈ F with the current position of game G1 and f2 ∈ F

with the current position of game G2, then the value we associate to the
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disjunctive sum of these two games can be expressed equivalently as either

f1 ⊕ f2 or f2 ⊕ f1).

Second, there must exist an additive identity element 0 ∈ F (satisfying

f ⊕ 0 = f for any f ∈ F ). This identity element 0 is associated with the

“null” game, i.e., a game in which no moves are possible (e.g., Nim with no

tokens left). This follows from the observation that if you play any game in

disjunctive sum with a null game, then it is equivalent to playing the game

by itself.

The third and most crucial insight derives from a so-called mirror strategy

argument, which will allow us to show that together F,⊕ forms a group, with

the special property that f ⊕ f = 0 for every f ∈ F , – i.e., every element is

its own inverse. This is the key to our analysis and leads directly to base 2.

The mirroring argument works as follows: First, suppose you have two

identical impartial games, each in the same (but arbitrary) starting position.

To each position we associate some f ∈ F (the same f for each since the

positions are identical). Now consider playing the disjunctive sum of these

two games. Whatever move the first player decides to make in one of the

games, let the second player make the identical move in the other game

(hence the name “mirroring”). Continuing in this way, the second player is

guaranteed to always have the last move in this sum of games, and hence

will win.

With this in mind, we now make the following critical observation: Play-

ing any game in g ∈ G in isolation is effectively equivalent to playing that

game in disjunctive sum with two identical copies of any other game in g′ ∈ G,

i.e., the outcome of the combined game g + g′ + g′ is the same as that of the

game g; the outcome is not affected by the copies. To see this, observe that if

a player has a winning strategy in game g, then she should continue to play

that strategy provided her opponent plays in g; if her opponent plays in one

of the copies of g′, then she should simply mirror that move in the other copy

of g′. In this manner she is guaranteed a victory. Alternatively, if it is her

opponent who has the winning strategy in g, then he should simply play that
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strategy in g and mirror his opponent’s moves in g′, thereby guaranteeing his

victory.

Thus we see that, given an arbitrary game, adding on two identical copies

of any other game has no effect on the outcome. This is precisely what we

saw for the null game – i.e., adding the null game to any game g had no

effect on that game’s outcome – which led us to associate the null game with

the additive identity element 0 ∈ F . Hence we similarly associate any two

identical copies of a game with the identity element, i.e., set f ⊕ f = 0 for

any f . (A nice correspondence can be made if we think back to the original

game of Nim: if you take any two equal size Nim piles and add their values

via binary addition without carry, you always obtain zero!)

From this, it immediately follows that F,⊕ constitute an abelian group

where every element is of order 2. If F were finite, then the remainder of

our argument would follow directly from the fundamental theorem of finitely

generated abelian groups, which states that G must then be a direct sum of

additive groups of integers modulo k; however, since this group must be of

order 2, all the k’s must be 2 (since if there were a k > 2 then there would be

an element of that order, and not of order 2.) When F is infinite, then the

conclusion is still guaranteed since any group of bounded order (i.e., where

there is a bound on the orders of all group elements) is a direct sum of cyclic

groups [10].

Recall that the additive group of integers mod 2 is simply 1-bit binary

addition without carry, so the above characterization can be interpreted as

F being the binary sum mod 2 without carry of integers. Thus, we get the

basic structure of the Sprague-Grundy theory from a decomposition theorem

about groups and the mystery of the base 2 is revealed.

In summary, base 2 arises in optimal strategies for impartial

games because anytime you have a disjunctive sum of games it

gives rise to a group structure whose elements are all forced to be

of order 2 by mirroring!
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Other Considerations

Representations

Note that while we showed that the sums of impartial groups must be based

on base-2 addition without carry, we did not show that the mapping from the

set of games G to F must agree with traditional Nim-values. This is because

this is not necessary.

For example, it is easy to see that the standard mapping from Nim piles

to base 2 numbers can be permuted, e.g., there is no reason one can’t swap

the 2 place and the 8 place in binary, writing 9 as 0011 instead of 1001.

However, one can actually do more.

For example, take the first 2 bits of the binary expansion and represent 0

by 00, 1 by 01, 2 by 11 and 3 by 10. We can extend this to the full mapping

m by only changing these 2 bits in the standard Nim mapping.

We note that there are many other representations and leave it as an

exercise to the reader to enumerate them.

Base 3 and Semigroups

One common question people have after learning the base-2 based strategy

for Nim is whether any games use base 3 instead. In fact, there are a few

known games which depend on base 3. However, these games seem to have

base 3 “built in.” For example in the game of Turnips (or Ternups) [3] a

player turns over 3 coins at a time and the Nim values can be computed

from base 3 expansions. In a similar vein, one can play a modified version

of Nim wherein players can only remove at most two tokens from a pile at

each turn. In this game, one computes the nim-value of a single pile using

base 3, but combines piles using standard base 2 nim addition. (Note that if

we modify nim so that a player can take at most m tokens then we use base

m + 1 to compute the nim-values of a single pile.)

In more general settings, our analysis suggests that such games are the
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exceptions and in order to get base 3 we need a structure in which the “sum”

of three identical games is always zero (analogous to our earlier finding that

f⊕f = 0). Such a structure does not appear to arise naturally in the present

context.

However, one possibility along these lines relates to so-called misère games,

in which the player who makes the last move loses, rather than wins. The

general theory of sums of misère games is somewhat problematic and has

resisted analysis for many years. Recently, however, Plambeck [11] has made

significant progress by analyzing the structure of the semigroup which arises.

Note that the sum of impartial misère games does not form a group as in-

verses need not exist. (In this case mirror strategies lose.)

Recommended Reading

For those interested in learning more about the mathematics of combinato-

rial game we recommend the two classics, which are each challenging in their

own ways: Berlekamp, Conway and Guy [3] which is a rough and tumble

encyclopedic joyride, and Conway [5] which is an exemplar of elegant math-

ematical analysis. For a gentler introduction see the excellent new textbook

by Albert, Nowakalski and Wolfe [2]. The website [1] is devoted to algebraic

approaches to misère games.

However, there is much in combinatorial game theory beyond the well

behaved theory we have sketched. Complex computational issues are very

important in many games. A nice review of these is given by Fraenkel in [6].

The authors of this article must admit a predilection for games which are

computationally hard to solve and defy solutions based on the traditional

mathematical theory discussed in this paper. A physics-based approach that

we have been exploring is discussed in [7].
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