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Abstract. We define a fundamental domain for a linear programming
relaxation of a combinatorial integer program which is symmetric under
a group action. We then describe a straightforward way to construct
fundamental domains defined by the maximization of a linear function.
The computation of this fundamental domain is at worst polynomial
in the size of the group; however, for the symmetric group, which has
exponential size, we show how to compute separation in polynomial time
(in the size of the integer program).
Fundamental domains are a simple and flexible approach to reducing
the computation difficulties that often arise in integer programs with
symmetries. Their construction is closely related to the constructions
of orbitopes (by Kaibel and Pfetsch), but more general and easier to
analyze, although the computations required may be somewhat more
complex.

1 Introduction

Combinatorial integer programs with symmetries arise in many standard prob-
lem formulations. Unfortunately, these symmetries often make the problems dif-
ficult to solve with integer programming algorithms. They cause difficulties with
branching, since each branch will have many symmetric copies, and with lin-
ear programming relaxations, which become much less informative due to the
symmetry of the feasible region.

For example, in a simple bin packing problem with multiple bins of the same
size one often uses the variable xij to represent whether item i is in bin j.
However, if bins j and k are the same size then any solution x is equivalent
to the solution x′ when x′ is derived from x by exchanging the two columns,
j and k. One way of resolving these problems is to restrict the search space
to eliminate the additional equivalent copies of a solution. This can be done
either by adding additional constraints to the integer program [2, 1, 3, 8] or by
modifying the branch and bound or branch and cut algorithms [6, 7].

In this paper, we consider the problem of removing the multiple symmetri-
cally equivalent solutions. We present a new approach which is simple, flexible
and extremely general. In addition the analysis of our methods appears to much
simpler than most existing approaches.



Our approach consists of constructing a polytope for a “minimal fundamental
domain”, which is a subset of the feasible region and contains only a single
“representative” from each equivalence class of symmetrically equivalent extreme
points.

Our work was motivated by Kaibel and Pfetch’s [5] recent study of orbitopes.
In that paper they considered a face of a fundamental domain generated by a
lexicographic ordering. They provided a complete description for orbitopes for
the cyclic and symmetric groups under packing and partitioning constraints.

In this paper, we consider a different approach to this problem: finding fun-
damental domains defined by maximizing a linear function. This leads to simple
constructions and straightforward proofs. It also allows these techniques to be
extended to more complex settings and provides flexibility in implementation.

For example, consider a bin packing problem with multiple bins. Previous
methods have considered the case when all bins are identical, in which the prob-
lem is invariant under the full symmetric group; however, our methods apply to
arbitrary sets of identical bins, e.g., three bins of size 10, six bins of size 14 and
one bin of size 22. In addition, our methods extend directly to covering problems
without the combinatorial complexities that arise in the related orbitopes.

Our methods also apply to other groups, such as cyclic groups, which arise in
transportation scheduling problems [10] or even problems for which several differ-
ent group actions are combined. For example, consider a periodic bus scheduling
problem with multiple bus sizes. This problem is invariant under the exchange of
equal capacity buses (symmetric groups) and under time transformations (cyclic
group).

In fact, our methods apply straightforwardly to any linear group action acting
on mixed-integer programs, e.g., symmetries can involve continuous variables.

In this paper, we present the general theory of fundamental domains. For
notational simplicity we restrict to binary linear programs, but note that all our
methods extend easily to general mixed-integer programs.

In the following section we provide the basic construction and then in Sec-
tion 3 discuss the separation problem for the cyclic and symmetric groups. Sec-
tion 4 compares fundamental domains to orbitopes, Section 5 discusses combi-
nations of groups and Section 6 considers the linear optimization criterion used
for generating the fundamental domains. We conclude in Section 7.

2 Group Actions and Fundamental Domains

Let G be a finite group and given a set X ⊂ <n consider a group action φg :
X → X. A group action must satisfy φg◦g′ = φg ◦ φg′ for all g, g′ ∈ G. Given
x ∈ X define the orbit of x, orb(x) to be the set orb(x) = {φg(x) | ∀g ∈ G}. A
(generalized) fundamental domain of X is a subset F ⊂ X such that its orbit
orb(F ) = X, where orb(F ) =

⋃
y∈F orb(y). A fundamental domain is minimal if

in addition, there is no closed subset of F that is also a fundamental domain.
To specialize to polytopes, for simplicity assume that X ⊆ [0, 1]n. Let Ext(X)

be the extreme points of X, which are assumed to be integral. In addition, we



will require that for all g ∈ G, the group action is an affine transformation of
X. Thus, for each g ∈ G we can assume that φg = Ag + bg where Ag is an
nxn matrix and bg is an n-vector. (Note that our approach easily generalizes to
arbitrary polytopes corresponding to general mixed-integer programs.)

We first note a basic fact about affine group actions of finite groups.

Lemma 1. Let G be a finite group and φ : G×X → X be an affine group action
of G. Then ∀g ∈ G the determinant of Ag has the absolute value of 1.

Proof: Since φg−1 = (φg)−1 the action φg is invertible so Ag must have nonzero
determinant. In addition, since G is finite and for all g ∈ G, the composition of
φg with itself k times, (φg)k = φgk = φg′ , for some g′ ∈ G. Now the determinant
of φg′ must satisfy det(φg′) = det(φg)k, so unless |det(φg)| = 1, (φg)k will be
different for all k, contradicting the assumption that G is finite. ut

Given an “ordering vector” c ∈ <n, we define the fundamental domain of X,
Fc, with respect to G by

Fc = {x ∈ X | ctx ≥ ctφgx ∀g ∈ G}

Lemma 2. For any ordering vector c, the fundamental domain, Fc is a polytope.

Proof: The fundamental domain is defined by a finite set of affine inequalities.
ut

For example, consider the case with X = [0, 1]2 where G is the additive group
Z2 with elements {0, 1}, and 0 + 0 = 0, 0 + 1 = 1, and 1 + 1 = 0. Define the
action of this group by setting φ0 to be the identity and φ1 being the exchange
operator, φ1(x1, x2) = (x2, x1). Let c = (2, 1). Then

Fc = {x ∈ X | 2x1 + x2 ≥ x1 + 2x2},

which implies that
Fc = {x ∈ X | x1 ≥ x2}.

Thus, Fc is the convex hull of the extreme points (0, 0), (1, 1) and (1, 0). Different
choices of c can lead to different fundamental domains. For example if c = (1, 2)
then the fundamental domain now includes (0, 1) instead of (1, 0).

First we note that a fundamental domain always contains a ”representative”
for each extreme point of X.

Theorem 1. Let x ∈ Ext(X). For any ordering vector c, there exists a g ∈ G
such that φgx ∈ Ext(Fc).

Proof: This follows immediately from the definition of Fc since for each x ∈
Ext(X) must have at least one largest element in it’s orbit, ctφgx ∀g ∈ G, since
|G| is finite. ut



Note that, unlike orbitopes [5], there can exist extreme points of Fc which are
not integral. For example, consider the case with X = [0, 1]2 and G = Z2, where
φ1 inverts the first element of x, φ1 = (x1, x2) = (1 − x1, x2). Let c = (2, 1).
Then

Fc = {x ∈ X | 2x1 + x2 ≥ 2(1− x1) + x2},
which implies that

Fc = {x ∈ X | x1 ≥ 1/2}
which has (1/2, 0) as an extreme point.

Note that a fundamental domain generated in this way need not be minimal.
For example, when c = 0 we get Fc = X. However, even if c is nontrivial, the
fundamental domain need not be minimal.

First we show that there is a universal ordering vector ĉ which generates
minimal fundamental domains.

Theorem 2. Let ĉ = (2n−1, 2n−2, . . . , 2, 1) be the “universal ordering vector”.
Then Fĉ will be minimal.

Proof: First note that Fĉ contains a unique element of any orbit of an extreme
point. This follows because ĉ induces a lexicographic order on extreme points.

Next, we note that Fĉ must be full dimensional. i.e., the same dimensionality
as X. This is because Orb(Fĉ) = X and each Orb(x) contains a finite number
of points.

Suppose that for some point x ∈ Fĉ there exists some g ∈ G such that
ĉtφgx = ĉtx and φgx 6= x. However, this implies that the constraint from φg is
tight, so unless the constraint is trivial (0 ≥ 0) x will not be an interior point.

Since x ∈ X and X is convex, we can write x =
∑n+1

j=1 αjw
j where α ≥ 0,∑n+1

j=1 αj = 1 and wj are all extreme points of x. Since φgx 6= x and φgx =∑n+1
j=1 αjφgw

j , there exists at least one j such that wj 6= φgw
j , and call this

extreme point v.
Since ĉty 6= ĉty′ for any pair of extreme point y 6= y′ this implies that

ĉtv 6= ĉtφgv which implies that the constraint is not trivial, since φg is affine. ut

Note that the universal ordering vector ĉ requires Ω(n) bits per element, on
average. As we show in in Section 6 the need for a large number of bits seems
common and provides a potential drawback to this approach.

3 Separation for the Cyclic and Symmetric Groups

Two of the most common groups arising is practice are the cyclic and symmetric
groups. The cyclic groups of order k can be represented simply the additive
group of integers modulo k and are denoted by Zk. These are generated by a
single element 1 ∈ Zk. The most natural action can be most easily described by
viewing x ∈ X as a matrix with r rows and k columns, and note that n = rk.
Then the action of φ1 is given by cyclicly moving the first k columns of this



matrix, i.e, the first column becomes the second, the second becomes the third,
column k − 1 becomes column k and column k becomes column 1. Let A = A1

be the matrix representation of φ1 and note that b1 = 0 . Since |G| = n the
fundamental domain can be concisely represented by

Fc = {x ∈ X | ctx ≥ ctM jx j = 1..k − 1}
and clearly given a point x ∈ X but x 6∈ Fc one can find a separating hyperplane
by checking all k − 1 inequalities.

Theorem 3. For the cyclic group (as described above), given a point x ∈ X but
x 6∈ Fc one can find a separating hyperplane between x and Fc in O(ns) time
where s is the average number of bits in an element of c.

The symmetric group is more complicated. As above, consider the vector
x as a matrix, but in this case the group Sk is the set of all permutations of k
elements and note that |G| = k! which is exponential in k. Now, the group action
consists of permutations of the first k columns of the matrix representation of
x and the fundamental domain requires k! additional inequalities. However, one
can find a separating hyperplane efficiently as follows.

For simplicity, assume that c > 0. Construct a bipartite graph where the one
set of vertices represents each of the first k columns of x (in the current ordering)
and the second set represents the first k columns of c. Let the value of an edge
from i to j be the inner product of the i’th column of x and the j’th column
of c. Then the maximum matching gives the optimal permutation. The sepa-
rating hyperplane is simply given by the constraint related to this permutation.
Since a maximum matching can be computed k3 operations, we have proven the
following theorem.

Theorem 4. For the symmetric group action (as described above), given a point
x ∈ X but x 6∈ Fc one can find a separating hyperplane between x and Fc in
O((n + k3)s) time where s is the average number of bits in an element of c.

We note separation for orbitopes [5] can be done in linear time and thus our
approach (for r >> k) is slower when the ordering vector uses a large number
of bits.

4 Partitioning, Packing, Covering and Relations to
Orbitopes

Now we discuss some important applications in which symmetry arises. Consider
an optimization problem where there are r objects which must be put into k
groups. Let xij be the variable that indicates that item i is in group j. Thus,
the j’th column identifies the elements that are in group j. Problems can then
be classified into three classes: partitioning (in which each item is in exactly
one group), packing (in which each item is in at most one group), and covering
(where each item is in at least one group).



When groups are identical, as in many combinatorial graph theory problems
(such as coloring or partitioning), the IP is invariant under the full symmetry
group of column permutations. Thus, our results from the previous section pro-
vide polynomial representations that remove much of the redundancy in the
natural formulations.

However, in periodic scheduling problems, the same matrices arise but are
only invariant under the cyclic group.

These problems are the subject of study by Kaibel and Pfetch [5] and the
motivation behind orbitopes. Orbitopes are constructed by taking the convex
hull of the set of x ∈ Ext(X) which are maximal under the lexicographic order-
ing. While orbitopes are more refined than minimal fundamental domains, their
analysis is significantly more complicated. In particular, the orbitopes for the
covering problems appear to be quite complex and their explicit construction is
not known. However, as can be seen from the analysis in the previous sections,
the minimal fundamental domains can be easily characterized in all of these
cases.

In fact, given the simplicity of their construction, our analysis easily extends
to a wide variety of group actions.

5 Products of Groups

In this section we show that our analysis can be easily extended to special cases
involving products of groups.

Given a group G and with a group action φG
g define the null space of the

action to be the set of indices for which

(φG
g x)i = xi ∀g ∈ F, x ∈ X.

Define the active space of the action to be the complement of the null space.
Now consider a second group action, H,φH such that the active space of H

does not intersect the active space of G. The if we define the product action
GH, φGH where GH is the direct product of the two groups, so an element of
GH is the pair (g, h) with g ∈ G and h ∈ H. The action is then given by
φGH

(g,h) = φG
g φH

h and note that this is equal to φH
h φG

g since the actions φG and φH

must commute.
Then, the fundamental domain of the product action is simply the intersec-

tion of the fundamental domains and thus the required number of constraints in
only (|G| − 1) + (|H| − 1) instead of (|G| − 1)(|H| − 1).

Theorem 5. If active spaces of a set of group actions do not intersect then the
fundamental domain of the product action is the intersection of the fundamental
domains of the individual actions.

For example, in the case where pairs of groups {(1, 2), (3, 4) · · · , (n−1, n)} are
interchangeable, the product action has 2n/2 constraints while the representation
of the fundamental domain only requires n/2 constraints using the above result.



It appears that non-intersection of the group actions, although quite strin-
gent, is necessary for these simplifications. One natural conjecture, that com-
mutativity of the group actions is sufficient can be seen to be false from the
following example.

Consider X = [0, 1]2 and the action of G is interchanging the two components,
φG

1 (x1, x2) = (x2, x1) while H flips both bits, φH
1 (x1, x2) = (1 − x1, 1 − x2). It

is easy to see that the two group actions commute; However, the constraints for
the two fundamental domains when taken separately with c = (2, 1) are:

G : 2x1 + x2 ≥ x1 + 2x2 → x1 ≥ x2

H : 2x1 + x2 ≥ 2(1− x1) + (1− x2) → 4x1 + 2x2 ≥ 3

However, the constraint for the joint action, φGH
(1,1) is

2x1 + x2 ≥ 2(1− x2) + (1− x1) → x1 + x2 ≥ 1

which removes additional points from the intersection of the two separate group
actions.

6 Ordering Vectors

The universal ordering vector ĉ requires Ω(n) bits which can be problematic
with standard IP solvers. As we shall see, it is often true that large number of
bits are necessary to generate minimal fundamental domains.

Consider the space with variables xij ∈ X considered earlier with r rows
and k = t columns. Thus X = [0, 1]kr. We consider the action of the symmetric
group that exchanges columns.

Note that when r = 1 cost vector with c1j = k − j generates minimal fun-
damental domains under the symmetric group. However, for larger values of r
significantly more bits are required

Theorem 6. Let c ≥ 0 be an ordering vector which generates a minimal funda-
mental domain for the action of the symmetric (or cyclic) group on X = [0, 1]kr.
Then there exists some i, j such that cij uses more than r/k2 bits.

Proof: For j 6= j′ define djj′
i = cij − cij′ and let ∅ ⊂ Sj ⊂ {1, 2, . . . r}. Then

define x(S) by xij = 1 if i ∈ Sj and 0 otherwise. Define Cjj′(Sĵ) =
∑

i∈Sĵ
djj′

i .

We claim that if there exists some S = (S1, S2, . . . , Sk) such that Cjj′(Sj) =
Cjj′(Sj′) and Sj 6= Sj′ for all j 6= j′ then the fundamental domain will not be
minimal, because ctx(S) was constructed to be invariant under the symmetric
group. To see this note that the elements of the group that exchange two columns
generate all elements of the group and the construction guarantees that ctx(S)
is invariant under any number of column exchanges.

Now assume that all components in c use less than b bits. This implies that
0 ≤ Cjj′(Sĵ) ≤ r2b. Now define C(Sj) ∈ {0, 2b − 1}k(k−1)/2 by C(Sj)jj′ =



Cjj′(Sj) for 0 < j < j′ ≤ k. Note that there are (2b)k(k−1)/2 points in {0, 2b −
1}k(k−1)/2 and there are 2r − 1 subsets of {1, 2, . . . r}. In order to guarantee
that some point in {0, 2b − 1}k(k−1)/2 is covered by at least K subsets it is
necessary that 2r − 1 > (k − 1)2bk(k−1)/2 which we relax to 2r > k2bk2

. So if
b < r/k2 − log2(k) there must be two extreme points of X which which are
maximal under c and in the same orbit, proving the theorem. ut

7 Conclusions

We have provided a direct method for finding a minimal fundamental group for
a group action on a binary polytope. First we note that our methods can be
easily extended to arbitrary polytopes and group actions. The only impediment
to complete generality is the need to compute separation which might not be
efficiently computable in some cases.

While this problem is of theoretical interest, it remains to be seen whether it
is of practical value in solving real integer programs. However, recent results on
the use symmetries in solving packing and partitioning problems [4, 9], suggest
fundamental domains might prove useful.
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