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Abstract
Bundling is an important tool in marketing and economics.
In this paper we consider the relationship between bundling
and clustering. In particular, we consider the problem of
clustering customers based on valuations of products where
their valuations may only be known for bundles of goods and
not item by item. This can arise from sales data of bundled
goods. It can also arise in survey data when the number
of goods is so large that eliciting item by item valuations is
impractical, which commonly arises in e-commerce.

We consider a modification of the well known k-means
clustering algorithm to bundled data and examine its effi-
ciency. We show that this new algorithm, the bundled k-
means (BKM) algorithm is relatively fast and robust.

Lastly, we consider the design of bundles that facilitate

clustering. We show that one can significantly increase the

quality of the clustering obtained using an easy to imple-

ment algorithm. This provides a new area of application

of active learning to unsupervised learning whereas most

previous work in active learning has applied to classification.

Keywords: bundling, active learning, clustering, k-
means algorithm.

1 Introduction

Bundling is an important tool in economics and mar-
keting [Sch84, AY76]. The basic idea is that one can
increase profits by selling bundles of goods. The classic
example of this comes from selling 2 goods (1 and 2),
with 0 marginal cost, to 2 classes of customers (A and
B). Customer of class A value good 1 at $5 and good
2 at $2, while customers of class B have the opposite
valuations, they value good 1 at $2 and good 2 at $5.
The optimal single product pricing is to charge $5 (or
$4.99) for each good in which case the profit will be $5
per customer, since each class will only buy one of the
2 products. However, by bundling the two goods and
selling them as a single item one can increase profits
significantly. Set the bundle price to $7 and the profits
will be $7 per customer, an increase of 40%.

Bundling is extremely common and some examples
include software (such as office suites) and cable televi-
sion. In fact, one can view many “information goods”
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as bundles. For example, a magazine is a collection of
articles which could be sold individually, but are often
only sold as a single bundle, while access to online finan-
cial information sites can also be viewed as bundles of
tools and data, of which several popular combinations
are usually offered. The ubiquity of bundling has grown
dramatically through electronic markets as bundling is
easy and cheap to implement [SBB00, Bak01, Kau01].
In addition, many of these goods have very low marginal
cost, which means that while they may be expensive to
produce initially, they can be sold over and over again
at minimal additional cost. Bakos and Brynjolfsson’s
pioneering work [BB99] explained the effectiveness of
bundling in many e-commerce applications, using ar-
guments based on the central limit theorem. The key
idea is that while customers’ valuations of individual
goods may vary significantly, if their valuations of dif-
ferent goods are sufficiently independent, and there are
sufficiently many goods, then the customers’ values for
large bundles should clump around the mean values,
eliminating the heterogeneity that reduces profits.

Our goal in this paper is to initiate the study of the
connections between bundling and clustering. Consider
the case where n customers have valuations of m goods.
If goods were sold individually, then one could use sales
data to cluster the customers. However, if the goods are
sold as bundles then the problem of clustering becomes
more challenging as different customers may have been
offered and purchased different bundles.

Alternatively one could use modern survey tech-
niques to elicit the valuations from customers. However,
if m is large it might be impractical to elicit the value of
all goods from a participant. It is far more effective to
elicit the values on bundles of goods, but then we have
the same problem – clustering with bundled data.

In addition, this example raises an important ques-
tion. What bundles should be used? This is a question
similar to those raised in active learning, where one tries
to elicit the most useful data.

In this paper we provide preliminary answers
to these problems and questions. We consider the
workhorse of clustering, the k-means algorithm [Mac67]
and show how to modify it to provide a simple yet ro-
bust method for clustering with bundled data. We test
this bundled k-means (BKM) algorithm on models used



to model customer valuations and then discuss the ac-
tive learning issues. We show that the BKM algorithm
appears to be robust and efficient and also construct
an easily implemental bundling procedures that signifi-
cantly increase its effectiveness.

While we do not know of previous work on cluster-
ing with bundled data, there is a large literature model-
ing consumer choice behavior and the attempt to elicit
customer valuations, see e.g., [McF74, RA03, KAR02,
BD01, SW02].

Note that there are two important measures of
cluster quality which may both be of interest in this
setting. The first is the correctness of the clustering:
are customers put into the correct cluster? However,
in many cases the items of interest are the bundle
centroids themselves because these provide a guide for
the optimal prices of goods. Our analysis will consider
both measures.

Lastly, we note that bundling can be viewed as
a simple case of more general agglomerations of data
in which only multivariate functions of many variables
are available. Our work can be viewed as a simple
model of the more general issues that may arise. In
particular, one unjustified simplification in our analysis
is the assumption that value of a bundle of goods is
simply the sum of the valuations of the individual goods.
In future work we hope to extend our analysis to more
realistic models including the analysis of complements,
substitute and size effects.

The paper is organized as follows. In Section 2 we
describe our basic model and underlying probabilistic
model for testing our algorithms. Then Section 3
considers the construction and design of the BKM
algorithm. Section 4 provides some numerical analysis
of the algorithm, while Section 5 considers the optimal
choice of bundles, or Active Bundling. We conclude in
Section 6 with comments and open questions.

2 K-Means Clustering and Random Utility
Models

Let vi
j be the valuation of customer i ∈ I for good j ∈ J

where n = |I| and m = |J |. We assume that each
customer has a bundle partition of the goods, given by
Bi = (Bi

1, B
i
2, . . . , B

i
bi

) with Bi
r

⋂
Bi

r′ = ∅ for r 6= r′

and
⋃bi

r=1 Bi
r = J where bi are the number of bundles

for customer i. Although each customer has a valuation
for every good, we assume that the clustering algorithm
only gets to see bundle values, where a subscript with
a bundle will represent a sum over that bundle, i.e.,
vi

Bi
r

=
∑

j∈Bi
r
vi

j .
For example, consider the case of two customers I =

{A,B} and three goods J = {1, 2, 3}. Let BA
1 = {1} and

BA
2 = {2, 3} while BB

1 = {1, 2, 3}. This could arise in
a survey in which we ask A about her valuation for the
first good and also her valuation for the combination of
goods 2 and 3, while we only ask B about his valuation
for the combination of all 3 goods. The outcome of
this survey would be values such as vA

{2,3} which is A’s
valuation of the bundle {2, 3}.

We assume that the baseline clustering is what the
k-means algorithm would find on the full, unbundled,
data.1 We recall that this is a set of clusters of cus-
tomers S1, S2, . . . , Sk which together with the cluster
centroids µ1, µ2, . . . µk for µs ⊂ I minimize the penalty
function

φ(S, µ) =
∑

i∈I

∑

j∈J

φi
j(µ

s(i)),

where s(i) is the cluster to which i is assigned and

φi
j(µ

s) = (vi
j − µs

j)
2/2.

For later reference we recall that the standard k-means
algorithm begins with an initial (often random) choice of
centroids and then alternatively applies cluster creation
and centering. The cluster creation part simply puts
each customer into the cluster with the lowest penalty,
which happens to be the one that is closest in the
Euclidean norm. The centering part of the algorithm
takes as input the current set of clusters and then finds
a new centroid that minimizes the penalty function. We
note that the optimal centroid is the average of all the
points in the cluster.

Clearly if the algorithm converges (which is not
guaranteed [Mac65]) it converges to a local minima.
To find the global minimum the algorithm is typically
rerun repeatedly, with randomized starts, to find the
“optimal solution.” Empirically, the k-means algorithm
tends to converge quickly and find an optimal or near
optimal clustering. More sophisticated algorithms have
also been used to minimize the cost function, but we will
not discuss them here and refer the interested reader to
[CGTS02] for an example and the references therein.

In the following, we use a simple model of customer
valuations which is a simple random utility model
[Man77, BD01]. These have been widely applied [AR98,
KAR02, RA03].

This model is very simple but will provide a basic
test of our methods. Generate µs

j iid N(0, σ), then
for each customer randomly choose a cluster s and

1We choose the k-means algorithm as our baseline because it is
so commonly used in these settings. We do not mean to imply that
it is the best clustering procedure for this setting as clustering is a
large and complex subject. We postpone the study of extensions
to other clustering procedures, including important statistical and
econometric approaches to future work.



generate vi
j as N(µs

j , 1) where, for simplicity, σ is a
single parameter. Note that that this is equivalent to
generating vi

j as follows:

vi
j = µ

s(i)
j + zi

j

where s(i) is chosen with uniform probability from S,
µs

j ∼ N(0, σ) and zi
j ∼ N(0, 1) where the first term

is known as the factor effect and the second as the
idiosyncratic effect.

In our analysis we will measure the efficiency of k-
means and BKM clustering with k = 2 on this model
under a variety of parameters. We considered two
complementary error measures.

The first is the clustering error, this is the proba-
bility that a randomly chosen customer will be put in
the correct cluster. Formally, let s(i) ∈ {1, 2, . . . , k}
be the cluster label found for customer i and s∗(i) ∈
{1, 2, . . . , k} their true cluster label. Since labels are
arbitrary define the cluster error as

ErrC = min
f∈F

∑

i∈I

δ(f(s(i)), s∗(i))

where F is the set of permutations on {1, 2, . . . , k}
and δ(·, ·) is 1 if both arguments are the same and 0
otherwise.

The second is the cluster centroid error defined by

Errµ = min
f∈F

||µf(s) − µ̂s||2

where F is the set of permutations on {1, 2, . . . , k} and
µ̂s is the true centroid, which will be defined by our
generative model.

3 Penalty Functions for Bundled Data

Recall that the standard k-means algorithm uses a
heuristic two stage approach to minimize the penalty
function

φ(S, µ) =
∑

i∈I

∑

j∈J

φi
j(µ

s(i)),

where s(i) is the cluster to which i is assigned and

φi
j(µ

s) = (vi
j − µs

j)
2/2.

While we would like to minimize this function, with
bundled data this is not possible since we can’t compute
φ exactly. Our approach will be to attempt to minimize
a function which is close to the true penalty function
using only bundled data.

To do this we note that when the data is bundled,
instead of looking at penalties of the form (vi

j − µs
j)

2 it
seems natural to estimate the values of such terms as
implied by the bundles,

φi
Bi

r
= (vi

Bi
r
− µs

Bi
r
)2/2.

Then we can construct the penalty function by combin-
ing these according to a weighting scheme

φB(S, µ) =
∑

i∈I

bi∑
r=1

α(|Bi
r|)φi

Bi
r
(µs(i))

where |Bi
r| is the number of goods in customer i’s r’th

bundle and α(·) is the weighting function.
We will consider two useful weighting functions.

The first is simply uniform weighting, α(k) = 1 which
is an obvious choice. A second natural choice is propor-
tional weighting, where α(k) = 1/k where bundles are
discounted according to their size. In addition to the
intuition that larger bundles are less precise so should
be down weighted, the proportional weighting scheme
has one very important property.

Recall that for the unbundled case, the minimizers
of the penalty function satisfy the condition that the
cluster centroids are simply the means of the points in
the cluster, i.e., µs

j =
∑

i∈Ss vi
j/|Ss|. The proportional

weighting method guarantees that the sum of cluster
centroids is correct. To see this, we compute the first
order conditions, which will be useful later.

Note that

∂

∂µs
j

φi
Bi

r
= α(|Bi

r|)(vi
Bi

r
− µs

Bi
r
)

if i ∈ Ss and j ∈ Bi
r. Otherwise

∂

∂µs
j

φi
Bi

r
= 0.

Combining these we see that

∂

∂µs
j

φi(µ) = α(|Bi
r|)(vi

Bi
r
− µs

Bi
r
)

for i ∈ Ss and j ∈ Bi
r.

Theorem 3.1. Let µs be the minimizer of the propor-
tionally weighted penalty function. Then

∑

j∈J

µs
j =

∑

i∈Ss

∑

j∈J

vi
j .

Proof: Fix s and i ∈ Ss and sum all the first order condi-
tions over j ∈ J . This yields the desired relation. QED

Next we note that the minimizers of the penalty
functions need not be unique. We say that the set of
bundles is complete if the minimizer is unique. For each
bundle Bi define its centering matrix Ci to be the m×m
symmetric matrix of partial derivatives ∂

∂µs
j
φi(µ) and

note that we can write the penalty function as

φi(µs, vi) = (vi − µs)tCi(vi − µs) (∗)



and its first order conditions as

Csµs =
∑

i∈Ss

Civi (∗)

where Cs =
∑

i∈Ss Ci and µ and vi are viewed as
column vectors. From this, one can see that the
optimizer is unique if Cs has full rank for each s. The
existence of the optimizer follows from the convexity
of the penalty function, which clearly has a finite
minimum. It is interesting to note that for proportional
weighting the matrix Ci is doubly stochastic and thus
has the largest eigenvalue equal to 1. This is not true
for the unweighted penalty function.

In the following, we will numerically solve this
equation to find the optimal centroids. However, when
the solution is not unique we simply choose the solution
generated by the pseudoinverse of C which finds the
solution with the smallest Euclidean norm.

First we note that one can use this expression to see
that the optimizers will be correct in expectation.

Theorem 3.2. Suppose that for each i ∈ Ss, vi is
drawn i.i.d. from some distribution with finite E[vi] and
that the set of bundles is complete. Then E[µs] = E[vi].

Proof: Taking expectations of both sides of (*) and then
summing the right hand side yields E[Csµs] = E[Csvi]
which by linearity implies that CsE[µs] = CsE[vi]
which implies the theorem by the assumed invertibility
of Cs. QED

Note that under additional assumptions, if we also
assume that the bundles are generated i.i.d. then we
can extend the analysis to show that as the number
of customers grows large, the computed centroids will
approach the mean with probability 1.

It is not obvious which method will be better in
practice. A first measure is whether C is singular, or
more generally the condition number of C. To test this
we constructed sets of random bundles and varied the
number of goods, customers, and bundles. The results
clearly showed that the proportional weighting method
had smaller condition numbers, typically the ratio was
between 0.6 and 0.8.

A second question is whether similarly sized bundles
are more efficient than bundles of varying size, assuming
the number of bundles is fixed. In this case we see that
uniformly sized bundles have lower condition numbers
where the ratio was typically between 0.8 and 1.0.

In absolute terms, for large numbers of customers,
goods and bundles, the condition number seems to con-
verge to 2.5 for uniformly sized bundles and propor-
tional weighting while for varying sized bundles the
number is about 2.9. The respective numbers for un-
weighted matrices are 3.2 and 4.0. Some representative

values for the proportionally weighted case with uniform
bundle sizes are given in Table 1.

Condition Average
number Error m n b

Inf 0.98 4 4 2
4.37 0.14 4 64 2
3.65 0.03 4 1024 2

1.89E+18 0.86 64 4 8
20.96 0.37 64 64 8

9.29E+33 0.56 256 4 8
7.75E+18 0.90 256 4 32
1.94E+19 0.55 256 64 2

3.27 0.15 256 64 128
91.32 0.40 256 256 8
2.71 0.07 256 256 128

289.67 0.38 128 1024 2
4.66 0.05 128 1024 32

Table 1: Some sample condition numbers and solution
accuracy for randomly generated bundles, using Propor-
tional weighting and uniformly sized bundles. All tables
in this paper were generated from 256 repetitions and
m,n ranging from 4 to 1024, b ranging from 2 to m/2.

Next we compare the two methods in terms of
solutions. We assume there is a single cluster and
generate values according to our simple random utility
model, discussed earlier. When we measure the distance
between the true means and the ones computed from
bundled data we see essentially the same results as those
for the condition numbers with similar ratios. Some of
this data is displayed Table 1.

Thus, we see that our method is reasonably ac-
curate and that the proportional weighting appears to
dominate the unweighted procedure. Therefore, in the
following we will focus on the weighted method. Also
uniform bundles seem to dominate uneven bundles, a
useful observation.

Lastly, we note that condition numbers provide a
simple way to approximate the accuracy of a method.
An insight we will exploit in Section 5.

3.1 The BKM Algorithm Now that we have set-
tled on a penalty function the construction of the BKM
algorithm is straightforward.
The BKM Algorithm

1. Choose µ at random.

2. Repeat until S does not change.

(a) For all i ∈ I assign i to the set Ss

which minimizes φi(µs, vi).



(b) For each s = 1 . . . k compute µs from
equation (*).

4 Numerical Evaluation

In this section we perform an empirical study of the
BKM algorithm (using synthetic data). In the first
part we consider the computational complexity of the
algorithm and compare it to the k-means algorithm
without bundled data to estimate the complexity that
bundled data adds. In the second part we consider
the accuracy of the BKM algorithm with respect to
the standard k-means algorithm to delineate the loss
of accuracy that bundles cause.

4.1 Complexity of the BKM Algorithm It is ob-
vious that the BKM algorithm is more computationally
expensive than the standard k-means algorithm. In par-
ticular, each iteration of the BKM algorithm requires
the solution of an m × m linear equality. In this sec-
tion, we will focus on the number of iterations in the
main loop of the BKM algorithm, compared to that for
the regular k-means algorithm. Note that this is only
meant as a simple estimate of the extra complexity in-
duced by the bundle structure as we do not consider
more sophisticated algorithmic approaches, such as kd-
trees [KMN+02] or sampling methods which estimate
the clusters on a subset of the data before applying it
to the full data set [BF98].

First we consider the simple case where the algo-
rithm has a good estimate of the true cluster centroids.
We will use the simple random utility model discussed
in Section 2 with the centroids chosen to be the true
statistical center of the model. This can be considered
a proxy for a statistical sampling method as mentioned
above.

Our results were encouraging. Over a wide range of
parameter values (including bundle diversity) we see no
significant change in the number of iterations between
the BKM and k-means algorithms. The ratio between
the two is typically around 1 and was between 1/2 and
2.

Next we consider the number of iterations required
when centroids are chosen randomly. Again in this case
the differences are quite small. Once again the ratios
were typically about 1 ranging from 1/2 to 2.

Thus, at least for randomly generated bundles, the
BKM appears to require a similar number of iterations
as the standard k-means. Thus, it appears that there
should be few computational roadblocks to efficiently
implementing the BKM algorithm. The main increase
of complexity comes from solving k linear relations at
each iteration. However, since the matrices involved are
O(m) this does not pose any significant problems even

for problems with thousands of goods since the number
of iterations for most k-means applications are typically
quite reasonable.

4.2 Accuracy of the BKM Algorithm In this
section we provide a quick qualitative description of our
numerical experiments.

To reduce computational overhead, since we are
only interested in the accuracy of the methods, in the
numerical computations we chose our initial µ using
information about the distribution of the data, thus
allowing fast convergence of the algorithms.

Our first observation is that the BKM algorithm is
very inaccurate in estimating centroids when there is
not enough information to do so because of too coarse
a bundle structure. A simple measure of this lack of
information is the total number of bundles divided by
the number of goods, which we denote by γ = nb/m.
Note that γ = n for the standard k-means algorithm
where all items are in their own bundle. When this
number is small, γ < 2, the BKM does a poor job of
estimating the centroids (an average of more than one
standard deviation per good) while in some cases the
k-means is accurate. When γ ≥ 8 we see that both
the BKM and k-means algorithms have comparable
accuracy on estimating the centroids. Although k-
means appears to be superior most of the time, there are
many cases where the BKM outperforms it. The effect
of bundle size distributions on these results are quite
small – it appears that the total number of bundles is
more important than their distribution.

Interestingly even though the BKM estimates of
centroids are poor for small γ, in many of these instances
it still finds nearly perfect clusters so this ratio is of
less importance for finding cluster membership than
estimating centroids. However, when centroid estimates
are good it does an excellent job of clustering. In general
when k-means clusters effectively so does the BKM;
however there are a small fraction of instances where it
clusters much more poorly than the k-means algorithm.
We have not discovered a general rule for when these
cases arise and leave it to future work for a more in
depth analysis.

Nonetheless, we believe that the results are suffi-
ciently promising to warrant continued study.

5 Active Clustering: Bundle Construction

In many situations the sets of bundles are not fixed and
can be altered by the analyst. For example in an online
survey one could modify the bundles during the course
of the survey to try to optimize the accuracy of the
results. This is a kind of active learning procedure.

A simple approach to this problem is based on



the matrix equation for computing centroids. As we
discussed in Section 3 an important parameter that
affects the accuracy of the BKM algorithm is the
condition number of the matrices Cs. Thus, it seems
reasonable to choose bundles to try to minimize the
condition number. To begin with we consider the simple
case of a single cluster. For convenience we drop the s
superscript in our notation and number the customers
1 . . . n in order of arrival.

Recall that after customer n we must solve C
n
µ =∑n

i=1 Civi/n where C
n

=
∑n

i=1 Ci/n and note that C
n

is a stochastic matrix. Our goal is to choose Bn+1 such
that C

n+1
has a small condition number.

To begin the analysis, let λn be the smallest eigen-
value of C

n
and xn the respective eigenvector. Recall

that the largest eigenvalue is 1 and thus the condition
number of C

n
is 1/|λ| so our goal is choose Bn to max-

imize |λn+1|. Now, we would like to apply a search al-
gorithm to find the partition that maximizes |λn+1| but
repeatedly computing this value exactly is too compu-
tationally expensive. However, we can approximate this
value using the following procedure where we compute
the gradient of the eigenvalue.

Let λn+1 = λn+ω/(n+1) and xn+1 = xn+y/(n+1)
then

[
n

n + 1
C

n
+

1
n + 1

Cn+1]
xn + y

n + 1

= (λn +
ω

n + 1
(xn +

y

n + 1
))

which we can approximate as

−C
n
xn + C

n
y + Cn+1xn = λny + ωxn

after multiplying by n + 1 and dropping terms of o(1).2

Now we rewrite this as

−ωxn + (Cn+1 − C
n
)xn = (λn − C

n
)y

and note that the right hand side (λn − C
n
)y must be

orthogonal to x and if the lowest eigenvalue is unique
can attain any value in the subspace orthogonal to x.
Thus this constraint is equivalent to

(xn)t[−ωxn + (Cn+1 − C
n
)xn] = 0

which yields

λn+1 =
n

n + 1
λn +

1
n + 1

(xn)t(Cn+1)xn

||xn||2 + o(
1

n + 1
).

Thus, if we assume that xn is chosen such that
||xn|| = 1 then we only need to compare (xn)tCn+1xn

2We note that our analysis here is not rigorous but could be
made so.

for different choices of Cn+1 to find the (approximate)
optimal set of bundles.

For example, we could start with some initial bundle
matrix Cn+1 and then perform a local search by con-
sidering moves of items or swaps of item pairs between
different bundles. A simple approach would be to ap-
ply random search using this formula to speed up the
algorithm; however, we can improve on this as follows.

For simplicity, assume that λn > 0 and that bundle
sizes are all the same and fixed, i.e., the number goods
must equal a multiple of the bundle sizes. Then we
could begin with the simple matrix Cn+1 which arises
from the bundles constructed in the natural order of
elements. Other bundle matrices which come from
the same number of fixed sized bundles are simply
permutations (both row and column) of this matrix.
Let P be the permutation matrix for the rows of Cn+1

and then the new matrix after the permutation will be
P tCn+1P . In order to compute the effect of this on the
eigenvalue we need to compute xtP tCn+1Px; however
this is the same effect as swapping the elements of x
to get x̂ = Px and computing x̂tCn+1x̂. Now, we
maximize this value.

This is accomplished in the following simple man-
ner. Sort the goods in the order of xj and then put the
first n/b items in the first bundle, the next n/b items in
the next bundle and continue this process. We call this
procedure Active Bundle Selection.
Active Bundle Selection

1. Assume that the number of goods, |J | is
divisible by b.

2. Given C
n

compute the eigenvector x which
has the smallest magnitude eigenvalue
|λn|.

3. Find a permutation P such that Px is
sorted in numerical value.

4. Let B̂n+1 be set of b equal sized bundles
where B̂n+1

r = {rb + 1, rb + 2, . . . , rb + b}.
5. Let Bn+1 be obtained from B̂n+1 after

permuting the goods by P.

We first test the accuracy of this method by gener-
ating n bundles at random, then applying Active Bun-
dle Selection iteratively to generate the next k bundles.
Then we compute the condition number of the new ma-
trix Cn+k and compare it to the condition number when
the k bundles are constructed at random. In all cases we
see that Active Bundle Selection is superior to random
bundling. For example when m = 8, n = 30, b = 2 and
k = 10, the average condition number is 15.3 for ran-
dom bundles but under active bundling the condition



number is 9.3, a reduction of almost 40%. Changing
to n = 100 the reduction is still about 20%. Similarly,
for m = 64m n = 100, b = 2 and k = 10 the reduc-
tion is about 15%. Lastly, for m = 8, n = 100, b = 2
and k = 100 the reduction is about 20%. Thus, we see
that active bundling has the potential to significantly
improve statistical estimates.

Next we consider the effect of Active Bundle Selec-
tion on BKM clustering. Table 2 lists some representa-
tive results from the random utility model. We consider
the case where an initial set of customers (1− ρ)n were
given random bundles and then the remaining ρn cus-
tomers were actively bundled.

Errµ ErrC m n b σ ρ
0.32 0.01 4 64 2 10 0
0.32 0.01 4 64 2 10 0.25
0.31 0.01 4 64 2 10 0.5
0.29 0.01 4 64 2 10 0.75
1.22 0.00 16 64 2 10 0
0.98 0.01 16 64 2 10 0.75
0.30 0.00 16 64 8 2 0
0.27 0.00 16 64 8 2 0.75
0.65 0.22 16 256 2 1.0 0
0.63 0.23 16 256 2 1.0 0.75

Table 2: Numerical results for Active Bundle Selection.
Clustering errors for 2 clusters.

As we see Active Bundle Selection can significantly
increase the quality of the bundle centroids with gains
of 10−20% in many cases. This occurs uniformly when
parameters are such that the clustering is reasonably
accurate, but less consistently when clustering errors
are large > 25%.

Note that the clustering error may actually increase
even though the centering error decreases. This some-
what counter-intuitive result arises because high con-
dition numbers do not imply poor clustering. For ex-
ample if all customers have the same bundles then one
can still cluster effectively even though it is impossi-
ble to estimate the item by item centroids, as one can
only determine the bundle centroids. However, in most
cases, especially when bundling is effective, the active
bundling procedure decreases both errors and often the
reduction is significant.

Lastly, we comment that one might expect active
bundling to perform better in practice that what we
see in our data. This is because random bundles are
most likely better than the nonrandom ones that arise in
practice, which are constructed for a variety of strategic
reasons, so active bundling could compensate for these
deficiencies more rapidly than random bundles. To

simulate this we started with a set of highly correlated
bundles and then compared active bundling to random
bundling. We see that both improve the accuracy of the
centroids but active bundling significantly outperforms
random bundling. Active bundling reduces the error
by up to 50% over the correlated bundles and 10− 30%
over the combination of correlated and random bundles.
(See Table 3.)

Errµ ErrC Errµ ErrC m n b σ ρ
Act. Act. Rnd Rnd

0.039 0.000 0.039 0.000 16 64 8 10 0
0.027 0.000 0.031 0.000 16 64 8 10 .75
3.192 0.370 3.134 0.373 16 64 8 0.2 0
2.806 0.371 2.838 0.369 16 64 8 0.2 .25
2.693 0.377 2.831 0.383 16 64 8 0.2 .5

Table 3: Selected numerical results for Active Bundle
Selection and Random Bundle selection with highly
correlated initial Bundles.

6 Conclusions

In this paper we have highlighted an important area
for the application data mining techniques focussing
on the issue of bundled data, a topic that is expected
to increase in importance in the coming years. We
have shown how to modify the k-means algorithm to
accommodate bundled data in a robust manner without
significant losses in accuracy or increased computational
requirements. Lastly, we showed how one could apply
the paradigm of active learning to bundled clustering
and presented a simple algorithm that can find nearly
optimal bundles to maximize the effectiveness of our
algorithm.

Aside from the practical implications of our analysis
we also view this as preliminary investigations into
clustering of aggregated data and the extraction of
unaggregated information from that clustering. In
addition we have extended the ideas from active learning
to a problem of clustering which we believe is a new
direction and raises many new research questions.

Clearly there are many natural extensions of this
work, including a large scale robust implementation
and analysis of the BKM algorithm. In addition, the
assumption of additivity which is central to our analysis
needs to be weakened for many problems of interest.
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