Computational Auditory Scene Analysis exploiting Speech Recognition knowledge

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline
1. Computational Auditory Scene Analysis
2. CASA for speech recognition
3. A speech hypothesis module
4. Speech & nonspeech examples
5. Conclusions & future work

Auditory Scene Analysis
“The organization of complex sound scenes according to their inferred sources”
- Sounds rarely occur in isolation
 - getting useful information from real-world sound requires auditory organization
- Human audition is very effective
 - unexpectedly difficult to model
- ‘Correct’ analysis defined by goal
 - human beings have particular interests...
 - (in)dependence as the key attribute of a source
 - ecological constraints enable organization

Prediction-driven CASA
Perception is not direct but a search for plausible hypotheses
- Data-driven ...
 vs. Prediction-driven

Reproducing restoration phenomena
- E.g. the continuity illusion
- Data-driven approach just sees gaps
- (how to handle noise?)
- Continuous tone is ‘consistent’ under prediction-driven approach

CASA for speech recognition
- Speech recognition is very fragile
 - lots of motivation to use ‘source separation’
- Recognize combined states? (Moore)
 - ‘state’ becomes very complex
- Data-driven: CASA as preprocessor
 - problems with ‘holes’ (but Cooke, Okuno)
 - doesn’t exploit knowledge of speech structure

Combining PDCASA and ASR
- Prediction-driven: speech as component
 - speech hypotheses within same reconciliation framework
 - need to express ‘predictions’ in signal domain
- Each component makes a projection of residual
 - into e.g. ‘the space of all speech sounds’

A speech hypothesis module
- Speech recognition involves:
 - normalizing & generalizing
 - classifying into phonetic state labels
- Prediction-reconciliation requires reconstructed signal
 - invert labels to features
 - invert features to signal

Inverting labels to features
- Classification intrinsically many→one
 - neural net classifier even more opaque
- Train ‘average’ feature window by label
 - i.e. just use class centers
 - overlap in reconstruction → some transition
 - more normalized → more representative
Inverting features to signal
- RASTA normalization removes average levels
- Solution: save slowly-varying part & restore

What about generalization (blurring)?

Results of the modified recognizer
- Reconstruct ‘canonical’ signal

Future work
- Better signal predictions from the recognizer
 - normalized training
 - weighted reconstruction
 - more classes?
- Other immediate problems
 - iteration!
 - starting hypothesis
 - granularity of integration
 - low-frequency separation
- Non-speech knowledge?
- Performance & evaluation

Putting it into the scene analyzer
- Prediction shortfalls dominate residual

Example of speech & nonspeech

Example of speech & nonspeech

Conclusions
- Need to use scene analysis for real sounds
- Listeners’ scene analysis relies on knowledge-based predictions
- Use prediction-driven formulation to employ speech-recognizer knowledge for explanation
- But: need better ‘predictions’
 - better inverse-classification
 - better normalization & inversion
Computational Auditory Scene Analysis
exploiting Speech Recognition knowledge

Dan Ellis
International Computer Science Institute, Berkeley CA
<dpwe@icsi.berkeley.edu>

Outline

1. Computational Auditory Scene Analysis
2. CASA for speech recognition
3. A speech hypothesis module
4. Speech & nonspeech examples
5. Conclusions & future work
Auditory Scene Analysis

“The organization of complex sound scenes according to their inferred sources”

- Sounds rarely occur in isolation
 - getting useful information from real-world sound requires auditory organization

- Human audition is very effective
 - unexpectedly difficult to model

- ‘Correct’ analysis defined by goal
 - human beings have particular interests...
 - (in)dependence as the key attribute of a source
 - ecological constraints enable organization
Computational Auditory Scene Analysis (CASA)

- Automatic sound organization is desirable
 - real-world interactive systems (speech, robots)
 - hearing prostheses (enhancement, description)
 - advanced processing (remixing)
 - multimedia indexing (movies etc.)

- Grouping ‘rules’ (e.g. Bregman 1990)
 - translate into computer programs?

- ‘Data-driven’ approach (e.g. Brown 1992)
 - extract features & cues
 - form elements
 - group into sources
Prediction-driven CASA

Perception is not direct but a search for plausible hypotheses

- Data-driven ...

 Front end \(\xrightarrow{\text{input mixture}}\)
 Object formation \(\xrightarrow{\text{signal features}}\)
 Grouping rules \(\xrightarrow{\text{discrete objects}}\)
 Source groups

vs. Prediction-driven

 Front end \(\xrightarrow{\text{input mixture}}\)
 Compare \(\xrightarrow{\text{signal features}}\)
 & reconcile

 Hypothesis management

 Noise components

 Periodic components

 Predict & combine

- Novel features
 - reconcile complete explanation to input
 - ‘vocabulary’ of noise/transient/periodic
 - multiple hypotheses
 - sufficient detail for reconstruction
Reproducing restoration phenomena

- E.g. the continuity illusion

- Data-driven approach just sees gaps

- (how to handle noise?)

- Continuous tone is ‘consistent’ under prediction-driven approach
CASA for speech recognition

- Speech recognition is very fragile
 - lots of motivation to use ‘source separation’
- Recognize combined states? (Moore)
 - ‘state’ becomes very complex
- Data-driven: CASA as preprocessor
 - problems with ‘holes’ (but: Cooke, Okuno)
 - doesn’t exploit knowledge of speech structure
Combining PDCASA and ASR

- **Prediction-driven: speech as component**

 - speech hypotheses within same reconciliation framework
 - need to express ‘predictions’ in signal domain

- **Each component makes a *projection of residual***
 - into e.g. ‘the space of all speech sounds’
A speech hypothesis module

- **Speech recognition involves:**
 - normalizing & generalizing
 - classifying into phonetic state labels

- **Prediction-reconciliation requires reconstructed signal**
 - invert labels to features
 - invert features to signal
Inverting labels to features

- **Classification intrinsically many→one**
 - neural net classifier even more opaque

- **Train ‘average’ feature window by label**
 - i.e. just use class centers
 - overlap in reconstruction → some transition
 - .. more normalized → more representative
Inverting features to signal

- RASTA normalization removes average levels
- Solution: save slowly-varying part & restore

- what about generalization (blurring)?
4 Results of the modified recognizer

- Reconstruct ‘canonical’ signal

Original envelope (223zi−env)

Recognizer output (223zi−env)

Envelope from labels alone (223zi−renvG)

Slowly-varying portion of original (223zi−envg)

Reconstructed speech envelope (223zi−renv)

Residual (223zi−rdiff)
Example of speech & nonspeech
Putting it into the scene analyzer

- Prediction shortfalls dominate residual
Future work

- Better signal predictions from the recognizer
 - normalized training
 - weighted reconstruction
 - more classes?

- Other immediate problems
 - iteration!
 - starting hypothesis
 - granularity of integration
 - low-frequency separation

- Nonspeech knowledge?

- Performance & evaluation
Conclusions

• Need to use scene analysis for real sounds
• Listeners’ scene analysis relies on knowledge-based predictions
• Use prediction-driven formulation to employ speech-recognizer knowledge for explanation
• But: need better ‘predictions’
 - better inverse-classification
 - better normalization & inversion