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1. Introduction

 

Speech is typically perceived against a background of other sounds. The acoustic mixture reaching
the ears is processed to enable constituent sources to be heard and recognized as distinct entities. The
auditory system may not always succeed in this goal, but the range of situations in which spoken
communication is

 

 

 

possible in the presence of competing sources highlights the flexibility and
robustness of human speech perception. The background against which a conversation is carried out
is made up of acoustic intrusions which may overlap temporally and spectrally with the target
speech. The background may consist of other utterances, with fundamental frequency and formant
contours occupying similar regions to those of the target. Target and background may contain
similar ranges of envelope modulations, and can arrive from similar locations in space. Sometimes,
the background will be characterized by high-intensity onsets which completely mask the target
conversation, albeit temporarily. Figure 1 depicts a mixture of two digit sequences whose
constituents differ in onset time, fundamental frequency contour and formant structure but which are
nevertheless sufficiently similar in these properties as to make (visual) separation and identification
difficult.

Robust automatic speech recognition (ASR) remains an important unsolved engineering problem.
For example, Lippmann (1997) has compared error rates obtained by listeners and machines, finding
that while automatic speech recognition systems suffer an order of magnitude more errors than
listeners for clean speech, the margin widens to two orders of magnitude for noisy speech. An
appreciation of the mechanisms employed by listeners to select a target conversation in a noisy
background could lead to progress in robust ASR.
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Some of our ability to handle complex sound environments arises from familiarity with the patterns
of spoken language. These regularities manifest themselves at a number of levels, from the sub-
syllabic to the sentence and above. Speech represents a rich and redundant encoding of information,
and it is not at all surprising that knowledge gained from prior experience can help to fill in those
parts of the signal that are masked or otherwise distorted. Such top-down processes have been
termed 

 

schema-driven

 

 mechanisms (Bregman, 1990).

Apart from familiarity with speech, there are other mechanisms which have the potential to explain
how speech can be perceived in a background of other sounds. Sound sources may differ in location,
or in instantaneous fundamental frequency, or in the patterns of energy envelope modulation in
different frequency bands. If it is possible to reliably extract these ‘cues’ sufficiently often, and to

 

group

 

 those parts of the mixture possessing similar values of each property, then listeners have the
basis for organizing into a coherent whole those components which have a common origin. Such
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Figure 1: Auditory spectrograms of spoken digit sequences.Upper: “zero zero three six three”.
Middle: “seven three seven five nine”. Lower: auditory spectrogram of the mixed signal. Grey-
levels are proportional to log-energies at the output of a bank of 64 gammatone filters, equally
spaced on an auditory scale (ERB-rate) from 50 to 6500 Hz.
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mechanisms would complement those based on prior knowledge of spoken language. They are often
described as 

 

bottom-up 

 

or

 

 primitive

 

 processes.

The purpose of this chapter is to describe the

 

 

 

evidence for auditory organization in listeners and to
explore the computational models which have been motivated by such evidence. The primary focus
is on speech rather than on sources such as polyphonic music or nonspeech ambient backgrounds,
although these other domains may be equally amenable to auditory organization.

The remainder of this section introduces some of the terminology of auditory grouping, summarizes
those features of the stimulus currently thought to promote grouping, and provides a chronological
perspective on the development of the field. 

 

1.A A perspective on auditory organization

 

Bregman (1990) draws a distinction between the concrete, physical manifestation of a sound wave
and the abstract, conceptual effect it has in the mind of the listener. At the concrete level, sound is
generated by physical processes. A physical system which is regarded as a single sound source may
be termed an 

 

acoustic source

 

. Sound waves reaching the eardrum of a listener will include the output
of many physical processes mixed together and colored by the acoustic properties of the
environment – which might be a mountainside or a concert hall.

On entering the ear, the signal undergoes several stages of transduction, leaving the periphery as
patterns of nerve-firings which may be considered as 

 

representations

 

 of all or part of the sound.
Features of these representations which are used to achieve a particular end (such as organizing the
sound) are called 

 

cues

 

. Different theories for the organization of sound may have varying
assumptions of which features are actually employed as cues.

The function of auditory organization is find an account for the acoustic mixture as a collection of
independent sources, which are the abstract mental constructions such as “Jim” or “car” that we use
to relate to the world. Although these sources are usually identified with distinct physical systems,
such auditory identification is not always achieved or desirable: the sound coming from a stereo
system is frequently perceived as the original recorded instruments but not as the pair of vibrating
speaker cones that are the immediate physical source.

 

Representations

 

In addition to the terminological distinctions introduced above, it will be useful to clarify some
issues relating to the level of description at which auditory phenomena and associated models are
phrased. This perspective is influenced by the work of Marr (1982), who argued that vision research
was torn between detailed descriptions of the neural circuitry involved, and more abstract accounts
of the effective function of those circuits. Marr distinguished among computational theory,
algorithm and implementation. The first term corresponds to the basic physical principles underlying
a perceptual task which allow it to be solved. The algorithmic level identifies one or more possible
constructive approaches to the solution. Details of the computational hardware used to implement
the algorithm are distinguished from the earlier levels of description.

The relevance of a representational perspective to the computational problem posed by hearing has
been noted by a number of researchers (Green & Grace, 1981; Darwin, 1984; Green & Wood, 1986;



 

1998 Jun 15 4

Green 
 

et al.
 

, 1990; Cooke, 1991/1993; Brown, 1992; Ellis, 1996). Our current synthesis is contained
in Table 1 below.

Most previous work in auditory organization has adopted the descriptive vocabulary of the
algorithmic level in Table 1, namely, the nature of grouping and the cues that promote it in listeners.
This level is discussed further after examining the computational theory level below. Models at the
implementation layer are a relatively recent development and are covered in section 6.

 

Computational theory

 

The notion of an underlying computational theory emphasizes that any perceptual process must be
based upon reliable characteristics of the physical world, which may be exploited to obtain
information of value to the organism. The intimate dependence between perceptual processing and
the specific characteristics of the environment, regardless of any idealizations or particular
mechanisms, was forcefully argued by Gibson (1966), who referred to this perspective as
“ecological perception.” The ecological constraints in sound are so basic that they can escape our
notice, but their central role in perceptual organization must be recognized. The most important such
constraints employed by the auditory system are the 

 

independence

 

 and 

 

continuity

 

 of sources. 

 

Independence

 

 refers to the observation that changes in the properties of one source in a mixture will
be largely independent of changes in the others. Although this appears to be an observation about
the properties of sources, it can also be viewed as one of the best bases we have for 

 

defining

 

 a source,
i.e. as a physical system whose acoustic emissions are highly coherent and correlated in a way that
listeners can immediately apprehend. Thus a car, despite consisting of many different acoustic
processes, can be perceived as a single source because of a certain correlation between all these
sounds (arising from the mechanical coupling, and the motion of the car in the environment) rather
than because of any more profound physical relationship, albeit that the correlation generally arises
because of such relationships. When this independence of distinct sources becomes blurred – as in
ensemble music performance – the perceptual organization becomes unusual and ambiguous, which
may be one of music’s peculiar attractions.

 

Continuity

 

 conveys the idea that properties of a given source will tend to change smoothly, and will
not undergo an abrupt change to a completely different sound. While certain properties may change
abruptly (consider for instance the effect on the speech spectrum of a major articulator motion such
as the parting of the lips), others, such as voicing, will be piecewise-continuous (i.e. they will not

 

Table 1: Representational perspective on auditory organization

 

level problem solution possibilities

Computational 
theory

Sound source organization

Employ characteristics that define distinct 
sources: independence, continuity and 
source features (periodicity, spatial 
location etc.).

Algorithm Auditory grouping

Decompose acoustic signal across time 
and frequency; reassemble into complete 
sources on the basis of grouping 
principles via particular cues.

Implementation
Feature calculation 
& feature binding

Calculation of individual features in 
auditory maps; combination of features 
represented neurally.
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exhibit jumps during the episodes when they are present). The converse of this constraint is that if
all source properties change abruptly, the sound on either side of the change is likely to be heard as
two distinct sources. 

Independence and continuity are so basic in their role of defining sources that there is little point in
trying to identify which aspects of auditory processing reflect those particular constraints; rather,
they underly the entire function. For this reason, we propose that they serve as elements of the
“computational theory” of hearing. By contrast, the other cues used in auditory organization, such
as pitch and interaural parameters, are related to specific feature calculations within the hearing
system. We regard them as belonging to Marr’s “algorithm” layer, to which we now turn.

 

Auditory grouping

 

The auditory system represents just one approach to getting information out of sound, albeit one that
an artificial computational device would be hard-pressed to better. Clues to the functional
partitioning of auditory processing have been obtained by both physiological and psychological
experimentation, permitting some inferences concerning the algorithmic layer. 

Early auditory signal processing involves at least two forms of decomposition. First, the signal is
subject to a spectral decomposition in the cochlea – an organizational axis maintained throughout
many later processing stages. Second, it appears that different properties are extracted in distinct
auditory maps (Moore, 1987). Consequently, information arising from a single acoustic source finds
itself distributed both across cochleotopic frequency and between several auditory nuclei. For
instance, a voiced speech sound gives rise to a series of harmonically-related peaks in the low-
frequency portion of an excitation pattern. The higher frequencies might contain envelope
modulations at the voicing fundamental frequency (f

 

0

 

) as reflected in the full-band temporal
envelope (or equivalently caused by the interaction of neighboring harmonics in the response area
of the auditory filter). The fine time response at the output of each such filter would also contain
periodicities related to the fundamental and its harmonics. Moore (1997, fig 5.6) depicts some of
these properties of the auditory filterbank response to periodic sounds. It is possible that further
processing of harmonic peaks, envelope and fine structure is carried out in distinct auditory maps.

This two-fold separation (by frequency channel and cue class) is understandable: since different
sources in an acoustic mixture may dominate distinct spectral regions, spectral decomposition is an
elementary first step in signal separation. Functional decomposition – processing in distinct auditory
maps – allows the deployment of relevant processing hardware to extract different signal properties
such as f

 

0

 

 and location, including the possibility of using several complementary processing
approaches for each of these properties.

Given this fragmentation of the original sound waveform into several features defined over multiple
dimensions, the problem of deducing a description of a particular event in the physical world is now
dominated by the question of which portions of this distributed representation belong together as
relating to that event. Referring to Table 1, the top-level problem of “source organization” becomes
the algorithmic/representational issue of “auditory grouping.”

In describing the different forms of grouping that arise, it is tempting to make short-hand statements
such as “sound components with a common pitch are grouped together.” However, the possibility
of multiple mechanisms for sound organization based on even a single factor such as f

 

0

 

 demands a
more precise discussion. In fact, it is possible to distinguish between at least three types of grouping:

• grouping of local features within auditory maps, that is the assembly of locally-consistent
regions of the maps that presumably reflect a single source,



 
Table 2: Summary of grouping cues 

 

Source property Potential grouping cue Illustrations Notes

Starts & ends of events 
(common onset/offset)

Synchrony of transients across 
frequency regions

Effect of onset asynchrony on syllable 
identification (Darwin, 1981) and pitch 
perception (Darwin & Ciocca, 1992)

Onsets and offsets can also be considered as 
slow amplitude modulations. 
Offset generally weaker than onset.

Temporal 
modulations

slow
Correlation among envelopes in 
different frequency channels

Comodulation masking release (Hall 

 

et 
al.

 

, 1984)

Common frequency modulation may lead to 
common amplitude modulation as energy 
shifts channels (Saberi & Hafter, 1995)

fast,
periodic 

Channel envelopes with periodicity at 
f

 

0

 

 (unresolved harmonics)
Segregation of two-tone complex by AM 
phase difference (Bregman

 

 et al.

 

, 1985)

Harmonically-related peaks in the 
spectrum (resolved harmonics)

Mistuning of resolved harmonics (Moore 

 

et al.

 

, 1985); effect on phonetic category 
(Darwin & Gardner, 1986)

Periodicity in fine structure (resolved 
& unresolved harmonics)

Perception of ‘double vowels’ 
(Scheffers, 1983, etc.)

Basis for autocorrelation models (Patterson, 
1987; Meddis & Hewitt, 1991)

Spatial location

Interaural time difference due to 
differing source-to-pinna path lengths

Vowel identification (Hukin & Darwin, 
1995). Strongest effect if direction is 
previously cued.

Evidence that suggests role of ITD is limited 
(Shackleton & Meddis, 1992) or absent 
(Culling & Summerfield, 1995b)

Interaural level difference due to head 
shadowing

Noise-band vowel identification (Culling 
& Summerfield, 1995b)

Monaural spectral cues due to pinna 
interaction

Localization in the sagittal plane 
(Zakarauskas & Cynader, 1993)

Has not been investigated for complex, 
dynamic signals such as speech.

Event sequences

Across-time similarity of whole-event 
attributes such as pitch, timbre etc.

Sequential grouping of tones (Bregman 
& Campbell, 1971); sequential cueing 
(Darwin 

 

et al

 

., 1989, 1995)

Long-interval periodicity Perception of rhythm
By-product of very-low-frequency ‘spectral’ 
analysis (e.g. Todd 1996)?

Source-specific Conformance to learned patterns Sine-wave speech (Remez  et al.  , 1981)
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• grouping of features corresponding to the same source represented in different maps, such
as a pitched source whose low and high harmonics may be grouped in separate maps by
spatial pattern and temporal structure respectively, and

• grouping based on the acquired expectations of prior knowledge (“schema-driven”
grouping) as distinct from “primitive grouping” involved in earlier processing stages
(Bregman, 1990).

Having situated the concept of ‘auditory grouping’ within the entire perceptual problem, the next
section summarizes current understanding of the kinds of grouping at work in the hearing system.

 

1.B Summary of grouping cues

 

Table 2 is an attempt to summarize the many experimental investigations of grouping using the
framework expressed above. The organization of the table reflects the idea that each property of an
acoustic source produces a number of auditory consequences, each of which represents a potential
grouping cue. Darwin & Carlyon (1995) provide a quantitative tabulation of some of these
investigations and demonstrate that grouping is not “all-or-nothing”, but occurs at different degrees
of feature prominence depending on the measure used.

Having numerous cues for sound organization respects the fact that any one of them may fail to
indicate the correct grouping, but it simultaneously presents higher auditory levels with the
possibility of inconsistent or conflicting cues. Investigations of conflicts such as frequency
proximity vs. ear of presentation (Deutsch, 1975) or onset asynchrony and mistuning (Darwin &
Ciocca, 1992; Ciocca & Darwin, 1993) can provide valuable insight into high-level audition.

Some signal features have been proposed as potential grouping cues but do not appear in Table 2.
Foremost amongst these is the common frequency modulation imposed on harmonics in voiced
speech. There is little evidence for an independent effect grouping by common FM over and above
that provided by instantaneous harmonicity (Gardner & Darwin, 1986; Summerfield & Culling,
1992), although the presence of FM can make vowels more prominent against a background of
unmodulated sounds (McAdams, 1984).

This introductory section concludes with a chronological review of developments in the field of
auditory organization in listeners and machines. Many of these results will be discussed in more
detail in sections 2 through 5.

 

1.C Historical overview

Listeners

 

One of the earliest accounts of the problem faced by listeners when presented with simultaneous
utterances was described by Cherry (1953). Considering the task he termed the “cocktail party
problem,” he speculated on the possible cues to its solution – location, lip-reading, mean pitch
differences, different speeds, male/female speaking voice, accents etc. Cherry highlighted the
relative ease with which one of a pair of simultaneous sentences could be repeated when the
messages were sent to different ears. In a refinement of this strategy, Broadbent & Ladefoged (1957)
employed synthetic, two-formant speech to examine the roles of both ear of presentation and
fundamental frequency on perceptual fusion, as reflected by the number of voices heard by listeners.
They found that fusion occurred even when the two formants were sent to different ears, but that
giving the two formants sufficiently different fundamental frequencies prevented fusion. Their
findings not only demonstrated a clear role for fundamental frequency differences in perceptual
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organization, but were an early anticipation of the interactions that occur when multiple cues for
grouping are placed in opposition which each other, a recurrent theme in studies of grouping and
segregation. Broadbent & Ladefoged were amongst the first authors to recognize the computational
problem posed by hearing, noting that perception in the presence of other sounds represents the
normal, everyday mode for spoken language processing.

A different approach to the study of speech perception in such everyday acoustic backgrounds came
with the finding by Warren (1970) that listeners were unaware of the absence of short segments of
sentences which had been replaced by a louder noise. This phenomenon was termed the 

 

phonemic
restoration effect

 

. Later work (Warren 

 

et al

 

., 1972) generalized its application to non-speech signals
and phonemic restoration is now considered as a special instance of a collection of “auditory
induction” effects, including induction between ears and across frequencies. Auditory induction
appears to reflect a desire for coherent explanations in sensory processing. 

Warren’s work was an important demonstration that the auditory system was not simply a passive
conduit for sensory information, but was engaged in an active interpretation of the signal, with
illusory percepts as a side-effect. Bregman & Campbell (1971) showed that, dependent upon
stimulus parameters such as frequency separation and repetition time, an alternating sequence of
high and low frequency tones would be perceived as a single sound source alternating between high
and low frequencies (the veridical percept) or as two sources, consisting of repeated high tones and
low tones respectively (the illusory percept). Bregman referred to these percepts as “auditory
streams” to distinguish them from more objective physical entities, and the rules governing this
description-forming process have been extensively investigated by Bregman and his colleagues
since the early 1970s.

Much of this early work on streaming employed simple tonal stimuli, although some studies used
speech-like sounds and demonstrated similar effects of factors such as spectral dissimilarity on
streaming in a temporal order identification task (Cole & Scott, 1973) and pitch and formant
continuity on speech coherence (Darwin & Bethell-Fox, 1977). These studies used repeated
sequences to induce segregation, which raises questions over whether the grouping cues uncovered
in such experiments can be usefully employed in everyday speech perception. Darwin’s (1981)
attempt to find evidence for grouping in speech was a turning point. Darwin used single
presentations of synthetic vowels and consonant-vowel (CV) syllables in which formants differed in
either onset times or f

 

0

 

. Earlier, Cutting (1976) has shown that listeners were able to identify
syllables whose formant resonances had been divided between ears: The lowest, first formant (F1)
was presented to one ear; the other ear received the higher formants (F2 and F3) but with a different
fundamental. Darwin failed to find an effect of onset asynchrony or difference in f

 

0

 

 on phonetic
category except in one condition in which grouping could result in two equally-plausible syllables.
Here, a synthetic four-formant syllable was constructed which would be perceived as /ru/ if all
formants were played together, or as /li/ if F2 were omitted. This innovative paradigm enabled
Darwin to manipulate f

 

0

 

 and relative onset times of the second formant (F2), and to demonstrate an
effect of perceptual organization on phonetic categorization. 

The conclusion of Cutting (1976) and Darwin (1981) that phonetic interpretations could easily
override conflicting cues for perceptual organization led to the realization that explorations of
grouping need to be performed in a phonetically-neutral context. Over the next few years, a series
of refinements and new paradigms enabled a much closer analysis of the role of perceptual grouping
in speech, with the spotlight on the identification of synthetic stationary vowels. Darwin (1984)
exploited the fact that a vowel continuum from [

 

I

 

] to [

 

ε

 

] could be constructed by varying F1 between
375 Hz and 500 Hz to provide a sensitive indicator of whether tones at harmonics close to F1 were
perceptually integrated into the vowel under various conditions. These experiments demonstrated
that onset or offset asynchrony could reduce the contribution that a harmonic makes to vowel
quality. Darwin & Gardner (1986) employed a harmonic mistuning paradigm (Moore 

 

et al.

 

, 1985)
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and the [
 

I
 

]-[
 ε  

] continuum to show that, just as a mistuned component could be excluded from
computation of pitch, it could similarly contribute less to vowel quality. 

An alternative approach to the study of grouping in speech was introduced by Scheffers (1983). He
asked  listeners to identify both constituents of pairs of concurrent synthetic vowels. This double
vowel task, as it came to be known, has proved to be a fertile paradigm for the study of auditory
perceptual organization. One early finding was that a difference in fundamental frequency between
the constituent vowels leads to a significant improvement in identification scores. Subsequent
experimental and modeling studies have resulted in several quite distinct explanations for this effect.

The links between perceptual organization in audition and other modalities, such as vision, were
made explicit by Bregman (1984), who coined the term “auditory scene analysis” to describe the
goal of processes attempting to form coherent explanations of the external sound field. Darwin
(1984) also drew an analogy with Marr’s (1982) work in vision, pointing out the distinction between
low-level properties, directly evident in the waveform, which are used to assign features to different
sound sources, and those more abstract properties which should be allowed in contact with phonetic
categories. 

By 1990, a significant body of perceptual studies of auditory fusion and segregation had
accumulated, consolidated by Bregman’s (1990) comprehensive monograph. Many properties of
sound sources considered as potential features for organization had been investigated. One finding
has been the failure of grouping under circumstances which might otherwise have been thought to
promote it. For example, changes in f

 

0

 

 lead to correlated changes in harmonic frequencies, known
as common frequency modulation (FM). In investigating whether common FM causes perceptual
fusion, it is necessary to rule out cues based on instantaneous mistuning caused by FM phase
differences, and the detection of incoherent FM. Gardner 

 

et al. (1989), using the /ru/-/li/ paradigm,
found no effect of incoherent FM in segregating F2 from the remainder of the syllable.

Other recent trends in the study of auditory perceptual organization include:

• explorations of the relationship between grouping and other phenomena such as
comodulation masking release (Hall & Grose, 1990; Grose & Hall, 1992, 1993),
modulation detection interference (Yost & Sheft, 1989; Hall & Grose, 1991; Moore &
Shailer, 1992), binaural interference (Stellmack & Dye, 1993) and informational masking
(Kidd et al., 1994, 1995). 

• investigations of the relationship of grouping to other aspects of auditory function, such
as the determination of pitch, location or phonetic quality of a sound source. A careful
quantitative analysis of this task-dependent influence of grouping is provided in Darwin
& Carlyon (1995), who document the way in which the size of the cue manipulation
required to reveal an effect varies according to the task involved. Thus, for the tasks of
detection, identification as a separate source, determination of pitch, vowel classification,
speech separation, and literalization, the degree of mistuning required of a single
harmonic varies from 1% to 10%. Similarly, the amount of onset or offset asynchrony
required in a similar range of tasks can vary from a few milliseconds for detection to
several hundreds of milliseconds for tasks involving pitch and vowel identification.

• developmental studies, for example the examination of perception of inharmonicity in
infants (Clarkson & Clifton, 1995; Clarkson & Rogers, 1995), showing a decrease of
pitch salience with inharmonicity similar to that of adults.
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Models

One of the earliest computational attempts at speech separation was the signal-processing approach
of Parsons (1976). Although Parson was not motivated by auditory findings, his system served to
define – and partially solve – some of the issues which have since become central for computational
auditory scene analysis (CASA) systems operating on voiced speech, namely the resolution of
overlapped harmonics, the determination of multiple pitches, and the tracking of fundamental
frequency contours which may cross. Parsons described the separation of voiced speech as the
“principal subproblem”, and his system set about solving it by identifying two sets of harmonic
peaks in a standard fixed-bandwidth Fourier-transform spectrum, estimating their pitches and
tracking their evolution through time.

In 1983, Scheffers described an algorithm for concurrent vowel separation to explain data from his
perceptual tests in which listeners demonstrated an improvement in their identification of both
vowels as the fundamental frequency difference between them increased (Scheffers, 1983). The
concurrent vowel task has since become an important proving-ground for ASA, and a number of
models of listeners’ performance in this domain have been proposed since Scheffers’ pioneering
studies (Assmann & Summerfield, 1990; Meddis & Hewitt, 1991, 1992; Lea, 1992; de Cheveigné,
1993; Brown & Cooke, 1994; Culling & Darwin, 1994; Berthommier & Meyer, 1997; Varin &
Berthommier, 1997; Brown & Wang, 1997).

In the same year, Lyon (1983) – influenced by Jeffress’ (1948) proposal for an interaural delay line
mechanism – presented a computational model of binaural localization and separation which
performed a cross-correlation of the outputs of cochlear simulations for opposing ears. Lyon used
the term “correlagram” to describe the cross-correlation representation (the term “correlOgram” has
since come to refer primarily to an autocorrelation analysis) and demonstrated separation of a short
speech signal from an impulsive sound generated by striking a ping-pong ball.

Weintraub (1985) was the first to design a system with an explicit auditory motivation to tackle the
more difficult problem of sentence separation. His pitch-based separation system was inspired by
the neural autocoincidence model of Licklider (1951).

These early demonstrations illustrated the engineering potential of cues such as pitch and interaural
differences, but they did not provide quantitative measures of algorithm performance. One of the
first studies to do so was the evaluation by Stubbs & Summerfield (1988) of two algorithms for the
separation of voices based on a difference in fundamental frequency in a single channel. One
approach operated by attenuating the pitch peak corresponding to the interfering voice through
filtering the cepstrum of the mixed signal. The other was similar to Parsons’ (1976) harmonic
selection scheme. By resynthesizing the target voice, possible speech enhancement benefits of these
approaches could be evaluated. Stubbs & Summerfield used synthetic vowel pairs in one task and
CV words masked by synthetic vowels in another to show that the enhanced speech was more
intelligible to listeners with normal hearing and with hearing impairments.

The decade since Weintraub’s system have witnessed a proliferation of modeling attempts. Cooke
(1991/1993) described a system for computational auditory scene analysis which operated by
seeking organization amongst time-frequency tracks representing the evolution of spectral
dominances in the outputs of a model of the auditory periphery. His approach employed grouping
rules based on principles such as harmonicity, common amplitude modulation, common
fundamental and frequency proximity. Mellinger’s system (1991), while concerned with modeling
the auditory organization of musical rather than speech sources, looked for groups with onset
synchrony and common frequency modulation. Brown (1992) used a collection of computational
maps as a substrate for automatic grouping. These maps were designed to represent possible
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tonotopically-organized computation in the auditory brainstem and cortical regions, and included
maps describing onsets, offsets, local periodicities and frequency movement.

The fact that these systems employed multiple grouping cues led to the issue of how best to combine
evidence from factors such as pitch and onset synchrony. Kashino & Tanaka (1993) attempted to
handle such integration using Dempster’s combination law; later work (Kashino et al., 1998) has
exploited Bayesian networks. A popular alternative (Cooke et al., 1993; Ellis, 1996; Klassner, 1996;
Godsmark & Brown, 1997) has been the use of blackboard architectures (Carver & Lesser, 1992;
Nii, 1986), which consist of independently-defined knowledge sources or experts (e.g. a tracking
expert, or a harmonic grouping expert), cooperating via a global data structure (the blackboard). 

More recently, concern has focussed on the role of schemas in auditory scene interpretation.
Blackboard systems also cater well for the interaction of stored knowledge or expectations about
sound sources with evidence arriving from low-level grouping processes. Ellis (1996) implemented
an expectation-driven system for CASA whose goal reflects the fundamental purpose of auditory
scene analysis – to reconcile the evidence grouped out of arbitrary sound mixtures with the
predictions made by prior knowledge about sound sources.

A potential attraction of computational auditory scene analysis is the prospect of an approach to
robust automatic speech recognition. Weintraub’s system attempted to recognize separated speech,
but the difficulties of interfacing CASA and ASR have only recently received closer attention.
Cooke et al. (1994) proposed the development of missing data theory to allow ASR systems to
attempt recognition on the basis of partial evidence, as an alternative to the recognition of CASA-
enhanced speech by an unmodified recognizer. Ellis (1997) envisaged a speech “knowledge source”
to be used in conjunction with nonspeech elements within a single prediction-reconciliation
framework to construct complete explanations for sound mixtures.

Chapter organization

The chapter has two levels of organization. The sequencing of sections 2 to 5 reflects a systematic
progression from lower to higher levels of stimulus complexity. Section 2 deals primarily with
simple tonal configurations used to demonstrate the streaming effect. Section 3 examines some of
the extensive experimental and modeling work which has employed simultaneous synthetic vowels
(‘double vowels’). Section 4 considers the processing of natural utterances using only primitive
grouping cues. Section 5 describes the additional role played by schemas for instance in
understanding speech in noise. The organization of material within each section reflects the title of
the chapter: first, relevant perceptual evidence for organization in listeners is considered, followed
by details of algorithms which attempt to replicate the effects in machines. Some of these models
are motivated by neurophysiology, others by the desire to match listeners’ data in perceptual tests,
while some are predominantly inspired by the notion that a good engineering solution to the
problems posed by hearing can be obtained by following, at some level of abstraction, the laws of
auditory organization. After surveying these functional models, section 6 looks briefly at models of
the underlying neural machinery. The chapter concludes with a discussion of the major issues facing
computational auditory scene analysis.

2. The streaming effect

2.A Listeners

A sequence of alternating high and low frequency tones can result in the perception of either one or
two coherent patterns or streams (Miller & Heise, 1950; Bregman & Campbell, 1971). Factors
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influencing segregation into streams are discussed at length in Bregman (1990, chapter 2) and
summarized below:

• frequency separation: if the frequency difference between alternating high and low tones
is progressively increased, the perception of a continuously alternating pitch (the ‘trill’)
changes to that of two interrupted tones. The frequency separation at which this occurs
was termed the “trill threshold” by Miller & Heise (1950). Using a different measure of
streaming based on rhythm, van Noorden (1975) demonstrated that the streaming effect
could better be described by two thresholds, one (which he called the “temporal
coherence boundary”) located at the smallest frequency separation which was too large
for the tones to be heard as one coherent stream, the other marking the upper limit of tones
that always formed a single stream (the “fission boundary”, below which two streams
could not be heard). In the intervening range of frequency separations, listeners could
alternate between hearing one or two streams.

• rate of alternation: van Noorden (1975) mapped out the fission and temporal coherence
boundaries as a function of tone onset-to-onset interval. At short tone repetition times (60
ms), the boundaries are quite close, while for larger intervals (150 ms), the boundaries are
far apart. However, the fission boundary remains low and is largely unaffected by tone
repetition time, suggesting that while it is relatively easy to try to hear two streams, it is
very difficult to hold on to a single stream at high repetition speeds.

• duration: the default tendency of a stream to be heard as coherent until sufficient evidence
to split it has been mentioned. Bregman (1978) found the segregation effect to be
cumulative, with evidence accumulating over a period of a few seconds. 

Cyclic sequences of somewhat greater timbral complexity have been also been used. Bregman &
Pinker (1978) used an alternating sequence of a single tone with a pair of tones to reveal a trade-off
between onset asynchrony and frequency separation in streaming: constituents of synchronous tone
pairs are more difficult to capture into a competing stream than asynchronous pairs. Bregman &
Levitan (1983) put into opposition streaming-by-fundamental and streaming-by-timbre,
demonstrating the efficacy of both factors, albeit with a stronger effect of the fundamental.

Stream segregation has also been demonstrated using non-cyclic sequences. Deutsch (1975) used
musical scales to demonstrate the dominance of grouping by frequency proximity over grouping by
ear of presentation, while Hartmann & Johnson (1991) used an interleaved melody identification
task.

±2 octaves

TRT: 60-150 ms

Figure 2: Stimulus configuration for the streaming experiments of van Noorden
(1975). The sequences of alternating sinusoidal signals are presented with differing
frequency separations (∆f) between the tones and differing overall repetition
periods (TRT).

time

freq.

∆f:
1 kHz
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Several theories have been proposed to account for aspects of the streaming effect. Three of these
are discussed in Rogers & Bregman (1993), to which can be added the peripheral channelling
interpretation of Hartmann & Johnson (1991). Rogers & Bregman contrast Bregman’s (1990)
auditory scene analysis account – which favors sequential grouping by the Gestalt principle of
frequency proximity – with those of van Noorden (1975) and Jones (1976). van Noorden’s
suggestion was that hypothetical frequency jump detectors become adapted and unable to follow the
alternating pattern of tones. Jones proposed a theory based on rule-based predictability of sequences. 

Rogers & Bregman attempted to distinguish between the three accounts by measuring the effect of
preceding ‘induction’ tones on the streaming of a test sequence of the form HLH_HLH_ (where H
and L signify high and low frequency tones, and _ indicates a pause). All induction conditions led
to an improvement in streaming effectiveness in comparison to a control condition which used low-
intensity white noise. All induction sequences consisted solely of high frequency tones, ruling out
van Noorden’s proposed adaptation of frequency jump detectors. Induction sequences which
differed only in the predictability of inducer tones performed no better than those containing
irregular patterns of tones, in contrast to the predictions of Jones’ theory. 

A second experiment, using inducer sequences which varied in number and total duration of tone
elements, demonstrated that segregation improved with the total number of tone onsets rather than
the summed tone durations in the inducer sequence. This finding runs counter to Bregman’s original
hypothesis that the inducer would set up a cumulative frequency bias for the higher tone, but was
interpreted by Roger & Bregman as an example of sequential grouping by similarity of the number
of tone onsets in inducer and test sequences.

A challenge to the grouping account of the streaming effect comes from the work of Hartmann &
Johnson (1991). They used an interleaved melody identification task (Dowling, 1973) to look for
streaming effects which could not be explained by the simpler process of peripheral channeling.
Peripheral channels were defined as those established in the auditory periphery, and include
tonotopic and lateral channels. Elements of one of the interleaved melodies were manipulated in
each of 12 different conditions designed to favor explanations in terms of peripheral channelling or
grouping (or both). Example manipulations included those that produced differences in frequency
range, level differences or duration between the two melodies. They interpreted their results as
indicating that “those tone differences that lead to the excitation of different peripheral channels
promote stream segregation much more effectively than tone differences that do not excite different
channels but which might well evoke the images of different sources, based on other source-
grouping grounds.” However, Hartmann and Johnson point out that a source-grouping model might
contain peripheral channelling as an early component.

2.B Models

A number of models which seek to explain streaming as an emergent consequence of early, low-
level, auditory computations have been built, starting with the simple excitation integration model
of Beauvois & Meddis (1991, 1996). They sought to explain the perceptual coherence of tone
sequences alternating in frequency, as used by van Noorden (1975), noting that listeners tend to hear
more than one stream if the tone repetition time is sufficiently short, or if the frequency separation
of the tones is sufficiently large. Beauvois & Meddis addressed these findings with a three-channel
model, with bandpass channels centered at each of the tone frequencies and at their geometric mean.
Noise was added to the rectified output of each channel, and the summed signal formed the input to
a leaky integrator. The channel with the highest output was selected, and activity in the other two
channels was attenuated by 50%. Temporal coherence was indicated when the short-term averaged
level in response to each tone was roughly equal. Beauvois & Meddis showed that temporal
coherence could be obtained when the two tones were close in frequency, since in this condition the
dominant channel is the middle one, preventing either of the other channels to predominate. Thus,
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their average levels of channels at the tone frequencies are roughly the same. They also showed that
temporal coherence would occur for larger frequency separation, as long as the tone repetition time
was sufficiently long for the excitation in the most-recently stimulated channel to decay over the
time course of the interval (this requires tone duration to be short relative to the tone repetition time).
Conversely, streaming occurs in the model when the tone repetition interval is short. In this situation,
the most-recently activated channel does not suffer a sufficient decay in activity during the tone
interval, and the internal noise tends to favor the dominance of one or other channel, leading to an
imbalance and hence the model criterion for streaming is obtained. The noise level plays a crucial
role in determining the precise balance between coherence and streaming. Beauvois & Meddis
demonstrate that a single setting of this parameter allows the model to explain grouping by
frequency and temporal proximity, as well as the build up of streaming over time (Anstis & Saida,
1985). However, they acknowledge that the model cannot explain across-channel grouping
phenomena such as that of Bregman & Pinker (1978).

McCabe & Denham (1997) extended the Beauvois & Meddis model to include multichannel
processing and inhibitory feedback signals, whose strength they related to frequency proximity in
the input. This mechanism leads to the suppression of any subsequent stimulus components which
are different from those responsible for the suppression. In fact, this residual activity is processed in
a separate ‘background’ map, which in turn has the potential to inhibit components in the foreground
map. McCabe & Denham (1997) suggest that their model can be viewed as an implementation of
Bregman’s old-plus-new heuristic, in which ‘new’ organization appears in the residual left after
subtraction of ‘old’ components, based on the assumption of continuity. In addition to the streaming
data accounted for by Beauvois & Meddis, their model caters for the influence of organization in the
background on the perception of the foreground as found by Bregman & Rudnicky (1975).

Recently, Todd (1996) has demonstrated an alternative mechanism to explain some of these
primitive streaming phenomena. His physiologically-inspired model computes a 2-dimensional map
of activity as a function of best modulation frequency and tonotopic frequency. A slice through this
map at a given tonotopic frequency can be understood as an amplitude modulation spectrum in
which temporal patterning in the stimulus can be encoded. Todd showed that a cross-correlation of
pairs of such amplitude modulation spectra provides a reasonable (and simple) representation of
streaming and coherence, with high cross-correlation values indicating coherence. Grouping by
frequency proximity occurs in this model for stimuli which are sufficiently close in frequency and
which have similar temporal patterns. Grouping by temporal proximity was shown to have the
required dependence on the repetition rate of the stimuli. It arises in the model as a consequence of
the separation of AM harmonics. At high repetition rates, excitation at the repetition frequency is
well separated from its harmonics, leading to a sensitive cross-correlation measure. At lower
repetition rates, there is a greater overlap between AM spectra due to a larger numbers of peaks,
leading to a higher cross-correlation value and hence reduced sensitivity.

Most of the streaming mechanisms described above require cyclic repetition in order to produce a
correlate of fission or fusion. An exception is the model of Godsmark & Brown (1997), which is
based on maintaining multiple grouping hypotheses until sufficient information arrives to
disambiguate potential organizations. Consequently, their model can handle a wide range of
streaming phenomena including context-dependent and retroactive effects (Bregman, 1990). The
approach taken by Godsmark & Brown involves training the model to produce streaming effects
observed in simple tonal configurations, then observing the more complex emergent grouping
behavior on tasks such as polyphonic music transcription. For example, the model produced good
matches to listeners’ performance in the interleaved melody identification tasks described earlier in
this section (Hartmann & Johnson, 1991).
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2.C Discussion

Fusion and streaming

Although we have taken streaming as the starting point for our discussion of auditory organization,
it presupposes the formation of distinct ‘events’, possibly requiring the fusion of energy in multiple
frequency bands. Indeed, Bregman & Pinker (1978) set up a conflict between the formation of single
events from simultaneous tones and conventional streaming factors. Factors governing fusion, such
as harmonic relations and synchronous onset, have been further investigated and modeled through
double-vowel stimuli, as discussed in the next section.

The relevance of streaming phenomena to speech organization

Cyclically-repeated tonal configurations are hardly a common feature of the sound mixtures which
listeners typically process. Consequently, it may be unwise to make inferences about the perceptual
organization of everyday signals such as speech on the basis of streaming experiments. Bregman’s
rationale for the use of cyclic sequences (Bregman, 1990, p.53) is largely one of experimental
pragmatism, and he urges the use of other methods to verify effects found using cyclic presentation.
Since many explanations of listeners’ responses to repeated stimuli would be difficult to apply to the
general problem of auditory organization, it is conceivable that different mechanisms are invoked to
those which apply in more natural settings.

An alternative way to explore grouping is to use stimuli that are somewhat closer to those present in
a listener’s environment, yet still sufficiently simple to be controllable in an experimental setting.
Double vowels are single-presentation stimuli which satisfy these constraints, and the next section
looks at their perceptual organization and at models which attempt to account for listeners’
identification performance.

3. Double vowels

3.A Listeners

The finding that listeners are able to recognize simultaneously presented synthetic vowels at levels
well above chance (Scheffers, 1983) has led to a large number of perceptual studies utilizing this so-
called double vowel or concurrent vowel paradigm. Part of the attraction comes from the ease with
which stimulus manipulations thought to promote perceptual organization can be performed on
vowel pairs. For example, constituent vowels can be synthesized on different fundamental
frequencies, modes of excitation, relative intensities and interaural time or level differences. 

In the ‘standard’ double vowel experiment, listeners have to identify both constituents of synthetic
concurrent vowel pairs (usually drawn from a set of 5) of a given duration (typically 200 ms). 

Key findings for a variety of double vowel manipulations are: 

• Concurrent vowels synthesized with the same f0 can be identified at a level well above
chance (Lea, 1992). When the choice is between 5 vowels, a typical result is correct
identification of both constituents in 55% of trials.

• Pairs of whispered vowels are identified at about the same rate as vowels with a common
f0 (Scheffers, 1983; Lea, 1992). Whispered vowels may be constructed to contain no clear
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grouping cues, so performance in this task is usually taken as the baseline upon which
improvements due to grouping are made.

• A difference in fundamental frequency between pairs of concurrent vowels leads to an
absolute improvement of 10-15% in vowel identification performance, starting with a
difference as small as a quarter of a semitone and asymptoting between 1-2 semitones.
This basic finding of Scheffers (1983) has been replicated by several researchers
(Assmann & Summerfield, 1990; Culling & Darwin, 1993; Lea, 1992; Meddis & Hewitt,
1992; de Cheveigné, 1997). 

• A difference in mode of excitation (voiced/whispered) between the constituent vowels
leads to an identification improvement of around 10% (Lea, 1992). Further, the
whispered constituent of a voiced/whispered vowel pair was identified significantly more
accurately than when both vowels were whispered, but the voiced component was no
more intelligible than when both vowels were voiced and on the same f0 (Lea, 1992).

• Identification performance varies with the harmonicity or inharmonicity of vowel pair
constituents (de Cheveigné et al., 1995).  An inharmonic target vowel presented 15 dB
below a harmonic masker vowel was significantly better identified than a harmonic target
behind a stronger inharmonic masker.

• When the f0s of vowel formants are swapped such that the first formant (F1) of one vowel
has its higher formants synthesized with the f0 of the other vowel, and vice versa, or when
an f0 difference is applied only to the F1s of the two vowels, listeners show the same
improvement as in the standard condition up to a f0 difference of 0.5 semitones (Culling
& Darwin, 1993). Culling hypothesized that listeners used the time-varying excitation
pattern caused by beating in the F1 region to identify constituents at times favorable to
one or other vowel (Culling & Darwin, 1994).

• Identification improvement with f0 difference is smaller for brief (50 ms) stimuli than for
longer (200 ms) stimuli (Assmann & Summerfield, 1990). Repeating the same 50 ms
segment 4 times with 100 ms silent intervals did not lead to any improvement, but
performance did improve when successive 50 ms segments were presented with the same
silent intervals (Assmann & Summerfield, 1994). Some of this improvement has been
attributed to waveform interactions which allow better glimpses of one or other vowel at
difference times.

• One vowel of the pair (the ‘dominant’ vowel) can be identified at near 100% accuracy for
stimuli as short as one pitch period, while identification of the non-dominant vowel
improves with an increasing number of pitch periods (McKeown & Patterson, 1995).
Introducing a difference in f0 reduces the number of pitch periods required to reach
maximum performance. As well as showing a clear effect of stimulus duration on
identification of the non-dominant vowel, these results suggest that f0 differences are not
required for identification of the dominant vowel. The dominance effect can be removed
by adjusting levels of constituents in each pair (de Cheveigné et al., 1995), a manipulation
which may be necessary to allow the conditions of interest to surface.

• Shackleton & Meddis (1992) found that spatial separation of vowels resulted in no
increase in identification performance for vowels with the same f0s. For different f0s,
spatial separation led to a small improvement. 
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• In a simulated reverberant environment, Culling et al. (1994) explored the robustness of
binaural and f0 difference cues, concluding that the latter continued to be useful in
reverberant fields that had removed the benefits of the former.

• Culling & Summerfield (1995b) used a reduced form of double vowel stimulus, in which
each vowel was represented by two noise bands, to demonstrate an absence of across-
frequency grouping by common interaural delay (ITD), although leading the noise bands
to different ears did permit recognition. They went on to show that introducing an
interaural decorrelation (as opposed to a delay) also allowed identification of the vowels. 

• No effects of common, across-frequency, patterns of frequency modulation on double
vowel identification have been found (Darwin & Culling, 1990; Culling & Summerfield,
1995a).

Useful reviews of concurrent vowel segregation can be found in Lea (1992), Summerfield & Culling
(1995) and de Cheveigné (1993, 1997).

Taken together, these findings suggest that listeners make use of a variety of stimulus properties
conveyed by the detailed time-frequency structure of the auditory response to identify double
vowels. Some of these can be cast as cues for primitive perceptual grouping, but the role of factors
which enable the engagement of vowel schema  (e.g. locally-favorable target-to-background level;
see Assmann & Summerfield, in press) need to be carefully assessed. In fact, no firm conclusions
about mechanisms can be drawn at present, although a number of detailed proposals have been
made. These are discussed below. 

3.B Models

The first computational model of double vowel segregation was constructed by Scheffers (1983)
himself. Scheffers’ model employed a harmonic sieve algorithm (Duifhuis et al., 1982) in which
each f0 estimate generated a sequence of frequency intervals around each harmonic frequency for
that f0. Peaks in the excitation pattern of the stimulus which fall through these sieve intervals
contribute to the evidence for that f0, and the f0 which has the largest weight of evidence is chosen.
Scheffers introduced a two-vowel procedure which finds the pair of f0s which together best explain
the excitation pattern. His model consistently underperformed listeners (e.g. 27% versus 45% for

f0=0), but showed a small improvement with a f0 of 1 semitone (38% versus 62% for listeners).
However, this improvement disappeared at 4 semitones difference (27%) while listeners’
performance remained at 62%. 

Scheffers’ harmonic sieve model can be classified as a place domain approach since it operates on
a narrowband spectral representation. An alternative strategy is to compute correlates of f0 by time-
domain processing. If this computation takes place on signals filtered by peripheral frequency
channels, such approaches are termed place-time processes. A review of place, place-time and pure-
time models for double vowel pitch estimation and segregation can be found in de Cheveigné
(1993). 

One process well-suited to detecting signal periodicities is autocorrelation. Several different
autocorrelation-like models have been proposed for auditory computation. In 1951, Licklider
suggested a structure for periodicity enhancement consisting of a series of delays, each of which fed
a multiplier and integrator, which in turn received an undelayed input. The series of delay elements
thus maps out uniformly increasing delays, and the integrated multiplication at any place along this
delay axis represents a running autocorrelation with the lag given by the number of delays which the
signal passes through to reach that place. 

∆ ∆
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Assmann & Summerfield (1990) compared two models on the concurrent vowel segregation task.
One was a place model similar to that used by Scheffers. The other involved a place-time analysis
based on detecting periodicities using an autocorrelation of the output of each channel of a periphery
model. Their place model estimated vowel spectra by sampling the excitation pattern at harmonics
of the f0s found by their implementation of Scheffers’ sieve. The place-time model estimated vowel
pitches as corresponding to the delays with the two largest peaks in a summary autocorrelation
function. This summary was created by summing individual autocorrelation functions across
channels. Figure 3 depicts an autocorrelogram of a vowel pair together with its summary. Vowel
spectra were then formed by taking slices through the autocorrelation functions at lags
corresponding to the two pitches. Assmann & Summerfield evaluated the performance of the place
and place-time models (and other variants of these involving an optional nonlinear compression
stage) and found that the place-time model came much closer to accounting for listeners
performance on the same task.
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Figure 3: Autocorrelogram of a synthetic double vowel pair ([er] on a fundamental of 126 Hz and
[ar] with a fundamental of 100 Hz). The summary correlogram (lower panel) shows a strong peak
at an autocorrelation lag of 10 ms, corresponding to periodicities in the signal at harmonics of
100 Hz. A smaller peak at 7.9 ms corresponds to harmonics of 126 Hz.
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Meddis & Hewitt (1992) also used an autocorrelogram analysis, but chose a different segregation
strategy. They first determined the lag of the largest peak in the summary autocorrelogram. They
then selected those channels whose individual autocorrelation functions possessed a large peak at
this lag. The remaining channels were deemed to belong to the other voice. A further innovation
concerned the choice of vowel template. Meddis & Hewitt computed another summary
autocorrelation function based solely on those channels selected as belonging to one of the vowels.
The lower-order lag coefficients in the summary encode information about periodicities at high
frequencies (the lag being inversely proportional to frequency), and they reasoned that spectral
information suitable for vowel identification would be encoded in the short-lag section of the
summary – which they termed the “timbre region.” They repeated this analysis with the unselected
channels to get a timbre region vector for the second vowel. Their vowel recognition results, based
on channel selection and timbre regions, were very close to the results of subjective tests performed
by Assmann & Summerfield.

One issue which has been explored with the aid of double vowel stimuli is the question of whether
listeners use an estimate of the fundamental of the target vowel to enhance or select that vowel, or
whether the f0 of the interfering vowel is used to attenuate or cancel it – or indeed whether a
combination of both strategies is used. An f0-based enhancement strategy is advantageous when the
target signal is periodic and dominant, since f0 estimates will be more accurate. Conversely,
cancellation ought to favor situations with a periodic and stronger interfering sound.

A number of authors have considered this question in detail (Lea, 1992; de Cheveigné, 1993, 1997).
Lea argued that an enhancement mechanism should favor a voiced vowel over a whispered vowel
regardless of whether the other vowel was voiced or whispered. By contrast, a cancellation model
predicts that a vowel is easier to pick out if the interference is voiced. Lea’s experimental results
suggests that listeners use a perceptual strategy which can exploit the periodicity of a interfering
vowel to help identify a target sound, but that they cannot use target periodicity to extract a vowel
from a mix.

More recently, Berthommier & Meyer (1997) have shown how amplitude modulation information
can be used as a basis for double vowel segregation. Their “AM map” is computed by performing a
‘pitch range’ spectral analysis of the envelope at the output of a bank of auditory filters. The resulting
representation conveys envelope modulation information as a function of spectral frequency, and
can be used in this raw form to group channels which possess a peak at the same envelope
modulation frequency. However, Berthommier & Meyer note that the presence of harmonics in the
AM spectrum can cause spurious peaks, and propose a further transformation using a harmonic sieve
to group these harmonics together prior to vowel classification.

De Cheveigné (1993) proposed a time-domain cancellation model based on a cascade of two comb
filters. A comb filter has the property of producing zero output for periodic input signals whose
period matches the lag coefficient of the filter. Of course, it is necessary to know the lag parameter
in order to actually effect the cancellation; however, the comb filter can be used to find the period
of an input signal by searching in filter lag space for a minimum output. Similarly, minimizing the
output from a cascade of two such filters by searching over a two-dimensional lag space leads to a
time-domain procedure for the estimation of both fundamentals of a pair of concurrent voiced
sounds. De Cheveigné compared the performance of this dual-f0 estimator with a scheme similar to
that used in the place-time model of Assmann & Summerfield (1990), described above, based on
choosing the two largest peaks in the summary autocorrelogram. His test data consisted of voiced
tokens of natural speech. Using the criterion of the percentage of estimates falling further than 3%
away from the correct f0, he found that the comb filter cascade scheme resulted in 10% errors, while
the summary correlogram method produced 62% error estimates. De Cheveigné went on to test a
neurally-inspired comb filter on auditory-nerve fibre responses to concurrent vowel stimuli,
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recorded from guinea pigs by Palmer (1990), demonstrating that it successfully isolated the
periodicities of either vowel.

The concurrent vowel paradigm has been used to explore the role of interaural cues in perceptual
grouping: Culling and Summerfield (1995b) found that distinguishing noise bands on the basis of
interaural time differences was inadequate to convey vowel identities to listeners, whereas interaural
decorrelation was, by contrast, sufficient. They accounted for this success with a computational
model based on Durlach’s (1963) equalization-cancellation procedure.

3.C Discussion

Interplay between pitch and grouping

One issue which models of double vowel segregation have highlighted is the interplay between
grouping and pitch: does grouping depend on pitch identification, or does grouping determine pitch,
or does each influence the other? It is known, for instance, that onset asynchronies amongst partials
of a tonal complex can influence pitch (Darwin & Ciocca, 1992). The very different models of
Meddis & Hewitt (1992) and de Cheveigné (1993, 1997) both rely on an initial pitch determination.
For Meddis & Hewitt, this allows the grouping of channels, but subsequently, the remaining
channels indirectly determine a second pitch. In a sense, this model embodies a bidirectional
interaction between pitch and grouping. This interplay should not be too surprising, since grouping
should not be considered as a single mechanism, but rather as a set of processes which jointly find
coherent structure in the auditory scene.

The time course of double vowel segregation

Some models of double vowel segregation typically operate over short time windows and have
difficulty accounting for perceptual findings which involve a wider temporal context (e.g. the results
of Assmann & Summerfield, 1994, and McKeown & Patterson, 1995, described in section 3A).
Culling & Darwin (1994) have showed that it is not necessary to adopt a time-domain periodicity
process to account for listeners’ double vowel identification for small f0 differences (0.25 semitone).
Their model used a temporally-smoothed excitation pattern as input to a single-layer perceptron
trained to recognize one of 5 vowels, and demonstrated an increase in identification with increasing
f0. They attributed this result to the possibility of glimpsing the changing spectrum arising from the
low-frequency beating caused by the small f0 difference. These results are considered further in the
discussion of extending cues across time in the next section.

4. Accumulating grouping information across time

In this section we consider how the auditory system combines information received at different
times.  It is easy to recognize a temporal aspect to grouping in the many ‘buildup’ phenomena
(discussed above in relation to streaming) where the perception of a stimulus depends on its
duration.  Many of these phenomena might be explained as no more than sluggishness in the
calculation of low-level features, but some may require a separate, central process for integrating a
‘grouping’ attribute, abstracted from any specific cue. We now examine some of the evidence for
such a mechanism.

4.A Listeners

The double-vowel paradigm combined sounds whose properties (fundamental frequency and
spectrum) did not vary beyond the scale of their pitch cycles, and in this respect they are unlike most
real-world sounds for which the coherent changes in different spectral regions offer a very powerful
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indication of common origin.  The theoretical account of grouping presented by Bregman (1990)
describes the treatment of local, distinct sound elements such as harmonics.  These elements are
grouped into sources on the basis of various cues;  implicit in this account is a central reckoning in
which each element is tracked over its period of existence, and evidence for grouping is gathered,
stored, and applied over the whole element – even though that evidence may arise from a limited
time interval. This subsection considers the experimental evidence for the way that grouping
information is used in time at different levels, starting from low-level cues and going on to more
abstract inferences; subsection 4B will consider models in which algorithms for combining evidence
from different times and different cues form a major part.

Extending a single cue across time

A single cue may influence grouping at times remote from its own temporal focus.  Thus, although
onset information is present only at the beginning of a tone, the segregation of a harmonic that starts
40-80 ms before the rest of a cluster will persist for many hundreds of milliseconds – as judged from
its contribution to the timbre (Darwin, 1984) or pitch (Moore et al., 1986).  Thus, a single cue can
exert an influence long after it has occurred.

An equally important role for time in low-level grouping is that certain cues may need a significant
signal duration for their determination. A detailed pitch judgement, for instance, needs to be
averaged across time to reduce internal noise. This may be a factor in the increasing perceptual delay
with decreasing pitch difference noted by McKeown & Patterson (1995). Other cues are intrinsically
dependent on time, such as the detection of cyclic repetition in iterated frozen-noise stimuli
(Guttman & Julesz, 1963; Kaernbach, 1992). Another example, described in Mellinger (1991), is the
Reynolds-McAdams oboe signal in which a small degree of frequency modulation is applied to just
the even harmonics of a signal that initially has the character of an oboe, but subsequently splits into
a clarinet-like tone (formed from the unmodulated odd harmonics) and something like a soprano at
an octave above (corresponding to the modulated harmonics). The frequency modulation may take
several hundred milliseconds of accumulated observation before it is sufficient to separate the sound
into two percepts, but once the threshold has been reached, the influence is much like an
instantaneous cue, in that it applies immediately to the tracked continuations of the sound.

Mistuning in double-vowel segregation and harmonic clusters provides an interesting case.  In both
situations, identification (of the different vowels, or of the presence of a mistuned harmonic)
becomes more difficult as the signal duration is reduced from 200 to 50 ms (for vowels; see
Assmann & Summerfield, 1994) or 400 to 50 ms (for harmonics; see Moore et al., 1986).  This
suggests a time-integration process able to make finer distinctions when given more of the signal.
The alternative explanation, proposed by Culling & Darwin (1994) is that in both kinds of stimulus
phase interactions between slightly mistuned harmonics give rise to ‘beating’ modulations.  This
may be a cue to discrimination in itself, or it may provide offer ‘glimpses’ – moments when the
signal interactions make the identification task briefly much easier.  A longer stimulus has a greater
chance of spanning such a glimpse, giving, on average, better identification.  If the benefits of
glimpsing relied solely on the single best glimpse, a shorter stimulus that happened to contain such
a glimpse would be equally well segregated.  This is partially supported by the result that certain
50 ms segments give better identification scores than others (Assmann & Summerfield, 1994).
However, in that study no 50 ms segment allowed the level of discrimination that occurred with the
200 ms segments, suggesting a benefit from low-level temporal integration available only in the
longer stimuli.

Glimpsing has also been proposed to explain the phenomenon of comodulation masking release
(CMR), in which the threshold for a sinusoidal target beneath a narrowband noise masker can be
reduced by adding noise bands separate from the target/masker band if the added bands share the
amplitude-modulation envelope of the on-band masker (Hall et al., 1984).  Although there are a
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variety of possible cues to this detection (Schooneveldt & Moore, 1989), at least some of the effect
appears to result from a comparison between the envelopes in the on-band and flanking frequency
channels. For instance, the auditory system could monitor the flanking noise envelopes to detect
instants when the on-band masker was briefly at a very low amplitude, giving the most favorable
opportunity for ‘glimpsing’ the target tone, or it could apply processing similar to Durlach’s (1963)
equalization-cancellation (EC) model (Buus 1985).  Before doing this, however, the auditory system
must have confirmed that the noise bands are co-modulated; this implies low-level integration along
time, either of repeated synchrony between features (such as amplitude peaks), or a more direct
calculation of the running cross-correlation (Richards 1987).

In these examples the temporal integration relates to only a single cue, and hence they do not require
a central reckoning of an abstract grouping property; the integration can be a direct part of the cue
calculation, and the grouping could be rigidly determined on the basis of the single strongest cue.  In
the next section, however, we look at circumstances where the interaction between different cues is
investigated, implying a more complicated process of grouping.

Integrating different cues

Combining different kinds of evidence is one of the most intriguing aspects of auditory organization,
and experiments in cue competition form an important paradigm. As we have seen, the Bregman &
Pinker (1978) stimuli investigated the competition between the fusion of (near) simultaneous sine
tones with the streaming of sequential tones close in frequency. Other experiments have related
onset asynchrony to mistuning (Darwin & Ciocca, 1992; Ciocca & Darwin, 1993) or spatial location
(Hill & Darwin, 1993). In each case, the result that the effect on grouping of reducing one cue can
be compensated for by increasing a different cue implies that, at some level, both cues are mapped
to a single perceptual attribute, and thereby become interchangeable.

In fact, the organization of any signal involves the combination of different cues: any simple signal
exhibits numerous attributes known to influence grouping such as common onset, harmonicity and
common interaural properties. Although a particular experiment may only investigate a single cue,
other aspects of the signal, even though they are held constant, will still contribute factors to be
integrated into the overall organization. Thus the reduced threshold for detecting mistuned
harmonics in longer signals could indicate the kind of integration-along-time discussed above, but
it may also reflect a dynamic balance between a continuously-present mistuning cue and the
decaying influence of the onset cue.  This was directly demonstrated by Pierce (1983), who used a
harmonic complex with individual components which abruptly increased in level. At the moment of
the change, the boosted harmonic is perceived as separate from the others, but over a timescale of
seconds it will ‘merge’ back into the harmonic complex as the step-change in amplitude becomes
increasingly remote in time, and the harmonicity cue regains dominance. 

Many experiments have used onset manipulations to investigate other grouping principles such as
harmonicity (Darwin & Ciocca, 1992), linguistic formants (Darwin, 1984) and lateralization
(Woods & Colburn, 1992).  The paradigm typically assumes that a degree of onset asynchrony can
preemptively remove the contribution of a particular spectral region from the derived properties of
the larger percept. In practice, however, the interaction between onset and other cues may have a
more complex temporal development, which can be minimized (but not eliminated) by employing
very short stimuli; in contrast, the long stimuli used by Pierce expose these interactions to the full.

The numerous factors influencing the integration of evidence derived from different processes is
apparent in experiments concerning the segregation of speech on the scale of sentences. Brokx &
Nooteboom (1982) resynthesized nonsense sentences using a monotone pitch different from the
constant pitch of continuous interfering speech. This task is unlike double-vowel identification, in
that, in addition to f0 differences, monotone utterances may be distinguished by the common
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temporal modulations within each voice, and are subject to wider linguistic-semantic constraints.
This greater complexity reveals an interesting trend: whereas segregation of static vowels has
plateaued at 12% difference in f0 (Assmann & Summerfield, 1990), Brokx & Nooteboom saw an
approximately linear benefit of pitch separation on intelligibility out to a pitch difference of 20%.
More recent studies by Bird & Darwin (1997) have followed this trend out to 60% differences in f0.

Results of these kind, showing that the organization of sounds depends on a complex interaction
between the lowest-level cues, indicate the activity of single, abstract grouping process that depends
on a variable combination of basic features, rather than, say, groupings based on single cues which
then vie for control of the overall organization.

4.B Models

Although the time dimension provides grouping mechanisms with extra information, it adds a great
deal of complexity to the computational task when compared to the essentially time-invariant
problem posed by double vowels. We will now look at some of the models that have dealt with these
issues by emulating aspects of the organization performed by human listeners on sound scenes at the
scale of utterances.

It was not until the mid-1980s that the increasing power of computers allowed researchers to
contemplate building algorithmic models of the more sophisticated aspects of auditory perception;
at the same time, the principles ultimately described in Bregman (1990) were reaching a wider
audience. Weintraub (1985) described the first computational model explicitly motivated by
experimental studies of auditory organization.  His goal was to separate mixtures of two
simultaneous voices, with a view to improving automatic speech recognition applied to each voice.
His system used auto-coincidence (a low-complexity version of autocorrelation) of simulated
auditory nerve impulses to separate signals of different periodicities in different peripheral
frequency bands.  Context dependence was included in the form of a Markov model tracking the
states (silent, voiced, unvoiced or transitional) of each speaker; the optimal labelling provided by
this model controlled a dual-pitch tracking algorithm and guided the division of the signal energy
into spectra for each of the two voices.  Although the benefits of his system (measured through
speech recognition scores) were equivocal, he prepared the ground for subsequent modeling work,
particularly in identifying the weaknesses of working solely from local features without the
influence of top-down factors.

Cooke’s (1991/1993) system decomposed the acoustic mixture into a set of  time-frequency tracks
called “synchrony strands”, then grouped these components using harmonicity (for  the lower
frequency resolved partials) and common amplitude modulation (for the mid-high frequency
unresolved partials). Harmonic grouping employed a  temporally-extended form of Scheffers’
harmonic sieve, illustrated in figure 4. The main advantage of this scheme lies in the fact that
tracking decisions are made locally in frequency. Since grouping relies on identifying each distinct
element correctly, situations where features collide and cross can lead to catastrophic mislabellings
if the wrong continuations are tracked after the collision. Cooke’s algorithm handles sounds with
crossing fundamental frequency contours because attributes such as pitch are calculated after the
tracking of partials, which themselves are less likely to manifest crossing due to the local spectral
dominance of one or other source. A further benefit is that the likelihood of a partial falling into an
incorrect sieve ‘groove’ decreases rapidly with the duration of the sieve. To illustrate the generality
of the approach, Cooke’s model was tested on 100 mixtures of sentence material combined with
other acoustic  sources, including other sentences. In each case, a worthwhile improvement in signal-
to-noise ratio was found. (Different approaches to evaluation are discussed in section 7).

Similar considerations motivated Mellinger (1991) in his study of musical  separation. His model
tracked spectral peaks across time, grouping peaks with similar onset times or with common
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frequency modulation.  Mellinger’s system, like real listeners, maintained an evolving organization,
in contrast to Cooke’s approach which left all processing until the end of the signal.  Newly-detected
harmonics had a fixed ‘grace period’ to build up affinity with existing harmonics, after which they
were added to a group, or used as the basis for a new group.  Mellinger used the Reynolds-McAdams
oboe as one of his test signals;  the sudden change in perception from one to two sources in that
sound is reflected in an abrupt change in his model’s organization, when the initial single source
loses the even harmonics to a newly-spawned group (corresponding to the soprano) which has a
greater internal coherence of frequency modulation. 

Brown (1992) also used a decomposition into partials, and introduced two  further innovations. First,
he computed a local pitch for each partial by combining the summary autocorrelation function (see
figure 3 of the previous section) with the local autocorrelation function in the spectral region
occupied by the partial.  This has the effect of emphasizing the relevant pitch peak in the summary,
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Figure 4: Time-frequency representation and grouping used in Cooke (1991/1993). Upper: synchrony strands
and grouping indications for a natural syllable. Strands corresponding to resolved harmonics are visible in the
low frequency region. In the mid-high frequency region, strands represent formants F2-F4. The line width
encodes instantaneous amplitude, and a clear pattern of amplitude modulation is visible. Lower: synchrony
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which is used to define the underlying pitch contour for each partial.  Second, Brown employed a
tonotopically-organized computational map of frequency movement to  predict the local movement
of partials.  His system searched for groups of elements with common pitch contours, favoring sets
with common onset times. Brown compared this approach to that obtained using frame-by-frame
autocorrelation-based segregation and found that the use of temporal context produced a
substantially larger increase in SNR for the target sentence in a mixture.

4.C Discussion

Defining an element

The dominant paradigm for auditory organization, presented by Bregman (1990), involves an
analysis of the sound signal into basic elements, defined by their locally coherent properties, from
which grouping cues may be calculated and for which grouping decisions can be made.  In simple
experimental stimuli consisting of sine tones and regular noise bursts, the circumscription of such
elements is unambiguous; unfortunately, this is not the case for the noisy, complex sound scenes
encountered in the real world.  Modelers have often dealt with this problem by limiting their
elements to be those defined by strong spectral peaks, but the ability of listeners to organize all kinds
of noisy signals may demand a more comprehensive approach.  Recent modeling work has
attempted to cover a wider range of sounds. Ellis (1996) suggests that a simple vocabulary of tonal,
noisy and impulsive elements may encompass most perceptually-salient signals, and Nakatani et al.
(1997) present a detailed ontology of the signal attributes characteristic of different classes of sound
such as speech and music. However, more sophisticated elements tend to be harder and more
ambiguous to fit to a particular signal.

Different groupings for different attributes?

Darwin & Carlyon (1995) have cautioned that grouping should not be considered an ‘all-or-none’
process.  Certainly, the interaction of cues in grouping make it misleading to search for a single
threshold at which a feature such as mistuning or asynchrony will lead to segregation: these
thresholds depend on the contributions of the other cues in a particular experimental paradigm.  The
deeper point, however, relates to results where, for a single stimulus continuum, measurements
based on different attributes give different grouping boundaries.  Thus, when a resolved harmonic is
mistuned relative to the others in a complex, subjects perceive the harmonic as distinct for detunings
of 2%; however, it continues to have an influence on the pitch they perceive for the remaining
complex out to mistunings of 8% or more. Darwin & Carlyon see this as evidence for separate
grouping processes simultaneously at play – one for the perception of the number of sources, and a
different one for the calculation of pitch. There may be an alternative explanation of this as an
artifact of the pitch-calculation mechanism’s limited ability to respond to differences in
organization: even when the harmonic is fully distinct at the abstract percept level, some of its signal
characteristics still ‘spill’ into the pitch calculation of other percepts. This explanation is at odds,
however, with the results of Ciocca & Darwin (1993) showing that a sufficiently large onset-time
difference can completely remove the contribution of the mistuned harmonic from the pitch of the
residual, a phenomenon not attributable to low-level adaptation since it can be released by providing
an ‘alternative’ group to capture the leading portion of the harmonic.

Expectation as the mechanism for combining information along time

Thus far we have been concerned with the grouping of individual ‘atomic’ elements. There is,
however, a higher level at which information could be combined along time: via the influence of
‘expectations’ – short-term biases towards entire interpretations. Thus, in the experiments of Hukin
& Darwin (1995), a harmonic is partially removed from a complex because it is captured by a stream



1998 Jun 15 26

set up in a preceding sequence of isolated harmonics. This grouping is altered not by any change in
the local features of the target harmonic, but by the context of the preceding captor harmonics
predisposing the auditory system to treat the harmonic as part of the stream and not the complex.
The captor set up an expectation that energy in a certain frequency region formed a continuation of
the captor stream; The existence of a gap between the context and the stimulus fragment implies a
process operating above the level of elements discussed so far.  However, the demonstration that
information can exert influence beyond the boundaries of a single region of energy suggests that the
model underlying the this section may be unneccessarily narrow:  It is possible that onset asynchrony
sets up an ‘expectation’ to affect the harmonics whose beginning it marks, without being specifically
attached to those harmonics. This raises the questions of how such ‘expectations’ are represented,
and how they exert their influence. The following section considers the action of such top-down
influences in more detail.

5. Context, expectations and speech

Detailed and reliable perceptions of the world turn out to be based upon surprisingly slender and
imprecise stimulus information – such as the very limited angle of view of the fovea, or heavily-
masked speech in a crowded room.  We are able to operate with such limited information in part
because our perceptual system is extremely efficient at exploiting and integrating constraints
concerning what we ‘know’ to be the plausible range of alternatives in any given situation.  Thus,
implicit assumptions of constancy make it unnecessary to scan continuously every item in a visual
scene.  Similarly, when listening to partially-masked speech, our experience of what comprises a
‘reasonable’ utterance (in a grammatical or semantic sense) may provide just enough information to
construct an impression of how the original speech might have sounded. These aspects of cognitive
function involving knowledge and expectation are poorly understood and difficult to research, yet
they of are central importance to auditory perception. 

Progress in automatic speech recognition in the last decade has been due in a large part to successful
techniques for combining ‘bottom-up’ information derived from the input signal with ‘top-down’
constraints imposed by the recognizer’s knowledge of vocabulary and grammar.  Speech perception
is a specialized instance of the principle that expectations are used to facilitate perceptual
organization; later in this section, we will discuss some of the emerging work on integrating models
of auditory scene analysis with speech recognition systems. First, we look at some of the
experimental results demonstrating this principle in action.

5.A Listeners

Local context and “old-plus-new”

An ‘expectation’ is a state of the auditory processing system that will substantially affect the
interpretation of a subsequent stimulus.  A classic illustration of such an effect is the way in which
listeners compensate for the spectral coloration imposed on a signal by the transmission channel.
Thus a simple filter can convert the vowel sound in an utterance of “bit” so that, when heard alone,
a listener will hear it as “bet” (Watkins, 1991, as discussed by Assmann & Summerfield, in press).
However, if the altered word is prefixed with a carrier phrase (“Please repeat this word: bit”)
modified by the same static coloration, the word is restored to its original phonetic identity:  Through
exposure to the longer sample, the auditory system has separated the effects of source speech and
channel coloration, and has compensated for the latter in the interpretation of the target word.  This
is an expectation because the inference of channel characteristics from the carrier phrase makes a
categorical difference to the perception of the target word; the expectation that the channel will
continue to color the speech has altered the treatment of the stimulus.
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Expectation encompasses the general principle of auditory perception termed “old-plus-new” by
Bregman (1990), related to the powerful real-world constraint of the independence of sound sources.
Any abrupt change in the properties of the signal probably reflects a change in only one source, and
a change in the source spectrum that consists of only an energy increment will be interpreted as the
addition of a “new” source, while all the existing “old” sources continue unchanged – the signal
following the change is interpreted as being old-plus-new, and the properties of the new source are
effectively calculated by finding the difference between the signal before and after the change.  

The old-plus-new idea is illustrated in figure 5 (after Bregman, 1990, p. 344).  The alternation
between narrow and broader bands of noise is heard not as switching between two different signals
but as a continuous low noise to which high noise bands (the difference between the narrow and the
broad) are periodically added.  Physically, the two interpretations are equally valid, but the auditory
system irresistibly chooses division in frequency because it meets the old-plus-new criterion.  The
interpretation as the alternation between the two noise bands would require the (less likely)
coordination of the narrow band of noise turning off at the very instant that the broader band turns
on.

Continuity and induction

The most dramatic consequences of expectations in the auditory system occur when an object or
source is perceived in the absence of any direct, local cues to its sound. In such situations, the
perceived object is ‘induced’ from expectations set up by its context.  

The simplest illustration of induction is the continuity illusion (Bregman, 1990, p.28, studied earlier
as the “pulsation threshold” e.g. in Houtgast, 1971).  If a steady tone has a brief burst of wideband
noise added to it, the energy of the noise may mask the tone, leaving the auditory system without
direct evidence that the tone is present during the noise (indeed, for increasingly intense and/or brief
noise bursts, it is impossible to say if a tone is present with any certainty a postieri).  In these
circumstances, the percept is typically of the tone continuing during the noise despite the absence of
tonal features from the stimulus during the burst.  The auditory system rejects the interpretation that
the tone has ceased during the noise burst because, although it is an adequate explanation of the
stimulus, it violates the principle of old-plus-new.

More complex examples of auditory induction are provided by the phonemic restoration phenomena
investigated by Warren (1970) and others.  In the original demonstration, a single phoneme (the first
/s/ in “legislatures”) was attenuated to silence then masked by the addition of a cough.  Not only were
listeners unaware of the deleted phoneme (the speech was heard as complete), but they were unable

Figure 5: Schematic representation of the alternating narrow- and broad-
band noise stimuli, and its perceptual organization, illustrating the principle
of old-plus-new.
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to specify the exact timing of the cough, making a median error of 5 phonemes. Evidently, auditory
processing had exploited the redundant information in the speech signal (co-articulatory,
phonotactic and semantic) to ‘induce’ the identity of the masked (missing) segment, a process so
complete that, at the level of conscious introspection, it was indistinguishable from ‘direct’ (non-
restored) hearing.  Subsequent experiments showed that a keyword occurring several syllables after
the masked segment could provide the semantic constraint to restore the deleted phoneme, since
listeners would reliably perceive different restorations for stimuli that differed only in the final
keyword (Warren & Warren, 1970).  These results demonstrate not only the very powerful effect of
expectation in the perception of speech, but also that such ‘expectations’ can operate backwards in
time. Induction also appears to operate between ears (“contralateral induction”, Warren & Bashford,
1976) and across the spectrum (“spectral induction”, Warren et al., 1997). In the latter study, the
spectrum is reduced down to two narrow signal bands with a commensurate reduction in
intelligibility. The introduction of an intervening spectral band of noise then modestly increases
intelligibility.  

Speech information can be combined across regions disjoint in both time and frequency, as
demonstrated by “checkerboard noise” masking experiments of Howard-Jones and Rosen (1993).
They used stimuli in which speech was alternated with noise in several frequency bands, such that
half the bands carried unobstructed speech while masking noise was added to the interspersed
remainder, and the pattern of noisy and clear channels flipped every 50 ms to give noise interference
that resembled a checkerboard on a log-frequency spectrogram. They found that for a two-channel
division (above and below 1.1 kHz), listeners were able to tolerate a level of checkerboard noise
10 dB higher than control conditions of noise gated in one channel but continuous in the other,
demonstrating that information from separate frequency regions was being integrated across time.
(For wideband pink noise gated at 10 Hz – i.e. simultaneous ‘glimpses’ in high and low channels –
a further 7 dB of SNR decrease was acceptable). Their result supports the notion of a central speech
hypothesis (another kind of ‘expectation’) that gathers information from any available source, rather
than more local processes acting to integrate information only within frequency channels. There are
numerous other unnatural manipulations of speech from which listeners recover intelligibility; see
Cooke & Green (in press) and Assmann & Summerfield (in press) for further discussions.

Speech as the best explanation

The capacity to infer the presence (and identity) of speech with limited evidence is well
demonstrated by sine-wave speech (Bailey et al., 1977; Remez et al., 1981, 1994), in which the time-
varying frequencies and levels of the first three of four speech formants are resynthesized as pure
sine-tones, removing cues to the excitation source present in the original.  Although listeners hear
such sinewave utterances as a combination of whistles (the interpretation that might be expected),
they are often able to interpret them as speech when so instructed.  

The combined perception of whistles and speech make sine-wave utterances similar to so-called
“duplex” phenomena (Rand, 1974; Liberman, 1982), in which some portion of the stimulus (e.g. an
isolated formant transition) is interpreted both as part of speech and as an additional source. For
instance, Gardner & Darwin (1986) showed that the application of frequency modulation to a
harmonic near to a formant in a synthetic vowel caused the harmonic to stand out perceptually but
at the same time to contribute to the vowel percept.

A third example of the very powerful predisposition of the auditory system to interpret the most
tenuous of stimuli as speech comes from the description of “temporal compounds” by Warren et al.
(1990, 1996). The later study used random arrangements of six, 70 ms synthetic vowels made from
real glottal bursts, concatenated to form a single repeated token in which listeners could no longer
identify the individual vowels or their order;  the sequence fused into a “temporal compound” which
was perceived as syllables.  The resulting signal did not resemble any real utterance, but rather than
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perceiving it as a nonspeech sound with some speech-like qualities, listeners often heard two
simultaneous voices pronouncing syllable sequences. The auditory system appears to reconcile the
contradictory speech cues by relaxing the constraint that they be interpreted as a single voice, rather
than abandoning a speech-based interpretation. The syllables were invariably drawn from the set
commonly used within the native language of the subject, with the result that even given that inter-
subject agreement of the perceived syllables was not very strong, speakers of different languages
would interpret the same stimulus very differently.  Compare these results to phonemic restoration,
which can be seen as an interplay between the local cues of context, and the underlying linguistic
constraints;  in these artificial vowel stimuli, the local cues are largely invalid (since the signal is not,
in fact, real speech), so the interpretation relies primarily upon the long-term constraints, expressed
as the acceptable ‘syllabary’ for the listener’s native tongue.

Studies such as these reveal the auditory system’s strong tendency to interpret any credible signal as
speech, invoking a wide range of constraints derived from language structure and the content of the
message.  These constraints can form a very powerful basis for overcoming distortions and masking
in the original signal. In the next section, we describe computational models that have addressed the
application of expectations and other high-level constraints in the interpretation of auditory scenes.

5.B Models

Blackboards and explanation-based systems

The perceptual phenomena described above highlight the importance of stored knowledge and
expectations in permitting the interpretation of sound. A popular approach in modeling has been to
use collections of knowledge sources encapsulating specific, limited aspects of the necessary
knowledge, and able to act independently to solve the larger explanation problem. Knowledge
sources typically co-operate through a common data structure, called a blackboard. Several systems
for computational auditory scene analysis have been built around blackboard architectures (Carver
& Lesser, 1992; Nawab & Lesser, 1992; Cooke et al., 1993; Nakatani et al., 1998; Ellis, 1996;
Klassner, 1996; Godsmark & Brown, 1997).  Blackboards support an arbitrary combination of data-
driven and hypothesis-driven activity, making them suitable for incorporating higher-level
knowledge of use in the source separation task.  For example, the highest representational level of
Klassner’s system is a set of “source-scripts”, which embody the temporal organization of source
sequences such as the regular patterning of footfalls.

One common feature of the blackboard models is the importance placed on generating consistent
explanations for all of the acoustic evidence.  Nakatani et al. (1998) call their system a residue-
driven architecture.  Events (in their case groups of harmonically-related elements) are continuously
tracked, and predictions about the immediate future are made.  These predictions are compared with
the actual outcome and the discrepancy, or residue, is computed by subtracting the prediction from
the remaining mixture.  Residues require explanation, often by the creation of new trackers.  In this
way, their scheme embodies Bregman’s old-plus-new principle.  

Klassner’s (1996) blackboard system also focuses on discrepancies between the observed signal
features and those that would be consistent with the current explanation.  In his case, however, the
discrepancies may be resolved either by modifying the explanation or by changing the parameters
of the front-end signal-processing algorithms used to generate the features. Since the optimal values
for factors such as filter bandwidth and energy thresholds depend on the detailed conjunction of
sources present, his system places those parameters within the control of the blackboard procedures
– in sharp contrast to the fixed single-pass signal-processing employed in other models.  His system
comprises a dual search in explanation space and signal-processing parameter space to find the best
explanation for a given sound scene in terms of 39 abstract templates for everyday sounds such as
“car engine” and “telephone ring.”



1998 Jun 15 30

Ellis’s (1996) thesis presents “prediction-driven CASA” as an alternative to the data-driven systems
described in section 4.  Motivated more closely by auditory realism than the other blackboard
systems, his system constructs accounts of the input sound in terms of “generic sound elements” to
act as the link between raw signal properties and abstract source descriptions.  Most earlier systems
for CASA were limited to the separation of voiced sounds, and their choice of representations (e.g.
tracked partials) reflected that fact.  Ellis’s system sought to model unvoiced sources such as noise
bursts or impulses, through an expansion of its representational vocabulary.  The uncertainty implicit
in modeling noise signals further led to a system tolerant of hypotheses for which direct evidence
might be temporarily obscured, a framework consistent with the induction phenomena mentioned in
section 5A. In Ellis’s system, periodic sounds are treated as a special case, with a correlogram-based
pitch tracker triggering the creation of “wefts” (i.e. coherent sets of parallel threads; Ellis, 1997a)
that estimate the energy at a given modulation period in each frequency channel.  The number and
timing of events identified by Ellis’s system were in good agreement with the sources identified by
listeners in the ambient sound examples such as “city street”.

Motivated by the goal of reproducing complex perceptual phenomena like ambiguity and
restoration, blackboard-based systems have the potential to exhibit very complex behavior arising
from the interaction of their abstract rules.  However, crafting the knowledge bases is a slow and
difficult art, which offers no obvious solution to unrestricted, full-scale problems.  Although this
may not be a direct concern, progress in fields such as speech recognition suggests the superiority
of ‘fuzzier’ techniques in modeling perceptual interpretation tasks, and in particular the value of,
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exploiting training data to tune system parameters. There are also more rigorously-motivated
approaches to the problem of integrating widely disparate sources of knowledge; the OPTIMA
system of Kashino et al. (1998) approaches the problem analyzing complex acoustic signals – in
their case, polyphonic music – through the probabilistic-theoretic framework of Bayesian networks.

Integration with speech recognition

Computational auditory scene analysis offers a possible solution to the serious challenges of robust
automatic speech recognition.  Lippmann (1997) has argued that current approaches to robust ASR
(reviewed in Gong, 1995; Junqua & Haton, 1996) are far less flexible than those employed by
listeners.  In addition to the variability caused by reverberation and channel distortion, recognizers
in real-life environments have to cope with the nonstationarity of both target and interfering sources
and the fact that the number of sources active at any moment is generally unknown.  CASA is
attractive because it makes few assumptions about the nature and number of sources present in the
mixture reaching the ears, relying only on general properties of acoustic sources such as spectral
continuity, common onset of components, harmonicity, and the various other potential grouping
cues described in earlier sections.

Several attempts have been made to integrate CASA with ASR.  The most common approach uses
CASA as a sophisticated form of speech enhancement, relying on an unmodified speech recognizer
to do the rest.  For instance, Weintraub (1985) passed separate resynthesized signals to a hidden
Markov model speech recognizer.  Similarly, Bodden (1995) used binaural preprocessing prior to
ASR.  The main attraction of the speech enhancement route is that it allows use of existing criteria
in assessing the performance of a CASA system: As well as SNR improvements and ASR
recognition rates, the intelligibility and naturalness of CASA-enhanced speech can be measured
through listening tests.

The enhancement-only interpretation of CASA has been much criticized of late (see, for example,
Bregman, 1995; Slaney, 1995; Cooke, 1996; Ellis, 1996) – although the weakness was certainly
recognized even by Weintraub (1985).  Slaney (1995) presents a “critique of pure audition” in which
he argues against a purely data-driven approach to auditory scene analysis, inspired by an analysis
of top-down pathways and processes in vision (Churchland et al., 1994).  Bregman (1995) too has
warned against the “airtight packaging” of segregation as a preliminary to recognition, invoking
duplex perception of speech as an instance where recognition overrides segregation, thereby
“defeating the original purpose of bottom-up ASA”.  

An alternative approach to the integration of CASA and ASR has been proposed by Cooke et al.
(1994).  This scheme relies on CASA to produce an estimate of spectro-temporal regions dominated
by one or other source in a mixture, and applies missing data techniques to recognize the incomplete
pattern.  It fits naturally with channel selection schemes such as that of Meddis & Hewitt (1992)
described earlier in the context of double-vowel identification.  Channel selection is further inspired
by neurophysiological oscillator models which rely on synchronous activity in a subset of channels
to signal grouping of elements (see section 6).  

The missing data strategy works on the assumption that redundancy in the speech signal allows
successful recognition with moderate degrees of missing data.  Robust recognition performance in
the face of missing data can be obtained, and further improvements are possible when models of
auditory spectral induction (Warren et al., 1997) are incorporated (Green et al., 1995; Morris et al.,
1998).

Auditory induction – or, more generally, the effect of perceived auditory continuity – has motivated
a number of CASA systems.  Ellis (1993) argued that restoration would be necessary to overcome
obscured features in data-driven system, and his system makes the inference of masked regions a
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central part of the prediction-reconciliation analysis (Ellis, 1996).  Okuno et al. (1997) described a
scheme in which the residue remaining after extracting harmonically-related regions is substituted
in those temporal intervals in which no harmonic structure could be extracted, arguing that this
residual is a better guess for the continuation of the voicing than silence would be – since, at the very
least, it will permit induction in listeners faced with the resynthesized signal.

Ellis (1997b) makes a specific proposal for incorporating speech recognition within scene analysis.
Extending his prediction-driven approach, he includes a conventional speech-recognition engine as
one of the “component models” that can contribute to the explanation of a scene.  An estimate of the
speech spectrum, based on the labeling from the speech recognizer, is used to guide the analysis of
the remainder of the signal by nonspeech models; this re-estimation of each component can be
iterated to obtain stable estimates.  

5.C Discussion

The significance of expectations

This section has focussed on the role of expectations and abstract knowledge in auditory perception,
and on efforts to model these effects.  Although some of the stimuli involved are contrived, there are
important implications from the demonstration that, in the absence of adequate direct cues, the
auditory system will employ information from elsewhere to build its interpretation of a scene – and,
as seen in the original Warren (1970) experiments, that such ‘restored’ information is consciously
indistinguishable from ‘direct’ evidence. Given the enormous power of high-level constraints to
restrict the range of interpretations that need be considered, listeners might be inclined to rely on
inference in many circumstances besides those in which information has been obscured. Clearly,
perception exists as a compromise between finding direct evidence of particular sources and the
mere absence of contradictory evidence.

Retroactivity

Certain perceptual phenomena, starting with the phonemic restorations which depended on a later
keyword (Warren & Warren, 1970), but including much simpler signals such as noise bands of
abruptly alternating bandwidths (Bregman, 1990), show that the interpretation of a sound must
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Figure 7: The upper panel shows an auditory spectrogram for the utterance “GIVE ME
CRUISERS DEPLOYED SINCE TWENTY TWO DECEMBER” mixed with Lynx helicopter noise
at a global SNR of 18 dB. Dark regions of the lower panel indicate those areas where the local SNR
is positive. Attempts to recognize the mixture with a conventional recognizer yielded “IS
HORNE+S FOUR DECEMBER” while use of first-generation missing data techniques via the lower
mask produced “GIVE CRUISERS DEPLOYED SEVENTH DECEMBER”.
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sometimes wait for as much as several hundred milliseconds or longer before it can be finally
decided. Examples such as the Reynolds-McAdams oboe (Mellinger, 1991) illustrate an initial
organization which is consciously revised i.e. the listener is aware of the change in organization.
Blackboard systems such as those of Klassner (1996) and Ellis (1996) that maintain multiple
alternative hypotheses can exhibit backwards influence in certain circumstances; the system of
Godsmark & Brown (1997) explicitly grows its “decision window” until ambiguity can be resolved.
Ultimately, models may need an exceptional ability to return to and revise decisions that were
previously considered complete, although it is not clear at what level of representation this
reassessment might apply.

Duplex perception, masking, and auditory induction

The idea that a single speech fragment can simultaneously be both perceptually segregated (i.e. exist
as a separate source) and perceptually integrated (i.e. contribute to a phonetic judgement) may be
tied up with the notion of auditory induction. It is easy to conceive of an architectural arrangement
in which primitive cues such as differences in harmonicity give rise to assignments of harmonics to
different streams, but which co-exist with top-down expectations looking for evidence of speech.
Since differences in harmonicity for a single formant, for instance, only serve to redistribute rather
than to remove energy in a given spectral region, it is possible that the mistuned harmonics appear
as suitable material to ‘complete’ a phonetic hypothesis. Speech is readily identifiable with large
spectral regions removed (Fletcher, 1953; Steeneken, 1992; Warren et al., 1997; Lippmann, 1996),
thus it is hardly surprising that identification is possible when otherwise missing regions
(perceptually segregated harmonics) contain some energy. This argument can be extended to cover
other duplex phenomena as long as auditory induction is allowed to operate on the source mixture,
since the duplex fragment is likely to provide a credible masker for the missing structure.

6. The neurophysiological substrate for grouping

The notion of an “implementation level” for auditory organization was introduced in section 1, but
intervening sections have mainly addressed the higher levels. In a biological system, how are
features which originate from the same source marked as belonging together? von der Malsburg &
Schneider (1986) called this the “binding problem”, and suggested a computational solution in
which neurons which encode a common environmental cause are grouped by synchrony of their
temporal response. This elegant proposal allows grouping to be represented ‘in place’, without the
need for separate neural structures dedicated to representing the results of grouping. Their
implementation models networks of neurons whose output is characterized by an oscillatory pattern.
They demonstrate binding of responses, marked by a common phase of oscillation, in a simple
auditory example in which common onset and simultaneous activity in different frequency bands
give rise to grouping between the channels. Their proposal also allows an attentional mechanism to
‘strobe’ the temporal pattern and get an unobstructed, if incomplete, view of the attended source
(Crick, 1984).

These ideas have been actively researched in vision, where a similar binding problem exists for
object segregation. Such investigations have received added impetus from physiological studies
which appear to show that visual stimuli can elicit synchronized oscillations across disparate regions
of the visual cortex (Gray et al., 1989). Although specific evidence of visual binding through
oscillations has failed to appear, the mechanism retains its attraction.

A study by Liu et al. (1994) is one of the few attempts to apply neural oscillator models to speech
recognition. Strictly, their model does not address auditory grouping, but can nevertheless be
interpreted as a mechanism for schema-driven grouping. The model encodes local peaks in a
sharpened mel-scale LPC spectrum as independent sets of oscillations which they assume
correspond to vowel formants. These oscillations interact with an associative memory in which
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formant-vowel associations are hard-wired. Reciprocal top-down and bottom-up activation leads to
synchronized oscillations in those spectral regions which globally correspond to a known vowel.

Recently, a number of studies have directly addressed the search for an account of auditory grouping
phenomena in terms of neural oscillators (see Brown et al., 1996, for a review). Brown & Cooke
(1998) presented an oscillator model which can account for a number of streaming phenomena,
including grouping by frequency and temporal proximity, the temporal build-up of streaming,
grouping by common onset, and grouping by smooth frequency transitions. The same model,
operating on a different input representation, can also account for grouping by common fundamental
(Brown & Cooke, 1995), and at the same time provide an adequate explanation for the interaction
of onset asynchrony and harmonicity (Ciocca & Darwin, 1993).

Their model consists of 3 stages: an auditory filterbank, hair cell and onset cell simulation, feeding
a fully-connected network of neural oscillator units. Units are coupled to each other with a strength
defined by a matrix of weights. These weights adapt dynamically during stimulus presentation; they
also incorporate a degree of temporal integration. Oscillator dynamics are such that units with a high
coupling weight tend to produce similar responses. Coupling strengths are modified in such a way
that inputs which undergo common changes lead to an increase in coupling. This embodies the
gestalt principle of common fate, discussed by Bregman (1990, p. 248).

When presented with stimuli such as those used by van Noorden (1975) and by Beauvois & Meddis
(1991), the model displays the required sensitivity to tone repetition time. Coupling strength is
initially low because of the onset asynchrony of the low and high frequency tones. However,
coupling strength recovers during the tone repetition interval. If the interval is short, little recovery
is possible, and coupling strength is driven lower still by the next asynchronous onset. For longer
intervals, more recovery in coupling strength is possible. Frequency proximity effects in the model
follow from the overlapping filter response areas in the periphery simulation. When the higher and
lower tones are close in frequency, filters with center-frequencies (CFs) near to the lower frequency
are excited when the higher frequency is present, and vice versa. Since adaptation of the coupling
between units at these CFs is dependent on response similarity, there will be a spectral region within
which coupling is maintained. Figure 8 depicts the time-course of oscillator responses and illustrates
model and listener responses in a simple two-tone streaming task.

Brown & Cooke’s model also accounts for the greater coherence of sinusoidal FM stimuli over
square wave FM, as noted by Anstis & Saida (1985). Filters close to the maximal FM frequency are
strongly stimulated for half a cycle of square wave FM, thus driving down the coupling between
those units at that frequency and those at the minimum FM frequency. By contrast, such filters
receive strong activation for a smaller fraction of the FM cycle for sinusoidal FM. This corresponds
to the gestalt principle of good continuation (Bregman, 1990, p. 133).

Brown & Cooke (1998) adapted coupling weights between channels using differences in onset
activity across channels. Similarly, modification of coupling weights using differences in
autocorrelation strengths across channels enabled the model to encode streaming by mistuned
harmonics (Moore et al., 1985). Further, the segregating effect of onset asynchrony possessed by a
mistuned partial (Darwin & Ciocca, 1992) was present in the model. 

Wang (1996) presented a model consisting of a two-dimensional time-frequency grid of relaxation
oscillators. Local excitatory connections between units in both time and frequency endows
sensitivity to temporal and frequency proximity on the network. Brown & Wang (1997) extended
this model to incorporate a simulation of the auditory periphery, and applied it to the problem of
double-vowel segregation. Their system uses relaxation oscillators, whose output is characterized
by a repeating sequence of active and silent phases. Brown & Wang used an autocorrelogram
representation, which is processed by the autonomous iteration of the following procedure: First,
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those channels whose associated oscillators are in their active phase are summed to produce a
selective summary autocorrelation function. Then, the largest peak in the summary is then used to
promote synchronization of all oscillators whose channels have a peak at the corresponding delay.
Finally, as a consequence of oscillator dynamics, these synchronized oscillators move from an active
to a silent phase. As a consequence, other oscillators move to their active phase and the iteration
repeats. This time, a different set of channels makes up the summary, leading to the selection of a
different pitch peak. The process continues until all channels are synchronized to one or other
periodicity present in the stimulus. 

Thus, neural oscillator models have been particularly successful at providing accounts of the
interaction of cue combinations, such as common onset and proximity; their ability to support the
exploration of such questions is attractive.  This may be due to the limited vocabulary of neural
architectures, in which information can only be represented as activations and weights, and thus
different cues are necessarily expressed in forms that can be combined. By contrast, a traditional
symbolic model of grouping might represent periodicity and onset time attributes quite separately,
requiring both to be further mapped to some ‘grouping strength’ axis before their interaction could
be considered. 

The oscillatory aspect of these models confers neural architectures with additional advantages. Most
obviously, it provides the dimension of synchrony to indicate time-varying ‘bindings’ between
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Figure 8: A neural oscillator model of streaming (Brown & Cooke, 1998). Upper: individual oscillator outputs,
showing the transition from all channels synchronized (i.e. fused) to fission into two separate streams. Lower panels:
comparison of model performance (right) with subjective streaming results (left) for the two-tone sequence depicted
in figure 2.
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different features, representing the abstract property of grouping that makes symbolic organization
models seem so neurally implausible.  The second benefit of the oscillator systems comes from the
way they establish equilibria between extremes of grouping. Whereas an explicit model that
incorporates ‘grouping strengths’ among different components (such as Mellinger, 1991) requires
an arbitrary threshold to convert strengths into groups, the emergence of synchrony groups in
oscillator arrays adjusts automatically to track the weight strengths. 

The common onset cue to auditory grouping can map directly to a synchronized ‘kick’ which
establishes a relationship between several oscillators.  In other respects, however, neural oscillators
should be seen more as a general-purpose technique applicable to any problem of choosing element
subsets based of a variety of cues. Their main attraction when compared with more procedural
algorithms is that they could plausibly be present in the brain; at the same time, they may be harder
to diagnose and modify than less neurally plausible approaches (Ellis, in press). As indicated above,
they can account for a variety of auditory streaming phenomena such as temporal and frequency
proximity, common onset, good continuation and the temporal build-up of streaming.  When applied
to representations which encode stimulus periodicities, they have been used to denote streaming by
harmonic mistuning and by leading partials in a harmonic complex. 

7. Current issues in models of auditory organization

This concluding section identifies some of the distinctions between the various approaches to
modeling auditory organization, and describes unresolved issues for the future.  

What is the goal of computational auditory scene analysis?

The common goal of CASA systems is the intelligent processing of sound mixtures, but individual
systems differ both in the kind of sounds that are handled and in the information about them which
is to be extracted. Some approaches seek to pluck a particular signal out of an interference whose
properties are essentially ignored (e.g. the enhancement of the target voice in Brown, 1992), while
others are concerned with making a complete explanation of all components in the acoustic mixture
(e.g. Ellis, 1996).  The former ‘target enhancement’ approach pursues algorithms with broad
applicability by making the fewest assumptions (e.g. only that the interference will be lower in
energy that the target over a significant portion of the time-frequency plane). By contrast, ‘complete
explanation’ accepts the added complexity of characterizing portions of the signal that are to be
discarded, in the belief that this is necessary to reproduce human-style context-adaptive processing
in which the interpretation of a target is influenced by non-target components. Such influences
include the requirement of a plausible masker (Warren et al., 1972). Generally, a signal is influenced
by the interpretation of others via top-down influences, and hence only in systems the employ such
constraints.

A second debate over the fundamental problem structure concerns the output of organization
systems. Auditory scene analysis ought to result in an abstract description of the sources identified
(Darwin, 1984), but the nature of this description depends crucially on the particular application
domain.  One attractive paradigm is a system that converts a single acoustic mixture into several
output signals, each consisting of a mixture component heard in isolation.  This resynthesis strategy
of systems such as those of Weintraub (1985) and Brown (1992) may, however, be unnecessarily
demanding, especially for applications such as speech recognition (Cooke, 1996). Instead, an
intermediate representation describing the identified signal along with the confidence in each
parameter (thereby indicating the ‘missing data’) provides the results of signal organization in a
form more appropriate for input to a subsequent processor able to take advantage of this added
information.
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Evaluation

Resynthesis of an enhanced target in a mixture permits system evaluation via listening tests.  Most
CASA systems possess one or more internal source representations which can be used for
resynthesis. Other researchers have argued that an adequate model should represent all the
perceptually-significant information about a sound, and be able to resynthesize sources without
further reference to the original mixture (Ellis, 1996). While this latter approach escapes the
problems with overlap in time and frequency, the distortions associated with highly nonlinear
analysis and resynthesis techniques present formidable challenges in creating high-quality output.
Mistakes in grouping assignments often become very prominent in resytheses; although this can be
uncomfortable for the modeler, it also carries a diagnostic benefit.

The systems of Cooke (1991/1993) and Brown (1992) were both evaluated through a calculation of
the SNR improvement on test mixtures. Since energy in an output signal cannot be directly
associated with a single input component, both evaluations posed a correspondence problem. Cooke
classified his “strand” elements for closeness to representations of the separate input components,
whereas Brown was able to calculate the attenuation from his time-frequency mask for target and
interference presented in isolation. Ellis (1996) sought a more perceptual measure of separation
success by conducting listening tests in which subjects were asked to rate, on a subjective scale, the
resemblance of resynthesized components to the individual sources they heard in the full original
mixture. 

Other approaches to evaluation include speech recognition and intelligibility scores (Weintraub,
1985; Bodden, 1995; Okuno et al., 1997), and simulations or equivalents of psychoacoustic tests.
Thus the streaming models of section 6 have a particular interpretation put on their state which is
equated to the formation of a stream in a listener, and the environmental sound mixtures of Klassner
(1996) are analyzed as combinations of known types – a kind of ‘forced choice’.  

Unlike large-vocabulary automatic speech recognition or message understanding, computational
auditory scene analysis lacks a formal evaluation infrastructure at present. This makes it difficult to
gauge strengths and advances both within the CASA community and between the various alternative
approaches to the problem of understanding sound mixtures. Besides traditional signal processing
methods (e.g. Denbigh & Zhao, 1992), more recent innovations have included independent
component analysis (Bell & Sejnowski, 1995), which works by minimizing mutual information
between the outputs of a neural network, and HMM decomposition (Varga & Moore, 1990), which
attempts to find the most probable collection of speech models to explain the mixture.

One suggestion for evaluation comes from Okuno et al. (1997), who propose a “challenge problem”
for CASA – a task whose solution will stimulate progress in organization models while also
providing an objective comparison among different approaches.  The problem they propose is the
simultaneous transcription of three speakers – choosing three because it guarantees that the average
SNR will be below zero (i.e. there is less energy in one target voice than in the combination of the
two competing voices), and because they feel that the two-speaker problem has been adequately
solved.  They propose that the objective assessment of this problem be based on a relaxed form of
the word error rate used in speech recognition.  This “challenge problem” is interesting because it
will clearly reward the integration of scene analysis with speech recognition systems, although its
focus on speech may bypass the issues of ‘environmental sound’ recognition that certain researchers
see as more fundamental (Ellis, 1996).

Degree of perceptual plausibility

An important issue is the question of what makes computational auditory scene analysis systems
distinctive when considered in relation to all possible approaches to sound mixture understanding.
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The simple answer, that CASA systems are really models of processes thought to operate in
listeners, disguises the widely differing opinions over the degree to which such correspondence is
required or indeed possible. For some, the distinctive aspect of CASA systems is provided at an
abstract functional level, in terms of principles of organization. For others, greater importance is
placed on finding a neurophysiologically plausible mechanism. Intermediate between these two are
perhaps the bulk of existing systems which aim to model both the relatively well-understood
processing of the cochlea and the psychoacoustical manifestations of grouping. These activities all
represent valid approaches to modeling auditory organization in listeners; the multi-level
perspective detailed in section 1 accommodates them all. 

As will be clear from the organization of this chapter, those systems which hope to fully explain
arbitrary auditory scenes are forced to adopt the most abstract of connections with what is currently
known of auditory organization in listeners. In the extreme, some such systems abandon even the
assumed frequency selectivity of the cochlea for an initial narrowband fast Fourier transform (FFT)
representation (e.g. Klassner, 1996). 

Adapting to context and handling ambiguity

A single fragment can serve widely differing roles depending on its surroundings and other
predispositions of the interpreter.  Auditory organization models must ultimately include a stage of
processing that varies according to some notion of context, but there is a wide range of practice in
where this stage is placed. Ambiguous signals, whose correct interpretive context is not immediately
clear, form an interesting test of context-adaptation.

Double-vowel identification models may have a simple processing sequence with no adaptation or
feedback.  However, once the time dimension is incorporated, the organization of the acoustic
information at each instant will depend on the immediately preceding context.  At the very least, the
top-level groupings must reflect the accumulation of grouping cues between the different sound
elements generated by the lower levels of processing, as in Cooke (1991/1993) and Mellinger
(1991).  

Other systems have intermediate representations, which, for an identical signal, can vary in response
to contextual factors.  In Weintraub (1985), these factors are the inferred presence of one or two
voiced or unvoiced speakers, which determines how many pitches will be extracted and how their
associated spectra will be derived.  The system of Ellis (1996) is concerned with signals that may
lack any periodicity cues, in which case the division of energy into representational units can only
be made according to the prevailing scene interpretation.

The IPUS approach of Klassner (1996) incorporates an even greater degree of adaptation by
extending the influence of abstract hypotheses right down to the numerical signal processing.
According to their criterion of finding the most efficient and appropriate processing for each
particular situation, the internal representation of the same signal – even when interpreted as the
same object – may vary considerably depending on the other signals from which it had to be
distinguished during analysis.

Greater degrees of context-adaptation imply more sophisticated approaches to ambiguity.  The rigid
signal models and powerful signal processing of Nakatani et al. (1998) permit each signal frame to
be incorporated into the representation as soon as it is acquired, subject only to pruning of spurious
creations.  Other systems can delay making grouping decisions for newly-detected energy to allow
the accumulation of disambiguating information:  In Mellinger (1991), the delay is a fixed latency
before a new harmonic as assigned to a cluster. The systems of Cooke (1991/1993) and Brown
(1992) operated in two passes, with the grouping decisions made upon the intermediate elements
only when they were completely formed, and all information was available. Weintraub (1985) had
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a different two-pass structure, with the voice extraction depending on the overall best path from the
initial dynamic-programming double-voice-state determination.

Rather than waiting for a unique solution to appear, some systems handle ambiguity by pursuing
multiple alternative hypotheses (Ellis, 1996; Klassner, 1996; Godsmark & Brown, 1997).  Although
this approach is computationally expensive, it perhaps resembles listeners by maintaining a set of
‘current beliefs’ for a partially-observed signal; in real-world situations, one may not have the luxury
of waiting for signal to end before commencing analysis.  Listeners’ interpretation of complex
signals might be best understood via the incremental influence of each additional signal cue (as in
the alternating noise bands of figure 5); ultimately, a correct understanding of human sound
organization will probably include a combination of deferral, alternate hypotheses and hypothesis
revision. These issues are also discussed in Cooke & Brown (1994).

Representing and employing constraints

Since the problem of separating one signal into multiple subcomponents has, in its simplest form,
infinitely many solutions, the problem of auditory scene analysis may be viewed as defining and
applying suitable constraints to choose a preferred alternative.  The nature of these constraints, and
the ways in which they are encoded and applied, forms a final axis on which to distinguish between
the computational models.

Each of the cues in the summary of Table 2 corresponds to a certain constraint, i.e. an assumption
of restrictions on the form of sound emitted by real-world sources. Thus the cue of harmonicity
arises because many sound sources generate matched periodic modulation across wide frequency
ranges, and the consequent constraint is that frequency bands exhibiting matched modulation
patterns should be regarded as carrying energy from a single source.  

In a system such as Brown (1992) which relies upon them, cues such as harmonicity and
synchronized onset are directly expressed in the intermediate representation, and thus the
‘knowledge’ of the constraint is implicit in the computational procedure rather than being explicitly
represented.  By contrast, many perceptually important constraints – such as characteristic patterns
of an individual’s native tongue – are more arbitrary, and must be acquired and recalled, rather than
simply computed.  This is seen in the templates of Klassner (1996), which allow his system to have
a somewhat abstracted idea of what, for instance, a telephone ring or a hairdryer sounds like.  The
system then uses the constraint that any scene must be explained in terms of known objects as a way
to overcome the intrinsic uncertainty of a complex mixture.

Although symbolic systems with explicit representation of knowledge provide a natural way for
researchers to implement their intentions, connectionist systems such as neural oscillator models
provide an alternative approach to capturing and using knowledge, as for instance in the vowel-
recognition oscillator network of  Liu et al. (1994), where the constraints of typical vowel spectra
were both represented and applied through the pattern of interconnections between the layers of
‘neurons’.

One glaring difference between computational models and real listeners is the ability of the latter to
acquire many of their constraints simply through exposure to the world.  Ultimately, computer
models must exhibit this kind of learning, but our current ignorance even as to the nature of these
constraints puts such a system some way into the future.

Attention

When we talk of auditory scene analysis in listeners, we imagine them able to pick out any one of
several sound sources in a mixture – but only one at any given time.  Few models can be said to truly
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choose from among the partially-processed sources the one which will be treated as the target to the
exclusion of the others. Auditory scene analysis in listeners may well provide the most flexible
means to extract a single target from a mixture, but it is possible that if no model of attentional focus
is available, these benefits will not be easily realized for problems such as robust automatic speech
recognition. This too is a topic for which good computational approaches have yet to be
demonstrated.

Conclusion

It has taken three decades for auditory organization to develop from a problem that few researchers
recognized to a fertile area of computational modeling.  In this chapter we have surveyed both the
experimental results that inform us about how listeners handle complex sound scenes, and the wide
range of modeling efforts inspired by those results. The increasingly credible promise of benefits,
for example in automatic speech recognition, serve to attract more attention to the field, yet at the
same time our improving understanding and knowledge of human performance continually reveals
new subtleties and capabilities yet to be modeled.

Resources for auditory scene analysis

In addition to Bregman’s (1990) book, useful reviews of auditory organization can be found in
Darwin & Culling (1990), Darwin & Carlyon (1995), Moore (1997, ch. 7) and Handel (1989). In
addition, Volume 336 (1992) of the Philosophical Transactions of the Royal Society of London,
Series B is devoted to the psychophysics of concurrent sound perception.

In 1995, the first international conference specifically concerned with computational models of
auditory scene analysis processes was held in Montreal as a research workshop associated with the
International Joint Conference on Artificial Intelligence. The proceedings of that meeting (Montréal,
1995) provide an illustrative cross-section of the diverse approaches to CASA which now prevail.
A second CASA Workshop (Nagoya, 1997) documents further recent advances in this area. A
special issue of the Speech Communication journal based on that meeting is due to be published in
early 1999.

Other computational perspectives can be found in Cooke & Brown (1994), Summerfield & Culling
(1995), Duda (1994), Bregman (1995) and Slaney (1995).

Demonstrations: A CD containing many audio examples demonstrating principle governing
auditory scene analysis (Bregman & Ahad (1995) Demonstrations of auditory scene analysis; the
CD can be ordered from The MIT Press, 55 Hayward Street, Cambridge, MA 02142, USA).

Corpora: To date, computational auditory scene analysis has not required corpora of the scale
typically used in automatic speech recognition. Existing speech and noise corpora have been used
to create acoustic mixtures suitable for computational auditory scene analysis. For instance, the
NOISEX database (Varga et al., 1992) provides a limited set of noise signals. Corpora produced by
post-hoc signal combination are less than ideal, and demonstrate none of the conversational effects
or compensations which occur in real spoken communication. Two corpora of conversational speech
which address this limitation are available. The Map Task corpus (Thompson et al., 1993) provides
recordings of several two-person conversations and contains a limited amount of overlapping
speech. The ShATR (Sheffield-ATR) corpus (Karlsen et al., 1998), designed specifically for
research in computational auditory scene analysis, involves five participants solving two crossword
puzzles in pairs (the fifth person acts as a hint-giver). This task generates overlapped speech for
nearly 40% of the corpus duration. Eight microphones provides simultaneous digital recordings
from a binaurally-wired mannikin, an omnidirectional pressure zone mike and 5 close-talking
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microphones, one for each participant. This corpus is available on CDROM; for more information,
see the URL below.

More information is available on these databases at the following web addresses:

NOISEX: http://svr-www.eng.cam.ac.uk/comp.speech/Section1/Data/noisex.html

Map Task: http://www.hcrc.ed.ac.uk/dialogue/maptask.html

ShATR: http://www.dcs.shef.ac.uk/research/groups/spandh/pr/ShATR/ShATR.html

A collection of examples and other links relevant to this chapter is available at the following address,
which we intend to maintain for the foreseeable future:

http://www.icsi.berkeley.edu/audorg
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