B ICS]

Diploma Thesis:
Data-Driven Speaker and Subword Unit Clustering In
Speech Processing

Student: Micha Hersch, Section d’Informatique, EPFL
Under the direction of Prof. Hervé Bourlard, EPFL
and Prof. Nelson Morgan, ICSI

March 19, 2003



Contents

1

2

Acknowledgment

Introduction

Speaker Clustering

Introduction

Theoretical Framework
Speaker Clustering And Model Selection . . . . .. ... ... ... ....
Bayesian Information Criterion (BIC) . . . . . .. ... ... ... .....
Gaussian Mixture Models (GMM) .
Hidden Markov Models (HMM) . .
Mathematical Model . . . ... ..

4.1
4.2
4.3
4.4
4.5

Description

Variations On The Algorithm
6.1 The "Pick First” Option . . . . ..
6.2 The "Fast Metric” Option . . . . .

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5

Likelihoods Of The Means .

Volume Of The Squared Difference Of The Pdfs . . . . . ... ...
The Inner Product Of The Pdfs . . . . . . ... ... .. ......

The Angle Between The pdfs
Adjacency Of The Segments

6.3 The “Remembering” Option . . . .
6.4 Learning The Segment Length . . .

Experiments

7.1
7.2
7.3

Description . . ... ... ... ..

Evaluation . . . . .. ... ... ..

Results

7.3.1
7.3.2

Influence Of The Algorithm’s Variations . . .. ... .. ... ...
Influence Of The Initial Parameters . . . . . . . . . ... ... ...

8 Conclusion On The Speaker Clustering

II Automatic Subwords Unit Clustering

9 Introduction

10
10
10
11
11
12
12
12
13
13

13
13
14
14
15
16

19

20

20



10 Asynchronous Speech Recognition (ASR)
10.1 Phone-Based ASR . . . . . . . . . . .. ... ... ...
10.2 Motivations For Data-Driven Subword Units-Based ASR

11 General Framework

11.1 CoreIdeas . . . . . . . . . . . .. . .. ... ...
11.2 Experiments . . . . . . . . . . ... ... ...

12 A Set Of Subword Units

13 Experiment Evaluation

13.1 Baseline System . . . . . . .. . ...
13.1.1 Description . . . ... ... ... .. .......
131.2 Results . . . . . . ... ... Lo Lol

14 Model 1: Subword Units As Features

14.1 The Mathematical Model . . . . . . . . .. ... ... ..
14.2 Experiments . . . . . . . . ... Lo oL
14.2.1 The Training . . .. .. .. .. ... ... ....
14.2.2 The Recognition . ... ... ... ... .....
1423 Results . . . . .. ... ..o
14.3 Discussion . . . . . . . . . . ..o

15 Model 2: Joining Words And Acoustics

15.1 Theoretical Framework . . . . . . . . . . ... ... ...
15.1.1 Directed Graphical Models . . . . . . .. ... ..
15.1.2 The Mathematical Model . . . .. .. ... ...

15.2 Experiments . . . . . . . . ..o Lo
15.2.1 The Training . . ... ... .. ... ... ....
15.2.2 The Recognition . . .. ... ... ... .....
1523 Results . . . . .. ... ... oL oo,

15.3 Discussion . . . . . . . . .. ...

16 Improving The Model

16.1 Tying The Word Models . . . . . . ... ... ... ...
16.1.1 Experiments . . . . .. ... ... ... ... ...
16.1.2 Results . . . . ... ... .o oo

16.2 “Weighted States” HMMs . . . .. .. ... ... ....

17 Conclusion On The Subword Unit Clustering

18 General Conclusion

A Mathematical Proofs

A.1 Formula for the 2" distance measure . . . . ... .. ..

B The GMTK Model

20
20
21

21
21
22

22

25
25
25
26

26
26
26
27
28
28
28

29
29
29
30
31
31
32
32
32

32
32
32
33
33

34

35

36
36

37



C Used Notation

40



Abstract

In [1], a segment-based automatic clustering algorithm was proposed. In the

first part of his work, the algorithm is used for speaker clustering. The effect of
its parameters are studied and some modifications to improve its efficiency are pre-
sented.
The second part of this report presents an attempt to use this algorithm to au-
tomatically derive subword units, and use them in a speech recognition system
whose dictionary is automatically generated, and therefore doesn’t use any linguis-
tic knowledge of any kind. Two different recognition systems are proposed and
tested on the Numbers95 database.

1 Acknowledgments

I would first of all like to thank Prof Hervé Bourlard for making it possible for me
to do this research work at the International Computer Science Institute (ICSI) at
Berkeley in the framework of the IM2-ICSI agreement. I also thank Prof Nelson
Morgan for accepting me in his institute. Moreover, I would like to thank the ICSI
researchers for their help and support, in particular Charles Wooters, Barry Chen,
Panu Somervuo, Jitendra Ajmera and David Gelbart.

I am also grateful to the Swiss National Center of Competences in Research on
Multimodal Information Management (IM2) for providing me with a scholarship.

2 Introduction

Although the science community has been trying to tackle the problem of speech
recognition for many decades, and has indeed earned major successes, a lot still
remains to be done in this field. But because of its age and popularity, it has
become very challenging to come up with new approaches to this problem, which
have not been already tried and which can compete with well established traditional
approaches.

In [1], a segment-based automatic clustering algorithm was developed to perform
speaker clustering and segmentation. Given the unlabeled speech signal of several
people talking one after the other, this algorithm can determine how many speakers
there are, produce a speaker clustering of the speech signal and therefore tell who is
talking when. This algorithm, and the model underlying it, uses very little external
knowledge about speech, needs very few parameters and is hence very general.
The generality of this algorithm makes it very tempting to try to use it in order
to automatically derive subword units. So in the first part of this project the
algorithm is examined in the speaker clustering framework, and some improvements
are proposed in order to increase its efficiency. Those improvements are necessary
in order to conveniently use this algorithm for the subword unit clustering, which
is presented in the second part of this work. In this second part a speech model
is developed, where all knowledge is data-driven, and hence does not need any
linguistic knowledge.



Part 1
Speaker Clustering

3 Introduction

The problem of speaker clustering is widely known. It can be expressed in the follow-
ing way: given an audio recording where several speakers speak one after another,
as in a radio show for example, the aim is to determine the number of speakers
and for each of them, the times at which they started speaking and at which they
stopped. The problem is to find who spoke when.

This information can in itself be interesting, for example when automatically tran-
scribing radio shows, but it is also very useful when doing speech recognition. In-
deed, if this information is known, one can then apply speaker adaptation techniques
like Vocal Tract Length Normalization (VTLN) which improve the speech recogni-
tion. Those techniques adapt the speech model to each speaker, thus yielding better
recognition rates.

4 Theoretical Framework

4.1 Speaker Clustering And Model Selection

One common way of guessing the number of speakers in a speech sequence is to
have a set of models, each of them modeling a speech sequence involving a differ-
ent number of speakers. One finds the model that best fits the data (the speech
sequence) and one hopes that this model indicates the actual number of speakers in
the considered speech sequence. Thus, the speaker clustering problem we are trying
to solve can be viewed as a problem of model selection. This is a very classical
problem in statistics. The goal is to find a model that best represents a data set.
By this we mean not merely a model which maximizes the likelihood of the data,
but a model whose complexity mirrors the true underlying complexity of the data.
Such a model would not only fit the training data, but would be general enough
to also fit data on which it was not trained. As it is always possible to raise the
likelihood by choosing a more complex model, there is a trade-off to be reached
between the model complexity, i.e. its number of parameters, and the likelihood of
the data.

4.2 Bayesian Information Criterion (BIC)

In [2] the following method for choosing the dimension (or complexity) of a model
was proposed:

Choose the model j for which log ML;(z!,... ,2")— %kj logn is largest,

where M L; is the likelihood according to model j, k; is the dimension of model j
and (z!,...,2") is the data set. Although [2] shows that this method is optimal as
n reaches infinity, in practical applications the penalty term %kj log n always needed

5



to be modulated by a constant in order to achieve better results. This constant was
to be set empirically, because no theory accounted for it.

4.3 Gaussian Mixture Models (GMM)

A Gaussian mixture model, or a multi-Gaussian is a probability distribution function

M
p@) =) cm - gm(@) (1)
m=1

where M is the number of mixture components, the ¢,, are the mixture component
weights (and sum to one). A multi-Gaussian is a weighted sum of Gaussian functions
gm, Which are determined by their mean p,,, and their covariance matrix ¥,,:

1
2m)4/2 | Sy

() = e (@-m e wm) | @
where d is the dimension of the space.

A useful algorithm for estimating the parameters of a GMM that maximize the
likelihood of a set of n data vectors {z*}is the Expectation Maximization algorithm.
This algorithm works by iteratively updating the parameters according (in the case
of diagonal covariance matrices) to the following equations:

/-l':lnew — z::_b (m | T 7?) T (3)
Y P(m | =*,0)

ynew Z?:l P(m | wi,a) ) (wz - l“m)T(wi — ftm) (4)
Zz’:l P(m ‘ mz’e)

cpew = %ZP(m | 2¢,0) (5)
(6)

where 6 = {{um},{Em},{cm}} is the set of current parameters. The value P(m |
x*,6) can be computes as

P(m i,gzw 7
1250 =S e 0r(@) @

4.4 Hidden Markov Models (HMM)

A Hidden Markov Model can be described as a set of @ states {¢;}, a transition
matrix A = {a;;}, a set of d-dimensional probability density functions {B;} and
an initial state probability vector p = {p;} with 7 and j ranging from 1 to Q. The
system starts at time 0 in a state g; with a probability p;. When in a state g; at time
t a d-dimensional vector &* is emitted according to a probability B;(2?) and at time
t+ 1 the system moves on to state g; with a probability a;; and so on, generating a
sequence of T' observation vectors ®f. A graphical illustration of a fully connected
three state HMM can be found in figure 1.

Two useful algorithms for HMMs are the Baum-Welch and the Viterbi algorithm.



Figure 1: A fully connected three state HMM. The circles represent the states and the
arrows possible transition between states. Fach state q; has an emission probability density
function B;.

g;

The Baum-Welch algorithm finds the parameters 6 of an HMM, (A, {B;}, p) that
maximizes the likelihood of a sequence of observation vectors. The Viterbi algo-
rithm, which is used in the speaker clustering algorithm is described in the following
paragraph.

The Viterbi Algorithm The Viterbi algorithm finds the most likely sequence
of states given the model and the observations. It consists of computing the following
recursive equation over times ¢ and states i:

plgi,2°) = pi-Bi(2°) (8)
p(qt,xt,... ,xt) = m]ax(p(q;_l,wl,... , 2t 1) . By(2*) - aji) (9)

This equation can be computed efficiently using dynamic programming in the log-
space, and by keeping track of the j’s for each iteration one gets the most likely
state sequence.

4.5 Mathematical Model

The algorithm described here avoids the problem of choosing the right model dimen-
sion by reducing speaker clustering to a model selection problem, in which all models
have the same dimension. The considered model is a first order HMM containing
K states (or clusters). Each state represents a speaker, has a minimum duration
constraint L, and generates the data according to a Gaussian mixture probability
density function (pdf). The transition probabilities from one cluster to another are
the same for all clusters and are held fixed. The representation of the resulting
model can be seen in figure 2.

On such a model, one can define the merging operation on two clusters, which con-
sists of replacing them with one cluster with a probability density function which is
the (weighted) sum of the two disappearing pdfs. The resulting Gaussian mixture
contains as many mixture components as the number of components in the two
disappearing clusters. Thus, the merging of two clusters does not change the num-
ber of parameters in the model. To be more precise, the merging of two clusters

7



Figure 2: The model used for speaker clustering, with 4 clusters. Each branch of the star
represent a cluster, which is a succession of L (minimum duration) states which all share
the same multi-Gaussian probability density function (pdf) as represented with the dotted
arrows pointing to the same pdf. The pdfs of different clusters differ and may not have the
same number of Gaussian components. From the last state of a cluster C;, one can reach
the beginning of any other cluster with the same probability, or stay in the same cluster
with probability a;.

minimum duration



Figure 3: The structure of the algorithm

Merging

Clustering

For each pair
K-means H SegmentationH Retraining H of clusters:

Retraining

adds one degree of freedom to the model, because as one cluster disappears, the
constraint on the weights of its Gaussian mixture components disappears as well.
But this approximation will be solved in section 6.4.

As the number of parameters stays (almost) constant, one can use the likelihood
criterion in order to decide whether or not to merge two clusters. In other words,
given a segmentation S, the clusters C; and Co with probability density functions p;
and ps respectively are merged into a cluster Cs3 with probability density function
ps only if this raises the likelihood of the data, i.e.

P(zl,..., 2T | My)
P(Ds(C1) | C1) - P(Ds(Cz) | C2)

< P(et,...,zT | My) (10)
< P(Ds(C1), Ds(C2) | C5) (11)

& > log(P(z|p))+ Y, log(P(z|p2)) - (12)

«€Dg(C1) xcDs(C2)

S log(Ple|ps) < 0

#€Ds(C1)UDs(C2)

& Z log |§1))+ Z log(M) < 0 (13)

P
xcDg(C1) 2€Dg(C2) (w | p3)

where Dg(C;) is the data belonging to cluster C; according to segmentation S, p3
is obtained after retraining over Dg(C;) UDg(C2), M is the model where C; and C;
are kept separated and M is the model where those clusters are merged together.
This criterion is equivalent to the BIC criterion, but since the k; is constant the
second term in mathematical expression of section 4.2 can be discarded.

The basic idea of this algorithm is two start with a model containing a large
number of clusters and successively merge clusters and retrain the model as long as
the likelihood of the data increases.

5 Description

The algorithm, which is summarized in figure 3, consists of the following steps .

9




1. Cluster the data in K clusters using a standard K-means algorithm.

2. Model each cluster with a trained multi-Gaussian pdf containing M mixture
components.

3. Segment the data using the Viterbi algorithm on an HMM topology respecting
the minimum duration constraint.

4. For each cluster, retrain its GMM on the features belonging to that cluster
according to the current segmentation, using the EM algorithm.

5. For each pair of clusters, merge them (in keeping the number of Gaussian
mixture components constant), retrain (with EM) the newly obtained clus-
ter on the features belonging to those two clusters according to the current
segmentation and compute the merging score, i.e. the left side of inequality 13.

6. If no merge yields a negative score, end, else keep the merge yielding the best
(i.e the lowest) merging score and leave the other clusters unchanged and go
to 3.

6 Variations On The Algorithm

The initial version of the algorithm gets pretty slow as the number of initial clusters
rises. In this section, new and faster versions of this algorithm are described.

6.1 The ”Pick First” Option

This version differs from the original version in that it is not the best of all merges
that is performed. Rather, merges are tried in a random order and one performs
the first merge that yields a negative score, i.e that satisfies inequality 13. The
idea is that it isn’t necessary to find the merge which most raises the likelihood,
that merges can be performed, that are not the best ones at this point. This way,
it isn’t necessary to try all K (K — 1) merges.

6.2 The "Fast Metric” Option

The idea behind these versions is to find a quickly computable distance or similarity
measure that would give a good indication whether two clusters are likely to satisfy
inequality 13. Before picking the two clusters to be merged, one computes this
measure for all pairs of clusters, sorts them and tries the merges in the resulting
order. This way, one hopes to find a pair of clusters that satisfies inequality 13
faster than if the pairs were picked randomly as described in the previous paragraph.
Five different measures were studied and are described in the following paragraphs.

10



6.2.1 Likelihoods Of The Means

The first distance measure is the weighted sum of the log likelihood of the means
of the Gaussian mixture of one cluster according to the pdf of the other cluster and
symmetrically. More precisely, if clusters C; has a multi-Gaussian pdf

M;
Di = Z Cim * 9i,m (14)
m=1

where M; is the number of mixture components in cluster ¢, the c; ,, are the mixture
components weights (and sum to one for every i) and gim = N(gin,Xin) are
the Gaussian mixture components, then the distance between clusters C; and C; is
computed as

M;
Cuc Z log Ciom * ,uzm |p] + Z log Cim P(/-Lj,m |p1,))

m=1

This distance measure can be understood in he following way. As the aim is to
merge clusters that have similar pdfs, i.e. that give high probabilities to the same
regions of the feature space. Since the pdfs are estimated on their cluster’s segment,
one can say that one tries to merge two clusters if the pdf of one of them also well
explains the segments belonging to the other cluster. If we understand the means
of the Gaussian mixture of one cluster as representants of the data of this cluster
(like in vector quantization), this measure gives (if the two clusters have about the
same number of points) a very rough approximation of logP(x; | p;)+logP(x; | ps:),
where #; € Ds(C;) and ®; € Ds(C;), which should be bigger the closer p; is from

pj-

6.2.2 Volume Of The Squared Difference Of The Pdfs

If two pdfs are alike, the absolute value of there difference will in general be small,
and therefore the square of their difference will also be small. Accordingly, the
distance measure looks at the volume of the squared difference of the pdfs. More
precisely, it is

2(Ci,Cj) = /(pz(a:) —pj(:c))2d:c

This distance measure, suggested by [3], can be computed pretty efficiently, but
some mathematical development, presented in appendix A.l, is needed in order to
get the the formula, which is

M;,
o) @)= s (3 Y S ()0 ey (19

klE{'L,]}ml 1mo=1
1

| Zkaml + 2l7m2 |1/2

exp{ (Ek my T ] ’mz) l(ﬂk,’mq - /~"l,m2)2}) (16)

where §(:, ) is the Kronecker’s symbol, c.., u.. and X. . are respectively the weights,
means, and (diagonal) variances of the mixture components, as described in equation
14.

11



6.2.3 The Inner Product Of The Pdfs

This distance measure computes the expected probability of a vector drawn from
one probability density function according to the other. This can be expressed as:

Ds3(Ci,Cj) = Eyp,;(pi(z)) (17)
- / pi(@)p;()de (18)

= Y b exp{—5 (Btymy + Siyma) ! (Bymy — Hyma)? )
1,M1%-],M2 ‘ Ek,ml + El’m2 ‘1/2 J

mi=1mo=1

where E(-) denotes the expectation according to probability density function f.
The last equality was derived using the mathematical developments presented in
Al

This expression is symmetric, which suits very well our purpose, and one recognizes
the inner product of p; and p; (also called the dot product).

6.2.4 The Angle Between The pdfs

The preceding similarity measure, is the inner product of the pdfs. Since the pdfs
are Ly normalized and not L, normalized, the similarity between the two same pdf
depends on its Ls norm, which is not exactly what is desired. It would be like using
the inner product to compute the similarity between vectors of different lengths. In
order to account for this, one can use the angle between the two pdfs as a similarity
measure. The cosine of the angle between to elements p; and p; of a vector space is
defined as

<piapj>
D4(C;,C;) = 20
(. C)) (< pirpj > - < pirypj >)1/2 (20)

(riaida- | e da)

where the integrals are computed using the results of the previous sections.

6.2.5 Adjacency Of The Segments

Unlike the four preceding distance measures, this one does not look at the pdfs at
all. Since we start by over-clustering the data, and because the minimum duration
is usually much smaller than the actual expected "true” segment length, a speaker
will usually be segmented into many alternating clusters, which (if the algorithm
is successful enough) will eventually be merged together. One can therefore think
that clusters which often follow one another are more likely to satisfy the merging
condition 13. Thus, the third distance is simply the number of times the segments
of two clusters are adjacent one to the other.

L(S)-1
D5(C¢,Cj) = Z (6(05(1),Ci) . 6(Cs(l + 1),Cj) + 5(Cs(l),c_j) . 5(05(l + 1),Ci)

=1

where Cs(1) is the cluster of the I*" segment of segmentation S and L(S) its total
number of segments.

12



Table 1: The number of speakers in each file.
| File [1]2]3]4]
‘ Nb of speakers H 7 ‘ 13 ‘ 15 ‘ 20 ‘

6.3 The “Remembering” Option

Between each realized merge there is a new segmentation and the clusters are accord-
ingly retrained (steps 2 and 3 in paragraph 5). Thus, the cluster change between
two “rounds”. However, it was noticed that in fact the clusters don’t change that
much, and that one can take advantage of the results of the previous round of merg-
ing scores. If a pair of clusters did not satisfy the merging criterion at the previous
iteration it is likely that it will not satisfy it at the current iteration either. There-
fore, the unsuccessfully merged pairs of previous iterations are placed at the end of
the sorted list, and are only tried after the mergings of all pairs have been tried.

6.4 Learning The Segment Length

The segments of some clusters may tend to be longer than the segments of other
clusters. This can reflect the fact that some people like to talk more than other,
or that people have a different role in a conversation. In an interview, for example,
the interviewed will be likely to talk for longer periods than the interviewer. One
possible way to account for this, is to have a flexible self-transition a; in our model
(see figure 2). Those values are learned in the process of the segmentation. At each
retraining they are re-estimated according to the following formula:
| Ds(Ci) | —Ss(Ci) - L

%= TDs(C) | —85(C) - (1) (22)

where | Ds(C;) | is the number of feature vectors (frames) belonging to cluster
Ci, Ss(C;) is the number of its segments according to segmentation S and L is the
minimum duration. This formula is simply the number of time the system remained
in the last state of cluster C; divided by the number of times it was in that state.

It is interesting to note that by adding this parameter, the number of parameters
stays truly constant, because at each merge one a; disappears, which compensate
for the added degree of freedom mentioned in section 4.5.

7 Experiments

7.1 Description

The experiments were done using the same four files as in [4] and [1] in order to have
comparable results. Each of those files is a one half hour audio file from Broadcast
News. The number of speakers appearing in each file is shown in table 1. The first
file also contains a large amount of non-speech data, like music or hand clapping.
Eight of the speakers of the second file and two of those of the fourth file talk over

13



the phone, which filters their acoustic features.
The features are 12 LPCC, for all experiments.

7.2 Evaluation

The same evaluation criteria were used as in [1]. Those criteria are the average
cluster and speaker purity proposed in [5]. The average cluster purity (acp) is the
probability that given two frames from the same cluster they also belong to the same
speaker. Thus, if S(x?) is the speaker having emitted «*, i.e the speaker talking at
time t, Cs(x?) is the cluster in which z? is cast by segmentation S, W is the number
of speakers, NV is the number of cluster, n; ; is the number of feature vectors emitted
by speaker 7 and cast into cluster ¢ then

acp = P(S(=') = S(z")| Cs(z) = Cs(=")) (23)

W N
- Z P(S(z*) =i,S(z") =i | Cs(x') = j,Cs(x™) =j)  (24)

j=11i=1

W n: ;
= 2D () (25)

j=14=1 "~

where n. j = ), n; j is the number of feature vectors emitted by speaker j.

This measure punishes under-clustering, because in that case many speakers will
be attributed the same cluster and the n; ;’s will be small compared with n. ; and
the sum of the squares is smaller that the square of the sum for positive values.
Similarly the average speaker purity asp is defined as the probability that two
frames belonging to the same speaker will be assigned to the same cluster, that is

asp = P(Cs(a") = Cs(z")) | S(=") = S(=*) (26)
N W

= DD P(Cs(a’) =j,Cs(=") = j| S(=') =i, (") =3)  (27)

= Y 20E (28)

where n;. =) j Mi,j is the number of feature vectors belonging to cluster 3.

This penalizes over-clustering, because in that case many clusters will be attributed
to the same speaker. In order to have one single number one defines k& as the
geometrical average the cluster and speaker purity.

k = \/acp - asp (29)

7.3 Results

On the subsequent plots showing the results, the error bars represent the stan-
dard deviation. All values are an average over 5 experiments with different initial
K-means clustering. All experiments where run on the same computer, a 1024
megahertz sunBlade-1000.

14



Table 2: The default parameters for the speaker clustering

| window size[ms| | min.duration[s] L | nb. clusters K | nb. Gaussians/cluster M |

25 ‘ 2 ‘ 3 x nb. speakers ‘ 5

Figure 4: The effect of the different variations on the efficiency of the algorithm. On
the x-azis are the variations (1:”Original Version” , 2: ”Pick First”, 8: “Volume Of The
Squared Difference”, 4: ”Inner Product Of The Pdfs”, 5: “Angle Between The Pdfs”,

6:“Adjacency Of The Segment”, 7:”Likelihood Of The Means” 8:

“Likelihood Of The

Means + Learn Segment Length”). The versions 3 to 8 make use of the “Remembering”
option. On the y-azis is the k-score (left plot) and the time (right plot). The lines link
the results for the same file.

0.95

0.9

variations 1:original 2: random 3: sq. diff 4: inner prod 5: angle 6:adjacency 7: lik. means 8:+ learn seg. length variations 1:original 2: random 3: sq. diff 4: inner prod 5: angle 6:adjacency 7: lik. means 8:+ learn seg. length

Influence of the variations on the k-score Influence of the variations on the speed
T T T T T T T

35

— file 1

- file 3

30 1 : : : o file2 ||

& file 4

time[x real time]

[ = file 1

[| - file 3

o file 2

—& file 4
T

0
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8

7.3.1 Influence Of The Algorithm’s Variations

All experiments are done using the default parameters of table 2. The aim of those
experiments was to see the effects of the variations presented in section 6 on the
efficiency of the algorithm. The results are presented in figure 4. The original
version (for value 7 on the horizontal axis of the plots) is much slower than the
“Pick First” version (value 2 on the horizontal axis) especially if there are a large
number of clusters, and the k-score doesn’t change significantly. So it does not
seem necessary to try all possible merges and select the best one, it is much faster
to perform the first acceptable merge that is found.

One can also notice that the only similarity measure that consistently brings an
improvement to the speed of the algorithm is the “likelihood of the means” measure
(number 7 on the x-axis). The other measures are either almost consistently worth
than random like the “volume of the squared difference of the pdfs” (number 3)
and the “inner product of the pdfs” (number 4) or are almost the same as random
picking (number 2), like the “adjacency” (number 6) and “angle between the pdfs”
(number 5). Moreover it seems that the two best similarity measures (“likelihood
of the means” and “adjacency”) are the measures which are the more heuristic,
and which do not integrate some measure over the feature space. The other ones
brought a significant decrease in the quality of the clustering for some files. This is

15

9



Figure 5: The influence of the initial number of clusters on the results. On the z-axis s
represented the initial number of clusters as a multiple of the true number of speakers. On
the left graph the y-axis represents the k-score (section 7.2) and right graph the time for
the algorithm to run in minutes.

Influence of the number of cluster on the k-score Influence of the number of cluster on the speed
1 T T T 600 T T T

— file 1 — file 1

.05l & file2 1 wl™ file 2

—<— file 3 —— file 3

—& file 4 —& file 4
09— q

400+ q

0.85 —

k-score
time[min]
@
S
3
T

200~

0.7 q

0.65 I I I I 0 I I I I I
15 25 3 3.5 25 3 35 4 4.5
number of cluster [x true number of speakers] number of cluster [x true number of speakers]

N
s
>
o
N
o
N

probably due to the fact that there is a discrepancy between the Gaussian mixtures
and the actual distribution of the data.

The use of the “Learn Segment Length” option brings an improvement to the speed
of the algorithm to all files and an improvement to the clustering score for most
of the files. So the modeling of the segment length makes the model a better
representation the reality. How this translates into a faster algorithm is not very
clear, but could be attributed to the fact that in a better model, the similarity
measure is more efficient. Another explanation is that, without this option, since
one parameter is added each time two clusters are merged (as one constraint on the
weights disappears), the likelihood is more likely to rise. More merges are therefore
performed without this option, and the algorithm thus takes more time.

In summary, the modification brought to the algorithm made it from two to four
times faster, no loss in the quality of the clustering.

7.3.2 Influence Of The Initial Parameters

All experiments are done using the “adjacency” version except the window size
experiments that used the “likelihood of the means” similarity measure. The default
parameters are the following ones listed in table 2.

The Initial Number Of Clusters The influence of the initial number of
clusters is shown on figure 5. The left graph plots the k-score according to the
initial number of clusters (as a multiple of the true number of speakers). One can
see (on the left plot) a significant increase when going from twice the true number
of speakers to three times the numbers of speakers, but no consistent increase when
going from three times to four times the true number of speakers. For half of the
files, having more initial clusters increases the quality of the clustering whereas for
the other half, it does not. Of course the higher the number of clusters the slower

16



Figure 6: The influence of minimum duration on the results. The on the x-axis is rep-
resented the minimum duration in seconds. On the left graph the y-azis represents the
k-score (section 7.2) and right graph the time for the algorithm to run in minutes.

Influence of the minimum duration on the k-score Influence of the minimum duration on the speed
0.92 T T T T T 240

—— file 1
220H —
o file 2

0.9

200
0.881

180
0.86

160~

k-score
time[min]
[
IN
S
T

120
100+
80

40
35 05 1 15 2 25 3 35
min duration[s] min duration [s]

[1 =« file 1

—©- file 2

0.5

the algorithm.

The Minimum Duration The influence of the minimum duration is shown in
figure 6. Again there is a consistent increase in the k-score when going from one
second minimum duration to two seconds, but not when going from two to three
seconds. The choice of the minimum duration is the result of a trade-off between
the granularity of the segmentation and the amount of data needed to capture the
characteristics of a speaker. Since the needed granularity depends strongly on the
file, (if speakers tend to speak for a long time or not) it is not surprising that the
optimal minimum duration is different for each file. However, it seems that one can
capture enough of the speaker characteristics in two seconds to have good enough
results.

The Initial Number Of Gaussian Mixture Components The influence
of the initial number of Gaussian mixture components is shown on figure 7. One can
see that it is necessary to have enough of them, in order to capture the characteristics
of each speaker, lest different speakers will be merged in the same cluster. The
quality of the clustering for file 3 sees a very significant increase when having a
large number of Gaussians. This suggests that with five Gaussians per cluster,
there is not enough parameters to properly model the speech signal of this file.
Having a lot of mixture does not affect the quality of the clustering very much,
although it makes the algorithm slower. This can be explained by the fact that the
risk of over-fitting is not very significant since the training and testing data is the
same. However it is sound to assume that if there are really to many Gaussians, the
modeling of the clusters derived from a segmentation will be nearly perfect and thus
the likelihood could never be risen by any merge, which would stop the algorithm.
This would obviously result in an over-clustering of the data.

17



Figure 7: The effect of the initial number of Gaussian mixture component per cluster on
the efficiency of the algorithm. On the z-axis is the initial number of Gaussian component
in each cluster. On the y-azis is the k-score (left plot) and the time (right plot). The lines
link the results for the same file.

Influence of the initial number of gaussian components on the k-score Influence of the initial number of gaussian components on the speed
1 T T T T T 16 T T T T T
—— file 1 —— file 1
0951 &~ file 2 7 141 —o- file 2 7
—%— file3 —— file3
0911 & file4 7 121 filea 7
0.85- — 10+ —
o
E
< =
o [
3 081 4 9 8f 4
L 3
£
0.75 - q 6 b
0.7 4 4+ B
065 4 2t / B
0.6 I I I I I 0 I I I I I
0 2 4 6 8 10 12 0 2 4 6 8 10 12
initial number of gaussian components per cluster initial number of gaussian components per cluster

Figure 8: The effect of the window analysis size and step on the efficiency of the algorithm.
On the z-azis is the window step. The window size is always 2.5 - windowStep. On the
y-axis is the k-score (left plot) and the time (right plot). The lines link the results for the
same file.

Influence of the window step on the k-score Influence of the window step on the speed
0.9 T T - T T 10 T T T
—— file 1
ol — H
0.85- T - file 2
8 —%— file 3 H
0.8~ b —&— file 4
7L 4
0.75 *
7 6 1
£
o =
8 o7f 4 8 st .
. 3
£
= 4L 4
0.65 - —
3L 4
0.6 - Il
—— file 1
— ok 4
- file 2
055 T Il
—4— file 3 1r q
- | B file4
0.5 I I I I I 0 I F
0 20 40 60 80 100 120 0 20 40 60 80 100 120
window step window step

18



The Window Size Experiments were made to increase the window analysis
size, and step size, keeping their ratio constant at 2.5. The idea is that if the step
size is bigger, one will have less feature vectors for the same amount of speech.
Since the Viterbi algorithm and the EM re-estimation algorithm are both linear
with the number of feature vectors, reducing this number will increase the speed of
the algorithm. The results presented in figure 8 show that this is in fact the case.
In fact, for the fourth file, having the window step increased by five to 50 ms and
the window analysis size increased to 125 ms, makes the algorithm about ten times
faster, reaching the runtime threshold. Moreover, one sees that there is no loss in
the quality of the clustering, on the contrary. This can be explained by the fact
that the characteristics that are specific of a speaker are long-term characteristics
and that a high temporal resolution is therefore not so important. Those long-
term characteristics are best captured by extracting the LPC coefficients over large
windows. A large window step, however, limits the granularity of the segmentation.
It is interesting to notice that a very large window size of 250 ms yields a sharp
decrease in the quality of the clustering for those file that have speakers talking
through the phone.

8 Conclusion On The Speaker Clustering

The results presented above show that it was possible to dramatically improve the
speed of the algorithm by not picking the best possible merge at each iteration and
by computing the LPC coefficients over larger analysis windows and increasing the
window step size (i.e. decreasing the frame rate). A further improvement was made
possible by using a fast similarity measure to determine the order in which to try the
mergings and by modeling the segment length for each cluster. The running time of
the algorithm was thus brought (for file 4) from 33 times to 1 time real time with a
slight increase in the quality of the clustering. Further improvements in the speed
could probably be reached by reducing the amount of retraining at each iteration.
As mentioned before, the models of the cluster do not change that much between
each iteration, especially at the end of the procedure, when the clusters are fairly
well trained. Considerable time is therefore probably waisted on training GMMs
that are already trained. It has also been shown that the algorithm is very stable
to the initial parameters. The quality of the resulting clustering is little affected
by variations of those parameters. One just has to make sure that the the model
is complex enough (contains enough Gaussian components) and that the minimum
duration is big enough to capture the properties of the speaker and that one starts
with enough clusters. And once those basic requirements are met, there is no big
loss nor gain in terms of quality of the clustering by changing those parameters.
The effect of those changes is merely on the speed of the algorithm. This can be
explained by the fact that there is no distinction between training and testing, since
the training data is the same as the testing data. Therefore, the risk of over-fitting
is very limited.

Although no experiment was made in this work to compare this algorithm with
other speaker clustering algorithms, this algorithm was (unofficially) submitted to
the NIST dry run evaluation in January 2003. It got an honorable third place out
of the seven competitors, despite the fact that it was used in its original version,

19



Figure 9: A standard three state phone model.

WYY

without any of the optimizations presented in this work, and without the optimized
parameters. This indicates that the algorithm compares well with other state-of-
the-art speaker clustering algorithms.

Part 11
Automatic Subwords Unit
Clustering

9 Introduction

In the second part of this work, another application of this algorithm will be pre-
sented, namely for automatic subword unit clustering. Firstly, the standard (phone-
based) asynchronous speech recognition system will be briefly presented, and we will
show where in such a system subword unit clustering could be used. Then the mo-
tivations for using subword unit clustering will be explained.

Two systems using subword unit clustering were experimented, the first one being
a simplification of the second one. Those two systems, the models underlying them
and their experiments will then be presented, followed by a conclusion, and an idea
for future work on this topic.

10 Asynchronous Speech Recognition (ASR)
10.1 Phone-Based ASR

A standard ASR system is made of four main components, the feature extraction,
the acoustic model, the dictionary and the language model.

The first component, the feature extraction, takes the sound wave as input and
produces a sequence of feature vectors as output. The aim of feature extraction
is to produce vectors that contain valuable information about the acoustics of the
sound wave, i.e. about what sound was produced.

The second component, the acoustic model, models the generation of those feature
vectors by the speaker. Nowadays, the standard acoustic model is based on phones.
For a given language, a set of phones is designed by linguists, and each of those
phones is represented as a 3 or 5 states HMM as shown on figure 9. The states of
this HMM emit the feature vectors according to a multi-Gaussian pdf. This set of
HMMs (one for each phone) constitutes the acoustic model.

The third component, the dictionary or word model models the words. In the stan-

20



dard word model, each word of this language is expressed as a sequence of phones
(although some models support more than one sequence for each word). Thus, a
given word is represented as the concatenation of the HMMs representing its se-
quence of phones.

The last component is the language model and models the sequence of words and
is generally expressed as a Discrete Markov Chain (a HMM without emission prob-
abilities where the states, the words in our case, are directly observed).

10.2 Motivations For Data-Driven Subword Units-Based
ASR

It can be noticed that the system described above heavily relies on the work of
linguists who design the phone set and and write the dictionary, i.e decide for each
word, what its phone sequence is (or are). This is a serious drawback of the system
because such linguistic knowledge is not always available, and one does not know
to what extend this knowledge is helpful or right since it is not derived using the
same statistical framework that is used for the rest of the system. Rather it is de-
rived using human speech processing which is quite different than computer speech
processing. Moreover the quality of this knowledge can be doubted when it comes
to conversational speech, which is very different than “right” speech. Furthermore,
the history of artificial intelligence shows that, in general, statistical systems trained
on a lot of data produce better results than by knowledge-based systems. It would
therefore be useful and interesting to build a system that does not use any linguis-
tic knowledge. Since the feature extraction and the language model make no use
of linguistic knowledge, those components can be kept as they are. The only com-
ponents that would need to be changed are the acoustic model and the dictionary.
In the following sections an acoustic model and a word model that make no use of
linguistic knowledge are proposed in two variations.

11 General Framework

11.1 Core Ideas

The core ideas underlying the two suggested models are the following ones:

1. Instead of using a linguistically defined set of phones, a set of phones (or sub-
word units) will be automatically derived from the data, using the algorithm
described in the first part of this work.

2. Each word will be represented as a HMM, where the states represent the
position within the word, and emit subword units according to a discrete
probability density function.

The advantage of the first idea is that it provides a set of data-driven subword units
that can be of different complexity, of different lengths (if the option mentioned in
section 6.4 is used), and the size of this set is set automatically. However, there
is a fundamental difference between the speaker clustering and the subword unit
clustering. Whereas in the speaker clustering there is no distinction between the

21



training and testing data, this distinction is present in the subword unit clustering
since the subword units are derived from a different data than the one on which the
recognition is performed. This means that the risk of over-fitting is more crucial in
the subword unit clustering and that the performances will likely to be more affected
by the choice of the parameters, unlike the speaker clustering whose performances
are pretty stable to parameter variations.

Different attempts to perform subword unit-based speech recognition, such as [6],
face the problem of how to derive and optimize a subword unit-based dictionary.
The advantage of the second idea is that it nicely integrates the dictionary into a well
known statistical framework, which is very flexible and allows a very big number of
different “pronunciations”. One challenge is to define the word HMM topology to be
on one hand flexible enough to account for the variations in the pronunciations and
acoustic conditions and on the other hand stable enough to keep its discriminative
power. A solution to this specific issue is presented in section 16.2.

11.2 Experiments

All the following models where tested on the Numbers95 task. Number95 is a
database of numbers ranging from 0 to 100. The training set contains 3233 ut-
terances, and the (disjoint) testing set contains 1227 utterances. Each utterance
contains about 4 numbers. It is clean speech, although some laughs, “um” and
“uh” occur sometimes. There are 30 words, including the silence word. It is worth
noting that no use of the word boundaries was made in any of the experiments, that
only the utterances boundaries were known. Moreover, the most basic language
model was used, one where all words have an equal probability at any given time.
This choice was made in order to isolate the contribution of the acoustic model only,
since it is this component that is being studied. The attempt in those experiments
was not to compete with the actual state-of-the-art systems that have undergone
years of fine-tuning and contain many additional features, but rather to examine
the feasibility of the proposed methods in a very simple framework, bearing in mind
the simplicity of the experimental systems.

12 A Set Of Subword Units

Before going into the subword unit-based recognition systems, it is worth having a
look at a set of subword units and try to understand what the subword unit models
are learning and if they seem suitable for the purpose of speech recognition. In
order to do this, the hand labeling of phones for the Numbers95 dataset was used.
Figure 10 shows the confusion matrices of phones and subword units. On the plot
on the left, the distribution of phones among subword units is shown (the rows
are normalized). The intensity (darkness) of the squares in position (7, j) indicates
the percentage of frames of subword unit ¢ belonging to phone j. The matrix on
the right shows the distribution of subword units among phones (the columns are
normalized).

Those two matrices are pretty sparse, which means that their entropy is relatively
low, i.e that the subword units and the phones contain a lot of information about
each other. This is an encouraging fact, since it suggests that subword units contain

22



Figure 10: The distribution of phones among subword units (left) and the distribution
of subword units among phones (right). The rows represent the subword units and the
column represent the phones. All values are between 0 (white) and 1 (black).

Confusion matrix (subword unit normalized) Confusion matrix (phone normalized)
-
|
| N
= " a - |
10 A | - 10 L
[ u
|
H |
20 A - 20 L
= | -
|
- |
8 30 L 8
= 30 u - = 30 1 i
= - S
2 - =
o H o
z i Z |
@ 40 = @ 40 -
[
50 A i L
- [ 50
|
i ]
60 B = 60 . -
.y |
[
10 20 30 40 10 20 30 40
phones phones

23



Figure 11: The distribution of subword units among males (black) and female (white)

Subword unit distribution according to gender
6T T T T T T

T
Il male
[ 1] female

percentage of frames

R A At A

0 10 20 30 40 50 60
subword unit

a fair amount of phonetic information. A lot of subword units consist mainly of one,
two or three phones, which does not come as a surprise since the minimum duration
of 100 milliseconds is a bit higher than the mean duration of a phone. One can
also notice that some subword units consist mainly of silence (the last column),
and that different subword units consist mainly of the same phone, as indicated by
columns containing a lot of black squares on the left matrix. The matrix on the
right shows fewer dark squares, which means that phones are usually distributed
over many subword units. This suggests that subword units are in way finer grained
than phone, which is consistent with the fact that there are more numerous than
phones.

Since many subword units express the same phone, especially for vowels, it is
sound to assume that the subword unit models learn other characteristics than
just the phonetic content. Those characteristics can be speaker dependent, such
as the pitch, and through it the gender. In order to test this hypothesis, a the
distribution of subword units according to gender was computed. The result is
plotted on figure 11. One can see on that plot that men have a different distribution
of subword units than women. Since the distribution of phones among men and
women are very similar, this shows that the subword units models also catch things
that are not the phonetic content. Except the big silence subword unit 37, almost
all most significant subword units are gender dependent. Since the subword units
are optimizing the likelihood of the data regardless of the transcription, it does not
come as very surprising that they capture other properties than just the phonetic
content. However, a fair amount of them do capture phonetic characteristics as

24



Table 3: Ezxamples of some obviously meaningful subword units. The “percentage” row
indicates the percentage of occurrences of the subword unit that overlapped with this phone
(or sequence of phones).

subword unit 4 6 7 8 21
phone(s) “two” | “wa”, “an” “ev”,”ayv” “sih”, “seh” “ayn”
percentage 85 49 72 60 36
subword unit 32 37 43 53 LY
phone(s) “zih” sil “sih” ”seh”,” zih” “nay” “owr”, “aor”
percentage 73 99.8 66 69 92

can be seen on the table 3, which shows examples of some obviously meaningful
subword units. The results presented in this table suggest that a good portion of the
subword units capture common sequences of phones and transition between phones.

13 Experiment Evaluation

One challenge that arises when trying new models, is the question what to compare
them with and to give some meaning to the results. We could compare our results
to a standard basic HMM system that has as many parameters as the experimental
model. But then, the standard system makes use of expert knowledge that has been
refined over the years, and that the experimental system does not used. So it is to
be expected that the experimental system will not produce as good results as the
standard system. In order to nonetheless be able to evaluate the performance of our
new models, a traditional phone-based system was designed, which has the same
complexity as the experimental system and which could be taken as a baseline. This
baseline system is described in the following section.

13.1 Baseline System
13.1.1 Description

The aim of this baseline system is to serve as a yardstick for measuring the perfor-
mances of the experimental systems, i.e. to compare our word and acoustic models
to the standard phone-based word and acoustic model. As said before, in order to
isolate as much as possible the acoustic and word models and to keep the rest as
simple as possible, the baseline system uses the most basic language model, where
every word has the same probability. The acoustic model is made of the icsi56
phone set and each phone is represented as a three-state HMM. Each state in the
HMM has a multi-Gaussian emission probability density function. The number of
Gaussian components was set so that the total number of Gaussian components in
the acoustic model would be (roughly) the same in the baseline system and and
the experimental system. Since only 26 (including silence) of the 56 phones of the
icsib6 phone set appear in the Numbers95 data, each state was therefore assigned
Ng/(26 - 3) Gaussian components where N, is the total number of Gaussian in the
experimental system. Each word has one single pronunciation, which is the most

25



likely pronunciation of the Numbers95-icsi56 dictionary.
The baseline system was implemented using the HMM Toolkit (HTK) developed by

ul

13.1.2 Results

The results are shown on the following table:

Nb of Gaussians | WER

total ‘ per state
‘ 540 ‘ 6 ‘ 23.5 ‘

A word error rate of 23.5 percent on the recognition of the testing set was

obtained using the baseline system. The word error rate (WER) is computed as
follow:

WER = Ndeletions + Ninsertions + Nsubstitutz’ons (30)
N, total

where N ., means number of “xxx”. This result is worse than what state-of-
the-art system can achieve on this task (10 to 12 percent without a language model)
but it is still a reasonable result taking into account the simplicity of the model and
the small number of parameters. It can therefore serve as a basis for comparisons.

14 Model 1: Subword Units As Features
14.1 The Mathematical Model

This model is a very basic model based on the ideas exposed in section 11.1. The
acoustic model is derived from the speaker clustering algorithm described in the
first part and initialized according to table 4.

The word model was a HMM, whose topology is represented in figure 12. There is
no shared parameters between two word models or within a word model. In order
to reflect the fact that some words are longer than others, the number of states in
the HMM depends on the word. As a rough approximation each word model W;
was assigned @Q; = maz(1,length(w;) — 2) states, were Q; is the number of states
in model i, and length(w;) is the number of letters in the word w; modeled by
W;. This is probably not the optimal choice, especially when dealing with English,
where the orthography of a word as little to do with its pronunciation. The “—2”
term is due to the fact that it is better to have a smaller than optimal number of
states rather than a bigger than optimal. Since there are no “shortcuts” the danger
of having to many states is that one might have more states that subword units,
which would give a word a zero probability, since there is no way to skip states in
the considered topology.

14.2 Experiments

The experimental system was implemented using HTK. The minimum duration was
set to 100 ms in order to have phone sized subword units, and standard mfcc features
on a 25 ms window with deltas and acceleration every 10 ms were used.

26



Figure 12: The model for one word. In this example, the model is a four states forward
HMM. Each state (which represent the position within a word) has a different discrete
probability density function over the set of subword units, as represented by the dotted
arrows.

p p
S.U. S.u
N AN
4 Q
p p
S.u S.u

Table 4: The initialization parameters for the subword unit clustering.

| features | min. duration | Nb initial clusters | Nb. initial Gaussians/cluster |
12 mfcc+E+d + 46 100 ms 150 3
12 mfcc+E+0 + 66 100 ms 150 6

14.2.1 The Training

The training is done is three steps as shown on the top of figure 13.

1. The set of subword units is obtained using the clustering algorithm presented
in the part I of this work. The initialization parameters were set as described
in table 4. All training files (each containing one utterance) were concate-
nated in one single file in order to perform the clustering.

2. The model resulting from the clustering is then used to find, for each utter-
ance, the most likely sequence of subword unit, using the Viterbi algorithm.
Those subword units can be regarded as “new features” for our training data.

3. The word models (the HMMs) are then trained on those sequences of subword
unit using the Baum-Welch algorithm. Those models are initialized in a “flat
start” manner, where all emissions and all transitions are equal. The Baum-

27



Training: training feature word HMM
raming: files topology
tcr(:lrilgiaggnated acoustic 2. segmen- subword

. clustering -} del " tat unit
feature mode ation
file Eelguence

Figure 13: The training and recognition procedure for the first system.
[

Recognition:

file

acoustic
model ‘ bword uni 2. Viterbi
2. segmentation subword unit : - output

Welch training is performed by calling the HTK “HERest” tool four times.

14.2.2 The Recognition

The recognition is performed by firstly finding, for each testing utterance, the most
likely sequence of subword units according to the model obtained during the train-
ing, using the Viterbi algorithm. Then, given this sequence of subword units, one
finds the most likely sequence of words using again the Viterbi algorithm but this
time on the subword units sequence. This procedure is schematically represented
on the lower part of figure 13.

14.2.3 Results

The results obtained using the HTK scoring tool are presented in the following
table.

‘ Nb of Gaussians ‘ topology ‘ WER ‘

388 default 46.7
388 hand-designed | 43.9
814 default 42.7
814 hand-designed | 38.7

The default topology is the one described in section 14.1. For the hand-designed
topology, each word is assigned a number of states that seemed more adequate, and
transitions that skip one state were allowed.

14.3 Discussion

We see that we obtain a word error rate ranging from about 46% to 38%. This
is up to twice as much as the one obtained with the baseline system with a bit
more than two third of the number of parameters. Between more than half and
less than two thirds of the words are recognized correctly. Although this result can
first seem pretty low, it still tells us that the subword units contain information

28



Figure 14: An HMM represented as a directed graphical model. The circles represent
instances of variables and the arrows represent possible dependencies. The top row of
nodes represent the state sequence, and the bottom row represent the observations. The
latter are shaded to indicate that those variables are observed. The horizontal arrows
represent the transition probabilities, whereas the vertical arrows represent the emission

probabilities.
state: %l)%l)%

t_Jt_J;J

t- t t+1

that is valuable for the recognition, since a majority of the words can be recognized
based only on the 1-most probable subword unit sequence. And this, despite the
fact that those subword units were derived totally automatically and without any
use of the transcription and not in a task oriented manner, as it is the case with
regular phone training. Moreover, this result shows that the word model used seems
to be adequate since it could be trained, and recognize most of the words on the
sole basis of the 1-most probable subword unit sequence, which is a one dimensional
feature. One can also observe a 3% decrease of the word error rate when using a
better word topology and a further 5% when using more Gaussian components.
This model makes a clear separation between the deriving of the subword units and
the word model. First the acoustic model is optimized, and then the word model
is optimized. A hard decision is made on the sequence of subword units without
regards to the word models. It is clear that this, while computationally efficient, is
far from optimal in terms of likelihood maximization. A better model would learn
the subword unit, taking the recognition task into account, and thus allow some
interaction between the acoustic and the word models, and optimize both of them
jointly. This is done in the second model.

15 Model 2: Joining Words And Acoustics

15.1 Theoretical Framework

As explained in section 14.3, the training and testing of the first model is not optimal
in terms of likelihood maximization. The proper training and testing are derived
using graphical models. In this section, a very brief introduction to graphical models
is presented, which should allow the reader unfamiliar with the topic to follow the
discussion. A more thorough review of this subject can be found in [8].

15.1.1 Directed Graphical Models

A directed graphical model is an acyclic graph, where each node represent a vari-
able, and arrows between nodes represent possible dependencies between variables.

29



Figure 15: The (simplified) directed graphical model representing a speech sequence. At
the top level are the discrete “word” wvariables. Below are the discrete “wordPostion”
variables, which represent the states of the word HMM shown in figure 12. Those hid-
den variables emit the hidden “subwordUnit” variables, which in turn emit the observed
“features” according to a multi-Gaussian pdf. The real model has to take the minimum
duration constraint into account and is pres?zfed in appendiz B.

word

wordPosition =8

subwordUnit @%}’/

features o [ o
1  t ot

Variables can be observed (in which case they are shaded) or hidden. A represen-
tation of an HMM as a directed graphical model is shown in figure 14.

Two very useful algorithms for graphical models are the Expectation-Maximization
(EM) algorithm and the Max-Sum algorithm. The EM algorithm (of which the
Baum-Welch algorithm is a special case for HMMs) optimizes the parameters of a
graphical model with regard to the likelihood of the observed variables, that is it
finds

6 = argmaxI(6, z), (31)
6
where 6 is the set of parameters of the graphical model, x is the set of all observed
variables, and [(8, z) is the log-likelihood of the observed data given 6, i.e.

1(8,2) = logp(z | 6) =log Y _p(z,z | 6), (32)

where z is the set of all hidden variables.
The Max-Sum algorithm finds the most probable configuration of the hidden vari-
able, given the observed variables and the model parameters, that is it finds

2 = argmax p(z | z, 9). (33)

15.1.2 The Mathematical Model

The word model used our speech recognition system is basically the same as the one
used in section 14.1 but the models of the subword units are integrated into it. The
result is a kind of two level HMM, as represented in (simplified) figure 15. At the
top level is the sequence of word variables. Those variables indicate to which word
the corresponding feature vector belongs to, that is in which HMM is the system at
time t. At a lower level are the word position variables. They indicate what state
of the HMM produces the current subword unit that produces the feature vector.
So they tell if the system is in the beginning, the middle or the end of a word since

30



this is what the states model. One level lower are the subword unit variables. They
tell what subword unit is currently uttered, what is acoustically pronounced. On
the lowest level are the observed feature vectors.

In order to fully describe the model, one has to explain the dependencies between
the various variables, which are represented by arrows in figure 15. First, a word
variable depends on the previous word and the previous word position, as a new
word can only appear if the preceding word has been completed, i.e. if the previous
word position was the last of its word. The word position variables depend on
the previous word and the word position (which indicate in what state of what
HMM the system was at time ¢ — 1), and on the current word. The subword
unit variable depend on the current word and the current word position which
indicates by what state of what HMM the subword unit is generated. The feature
vectors depend only on the current subword unit. Apart from the dependency
between the feature vectors and the subword units, which is realized through a multi-
Gaussian probability density function for each subword units, all the dependencies
can be realized through conditional probability tables, where zeros are forced on
some places to ensure the right word HMM topology and that each word must be
completed from its starting state to its ending state.

As mentioned before, figure 15 shows a simplified version of the model, as the
minimum subword unit duration constraint is not represented on it. The real graph-
ical models used for training and testing are represented in figure 16 of appendix
B.

15.2 Experiments

The experimental system was implemented using the Graphical Model Toolkit
(GMTK) developed by [9].

15.2.1 The Training

The training was performed in two steps. Firstly, the set of subword units was
derived by using the clustering algorithm described in part I, on the concatenated
training set, as explained in the first step of section 14.2.1. In fact, the same set
of subword units was used in order to facilitate the comparisons. Then the graph-
ical model presented in appendix B was initialized with this set of subword units
(i.e. of multi-Gaussian pdfs), and the word HMMs were initialized as in the previ-
ous experiment, i.e. each state with a uniform discrete pdf on the subword units,
and all allowed transition probabilities were set equal. The number of Gaussian
mixture components remained unchanged during the whole training. The training
was performed using the “gmtkEMTrain” tool with a pruning beam width of 50 for
efficiency purposes. Since the graphical model used is fairly complex, the GMTK
software was excessively slow and it was materially not possible to train with a more
adequate pruning beam width (typically 1000 or more). It took about five minutes
to perform one EM iteration on each utterance on a 900 MHz sun station. This
made it impossible to perform more than 3 EM iterations, which is hardly enough.

31



15.2.2 The Recognition

The recognition was performed using the “gmtkViterbi” tool. For the same reasons
the same very high pruning was set. It also took about five minutes to decode each
utterance.

15.2.3 Results

The results appear in the following table:

‘ Nb of Gaussians ‘ topology ‘ WER ‘
‘ 388 ‘ default ‘ 49.9 ‘

15.3 Discussion

Although this second system should theoretically be better than the first, the word
error rate is 3% worse. This is probably due to the very high computational pruning
applied when using GMTK. Because of the slowness of the software, the experiment
could only be run once, without being able to try different initializations, or a
higher number of EM iterations. Thus, this result should rather be taken as an
upper bound for the word error rate. The first system with similar constraints (3
EM iterations and high pruning) would yield significantly poorer results, and it is
therefore safe to assume that this system could perform better than the first system.

16 Improving The Model
16.1 Tying The Word Models

In most (if not all) languages there is an intermediate level between the words and
the “sounds” (phones, syllables, subword units), like affixes, endings and so on. One
way to account for this fact is to tie together states representing the same element
of different word HMMs, i.e. to have states of different word HMMs share the same
parameters. This would reduce the number of parameters in the model, probably
allowing for more robust training, and would match the intuition that there is
something common in the pronunciation of the ending “ation” in “optimization”
and “pronunciation”. Those matching could be done on a orthographic basis and
would not need linguistic knowledge. One could just identify that two words having
a group of, say, three or more consecutive letters in common, should share some
parameters.

The numbers95 database is appropriate for such an experiment, as the“teen”’s are
shared among many numbers, and many digits appear as digit (like six), in the
teen’s (sixteen) and the ty’s (sixty).

16.1.1 Experiments

The tying of the parameters was experimented using the first model described in
section 14.1. The experiments were performed with the parameters described in
table 4, but the states (or group of states) modeling sequence of same consecutive
three or more letters shared the same emission probability distribution over the

32



set of subword units. Thus, the word fragment “thir”, “four” )’ fif” “six”, "seven”,
“eight”, “nine” and “teen” were each assigned a number of states (between one and
three).

16.1.2 Results

The results are presented in the following table:

‘ Tying ‘ Nb of Gaussians ‘ Topology ‘ WER ‘

no 388 hand-designed | 43.9
yes 388 hand-designed | 41.2
no 814 hand-designed | 38.7
yes 814 hand-designed | 38.8

One observes a 2.7% improvement of the word error rate for the model containing
fewer parameters, but a very slight increase for the model with more parameters.
This suggests that the tying of parameters only helps when there are not so many
of them.

16.2 “Weighted States” HMMs

In the default word model used so far, each word has a minimal number of subword
units, which is the number of states in its HMM since it is not allowed to skip states.
This, with the minimum duration constraint, constitutes a drawback of this model,
since it imposes ipso facto a minimum duration constraint on the words. Such a
minimum duration on words might not be wishful, as it would prevent adaptation to
fast speech, making it impossible even to train on such speech. Another drawback
of this model is, that there is no clear way of choosing the number of state for each
word. An easy thumb rule based on the number of letters in the word was proposed,
but this is certainly not satisfying for serious applications. In the next paragraph,
a model (called “weighted states HMM?”) is proposed, which would offer a solution
to those two problems. It is however beyond the scope of this work to implement
and test this model, so its justification is largely based on intuition.

A “weighted state HMM” is a HMM with a particular topology. Here are its
characteristics:

1. Each state ¢; has a weight w;.

2. The transition a;; between states ¢; and g; is entirely determined by the set
of weights {wy}:

L ifi <j
aj = { Ve =7 (34)
0 otherwise

So this is a feed-forward HMM with self-loops, in which the probability to go
to one state is always proportional to the weight of the arrival state. Thus if a
state is less visited during training, its weight becomes lower and the probability to
reach that state from whatever other state will lower as well. Eventually, if a state
is never visited, it’s weight will reach zero which means that the state disappears

33



as all transitions to that state will be zero. So the weight would represent the
importance of a state in the pronunciation of a word, and one might think that
states representing the position of accented syllables in a word would have higher
weights than other states. So when people talk fast, they only pronounce some of
the syllables of a word, usually the accented ones, and this would be equivalent to
skipping states with low weights in the weighted states HMM. This model might also
solve the problem of choosing the right number of states, as unnecessary states will
just disappear when their weight reaches zero. One has to choose enough states, as
states can only disappear but not emerge (although one could figure out a splitting
mechanism for states to0o).

The training of such a mode could be derived from the EM algorithm.

17 Conclusion On The Subword Unit Cluster-
ing

The above described experiments show that is it possible to perform subword unit-
based speech recognition that makes no use of linguistic knowledge. The common
problem of deriving a subword unit-based dictionary has been solved in an elegant
way, that nicely integrates the dictionary into the statistical framework. This “soft”
dictionary allows the modeling of word portions by tying the parameters of word
HMM states. But a mapping between phones and subword unit distributions should
be found in order to be able to add totally new word to the dictionary without having
to train the word model.

It is important to bear in mind that the optimizing criterion for the initialization of
the subword unit, which is the likelihood of the data given the acoustic model (i.e.
P({xt} | A) if A is the acoustic model), is different from the optimizing criterion
for the EM training algorithm, which is the likelihood of the data given the acoustic
model, the word model and the transcription (i.e. P({z!} | A,W,T) where W and
T are the word model and the transcription respectively). The result of this, is
that the set of subword units does not necessarily capture characteristics that are
relevant for speech recognition as the results of section 12 show. Would one want
to train a recognition system in the truly same framework as the speaker clustering
system, one would have to retrain the whole system, that is the acoustic and the
word model, at each iteration of the clustering algorithm and merge two subword
units if (after retraining of A and W using the EM algorithm and somehow keeping
the number of parameters constant) it raises P({!} | A, W, T). This would imply
many retrainings of an entire speech recognition system at each iteration, which
seems prohibitive bearing in mind and the time needed for the training of one such
system on a 33 word vocabulary.

If the recognition rate does not yet compare with actual state-of-the-art systems,
one can still recognize at least 60% of the words and there is a lot of room for
improvement. Beside a proper EM training on the graphical model (with reasonable
pruning, and more iterations), one could probably find a better minimum duration
constraint, a better initialization of the subword units (for example by taking the
transcription and the word model into account), a better word HMM topology
(as the weighted state HMM) and a better number of parameters. Thus subword
unit-based speech recognition, and more particularly the statistical framework (the

34



graphical model) presented here, certainly has the potential to achieve recognition
rates that would compete with phone-based recognition systems.

18 General Conclusion

The data-driven clustering framework presented in this work is a very simple and
powerful idea. It is based on performing agglomerative clustering while keeping the
number of parameters constant and thus allows the use of a maximum likelihood
criterion. But this algorithm can also be seen as an iterative model selection proce-
dure. At each iteration, different models are compared and one of them is selected.
This framework was first successfully applied to speaker clustering. It could also be
applied to subword unit clustering. There are however, a fundamental differences
between the speaker and the subword unit clustering.

The first difference is that for the speaker clustering there is no distinction between
training and testing data, since the data serves for training and for testing. This
makes the algorithm very little sensitive to the initialization of the parameters as
the risk of over-fitting is less relevant. This is obviously not the case for the subword
unit clustering, as those subword units will be used when performing recognition on
different data than the one on which they were trained. This makes the algorithm
more sensitive to the initialization parameters which should be more carefully cho-
sen.

The second and crucial difference is that in the case of speaker clustering, one can
retrain and select the entire model at each iteration. This is feasible thanks to the
simplicity of the model used (a small HMM with a minimum duration constraint).
For the subword unit clustering, on the other hand, the retraining and the selection
is done only on one part of the model, namely the acoustic model, and indepen-
dently of the rest of the model. This is may be good enough for a first initialization
step, but it is certainly not the best way of getting subword units optimized for
the speech recognition task. Such an optimal set of subword units could probably
not be derived without using the entire model, that is the word and the acoustic
models, as well as the transcription.

In summary, good results were obtained by naively using the speaker clustering al-
gorithm, with different parameters for performing subword units. But those results
could probably improve significantly by using this framework in a more intelligent
manner, that would take into account the aim and the particularities of subword
unit clustering, which are quite different from those of speaker clustering.

35



A Mathematical Proofs

A.1 Formula for the 2 distance measure

Following is the proof of formula 15, as proposed by [3]. We are trying to com-
pute [(p;(z) —p;(z))?dz where p;(z) and p;(z) are multi-Gaussians as described in
equation 14. So we can write

S (pi(z) — pj(z))?dz
M; M; 2
= [ (Zhs cimgim(@) = Ty cimgim(@)) de
= f Ei\r{; =1 E’r]rt{; 1 €i,m1 Ci,m2 Jiymy (:L')gi,mz( ) + Eml 1 Zmi:l Cj,m1Cj,m29j,m; (:L')gj,’mz (.’I:)
-2 Zml 1 Zmz 1 €i,m1Cj,m29i,m (z )gj,mz (-’1’)) dzx
f ( Ek lE{'L,]} Zm1 1 Z ( ) (ks l)ck,ml Cl,maJk,ma (x)gl,mz (33)) dz
= Zk lE{’L,]} Zm1 1 Zm2 1(_ ) k l)ckamlclymZ fgk7m1 (w)gl,mZ (m)dm

One must therefore compute the integral of the product of two Gaussians. It is
known that such a product is also a Gaussian function:

91() - g2(2)

S .

(2m)a2 (5,172 (x - /“Ll)Tzl_l(x - /—‘1)

(& — p2) TS5 (2 — pa)

D= N[

1
)2 [s,172 exp
1

T e (m T {-3(@-m)"= @ —m) + (@ — 1) 7S5 (0 — ) }

A

= A-exp{ —3(o7 (57" + 27" @ — 227 (57 + 37 pa) 6T 51 + uE 57 o)
S———— ~ ~

27! 55 ps

Since we are dealing with diagonal covariance matrices, the order of the matrix
multiplication has no importance. So the product of two normalized Gaussians is a
non-normalized Gaussian with covariance

5= (S70+ 570
and mean
ps =33 (ST + 55 ) -

The (L) norm of this Gaussian can be computed as

c3
g1(z)-g2(z)
g3(z)

Aexp{—%(wTE z— 2:1:TE3 /,L3+u1 27 Ill‘ng 5 ug)}

(27r)—d/2\23|—1/2exp{7% (a:TE;1:372:3'112;1//,34—/4%"23_1”3) }

36



This turns out, in case of diagonal Gaussian, to be equal to the following:

1
= €X
| Zkaml + ZlymZ |1/2 p

1 _
{_E(Zk,’nn + El,’mz) l(lu’k,'rm - ,u'l,mz)z}
(35)

/ 9k,m. (m)gl,mz (w)dm

The formula is proved by inserting 35 into A.l.

B The GMTK Model

The real graphical model used for the training of the speech recognition system
is shown in figure 16. This graphical model express the same structure as the
simplified one represented on figure 15, but some variables are added in order to
account for the minimum duration constraint, and to keep the whole coherent. The
variables are presented in the following table 5.

For the decoding, the same graphical model was used, with the trained param-
eters, but the variables “wordCounter” and “skipSil”, were suppressed since the
role of those variables is to insert the knowledge derived from the transcription into
the model. Since this knowledge is obviously not available when performing the
recognition, those varaibles have to be removed.

The “emissConstraint” Variable If a given occurrence of a subword unit
is more than twice the minimum duration long, it can be seen as one or as two
occurrences of this subword unit. In order remove this ambiguity, it was decided
to allow a subword unit to be split into two only if those (now) two subword units
are emitted by different states. That is, to same subword units can only follow one
another if there is a state transition between them. This rule is enforced by the
observed binary “EmissConstraint” variable, which is true if the rule is observed.
This variable is observed as being true for every frame, thus enforcing that rule.

37



Figure 16: The graphical model used for training with GMTK. Auxiliary variables were
added to account for the minimum duration constraint, and to ensure the coherence of the
whole model. The dashed lines represent “switching parents”

skipsil

wordCounter

word

wordTransition \T
wordPosition O

wordPosTransition

subwordUnit

suTransition

durationCounter

obs . .

emissConstraint .

t-1 t

38



Variable ‘ Function ‘ Value ‘
skipSil skipped silence indicator | according to a conditional probability table
wordCounter(-1) if wordTransition = 0
wordCounter | counts the word in an wordCounter(-1)+1 if wordTransition=1 and skipSil=0
utterance wordCounter(-1)+2 if wordTransition=1 and skipSil=1
word the word is being said matched from wordCounter for each utterance
word Transition | if last frame of a word 1 if wordPosTransition = 1 and last wordPosition

of this word, 0 otherwise

wordPosition(-1) if wordPosTransition = 0

wordPosition | current state of the wordPosition(-1)+1 if wordTransition(-1) = 1
the current word HMM | 0 if wordTransition = 1
wordPos- if there is a state 0 if suTransition = 0,
Transition transition according to a probability table if suTransition = 1

subwordUnit | the current subword unit | subwordUnit(-1) if suTransition = 0,
according to a conditionnal probability table otherwise

6€

suTransition if there is a subword 0 if durationCount ; min. duration,
unit transition according to a probalility (1 — @supworavnit) Otherwise

min. duration if durationCounter(-1) = min. duration
durationCounter | counts the subword unit | and suTransition(-1) = 0,

duration durationCounter(-1)+1 if suTransition(-1) = 0,
0 if suTransition(-1) = 1
obs the feature vector according to a multi-Gaussian pdf
0 if subwordUnit(-1) = subwordUnit
emissConstraint | remove ambiguity and wordPosTransition = 0,

1 otherwise

(1T — 22wy 0 "271) awnuf snowasd 2y} fo dSUIRND[RIIBA 9)QDILDA Y] 0}

suafa. (T-)oureNo[qeLIeA 2y [ “buutnil NS 2Y1 4of pasn $2)qpiipa fo 351 Y] :G Iqe],




C Used Notation

Yim: covariance matrix of Gaussian functiong; m,;

d(z,y): Kronecker’s symbol, (1 if z = y, 0 otherwise);
Wim: mean of Gaussian function g; m,;

0: parameters of a model;

A: C;: cluster i;

M;: model i;

L: language model;

S: segmentation;

T: transcription;

W: word model, or dictionary;

W;:model for word w;;

A: transition matrix;

B;: emission pdf of state g;;

Cs(1): cluster of the I** segment of segmentation S;
Ds(C;): set of all feature vectors belonging to cluster C; according to segmentation
S;

K: initial number of clusters when initializing the clustering algorithm;
L: minimum segment length (minimum duration);

N: number of clusters in the model;

Ny: total number of Gaussian components in the model;
S(xt): speaker emitting feature vector x!:

T': length of the time sequence;

W: true number of speakers in an audio file;

a;: self-transition of last state of cluster i;

a;;: transition probability from state g; to g;;

Cim: m' weight of Gaussian mixturep;;

d: dimension of the feature vectors;

Gim: m'™ Gaussian of Gaussian mixturep;;

k: speaker clustering evaluation criteria (see equation 29);
p;: multi-Gaussian probability density function of cluster i;
g;: state 7 of a HMM;

t: time index;

u: time index;

w;: word ;

xt: feature vector emitted at time t;

acp: average cluster purity (see equation 23);

asp: average speaker purity (see equation 26);

length(w;): number of letters in word w;;

40



References

[1]

[2]

3]
[4]

[5]

[6]

[7]
8]

[9]

I. Lapidot J. Ajmera, H. Bourlard. Improved unknown-multiple speaker clus-
tering using hmm. Technical Report IDIAP-RR 02-23, Institut Dalle Molle
D’Intelligence Artificielle Perceptive (IDIAP), Martigny, Switzerland, Septem-
ber 2002.

G. Schwartz. Estimating the dimension of a model. Annals of Statistics, 6:461—
464, 1978.

Panu Somervuo. private conversation, January 2003.

I. Lapidot J. Ajmera, H. Bourlard and I. McCowan. Unknown-multiple speaker
clustering using hmm. In International Conference on Spoken Language Pro-
cessing, 2002.

M. Schmidt A. Solomonoff, A. Mielke and H Gish. Clustering speakers by their
voices. In IEEE International Conference on Accoustics, Speech and Signal
Processing, pages 757-760, 1998.

B. Raj R. Singh and R.M. Stern. Automatic generation of subword units for
speech recognition systems. IEEE Transactions On Speech And Audio Process-
ing, 10(2):89-99, February 2002.

Phil Woodland et al., 2001. http://htk.eng.cam.ac.uk/.

Michel I. Jordan. An introduction to probabilistic graphical models. Lecture
notes, not yet published.

J. Bilmes and G. Zweig, 2002. http://ssli.ee.washington.edu/-bilmes/gmtk/.

41



