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Abstract

Current-generation automatic speech recognition (ASR) systems assume that words
are readily decomposable into constituent phonetic components (\phonemes"). A
detailed linguistic dissection of state-of-the-art speech recognition systems indicates
that the conventional phonemic \beads-on-a-string" approach is of limited utility,
particularly with respect to informal, conversational material. The study shows that
there is a signi�cant gap between the observed data and the pronunciation models of
current ASR systems. It also shows that many important factors a�ecting recognition
performance are not modeled explicitly in these systems.

Motivated by these �ndings, this dissertation analyzes spontaneous speech
with respect to three important, but often neglected, components of speech (at least
with respect to English ASR). These components are articulatory-acoustic features
(AFs), the syllable and stress accent. Analysis results provide evidence for an alter-
native approach of speech modeling, one in which the syllable assumes preeminent
status and is melded to the lower as well as the higher tiers of linguistic representa-
tion through the incorporation of prosodic information such as stress accent. Using
concrete examples and statistics from spontaneous speech material it is shown that
there exists a systematic relationship between the realization of AFs and stress ac-
cent in conjunction with syllable position. This relationship can be used to provide
an accurate and parsimonious characterization of pronunciation variation in sponta-
neous speech. An approach to automatically extract AFs from the acoustic signal is
also developed, as is a system for the automatic stress-accent labeling of spontaneous
speech.



ii

Based on the results of these studies a syllable-centric, multi-tier model of
speech recognition is proposed. The model explicitly relates AFs, phonetic segments
and syllable constituents to a framework for lexical representation, and incorporates
stress-accent information into recognition. A test-bed implementation of the model
is developed using a fuzzy-based approach for combining evidence from various AF
sources and a pronunciation-variation modeling technique using AF-variation statis-
tics extracted from data. Experiments on a limited-vocabulary speech recognition
task using both automatically derived and fabricated data demonstrate the advan-
tage of incorporating AF and stress-accent modeling within the syllable-centric, multi-
tier framework, particularly with respect to pronunciation variation in spontaneous
speech.
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Chapter 1

Introduction

The goal of this thesis is to identify signi�cant elements and structure of spoken
language beyond the conventional phone-based model of speech, particularly for building
accurate and e�cient models for automatic speech recognition, through detailed statistical
analysis and motivated experiments on spontaneous spoken American English discourse.

1.1 The Conventional Model of Speech Recognition

The ease of conveying a rich body of information has made speech the most natural
form of human communication. More recently, wide-spread use of computers has created a
great demand for powerful and e�cient communication methods between humans and ma-
chines, far beyond what conventional input-output devices, such as the keyboard, mouse,
text and graphics display, are able to provide. Naturally, this has led to enormous expecta-
tions on using speech for human-machine communication [101][21][28]. Automatic speech
recognition (ASR) by machine is one of the essential problems that have to be solved to
enable such voice-based interaction.

The task of ASR (or automatic speech transcription) is to obtain a sequence of
words corresponding to the information contained in the acoustic signal associated with
speech. Most of the current-generation ASR systems adopt a statistical pattern recognition
approach [107][8][66][146]. In such an approach the ASR problem is formulated as:

M� = argmaxMP (M jX) (1.1)

whereM is any possible word string and X some representation of the acoustic input. Thus,
the system seeks the word string that has the highest probability given the acoustic input.
By applying Bayes' rule, Equation 1.1 can be written as:

M� = argmaxM
P (XjM)P (M)

P (X)
(1.2)

= argmaxMP (XjM)P (M) (1.3)

The denominator P (X) of Equation 1.3 does not depend on M and is therefore omitted
during recognition (as in Equation 1.3). The ASR problem is thus decomposed into model-
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Figure 1.1: Major components of a typical current-generation ASR system.

ing two probability distributions, the acoustic likelihood P (XjM) and the prior probability
of the word string P (M). The following paragraphs brie
y describe how this pattern recog-
nition approach is implemented in current-generation ASR systems. Major components of
a typical ASR system are shown in Figure 1.1.

In a conventional ASR system, the raw acoustic signal is �rst processed into
spectral-like features such as Mel-Frequency Cepstral Coe�cients (MFCC) [22] or Percep-
tual Linear Prediction (PLP) [61] features, derived from the short-term spectrum of speech;
the techniques are often inspired by certain properties of human auditory processing. The
design goal of this front-end processing is to obtain the essential features for recognition
while suppressing the irrelevant information in the acoustic signal and reducing the infor-
mation rate (hence reducing the computational load associated with subsequent recognition
stages). The spectral-like feature output of the front-end processing corresponds to the X
in P (XjM).

The spectral-like features extracted in the front-end processing are used by the
acoustic model for probability estimation of speci�c sub-word units. The phoneme (or the
phone) is the predominant sub-word unit for most of the ASR systems today (at least for
English and other Indo-European languages), and both context-independent and context-
dependent (e.g. the triphone) models are common. The traditional Hidden Markov Model
(HMM) based systems use mixture-of-Gaussian models [107] to estimate the acoustic output
distribution of each phone state. As an alternative, the hybrid HMM/ANN-based systems
use arti�cial neural networks (ANN) [8][90] to estimate the posterior probabilities of phone
states, which are then converted to scaled likelihoods with an application of Bayes' rule.

In both types of systems, HMM models are used to combine phone state prob-
ability estimates with pronunciation models contained in the lexicon (also known as the
dictionary) to evaluate the acoustic likelihood, P (XjM). Pronunciation models of words
are generally speci�ed as a sequence of phones. If the lexicon contains more than one
pronunciation variant per word for some or all of the words, it is often referred to as a
multiple-pronunciation lexicon.

The prior probability of the word string P (M) is estimated by the language model.
Most of the current-generation ASR systems adopt an N -gram language model, which
speci�es the probability of the current word given the previous N � 1 words in the word
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string. The language model often requires a large amount of text material to accurately
estimate the N -gram probabilities. Of course, it is generally not possible to consider every
possible word string M . Practical ASR systems require elaborate algorithms to search
through the hypothesis space for the optimal word string, and e�cient pruning techniques
are vital for the success of the search.

ASR research in the past few decades has made signi�cant progress and the recog-
nition performance can be quite satisfactory on a number of tasks with certain constraints.
For example, ASR systems perform adequately in limited domains with a limited vocab-
ulary, and where speech is spoken in a formal mode or recorded under pristine acoustic
conditions. However, spontaneously spoken, conversational speech as well as speech in
adverse acoustic environments remain very di�cult for machines. For example, state-of-
the-art ASR systems yield ca. 20-30% word-error rate on large-vocabulary, conversational
material spoken over the telephone, making such systems impractical in many commonly
encountered environments.

In contrast, the ability of humans to understand speech is much less hindered by
such factors as di�erences in speaking style (spontaneous or scripted speech), variability of
pronunciation, background noise, reverberation and large vocabulary size. This level of ca-
pability and robustness of human speech perception may be due to the brain's processing of
speech from several complementary perspectives across di�erent time constants and struc-
tural units. Ultimately, recognition may be the result of the convergence of evidence from
heterogeneous information sources. Although our understanding of exactly how humans
process speech is quite limited, some knowledge and insights into human speech recognition
is likely to be very helpful in building superior ASR systems. For example, comparison
between ASR system output and manual annotation by human experts on conversational
speech material may provide useful information, such as where the automatic system has
not done well.

As described previously, one of the prevailing ideas underlying conventional ASR
systems is the phone-based model of speech using either linguistically de�ned phonemic
units or automatically derived phone-like subword units (e.g. [80][123]). Such a model
assumes that spoken words are merely a linear sequence of discrete phonetic (or phone-
like) segments, strung together like beads on a string (where in this instance the string
is time). Successful application of this model relies on the assumption of decomposability
of lexical entries into such phonetic segments, as well as on the ability of such phonetic
segments to capture the invariance of speech across time and speakers with the aid of the
HMM-based statistical modeling. This assumption may be quite reasonable for carefully
enunciated speech material, but for spontaneous, conversational speech, the situation is
never so simple. The key problem may be the enormous amount of pronunciation variation
observed in such circumstances.

In [100] Ostendorf argues against using the phoneme as the basic subword unit
in speech recognition, and cites several studies that point to acoustic variability as being
a key problem faced by ASR systems dealing with spontaneous speech [139][87]. She also
cites studies that showed very limited gain of using phone-level pronunciation variation
modeling [110], and proposes several factors that may underlie this observation, all of which
call for the incorporation of some linguistic units other than the phones.
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Coarticulation, the overlapping of adjacent articulations, is a commonly observed
phenomenon in natural speech [78]. For example, the di�erent allophones of /k/ in key
and caw have di�erent places of articulation because of the di�erences in the following
vowels. This coarticulation e�ect may even transcend the segmental boundary to modify
the articulation of a non-adjacent segment (consider the di�erent degrees of lip-rounding in
the allophones of /k/ in clean and clue). The context-dependent phone models (e.g. the
triphones) may partially capture the coarticulation e�ect but in a cumbersome manner.
This approach gives rise to a large number of di�erent models and requires a substantial
amount of training data. Alternatively, since, very often, only a small number of articulatory
feature dimensions are involved in coarticulation, the coarticulation e�ect may be captured
more accurately and more succinctly by considering a more granular representation of the
phonetic detail such as the articulatory-acoustic features (cf. Chapter 3 for a more detailed
description). This has been at least part of the motivation for using parallel and overlapping
features to model speech by Deng and colleagues [26][25][129] and for the hidden articulator
modeling by Richardson et al. [109]. In addition, incorporating combinations of articulatory-
acoustic features may help capture novel sound patterns that deviate from any existing
phone models.

If speech were truly a sequence of phonemic beads on a string, exchanging beads
of the same phoneme at di�erent positions along the string should have little e�ect on
intelligibility. However, this is not likely to be the case and the realization of a phonetic
segment is strongly dependent on its position within the speech utterance, in particular,
its position within the syllable [51][37]. For example, a phonetic segment at the syllable
onset position may be substantially di�erent from that at the syllable coda position (cf.
Chapter 4 for further discussion). Because of the complex syllable structure of languages
such English, even context-dependent phone models are not likely to entirely capture this
syllable-level variation. As described in Chapter 4, being an articulatorily coherent unit of
speech, the syllable exhibits greater stability in speech than the phonetic segment, and an
explicit modeling at the syllable level may be very helpful for speech recognition.

Furthermore, when contextual and prosodic information such as the stress accent is
incorporated in addition to syllable information, more systematic patterns of pronunciation
variation can be obtained for spontaneous speech (cf. Chapter 5 for further discussion).
Accurate modeling of such suprasegmental-level information requires explicit modeling of
speech beyond the conventional phone-based approach.

It should be noted that explicit modeling of the syllable does not necessarily imply
that phonemic beads on a string are replaced with syllabic beads on a string. The realization
of the syllable is also highly dependent on the contextual and prosodic information. For
example, the realization of the junctural element between two syllables depends on the
stress-accent levels. Moreover, the manifestation of articulatory-acoustic features may also
transcend syllable boundaries as it does segmental boundaries.

The discussion above argues for an e�ort to seek alternative representation of
speech beyond the conventional phonemic-beads-on-a-string model, and suggests that vari-
ous linguistic levels, both above and below the phonetic tier of speech, should be examined.
It is very likely that an optimal approach is one that incorporates information from several
distinct linguistic levels within an organized structure. One of the key considerations is the
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ability to capture pronunciation variation phenomena of spontaneous speech.

1.2 Finding Alternatives

The discussion in the previous section suggests a potential mismatch between
the assumptions made by the conventional phone-based model of speech and the reality
of speech recognition, especially for spontaneous, natural speech. This section outlines an
approach for seeking alternative models to address this gap between models and reality, with
a special focus on pronunciation variation in spontaneous speech. An important aspect
of this approach is to rely on statistical analysis of manually annotated transcription of
conversational material, especially at the exploratory analysis and diagnostic stages.

A convenient starting point for seeking alternatives to the conventional model
of speech is to analyze the performance of current-generation ASR systems based on the
conventional phone-based model and to ascertain the signi�cant factors underlying the
recognition errors made by these systems. Without access to the detailed components of
various systems, useful insights can still be gained by careful statistical analysis of the system
outputs at various linguistic levels with respect to the manual annotation of a common set
of spontaneous speech material.

The next step is to focus more closely on certain linguistic factors most germane
to recognition from linguistic dissection of conventional ASR systems. For each of the fac-
tors of interest the advantages, as well as the limitations of being incorporated into speech
recognition, are to be examined in detail from both the representational and computational
perspectives. Furthermore, special attention should be paid to how various linguistic fac-
tors interact with each other in a systematic fashion, and how a structure consisting of
these factors can be used to account for complex phenomena of pronunciation variation in
spontaneous speech.

Based on the identi�ed elements and structure that are most relevant for speech
recognition, as well as their interaction patterns, an alternative framework can be proposed
in place of the conventional model. The framework should take full advantage of signi�cant
elements and structure of speech, especially for addressing the de�ciency of the conven-
tional model in capturing the pronunciation variation associated with spontaneous speech.
However, the framework should not make commitment to the speci�c computational tech-
niques used, which is an engineering detail more relevant within the context of a particular
implementation of the model. The framework should also leave room for improvements and
augmentation to address issues not explicitly considered in the conventional model such as
higher-level linguistic processing.

A test-bed implementation is to be developed using the proposed framework tar-
geting a constrained task. The objective of building the test-bed implementation is to
perform controlled experiments for testing certain hypotheses made on the basis of the
framework within a transparent framework, using both automatically derived and fabri-
cated data. The test-bed implementation is not intended to serve as a full-scale, powerful
recognition system. However, its limitations and any simplifying assumptions it makes need
to be explicitly delineated. Experimental results are analyzed in detail, and form the basis
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for future improvements and for identifying promising directions of future research. Such
a cycle of exploratory analysis, model improvement and experimental analysis may be re-
peated until a satisfactory alternative to the conventional phone-based model of speech is
obtained. A fully functional recognition system using a uni�ed computational framework
should be implemented only after such a model has been obtained.

This thesis takes only the �rst few steps along the approach outlined above. Nev-
ertheless it is hoped that this will contribute to a better understanding of the speech recog-
nition problem and help identify promising future directions of research. The following
section describes the organization of the rest of the thesis.

1.3 Thesis Outline

Chapter 2 presents a detailed statistical analysis of recognition outputs from a
number of state-of-the-art, large-vocabulary, speech recognition systems on a spontaneous
American English discourse task, with respect to dozens of linguistic parameters. The study
identi�es a number of signi�cant factors in recognition errors and points to the limited
utility of the phonemic-beads-on-a-string model used in current-generation ASR systems.
Moreover, it provides a motivation for seeking alternative representations of speech, which
is the focus of the remainder of the thesis.

Based on the �ndings from the linguistic dissection of the LVCSR systems, Chap-
ters 3-5 describe our analysis and experiments with respect to three very important, but
often neglected, components of spoken language (at least with respect to English ASR
systems) { articulatory-acoustic features (AFs), syllable structure and stress accent. In
particular, through concrete examples and statistics, the description illustrates how com-
plex phenomena in spontaneous speech, such as pronunciation variation, can be captured in
parsimonious fashion through systematic interaction of AFs with syllable information and
stress accent. Chapter 3 describes an approach for automatically extracting AFs from the
speech signal, which has many advantages for incorporating such features into recognition
systems. Chapter 4 presents evidence to support a syllable-centric approach for speech
processing. Chapter 5 provides a detailed account of stress accent in spontaneous American
English discourse, including the development of an automatic stress-accent labeling system.

In Chapter 6, a syllable-centric, multi-tier model of speech, incorporating AFs
and stress accent, is proposed as an alternative to the conventional phonetic-segment-
based model of speech. A test-bed implementation of the multi-tier model is described
and details of each component are provided. A fuzzy-based approach for combining ev-
idence from various articulatory-acoustic feature sources is presented, together with a
pronunciation-variation modeling technique using AF variation statistics extracted from the
data. Chapter 7 describes controlled experiments performed on a constrained task (OGI
Numbers95 [12]) along with detailed analysis of experimental results. Finally, Chapter 8
concludes the thesis with further discussion and proposed directions for future work.
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Chapter 2

Linguistic Dissection of LVCSR

Systems

The past few decades have witnessed a tremendous improvement in automatic
speech recognition (ASR). Many systems are able to achieve very good performance on
constrained tasks (i.e., either the domain is limited or the speech is con�ned to a single
speaker). However, automatic recognition of spontaneous speech of unlimited domain still
remains a very challenging task. For example, state-of-the-art ASR systems obtained ca. 20-
30% word-error rate on the Switchboard corpus [42] (casual telephone dialogues) in recent
evaluations [98]. This performance is still far from what is required for routine automatic
transcription of spontaneous material.

While the need for signi�cant improvement is obvious, the increasingly complex
and sophisticated architecture of current-generation ASR systems make it very di�cult to
understand why they do not work as well as they should, although such knowledge would be
very bene�cial to advancing the technology. Without the ability to access (and understand)
detailed components of a system it is di�cult to provide intelligent diagnostics. However,
the main framework and principles of speech modeling adopted by many ASR systems
today have largely converged to phone-based statistical modeling using Hidden Markov
Models. In conjunction with well-de�ned and carefully annotated evaluation material, this
similarity among various systems allows detailed and informative analysis of the functional
architecture of various ASR systems simply from the outputs at various linguistic levels.

In 2000 and 2001 we were given the opportunity to perform such linguistic dissec-
tion [59][57] of several large-vocabulary continuous speech recognition (LVCSR) systems on
the Switchboard corpus, for which a substantial amount of material has been phonetically
labeled and segmented by linguistically trained individuals [49].

The goal of the diagnostic evaluation is to identify signi�cant factors that a�ect
recognition performance and to provide a basis for alternative and novel approaches to
speech modeling superior to the current ones. This chapter describes the diagnostic evalu-
ation of Switchboard-corpus LVCSR systems in detail (with additional information on the
evaluation procedure in Appendix A). It shows, through statistical analysis, the bene�-
cial e�ect of accurate speci�cation of phonetic features, syllable-level parameters, stress-
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accent and other prosodic features on word recognition. This will also provide a motivation
for developing a syllable-based, multi-tier model of speech processing, which incorporates
articulatory-acoustic feature and stress-accent information.

2.1 Background Information

Over the past few years the National Institute of Standards and Technology (NIST)
has sponsored annual competitive evaluation of LVCSR systems for spontaneous American
English. The Switchboard corpus [42] (in tandem with the Call Home and Broadcast News
corpora) has been used to assess the state of automatic speech recognition (ASR) perfor-
mance. Switchboard is unique among the large-vocabulary corpora in that a substantial
amount of material has been phonetically labeled and segmented by linguistically trained
individuals from the Switchboard Transcription Project (STP) [49], and thus provides a
crucial set of \reference" materials with which to assess and evaluate the phonetic and
lexical classi�cation capabilities of current-generation ASR systems.

In both 2000 and 2001, we performed detailed diagnostic evaluation of several
LVCSR systems during the annual evaluations. The diagnostic evaluation materials used in
2000 and 2001 had similar characteristics but were distinct in certain respects. This section
provides general information on the corpus materials as well as a brief description of the
ASR systems, upon which the evaluation was performed. Additional information pertaining
to phone mappings and the detailed evaluation procedure is presented in Appendix A.

2.1.1 Corpus Material

Year-2000 Material

The Switchboard corpus contains informal dialogues recorded over the telephone.
The Year-2000 diagnostic evaluation was performed on a �fty-four-minute, phonetically
annotated subset of the Switchboard corpus, distinct from the materials used in the com-
petitive evaluation. All of this material had previously been manually transcribed at the
phonetic-segment level and manually segmented at either the phonetic-segment or the syl-
labic level. The syllable-segmented material was subsequently segmented at the phonetic-
segment level by an automatic procedure (very similar to that described in Chapter 3 and
also in [14]) trained on 72-minutes of manually segmented Switchboard material. This
automatic segmentation was manually veri�ed. In addition, this material has also been
manually labeled at the stress-accent level where each syllable was marked with respect to
stress accent.

The diagnostic material was carefully chosen to cover a broad range of speaker
characteristics. It contains 581 di�erent speakers, a relatively equal balance of female and
male speakers, a broad distribution of utterance durations, coverage of all seven U.S. dialect
regions in Switchboard corpus, a wide range of discussion topics and variability in subjective
recognition di�culty (from very easy to very hard).



9

Year-2001 Material

The Year-2001 material has many characteristics in common with the Year-2000
material. It was manually transcribed at the phonetic-segment level and segmented at the
syllabic level, and was subsequently segmented at the phonetic-segment level by the same
automatic procedure as used in year 2000 (and manually veri�ed). The stress-accent labels
were initially produced by an automatic stress-accent labeler (see Chapter 5 and [58]) and
subsequently veri�ed by a linguistically trained individual.

The main di�erence between the two data sets is that the Year-2001 material
was a subset of the competitive evaluation corpus; moreover, it contains a relatively even
distribution of data derived from three recording conditions: one cellular and two land-line
conditions. This material has 21 separate conversations (42 separate speakers) and a total
of 74 minutes of spoken language material (including �lled pauses, junctures, etc.), divided
into 917 separate utterances.

2.1.2 Participating Systems

Eight separate sites participated in the Year-2000 evaluation - AT&T, BBN, Cam-
bridge University (CU), Dragon Systems (DRAG), Johns Hopkins University (JHU), Mis-
sissippi State University (MSU), SRI International and the University of Washington (UW).
Each of the eight sites provided word and phonetic-segment output on the �fty-four-minute
material from the recognition system used for the competitive evaluation portion of Switch-
board corpus. Six of the eight sites also provided word and phone-level output of forced-
alignments (constrained recognition with the knowledge of the word sequence) associated
with the same material.

In year 2001, seven sites participated in the evaluation - AT&T, BBN, IBM, JHU,
MSU, Philips (PHI) and SRI. Six of the seven sites provided unconstrained recognition
output at the word and phonetic-segment levels and all seven sites provided forced-alignment
output at the word and phone levels1. It should be noted that the systems participating
in these evaluations were optimized for word recognition rather than for phone recognition
per se. The phone-level output was generally a by-product of the word-recognition process,
although various systems di�ered in how the phone-level output was extracted.

While systems from di�erent sites have many di�erent functions and features,
some fundamental characteristics of speech modeling are shared by the various systems.
Almost all systems have triphone- (or quinta-phone-) based gender-dependent acoustic
models, trained with maximum likelihood (ML) or maximum mutual information (MMI)
criteria [107]. The lexicon often contains multiple pronunciations (usually with di�erent
probabilities). Many systems have multiple passes for decoding, where the later passes of-
ten employ increasingly higher-order language models for rescoring word lattices generated
at earlier passes. Some form of adaptation (such as that based on maximum-likelihood,
linear regression (MLLR) [82]) is also common in many of the systems.

1Due to certain format inconsistencies, some of the data from a few sites were excluded from the analysis.
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2.2 Analysis Results

Detailed statistical analyses were performed on the extracted data (cf. Appendix A
for a detailed description of the evaluation procedure) and the highlights of the analysis re-
sults are described in this section. Although some of the material from each year's evaluation
are unique, many statistical patterns are shared in common by the two sets of materials.

2.2.1 Word and Phone Error Patterns

Word- and phone-level error patterns were computed for both the constrained
(forced-alignment based on word-level transcripts) and unconstrained recognition material.
For the Year-2001 evaluation in particular we have added a phone-mapping procedure to
allow for certain phones commonly confused among human transcribers to be scored as
\correct" even though they would otherwise be scored as \wrong." We call this speci�c
mapping the transcription-compensated (TC) form, in contrast to the uncompensated (TU)
form where only common phone ambiguities were allowed. Appendix A.1 provides a detailed
description of the di�erence between TC and TU phone mappings. Also for the Year-2001
evaluation the time-mediated scoring at both the word and phone levels include two di�erent
levels of tolerances: a strict time-mediation that heavily penalizes time-mismatches between
reference segments and system output segments, and a lenient time-mediation that de-
weights this time-mismatch penalty. Refer to Appendix A.2.2 for a more detailed description
of the di�erence between strict and lenient time-mediation. The Year-2000 evaluation is
thus equivalent to using TU phone mappings and strict time-mediation.

Word-error rates for the ASR systems range between 27 and 43% for the Year-2000
material (cf. Figure 2.1, upper panel). For the Year-2001 material word-error rates range
between 33 and 49% with strict time-mediation and between 31 and 44% with lenient time-
mediation (cf. Figure 2.1, lower panel). The phone recognition error rate is relatively high
for the forced-alignment output (35-49% for the Year-2000 evaluation; 40-51% for the Year-
2001 evaluation, with strict time-mediation and TU phone mappings) only slightly lower
than the phone error for unconstrained recognition (39-55% for the Year-2000 evaluation;
43-55% for the Year-2001 evaluation, with strict time-mediation and TU phone mappings).

Figure 2.2 shows the break-down of phone errors for the Year-2000 constrained
(upper panel) and unconstrained recognition (lower panel) with respect to the types of
error. Substitution is the primary form of phone recognition error in both constrained and
unconstrained recognition. In the constrained recognition, substitution and deletion rates
are relatively even across di�erent sites, while insertion rate varies more across sites. The
relatively high insertion error rate in the constrained recognition suggests an in
exibility
of the ASR systems' pronunciation models in dealing with non-canonical pronunciation
variants such as phone deletions that occur frequently in conversational speech. In the
unconstrained recognition, insertion rate and deletion rate roughly trade o� each other
such that the sum of insertion and deletion rates is roughly even across sites; there is a
great variability in substitution rate across sites. The Year-2001 data exhibit a similar
trend in the break-down of phone-error types.

Figure 2.3 shows the phone-error rates for the Year-2001 constrained (upper panel)
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Figure 2.1: Word and phone-error rates for unconstrained recognition (Upper: the Year-
2000 data; Lower: the Year-2001 data). For the Year-2001 data, TC and TU refer to
transcription-compensated and -uncompensated phone mappings, respectively. Both used
strict time-mediation, as for the Year-2000 data. The correlation coe�cient between phone-
and word-error rates is 0.78 for the Year-2000 data, and 0.93 (TC) and 0.72 (TU) for the
Year-2001 data.
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and unconstrained recognition (lower panel) using four di�erent scoring conditions. The
consistent, signi�cant decrease in phone-error rates from using strict time-mediation to
using lenient time-mediation suggests that the temporal alignment of the phone segments
generated by the ASR systems are often inaccurate (with respect to manual segmentation).
For the Year-2000 material, the phonetic-segment boundaries generated by the constrained
recognition systems di�er by an average of 32 ms (40% of the mean phone duration) from the
hand-labeled material. The decrease in phone-error rates from using TU phone mappings to
using TC phone mappings suggests that the phone-confusion patterns of the ASR systems'
output share certain characteristics in common with the phone-confusion patterns among
human transcribers.

Figure 2.1 (upper panel for the Year-2000 material and lower panel for the Year-
2001 material) illustrates the relationship between phone- and word-error magnitude across
submission sites. For the Year-2001 material the correlation coe�cient (r) between phone-
and word-error magnitude is 0:93 for strict time-mediation and TC phone mappings, sug-
gesting a signi�cant dependence of word-recognition performance on the accuracy of recog-
nition at the phonetic-segment level. With strict time-mediation and TU phone mappings,
this correlation coe�cient is r = 0:72. The di�erence in the correlation coe�cients of phone-
and word-error magnitude between using TC and TU phone mappings suggests that cer-
tain phone-confusion patterns have been captured through acoustic modeling of the ASR
systems, partially compensating for the in
exibility of the pronunciation models. For the
Year-2000 material (using strict time-mediation, TU phone mappings), the correlation co-
e�cient between phone- and word-error magnitude is r = 0:78. Such results suggest that
word recognition may heavily depend on the accuracy of recognition at the phonetic-segment
level. Thus, improving acoustic modeling that enhances phonetic recognition performance
is likely to help improve word recognition. However, it should also be noted that the LVCSR
systems were not optimized for phone recognition but rather for word recognition. More-
over, the phone-level output was largely constrained by the pronunciation models associated
with the recognized words (cf. Section 2.2.6 for analysis on pronunciation variation and word
errors).

It is of interest to ascertain whether the number of phonetic segments in a word
bears any relation to the pattern of phone errors in both correctly and incorrectly recognized
words (cf. Figure 2.4). Interestingly, the tolerance for phonetic-segment errors in correctly
recognized words is not linearly related to the length of the word. The tolerance for error
(ca. 1-1.5 phones) is roughly constant for word lengths of four phones or less. This pattern
is observed regardless of the form of error. The relatively low tolerance for phone misclassi-
�cation (except for words of very short length) implies that the pronunciation and language
models possess only a limited capacity to compensate for errors at the phonetic-segment
level. The tolerance for phone-deletion errors in correctly recognized words is particularly
low, suggesting that the ASR systems are more sensitive to phone deletions than phone
substitutions and insertions.

In contrast, the average number of phones misclassi�ed in incorrectly recognized
words does increase in quasi-linear fashion as a function of word length (with the possible
exception of insertions), a pattern consistent with the importance of phonetic classi�cation
for accurate word recognition.
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transcription-compensated and -uncompensated phone mappings, respectively.
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Figure 2.4: The number of phone errors as a function of word length (with respect to
the number of phone segments) for both correctly and incorrectly recognized words. The
upper panel is the Year-2000 data and the lower panel the Year-2001 data. The tolerance
for phonetic-segment errors in correctly recognized words are roughly constant for word
lengths of four phones or less. In contrast, the average number of phone errors in incorrectly
recognized words is quasi-linearly related to word length.



16

2.2.2 Syllable Structure and Syllable Position

The syllable is a fundamentally important unit of the English language and the
words in English are organized into distinct forms of syllabic structures (consonant and
vowel sequences, cf. Chapter 4 for a more detailed description of syllables in spoken English).
Therefore, it is of interest to examine recognition error patterns according to their lexically
based syllable structure. Figure 2.5 (upper panel) shows word-error rate as a function of
syllable structure for the Year-2000 material. The highest error rates are associated with
vowel-initial syllables. This may be explained by the observation that consonantal onsets are
often much more stable (with less deviation from canonical pronunciation) than nuclei and
codas (cf. Section 4.3). Thus, syllable forms lacking such stable onsets (i.e., vowel-initial
syllables) are likely to possess few stable cues for word recognition. For the same reason,
consonant-initial syllable forms (especially those with consonant-cluster onsets) tend to
exhibit a relatively lower word-error rate, as observed in Figure 2.5. Polysyllabic words tend
to exhibit lower word-error rates than monosyllabic words, and this e�ect is particularly
pronounced with respect to deletions. While there are roughly comparable substitution
rates across syllable forms, polysyllabic words tend to have much lower deletion rates than
monosyllabic words. This may be due to merely greater number of phonetic cues contained
in polysyllabic words than in monosyllabic words for lexical access; it may also be due to
the greater likelihood of containing stress-accented syllables in polysyllabic words, which
tend to have greater information content than monosyllabic words.

A similar relationship between word error and syllable structure is observed in the
Year-2001 material (cf. Figure 2.5, lower panel), with the exception that the \CVCV" form
has an unusually high substitution error rate albeit being polysyllabic and consonant-initial.
Detailed study of the evaluation material suggests that the elevated error rate associated
with \CVCV" forms in the year-2001 data is due to the inconsistent representation of
word-compounds such as \gonna" (\going to") and \wanna" (\want to") in the reference
transcript and the recognition lexicon.

Like word errors, error patterns at the phonetic-segment level are also intimately
linked to syllable structure, as well as to position within the syllable. Figure 2.6 shows
phone classi�cation accuracy at di�erent positions in several common syllable structures,
from the Year-2001 forced-alignment submissions. Onset consonants in \CVC" syllables (cf.
Figure 2.6, upper panel) tend to be highly concordant with the manual annotation, while
coda consonants are somewhat less concordant. Poor concordance for certain segments,
such as [zh] and [nx] in both onsets and codas, and [dh] in codas, may be due to the low
frequency of their occurrences. Phonetic segments in consonantal cluster onsets and codas
(cf. Figure 2.6, middle panel) exhibit a relatively lower degree of concordance than those
associated with simple onsets and codas. Certain segments in consonantal clusters, such
as [g] and [p], are much less concordant in codas than in onsets, which is not observed in
\CVC" syllables. Diphthongs and tense, low monophthongs (cf. Figure 2.6, lower panel)
tend to be concordant with the manual transcript, while lax monophthongs are generally
less concordant. Diphthongs in \CV" syllables (open syllables) tend to have higher relative
frequencies (except [ay]) than in \CVC" syllables (closed syllables). Diphthongs also exhibit
relatively comparable degree of concordance in the two syllable forms, while monophthongs
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Figure 2.5: Word error (substitution and deletion) as a function of syllable structure and
the proportion of the corpus associated with each type of syllable structure. The upper
panel shows the Year-2000 data and the lower panel the Year-2001 data. Only the most
frequent 11 syllable structures are graphed for each year's data. Vowel-initial forms tend to
exhibit higher word-error rates than consonant-initial forms; monosyllabic forms generally
exhibit more errors than polysyllabic forms.
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are generally less concordant in \CV" syllables than in \CVC" syllables. This suggests that
diphthongs in open syllables may be playing a role similar to that of the sum of the nucleus
and coda in closed syllables.

2.2.3 Articulatory-acoustic Features and Syllable Position

Phonetic segments can be decomposed into more elementary constituents based
on their articulatory bases, such as place (e.g., labial, labio-dental, alveolar, velar), manner
(e.g., stop, fricative, a�ricate, nasal, liquid, glide, vocalic), voicing and lip-rounding. Two
additional dimensions were also used in the current analyses - front-back articulation (for
vowels only) and the general distinction between consonantal and vocalic segmental forms.

Figure 2.7 show the AF-error patterns (the Year-2000 material) partitioned accord-
ing to lexical syllable structure and whether a word was correctly or incorrectly recognized,
for onset, nucleus and coda positions of a syllable. Similar AF-error patterns across syllable
positions are exhibited by the Year-2001 data (omitted here).

The articulatory features associated with consonantal onsets (Figure 2.7, upper
panel) exhibit a relatively low tolerance for error. Moreover, the error rate is four to �ve
times greater for AFs in misclassi�ed words relative to correctly recognized lexical items.
Place and manner features are particularly prone to error in misclassi�ed words, suggest-
ing that these onset-consonant AFs are particularly important for correctly distinguishing
among words. The AF error patterns for consonantal codas (Figure 2.7, middle panel) are
similar to those associated with consonantal onsets, except that there is a higher (ca. 50%)
tolerance for error among the former for manner, place, voicing and lip-rounding features.
In particular, syllable codas exhibit a much higher tolerance to voicing errors than syllable
onsets. Vowel/consonant errors are rare in both onsets and codas, even for incorrectly rec-
ognized words, implying that manner feature errors in both onsets and codas are generally
consonant-class confusions. There is relatively small variation in AF errors across syllable
forms, except relatively fewer AF errors in polysyllabic words than monosyllabic words in
onsets.

The AF error patterns associated with vocalic nuclei (Figure 2.7, lower panel) dis-
play a pattern di�erent from those associated with onsets and codas. There is a much higher
tolerance of error for classi�cation of AFs associated with correctly recognized words, which
is particularly marked for place and front-back features. Moreover, there is a considerably
higher degree of AF classi�cation error among the nuclei compared to onsets and codas,
particularly among the place and front-back dimensions. Such data imply that classi�ca-
tion of vocalic nuclei is considerably less precise than for the onsets and codas. However,
unlike onsets and codas, nuclei in correctly recognized words have a much lower level of
vowel/consonant errors (which is equivalent to manner errors for nuclei) than nuclei in in-
correctly recognized words, suggesting the importance of correct detection of syllable nuclei.
There is a greater variation in AF errors across syllable forms in nuclei than in onsets and
codas, and the variation pattern is di�erent among AF dimensions. For example, \V" syl-
lables exhibit a high degree of tolerance for front-back error but a relatively low level of
tolerance for vocalic height (place) error.
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Figure 2.6: Phone recognition accuracy for onset, nucleus and coda positions for the most
common syllable structures in the Year-2001 forced-alignment output. Upper panel: onset
and coda in CVC syllables; middle panel: consonant cluster onset and coda (in CCVC and
CVCC syllables); lower panel: the nucleus in CVC and CV syllables. The number on top
of each bar is the frequency of occurrence (in percentage) associated with each segment in
the speci�ed position and syllable form.
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21

2.2.4 Prosodic Stress Accent and Word Errors

English is often characterized as a stress-accent language as it utilizes a com-
bination of acoustic cues, including loudness, duration and pitch variation, to emphasize
certain syllables over others [5][83]. Besides providing informational focus in natural speech,
prosodic stress accent also a�ects the pronunciation of phonetic elements [37][51].

The Year-2000 diagnostic evaluation material contains stress-accent markings
manually labeled by two linguistically trained individuals; this material was used to as-
certain the relation between error rate and stress-accent level. As illustrated in Figure 2.8
(upper panel), there is a ca. 50% higher probability of a recognition error when a word is
entirely unaccented. The relation between stress accent and word-error rate is particularly
apparent for deletions and is manifest across all ASR systems (Figure 2.8, lower panel).
This e�ect suggests that it may be helpful to model stress accent explicitly in ASR systems.
Figure 2.9 shows corresponding statistics computed on the Year-2001 evaluation material
where the stress-accent labels were derived using an automatic stress-accent labeling system
(described in Section 5.3) and manually veri�ed by a linguistically trained individual. The
Year-2001 material exhibits a relationship between word-error rate and stress accent nearly
identical to that exhibited by the Year-2000 material. Stress accent will be discussed in
more detail in Chapter 5.

2.2.5 Speaking Rate and Word Errors

ASR systems generally have more di�culty recognizing speech that is of particu-
larly fast [89][91] or slow [91] tempo. A variety of methods have been proposed for automat-
ically estimating speaking rate from the acoustic signal as a means of adapting recognition
algorithms to the speaker's tempo [89][91][132].

The speaking rate of each utterance in the diagnostic material was measured using
two di�erent metrics. The �rst, MRATE [92], derives its estimate of speaking rate by
combining several acoustic-based measures including a multi-band correlation function of
the signal energy, using a peak-picking routine and also a full-band version of this routine,
as well as the spectral moment for a full-band energy envelope. The MRATE is roughly
correlated with transcribed syllable rate although it tends to underestimate the rate for fast
speech [92][36]. The second metric used is based directly on the number of syllables spoken
per second and is derived from the transcription material.

Figure 2.10 illustrates the relation between MRATE and word-error rate for the
Year-2000 material. Word error does not change very much as a function of MRATE. In
many instances the highest error rates are associated with the middle of the MRATE range,
while the 
anks of the range often exhibit a slightly lower proportion of word errors.

It was found in several studies that the linguistic measure of speaking rate often
has a high correlation with word-error rate of ASR systems [120][89]. Figure 2.11 illustrates
the relation between word-error rate and syllables per second (derived from the manual
transcript). In contrast to MRATE, this linguistic metric exhibits a much higher corre-
lation between abnormal speech tempo and ASR performance. Utterances slower than 3
syllables/sec or faster than 6 syllables/sec exhibit 50% more word-recognition errors than
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Figure 2.8: Upper panel: The average word error (substitution and deletion) as a function of
the maximum stress-accent level associated with a word from the Year-2000 data, averaged
across eight sites. Lower panel: the average number of word deletions as a function of the
maximum stress-accent level. A maximum stress-accent level of \0" indicates that the word
was completely unaccented; \1" indicates that at least one syllable in the word was fully
accented; an intermediate level of stress accent is associated with a value of \0.5."
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Figure 2.9: Upper panel: The average word error (substitution and deletion) as a function of
the maximum stress-accent level associated with a word from the Year-2001 data, averaged
across eight sites. Lower panel: the average number of word deletions as a function of the
maximum stress-accent level. Stress-accent magnitudes are as described in Figure 2.8.
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Figure 2.10: The relationship between word-error rate for each site (as well as the mean)
and an acoustic measure of speaking rate (MRATE). Upper panel: the Year-2000 data;
lower-panel: the Year-2001 data.
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their counterparts in the core of the normal speaking range. Similar patterns were observed
on the the Year-2001 data (cf. Figures 2.10 and 2.11). Such data imply that algorithms
based on some form of linguistic segmentation related to the syllable are more likely to be
a better predictor of word-error rate of ASR systems than those based purely on acoustic
properties of the speech signal.

In this study, speaking rate was measured at the utterance level. However, the
utterance may not be the smallest unit over which the speaking rate is constant. There are
often signi�cant variations in speaking rate over the duration of a speech utterance [149].
Thus, it may be more appropriate to measure speaking rate over a shorter time interval than
the utterance. There is a systematic relationship between speaking rate and stress accent.
Fast speech tend to have greater proportion of syllables unaccented than slow speech. Thus,
a localized measure of speaking rate may be closely related to the proportion of accented
(or unaccented) syllables within a small group of syllables.

2.2.6 Pronunciation Variation and Word Errors

All ASR systems participating in the evaluation contain multiple pronunciation
modeling (such that each word form could potentially be associated with several di�erent
phonetic representations). However, there appear to be a far greater number of pronunci-
ation variants in the transcription material than observed in the ASR system outputs (for
both unconstrained recognition and forced-alignment). For example, the word "time" has
at least nine di�erent pronunciations according to the manual transcript ([t ay m],[t ax m],[t
ah m],[t aa mx],[t aa m],[t ay n],[t aa ay m],[t aw m],[t ay]), while only one pronunciation of
the word ([t ay m]) was found in the output from most of the systems. For another exam-
ple, the word "from" has twelve di�erent pronunciations according to the manual transcript
([f ax m],[f r ax mx],[f em],[f er m],[f r em],[f ah m],[f r ax m],[f r ah m],[f eh m],[f ax],[f
r ah],[th eh l m]), while three pronunciations of the word ([f er m],[f r ax m],[f r ah m])
were found in the system outputs. For an example of even more complex pronunciation
variation patterns, see Table 4.1 in Chapter 4 for the 63 di�erent pronunciation variants
of the word \that" found in the Year-2001 material. If the system outputs truly re
ect
the range of pronunciation variations in the current generation ASR systems' lexicon 2, it
seems to be extremely inadequate in dealing with the highly non-canonical pronunciation
of conversational speech.

Being aware of the large disparity between the number of pronunciation variants
in the transcript and in the system outputs, it is of interest to ascertain the impact of
pronunciation variation on word error. Figure 2.12 illustrates the relationship between the
average number of pronunciation variants and the word-correct rate (one minus the sum
of substitution rate and deletion rate) across six sites for the frequently occurring words
(at least ten occurrences)3 in the Year-2001 material. The correlation coe�cient is quite

2It should noted that most of the ASR systems use context-dependent phone (e.g. triphone) models, but
the phone-level output was converted to context-dependent phones prior to submission. Thus, the evaluation
was performed only using context-independent phones, which may underestimate the variability captured
by the ASR systems. Nevertheless, majority of the analyses and conclusions remain valid.

3Infrequently occurring words tend to have only one (or very few) pronunciation.
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Figure 2.11: The relationship between word-error rate for each site (as well as the mean)
and a linguistic measure of speaking rate (syllables per second). Upper panel: the Year-
2000 data; lower-panel: the Year-2001 data. Note the \U" shape in word-error rate as a
function of speaking rate for each site (and the mean), indicating that very slow and very
fast speech tends to have more word errors than speech spoken at a normal tempo.
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Figure 2.12: The relationship between word-correct rate (one minus the sum of substitution
and deletion rates) and the average number of pronunciation variants per word (for words
with at least ten occurrences) found in the system outputs for the Year-2001 material. The
correlation coe�cient (r) is 0.84, suggesting that more sophisticated pronunciation modeling
is likely to yield higher word recognition performance.

high, 0.84, suggesting that more sophisticated pronunciation modeling is likely to yield
better word recognition performance. This phenomenon of pronunciation variation has
great impact on ASR performance, particularly for spontaneous speech, and has been a
focus of much research (e.g [36][68][141]). We will return to this issue in later chapters
viewed from the perspective of the syllable, articulatory-acoustic features and stress accent.

2.3 Summary

This chapter has described the linguistic dissection of several state-of-the-art
LVCSR systems using the Switchboard corpus. System outputs at both the word and
phonetic-segment levels were compared to manually annotated transcripts at the word, syl-
lable, phonetic-segment and prosodic stress-accent levels. Detailed statistical analysis of
recognition error patterns was performed with respect to dozens of linguistic and acoustic
parameters. Additional information on �le format conversion, phone mapping and scoring
procedure is given in Appendix A.

Some of the major �ndings from the linguistic dissection are as follows:
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� There exists a high correlation between word and phone-error rates, suggesting that
performance at the word level largely depends on phone-level classi�cation and that
improving acoustic modeling is likely to yield better word recognition performance.

� For correctly recognized words the tolerance for phone errors is roughly constant for
words with four phones or less; for incorrectly recognized words, the number of phone
errors increases in quasi-linear fashion as a function of word length.

� Syllable structure is a signi�cant factor in determining word-error rate, especially word
deletion. Words of vowel-initial syllable forms exhibit a much higher word-error rate
than words of consonant-initial forms; monosyllabic words generally exhibit higher
word-error rates than polysyllabic words.

� The levels of tolerance of articulatory-feature errors di�er depending on both the
position within the syllable and the particular AF dimension. Manner and place of
articulation of onsets and codas are particularly important for correctly distinguishing
among words. Classi�cation of vocalic nuclei is considerably less precise than for the
onsets and codas.

� Entirely unaccented words tend to have a much higher error rate (especially deletion
rate) than words having at least some stress accent.

� Speaking rate (in terms of syllables per second) is a factor of word recognition error.
Very slow and very fast speech tend to have much higher word-error rate than speech
at normal tempo.

� The number of pronunciation variants per word is usually much smaller in the eval-
uation system outputs than in the reference transcripts, and a high correlation was
observed between the word-correct rate and the average number of pronunciation
variants per word across recognition sites.

Results of the linguistic dissection of LVCSR systems suggests there is a signif-
icant gap between models and the observed data. Pronunciation models are inadequate
to capture the pronunciation variation phenomena of spontaneous speech. Useful prosodic
features, such as stress accent and speaking rate, are rarely taken into account explicitly
in conventional models. ASR systems have not made su�cient use of important informa-
tion contained in linguistic levels other than the phonetic tier, such as the syllable and the
articulatory features. These �ndings motivate the development of an alternative model of
speech recognition in the remainder of the thesis.
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Chapter 3

Articulatory-acoustic Features

The linguistic dissection results described in the previous chapter highlighted a
number of important factors a�ecting recognition performance of many ASR systems. In
particular, it emphasized the relationship between word-recognition errors and errors made
at the phonetic-segment level. When phonetic segments are decomposed into more granular
articulatory-acoustic features (AFs), a number of interesting patterns emerge. The tolerance
of AF errors depends largely on the speci�c feature dimension and position within a syllable.
For example, manner- and place-of-articulation dimensions are particularly prone to error
in incorrectly recognized words; nuclei exhibit a greater tolerance for AF errors than onsets
and codas in correctly recognized words. Overall, AF errors found in correctly recognized
words are about one third that of incorrectly recognized words, suggesting a relatively small
amount of AF deviations are tolerated without a signi�cant impact on word recognition.
In Chapters 4 and 5, additional analysis of AF deviations between canonical and realized
forms will be discussed that reveal a systematic pattern of AF deviations as a function of
syllable position and stress-accent level.

Together, this evidence suggests that it may be bene�cial to incorporate infor-
mation at the AF level in speech modeling. This chapter describes our approach to the
automatic extraction of AFs and provides evidence in support of using AFs as fundamental
building blocks of speech models, especially for spontaneous speech. But �rst, a brief de-
scription of AFs is provided and previous work by other researchers in the �eld is described.

3.1 Background and Previous Work

Speech is a communication process between a speaker and a listener. A speech
sound is generated by speci�c articulatory movement of the speaker, travels through a
medium such as air, and reaches the listener's ear. It is thus not unreasonable to describe
speech sounds by the articulatory con�guration associated with them. However, the ulti-
mate goal of the recognition process at the listener's end is to deduce the speaker's intended
meaning carried in the acoustic signal rather than to produce a completely faithful character-
ization of the articulatory con�guration of the speaker. Therefore, it may be advantageous
to use an abstract representation that captures the essential aspects of articulation, but at
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the same time, possesses speci�c correlates in the acoustic signal. Such a representation
of speech can be made in terms of articulatory-acoustic features (AFs) (interested readers
may refer to [84][78][126] for more information on the theory of articulatory phonetics).

One very commonly used AF is voicing, which describes the state of the glottis
as to whether the vocal folds are vibrating during articulation. This feature usually as-
sumes a value of voiced or voiceless but may also be used to characterize breathy voice
(murmur) and creaky voice (larygenalized). Manner -of-articulation characterizes the type
of articulatory closure and degree of obstruction of the airstream associated with the artic-
ulators. Commonly encountered manner-of-articulation classes in English include vocalic,
nasal, stop (plosive), fricative (including a�ricate), 
ap and approximant. A separate AF
dimension pertains to the locus of maximum articulatory constriction { place of articu-
lation, which may assume a number of di�erent values ranging from (bi)labial to glottal.
The possible values of place of articulation that a sound can assume depends on its man-
ner of articulation. For example in American English, a fricative may have a place value
of labio-dental (e.g. [f]), inter-dental (e.g. [th]), alveolar (e.g. [s]) or palatal (e.g. [sh]),
while a stop may have bilabial (e.g. [p]), alveolar (e.g. [t]) or velar (e.g. [k]) place of
constriction. For the vocalic sounds the horizontal place dimension may be categorized into
front, central and back, and it is closely related to the di�erence between the second and
the �rst formant frequencies (f2 � f1). Together, these three AF dimensions distinguish
the majority of phonetic segments in American English. Several other AF dimensions are
also useful: vocalic height describes the height of the tongue body during vocalic produc-
tion and is closely related to the �rst-formant frequency f1; lip-rounding describes whether
the lips are rounded (or not) and is re
ected in f1 and f2; vocalic tenseness distinguishes
between lax (e.g. [ih],[eh],[uh],[ax],[ix] in English) and tense vowels (e.g. the diphthongs
plus [ao],[aa],[ae]); and spectrally dynamic distinguishes between monophthongs (with a
relatively stable spectrum) and diphthongs (with a more dynamic spectrum).

There has been an increasing set of attempts to use articulatory-based features in
speech recognition in recent years. Several studies have physically measured articulatory
con�guration data in conjunction with simultaneously recorded acoustic data. These data
may be measured by an x-ray microbeam [140], laryngograph [9] or electro-magnetic artic-
ulograph [38]. Some of these data have been used to develop algorithms for direct inversion
from acoustics to articulatory con�gurations [102][147], with some limited success. However,
such physically measured articulatory data are generally unavailable for most commonly
used speech corpora. Some researchers have used manually labeled phonetic transcripts for
some corpora and the canonical mapping from phonetic-segments to prede�ned articulatory
features, and used statistical machine learning techniques (such as neural networks [76][73]
and Bayesian networks [113]) to train classi�ers of articulatory features. The approach
we take for extracting AFs from acoustic input in this work also falls into this category.
Others have developed constrained systems (e.g. linear dynamical systems or HMMs) with
articulatory states as latent variables (often to replace the conventional phonetic states).
Such systems do not necessarily require articulatory data during training, but the resulting
articulatory trajectories are often compared to the physically measured articulatory con�g-
urations for evaluation. For example, Hogden et al. [64] developed a maximum-likelihood
training algorithm for an articulatory-constrained continuity mapping of acoustics. Richard-
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son et al. [109] introduced a hidden-articulatory Markov model for speech recognition where
the hidden states denote articulatory con�gurations. Several researchers have adopted dy-
namic Bayesian networks to capture the relationship between acoustics and articulatory
features [151][125]. Others have attempted to recover articulatory trajectories with linear
dynamical systems [38] and articulatory-constrained HMMs [111]. In a series of develop-
ments over the past decade, Deng and colleagues [24][23][27][25][129] have introduced elab-
orate HMM systems of overlapping articulatory features incorporating phonological rules
in the design process. In their most recent development [129], an overlapping-feature-based
phonological model that represents long-span contextual dependencies and high-level lin-
guistic constraints showed signi�cant improvements over the conventional triphone-based
models on the TIMIT corpus [79].

Several advantages of incorporating articulatory features have been noted in pre-
vious studies:

� AFs are more 
exible than traditional phonetic segments in building accurate pro-
nunciation models capable of capturing non-canonical realizations (especially useful
in modeling spontaneous speech);

� as the basic building block of the phonetic tier of speech, AFs can be combined in
many di�erent ways to specify speech sounds found in a wide variety of languages,
and are thus more likely to be cross-linguistically adaptable;

� classi�cation in terms of broadly based AFs is likely to achieve better performance
than phonetic segments, and is likely to be more robust to variations in speaking style
and under adverse acoustic-interference conditions;

� di�erent AF dimensions may contribute di�erentially to recognition and may bene�t
from being treated separately.

The following sections describe our approach to automatic extraction of AFs from
acoustic inputs. Our results are consistent with the advantages of using AFs enumerated
above. In conjunction with the description of syllable-level processing and stress-accent
patterns in subsequent chapters, we also argue that AFs are closely tied to syllable structure
and vary more systematically as a function of syllable position and stress-accent patterns
than phonetic segments.

3.2 Automatic Extraction of Articulatory-acoustic Features

This section describes the system that we have developed for automatic extrac-
tion of articulatory-acoustic features from speech input [14], performance evaluation of the
system and extension to automatic phonetic labeling.

3.2.1 System Description

The system described in this section contains two stages { front-end processing and
classi�cation of AFs using neural networks. An overview of the two processes is illustrated
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Figure 3.1: Illustration of the neural-network-based AF classi�cation system. Each oval
represents a Temporal Flow Model (TFM) or Multi-Layer Perceptron (MLP) network for
recognition of an AF dimension. See text for detail.

in Figure 3.1.

Pre-Processing

The speech signal is converted into a spectro-temporal representation (log-
compressed critical-band energy features) in the following manner. First, a power spectrum
is computed every 10 ms (over a 25-ms window, referred to as a frame) and this spectrum
partitioned into critical-band-like channels between 0.3 and 3.4 kHz using Bark-scale trape-
zoidal �lters similar to those used in the PLP preprocessing [61]. The power spectrum
is logarithmically compressed in order to preserve the general shape of the spectrum dis-
tributed across frequency and time (an example of which is illustrated in Figure 3.3 for the
manner-of-articulation features, vocalic and fricative).

Neural Networks for AF Classi�cation

An array of independent neural networks classify each 25-ms frame along the
AF dimensions of interest using the log-compressed, critical-band energy features. Each
neural network has a number of output nodes that correspond to the possible feature values
of the particular AF dimension plus a separate class for \silence." Two types of neural
networks have been used in our experiments for AF classi�cation: temporal-
ow model
(TFM) networks [137] and multi-layer perceptrons (MLP) [6].
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A typical MLP network used in our system possesses a single hidden layer of nodes
(often referred to as a two-layer network because of its two layers of active links). The MLPs
are fully connected between the input nodes and the hidden nodes, as well as between the
hidden and output nodes. Additional bias (threshold) links with constant input values
are connected to the hidden and output nodes. The hidden nodes use logistic activation
functions and the output nodes have softmax activation functions [6].

A TFM network supports arbitrary link connectivity across multiple layers of
nodes, admits feed-forward as well as recurrent links, and allows variable propagation de-
lays to be associated with links (cf. Figures 3.2). The recurrent links in TFM networks
provide an e�ective means of smoothing and di�erentiating signals as well as detecting the
onset (and measuring the duration). Using multiple links with variable delays allows a
network to maintain an explicit context over a speci�ed window of time and thereby makes
it capable of performing spatiotemporal feature detection and pattern matching. Recurrent
links, used in tandem with variable propagation delays, provide a powerful mechanism for
simulating certain properties (such as shortterm memory, integration and context sensitiv-
ity) essential for processing time-varying signals such as speech. In the past TFM networks
have been successfully applied to a wide variety of pattern-classi�cation tasks including
phoneme classi�cation [138][135], optical character recognition [35] and syllable segmenta-
tion [117].

The architecture of the TFM networks used for classi�cation of articulatory acous-
tic features was manually tuned using a three-dimensional representation of the log-power-
spectrum distributed across frequency and time that incorporates both the mean and vari-
ance of the energy distribution associated with multiple (typically, hundreds or thousands
of) instances of a speci�c phonetic feature or segment derived from the phonetically anno-
tated, OGI Stories-TS corpus [11]. Each phonetic-segment class was mapped to an array of
AFs, and this map was used to construct the spectro-temporal pro�le (STeP) for a given
feature class. For example, the STeP for the manner feature, vocalic (cf. Figure 3.3, upper-
panel), was derived from an average over all instances of vocalic segments in the corpus.
The STeP extends 500 ms into the past, as well as 500 ms into the future relative to the
reference frame (time 0), thereby spanning an interval of 1 second, similar to that used in
TRAPs [62]. This extended window of time is designed to accommodate co-articulatory con-
text e�ects. The frequency dimension is partitioned into critical-band-like, quarter-octave
channels. The variance associated with each component of the STeP is color-coded and
identi�es those regions which most clearly exemplify the energy-modulation patterns across
time and frequency associated with the feature of interest (cf. Figure 3.3) and can be used
to adjust the network connectivity in appropriate fashion.

The training targets for both the MLP and TFM networks were derived from
manually labeled phonetic transcripts via a canonical mapping from phones to AFs (e.g.
Tables 3.1 and 3.4). For each 25-ms frame the target for the output node corresponding
to the desired AF value was assigned a \1" and the remaining classes \0." Both types
of networks use a minimum cross-entropy error function [108][6] during training, which in
conjunction with the \1/0" target assignment, trains the network outputs to approximate
posterior probabilities of each target class given the input. The inputs to the MLP networks
at each frame contains not only the pre-processed, spectro-temporal features of the current
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Figure 3.2: A typical example of a Temporal Flow Model (TFM) network for the voicing
classi�cation. Actual number of layers, number of nodes and link connectivity may di�er
depending on the speci�c classi�cation task. TFM networks support arbitrary connectiv-
ity across layers, provide for feed-forward, as well as recurrent links, and allow variable
propagation delays across links.



35

6

8

10

12

14

16

−500
−400

−300
−200

−100
0

100
200

300
400

500 0

1000

2000

3000

4000

12

13

14

15

16

17

18

19

VARIANCE

FREQUENCY (Hz)

TIME (ms)

A
M

P
LI

T
U

D
E

6

7

8

9

10

11

12

13

14

15

−500 −400 −300 −200 −100 0 100 200 300 400 500
0

500

1000

1500

2000

2500

3000

3500

12.5

13

13.5

14

14.5

15

15.5

16

16.5

VARIANCE

F
R

E
Q

U
E

N
C

Y
 (

H
z)

TIME (ms)

A
M

P
LI

T
U

D
E

Figure 3.3: Spectro-temporal pro�les (STePs) of the manner features, vocalic (upper-panel)
and fricative (lower-panel), computed from the OGI Stories-TS corpus [11]. Each STeP
represents the mean (by amplitude) and variance (by color-coding) of the energy distribu-
tion associated with multiple (typically, hundreds or thousands of) instances of a speci�c
phonetic feature or segment. The frequency dimension is partitioned into critical-band-like,
quarter-octave channels.
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frame but also that of several adjacent frames (preceding and following the current one) to
simulate a temporal context [90]. In contrast, the TFM networks only require the input
features from the current frame since their time-delay and recurrent links implicitly provide
a context of variable duration over time.

The MLP networks were trained with a standard, online, back-propagation algo-
rithm [112] adapted to speech processing [90]. The TFM networks were trained with a back-
propagation-through-time (BPTT) [136] algorithm coupled with the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) method [6][136], a second-order, gradient-based optimization al-
gorithm. The MLP and TFM networks require comparable computation for each epoch
through training data (for networks with the same number of active parameters). However,
the TFM network requires far more epochs to converge, a likely consequence of the dimin-
ishing gradients propagated through time [150]. As a consequence it often takes much longer
to train a TFM network than to train an MLP network even when the latter contains a
greater number of active parameters. Therefore, despite of the modeling advantages o�ered
by TFM networks, most of our experiments were conducted using MLP networks because
of its training e�ciency.

3.2.2 Evaluation

Initial experiments to evaluate the AF classi�cation were performed on the Num-
bers95 corpus [12], comprising spontaneous speech material collected and phonetically anno-
tated (i.e., labeled and segmented) at the Oregon Graduate Institute. This corpus contains
the numerical portion (mostly street addresses, phone numbers and zip codes) of thousands
of telephone dialogues and contains a lexicon of 32 words and an inventory of roughly 30
phonetic segments. The speakers in the corpus were of both genders and represent a wide
range of dialect regions and age groups. The AF classi�ers were trained on ca. 2.5 hours of
material with a separate 15-minute cross-validation set. The AF targets were derived from
the manually labeled phonetic transcription with a �xed phone-to-AF mapping, as shown
in Table 3.1. Testing and evaluation of the system was performed on an independent set of
ca. one hour's duration.

The accuracy of the TFM-based AF classi�cation ranges between 79% (place of
articulation) and 91% (voicing) (cf. Table 3.2). The MLP-based AF classi�cation (with a
nine-frame context) achieved slightly lower accuracies (cf. Table 3.2), while using almost
an order-of-magnitude more adjustable, active parameters than the TFM counterparts.

3.2.3 Extension to Automatic Phonetic Labeling

It is also possible to perform phonetic-segment classi�cation from the AF classi-
�cation results by using another neural network that maps the AF probabilities obtained
at the output of the TFM or MLP networks onto phonetic-segment labels, similar to the
approach used by Kircho� [76]. In our experiments, the phone classi�cation was carried
out by an MLP network with a single hidden layer of between 200 (for a MLP-based AF
classi�cation) and 400 (for TFM-based AF classi�cation) units to maintain a relative bal-
ance between the total numbers of free parameters in the two systems. A context window



37

Phone Voicing Manner Place Front-Back Rounding

d voice+ stop coronal nil nil

t voice- stop coronal nil nil

k voice- stop velar nil nil

s voice- fricative coronal nil nil

z voice+ fricative coronal nil nil

f voice- fricative labial nil nil

th voice- fricative dental nil nil

v voice+ fricative labial nil nil

hh voice- fricative glottal nil nil

n voice+ nasal coronal nil nil

l voice+ approximant coronal nil nil

r voice+ approximant rhotic nil nil

w voice+ approximant labial nil round+

y voice+ approximant high nil nil

hv voice+ approximant glottal nil nil

iy voice+ vocalic high front round-

ih voice+ vocalic high front round-

eh voice+ vocalic mid front round-

ey voice+ vocalic mid front round-

ae voice+ vocalic low front round-

aa voice+ vocalic low back round-

aw voice+ vocalic low back round+

ay voice+ vocalic low front round-

ah voice+ vocalic mid back round-

ao voice+ vocalic low back round-

ow voice+ vocalic mid back round+

uw voice+ vocalic high back round+

er voice+ vocalic rhotic nil round-

ax voice+ vocalic mid back round-

h# silence silence silence silence silence

Table 3.1: Phone-to-AF mapping for the AF classi�cation experiments on the Numbers95
corpus. The mappings were adapted from Kirchho� [76].

Network Front-back Lip-rounding Manner Place Voicing

TFM 83.4 85.6 84.4 78.8 91.1

MLP 82.6 83.4 82.6 75.0 89.8

Table 3.2: Frame-level TFM- and MLP-based AF classi�cation accuracy (percentage) on
the Numbers95 corpus development test set.
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of 9 frames (105 ms) was used by the MLP network. The output of this MLP contains
a vector of phone-posterior-probability estimates for each frame and was evaluated for its
accuracy with respect to manually labeled phonetic transcripts. The TFM/MLP system
achieved a frame-level phone accuracy of 79.4% and the MLP/MLP system had 78.1%.
For comparison, we also computed phonetic-segment classi�cation accuracy obtained by
a direct mapping from log-compressed, critical-band energy features to phonetic-segment
classes using an MLP network without the intermediate stage of AF classi�cation; the result
was 73.4% when the number of adjustable parameters used was similar to the total number
of parameters in the TFM/MLP system.

This matrix of phonetic-posterior-probabilities over time can be further converted
into a linear sequence of phone labels and segmentation boundaries via a decoder. A hidden-
Markov-model (HMM) was applied to impose a minimum-length constraint on the duration
associated with each phonetic-segment (based on segmental statistics of the training data),
and a Viterbi-like decoder with a phone-bigram model (derived from the training data) was
used to compute the sequence of phonetic segments over the entire length of the utterance.
This bipartite phone-decoding process is analogous to that used for decoding word sequences
in ASR systems. However, in the present application the \lexical" units are phones, rather
than words, and the \words" contain clusters of articulatory features rather than phones. A
19.3% phone-error rate (8.1% substitution, 6.4% deletion and 4.9% insertion) was obtained
with this approach. Figure 3.4 illustrates the sample output of this automatic phonetic
labeling system (ALPS) on one of the test-set utterances.
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Frame Tolerance Hits False Alarms

� 1 (10 ms) 38.4 58.5

� 2 (20 ms) 76.0 20.9

� 3 (30 ms) 83.7 13.2

Table 3.3: Accuracy of phonetic segmentation as a function of the temporal tolerance
window and partitioned into error type (hits/false alarms).

It is of interest to ascertain the frame location of phonetic-segment classi�cation
errors as a means of gaining insight into the origins of mislabeling for this material. Specif-
ically, it is important to know whether the classi�cation errors are randomly distributed
across frames or are concentrated close to the segment boundaries. The data illustrated
in Figure 3.5 indicate that a disproportionate number of errors are concentrated near the
phonetic-segment boundaries in regions inherently di�cult to classify accurately as a conse-
quence of the transitional nature of phonetic information in such locations. Nearly a third
of the phone classi�cation errors are associated with boundary frames associated with just
17% of the utterance duration. The accuracy of phone classi�cation is only 61% in the
boundary frames, but rises to 80% or higher for frames located in the central region of the
phonetic segment.

The accuracy of phonetic segmentation can be evaluated by computing the pro-
portion of times that a phonetic segment onset is correctly identi�ed (hits) by the ALPS
system relative to the instances where the phone onset (as marked by a human transcriber)
is located at a di�erent frame (false alarms ). The data in Table 3.3 indicate that the
ALPS system matches the segmentation of human transcribers precisely in ca. 40% of
the instances. However, automatic segmentation comes much closer to approximating hu-
man performance when a tolerance level of more than a single frame is allowed (76-84%
concordance with manual segmentation). The average deviation between the manual and
automatic segmentation is 11 ms, an interval that is ca. 10% of the average phone duration
in the Numbers95 corpus.

3.3 Manner-speci�c Training and the \Elitist" Approach

In subsequent experiments we have applied our approach to AF classi�cation on
a separate American English corpus with a much larger vocabulary and a more balanced
phonetic inventory than that of the Numbers95 corpus. This section describes these ex-
periments and, in particular, an \elitist" approach to delineate regions of speech with high
con�dence in AF classi�cation is described; a manner-speci�c training scheme for enhancing
classi�cation of place and other AF dimensions [13][17] is also presented.
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3.3.1 AF Classi�cation on the NTIMIT Corpus

The AF classi�cation approach described in the previous section was applied to
a subset of the NTIMIT corpus with 3300 sentences (comprising 164 minutes of speech)
for training and 393 sentences (19.5 minutes) for testing. NTIMIT ([65]) is a spectrally
restricted variant of the TIMIT corpus (8-kHz bandwidth; cf. [79]), that has been passed
through a phone network (between 0.3 and 3.4 kHz), providing an appropriate set of ma-
terials with which to develop a phonetic annotation system destined for telephony-based
applications. The corpus contains a quasi-phonetically balanced set of sentences read by
native speakers (of both genders) of American English, whose pronunciation patterns span
a wide range of dialectal variation. The phonetic inventory of the NTIMIT corpus is listed
in Table 3.4, along with the articulatory-feature equivalents for each segment. The phonetic
annotation (both labeling and segmentation) associated with the NTIMIT corpus was man-
ually annotated at MIT by trained linguistic personnel on the spectrally un�ltered version
of the TIMIT corpus.

For the NTIMIT experiments we have used an MLP-based AF classi�cation system
similar to that used with the Numbers95 corpus except that: the AF dimensions being
classi�ed and the corresponding phone-to-AF mappings were di�erent (cf. Table 3.4); the
input features to the MLP networks also included the deltas (�rst-derivatives) pertaining
to the spectro-temporal contour over both time and frequency dimensions.

Table 3.5 shows the overall frame-level AF classi�cation accuracies for seven dif-
ferent AF dimensions obtained using the NTIMIT corpus. Within each AF dimension not
all feature values achieved the same classi�cation accuracy (cf. Table 3.6 for a confusion
matrix for the place of articulation features) and this variability in performance re
ects to
a certain degree the amount of training material available for each feature.

3.3.2 An \Elitist" Approach

The previous section discussed an observation made on the Numbers95 phonetic-
segment classi�cation output { a disproportionate number of errors are concentrated near
the phonetic-segment boundaries (cf. Figure 3.5). A similar analysis was performed on the
AF classi�cation output from the NTIMIT corpus. With respect to feature classi�cation,
just as in phonetic classi�cation, not all frames are created equal. For the manner-of-
articulation features, the 20% frames that are closest to the segmental borders have an
average frame accuracy of 73%, while the 20% of frames closest to the segmental centers
have an average frame accuracy of 90%. This \centrist" bias in feature classi�cation is
paralleled by a concomitant rise in the \con�dence" with which MLPs classify AFs. This
is similar to the high correlation between the posterior probability estimates and phone-
classi�cation accuracy observed in connectionist speech recognition [8]. Figure 3.6 illustrates
this phenomenon by displaying the average frame accuracy of manner-of-articulation clas-
si�cation and the average maximum MLP output as a function of frame position within a
segment for all frames, as well as for vocalic and consonantal frames analyzed separately.

This observation suggests that we may use the maximum MLP output at each
frame as an objective metric with which to select frames most \worthy" of manner des-
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CON Manner Place Voi Sta APPR Height Place Voi Sta

[p] Stop Bilabial - - [w]* High Back + -

[b] Stop Bilabial + - [y] High Front + -

[t] Stop Alveolar - - [l] Mid Central + -

[d] Stop Alveolar + - [el] Mid Central + -

[k] Stop Velar - - [r] Mid Rhotic + -

[g] Stop Velar + - [er] Mid Rhotic + -

[ch] Fric Alveolar - - [axr] Mid Rhotic + -

[jh] Fric Alveolar + - [hv] Mid Central + -

[f] Fric Lab-den - +

[v] Fric Lab-den + +

[th] Fric Dental - + VOW Height Place Ten Sta

[dh] Fric Dental + - [ix] High Front - +

[s] Fric Pre-alv - + [ih] High Front - +

[z] Fric Pre-alv + + [iy] High Front + -

[sh] Fric Post-alv - + [eh] Mid Front - +

[zh] Fric Post-alv + + [ey] Mid Front + -

[hh] Fric Glottal - + [ae] Low Front + +

[m] Nasal Bilabial + + [ay] Low Front + -

[n] Nasal Alveolar + + [aw]* Low Central + -

[ng] Nasal Velar + + [aa] Low Central + +

[em] Nasal Bilabial + - [ao] Low Back + +

[en] Nasal Alveolar + - [oy] Mid Back + -

[eng] Nasal Velar + - [ow]* Mid Back + -

[nx] Flap Alveolar + + [uh] High Back - +

[dx] Flap Alveolar + - [uw]* High Back + -

Table 3.4: Articulatory-acoustic feature speci�cation of phonetic segments developed for
the American English (N)TIMIT corpus. An asterisk (*) indicates that a segment is lip-
rounded. The consonantal segments are marked as \nil" for the feature tense. \Voi" is the
abbreviation for \voicing," \Sta" for \Static," \Ten" for \Tense," \CON" for \consonant,"
\APPR" for \approximant" and \VOW" for \vowel." The phonetic orthography is a variant
of ARPABET.

Lip-rounding Manner Place Static Voc-height Voc-tense Voicing

82.9 85.0 71.2 76.6 80.9 81.9 88.9

Table 3.5: Overall frame-level AF classi�cation accuracy (percent correct) on the NTIMIT
corpus.
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Consonantal Segments Vocalic Segments N-S

Reference Lab Alv Vel Den Glo Rho Frt Cen Bk Sil

Labial 60 24 03 01 01 01 02 02 01 05

Alveolar 06 79 05 00 00 00 03 02 00 05

Velar 08 23 58 00 00 00 04 01 01 05

Dental 29 40 01 11 01 01 05 03 01 08

Glottal 11 20 05 01 26 02 15 10 03 07

Rhotic 02 02 01 00 00 69 10 09 06 01

Front 01 04 01 00 00 02 82 07 02 01

Central 02 03 01 00 01 02 12 69 10 00

Back 03 02 01 00 00 04 17 24 48 01

Silence 03 06 01 00 00 00 00 00 00 90

Table 3.6: A confusion matrix illustrating classi�cation performance for place-of-articulation
features from manner-independent training. The data are partitioned into consonantal and
vocalic classes. Silence is classi�ed as non-speech (N-S). All numbers are percent of total
frames of the reference features.
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Figure 3.6: The relation between frame classi�cation accuracy for manner of articulation on
the NTIMIT corpus (bottom panel) and the MLP output con�dence level (i.e., maximum
MLP output magnitude) as a function of frame position within a phonetic segment (nor-
malized to the duration of each segment). Frames closest to the segmental boundaries are
classi�ed with the least accuracy; this performance decrement is re
ected in a concomitant
decrease in the MLP con�dence magnitude.
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Vocalic Nasal Stop Fricative Flap Silence

Ref All Best All Best All Best All Best All Best All Best

Vocalic 96 98 02 01 01 01 01 00 00 00 00 00

Nasal 14 10 73 85 04 02 04 01 01 00 04 02

Stop 09 08 04 02 66 77 15 09 00 00 06 04

Fric 06 03 02 01 07 03 79 89 00 00 06 04

Flap 29 30 12 11 08 04 06 02 45 53 00 00

Silence 01 01 02 00 03 01 05 02 00 00 89 96

Table 3.7: The e�ect of the \elitist" approach for selecting frames with a high con�dence of
manner classi�cation. All numbers are in terms of percent of total frames of the reference
features. \All" refers to the manner-independent system using all frames of the signal, while
\Best" refers to the frames exceeding a 70% threshold. The confusion matrix illustrates the
pattern of classi�cation errors.

ignation and we call such a method of delineating the relative importance of frames the
\elitist" approach. By establishing a network-output threshold of 70% (relative to the max-
imum) for frame selection, the selected frames (with maximum MLP output greater than
the threshold) yield manner-of-articulation classi�cation performance between 2% and 14%
(absolute) greater than that applied to all frames, as illustrated in Table 3.7 and Figure 3.7.
Most of the frames discarded are located in the interstitial region at the boundary of ad-
jacent segments. The overall accuracy of manner classi�cation for the selected frames is
93% (compared to 85% for all frames). A potential utility of this approach is to provide a
quantitative basis for di�erential treatment of the various regions of speech signal; the more
con�dently classi�ed regions are likely to provide more useful information for recognition.

3.3.3 Manner-Speci�c Training

In the experimental results presented in Table 3.6 for manner-independent clas-
si�cation place-of-articulation information was correctly classi�ed in 71% of the frames;
the accuracy for individual place features ranged between 11% and 82%. There are ten
distinct places of articulation across the manner classes (plus silence), making it di�cult
to e�ectively train networks expert in the classi�cation of each place feature. There are
other problems as well. For example, the loci of maximum articulatory constriction for
stops di�er from those associated with fricatives. And the articulatory constriction has a
di�erent manifestation for consonants and vowels. The number of distinct places of articu-
lation for any given manner class is usually just three or four. Thus, if it were possible to
identify manner features with a high degree of assurance it should be possible, in principle,
to train an articulatory-place classi�cation system in a manner-speci�c manner that could
potentially enhance place-feature extraction performance.

Figure 3.8 illustrates a manner-speci�c training scheme for place-of-articulation
classi�cation. Separate MLPs are trained to classify place-of-articulation features for each
of the �ve manner classes { stops, nasals, fricatives, 
aps and vowels (the latter includes the
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Figure 3.7: Trade-o� between the proportion of frames falling below threshold and frame-
error rate for the remaining frames for di�erent threshold values (MLP con�dence level {
the maximum MLP output value at each frame) for manner classi�cation on the NTIMIT
corpus.
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Figure 3.8: The manner-dependent, place-of-articulation classi�cation system for the
NTIMIT corpus. Each manner class contains between three and four place-of-articulation
features. Separate MLP classi�ers were trained for each manner class.

approximants), and each MLP is trained only on frames associated with the corresponding
manner class. The place dimension for each manner class is partitioned into three basic
features. For consonantal segments the partitioning corresponds to the relative location
of maximal constriction { anterior, central and posterior (as well as the glottal feature for
stops and fricatives). For example, \bilabial" is the most anterior feature for stops, while
the \labio-dental" and \dental" loci correspond to the anterior feature for fricatives. In
this fashion it is possible to construct a relational place-of-articulation pattern customized
to each consonantal manner class. For vocalic segments front vowels were classi�ed as
anterior, and back vowels as posterior. The liquids (i.e., [l] and [r]) were assigned a \central"
place given the contextual nature of their articulatory con�guration. Other non-place AF
dimensions, such as vocalic height (cf. Figure 3.8), can also be classi�ed in a manner-speci�c
fashion.

Table 3.8 illustrates the performance of such manner-speci�c, place classi�cation.
In order to characterize the potential e�cacy of the method, manner information for the test
materials was derived from the reference labels for each segment rather than from automatic
classi�cation of manner of articulation. Under this evaluation condition, manner-speci�c,
place classi�cation performance for most of the manner classes are signi�cantly better than
that of manner-independent classi�cation. This gain in classi�cation performance is most
likely derived from two speci�c factors { (1) a more homogeneous set of training material
for manner-speci�c, place classi�cation and (2) a smaller number of place-feature targets
for each manner class. It should be noted that the aim of manner-speci�c training is to
enhance the classi�cation performance of features that exhibit manner-dependency, rather
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than to provide a prescription for phonetic-segment classi�cation (as was the goal in other
research, such as the hierarchical connectionist acoustic modeling of Fritsch [39]).

3.4 Cross-linguistic Transfer of AFs

As described earlier in this chapter, a potential advantage of modeling speech with
AFs is cross-linguistic transferability. Because of the universal set of articulators (vocal
folds, tongue, lips, etc.) and auditory apparatus (ear, auditory pathway, etc.) shared by
speakers of all languages of the world, many of the same articulatory features are present
in di�erent languages. For example, virtually all languages make the distinction between
vocalic and consonantal sounds, as well as between voiced and unvoiced sounds. Such
common acoustic properties, as expressed in di�erent languages, are likely to share similar
acoustic correlates in the speech signal and can be exploited to build cross-linguistic acoustic
models more e�ciently than a detailed phonetic or phonemic approach, particularly helpful
for languages with little corpus material. Of course languages are di�erent and there are
sounds present in one language but not another, even at the broad articulatory feature level.
For example, the \trill" (usually an [r]), which is very common in some Indo-European
languages, is usually not found in American English. It is therefore of interest to ascertain
to what extent such cross-linguistic transfer of AF classi�cation succeeds (or fails).

As a preliminary means of developing AFs for cross-linguistic training in ASR, we
have applied the AF-classi�cation system originally designed for American English to spon-
taneous Dutch material { the VIOS corpus [127][142][17]. Dutch and English are historically
related languages (both belong to the West Germanic language family) with approximately
1500 years of time depth separating the two [7]. This close relationship between the two
languages makes it particularly suitable for the initial testing of cross-linguistic transfer-
ability.

VIOS is a Dutch corpus composed of human-machine dialogues within the context
of railroad timetable queries conducted over the telephone [127]. A subset of this corpus
(3000 utterances, comprising ca. 60 minutes of material) was used to train an array of
networks of multi-layer perceptrons (MLPs), with an additional 6 minutes of data used
for cross-validation purposes. Labeling and segmentation at the phonetic-segment level was
performed using a special form of automatic alignment that explicitly models pronunciation
variation derived from a set of phonological rules [72]. An eighteen-minute component of
VIOS, previously hand-labeled at the phonetic-segment level by students in the department
of Language and Speech Pathology at the University of Nijmegen, was used as a test set
in order to ascertain the accuracy of AF-classi�cation performance. This test material was
segmented at the phonetic-segment level using an automatic-alignment procedure that is
part of the Phicos recognition system [124] trained on a subset of the VIOS corpus. The
phonetic inventory of the VIOS corpus is listed in Table 3.9, along with the AF equivalents
for each segment.

AFs for Dutch were systematically derived from phonetic-segment labels using the
mapping pattern illustrated in Table 3.9 for the VIOS corpus. The feature dimensions,
Front-Back and Rounding applied solely to vocalic segments. The rhoticized segments,
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Anterior Central Posterior Glottal

Reference M-I M-S M-I M-S M-I M-S M-I M-S

Stop

Anterior 66 80 17 13 04 06 01 02

Central 07 13 76 77 06 09 01 02

Posterior 11 12 19 14 61 74 01 01

Glottal 09 12 16 13 04 07 29 68

Fricative

Anterior 46 44 40 55 01 00 01 00

Central 04 02 85 96 00 01 03 00

Posterior 01 01 31 43 62 57 00 00

Glottal 16 15 30 49 06 02 19 34

Nasal

Anterior 64 65 20 31 02 04 - -

Central 12 09 69 86 03 05 - -

Posterior 10 05 32 39 28 56 - -

Vowel

Anterior 82 83 07 14 02 03 - -

Central 12 11 69 80 10 09 - -

Posterior 17 16 24 35 48 50 - -

Vowel Height

Low 77 83 13 16 01 01 - -

Mid 15 18 58 73 12 09 - -

High 02 5 11 22 73 73 - -

Table 3.8: Confusion matrix associated with the manner-speci�c (M-S) classi�cation for
place-of-articulation feature extraction for each of the four major manner classes, plus the
non-place AF dimension \vowel height." Place classi�cation performance for the manner-
independent (M-I) system is shown for comparison. All numbers are percent of total frames
of the reference features.
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CONS Manner Place Voice VOW F/B Place Round

[p] Stop Bilabial - [i] Front High -

[b] Stop Bilabial + [u] Back High +

[t] Stop Alveolar - [y] Front High +

[d] Stop Alveolar + [I] Front High -

[k] Stop Velar - [e:] Front High -

[f] Fricative Lab-dent - [2:] Front Mid +

[v] Fricative Lab-dent + [o:] Back Mid +

[s] Fricative Alveolar - [E] Front Mid -

[z] Fricative Alveolar + [O] Back Mid +

[S] Fricative Velar - [Y] Back Mid -

[x] Fricative Velar + [@] Back Mid -

[m] Nasal Bilabial + [Ei] Front Mid -

[n] Nasal Alveolar + [a:] Front Low -

[N] Nasal Velar + [A] Back Low -

[Au] Back Low +

[9y] Front Low +

APPR Manner Place Voice APPR F/B Place Voice

[w] Vocalic Labial + [w] Back High +

[j] Vocalic High + [j] Front High +

[l] Vocalic Alveolar + [l] Central Mid +

[L] Vocalic Alveolar + [L] Central Mid +

[r] Vocalic Rhotic + [r] Central Mid +

[R] Vocalic Rhotic + [R] Central Mid +

[h] Vocalic Glottal + [h] Central Mid +

Table 3.9: Articulatory-acoustic feature speci�cation of phonetic segments developed for
the Dutch VIOS corpus. The approximants (APPR) are listed twice, on the left for the
manner-independent features, and on the right for manner-speci�c place features. \F/B"
refers to \Front-back." The phonetic orthography is derived from SAMPA.
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VIOS{VIOS NTIMIT{VIOS

FEATURE + Silence - Silence + Silence - Silence

Voicing 89 85 79 86

Manner 85 81 73 74

Place 76 65 52 39

Front-Back 83 78 69 67

Rounding 83 78 70 69

Table 3.10: Comparison of AF-classi�cation performance (percent correct at the frame level)
for two di�erent systems { one trained and tested on Dutch (VIOS{VIOS), the other trained
on English and tested on Dutch (NTIMIT{VIOS). Two di�erent conditions are shown {
classi�cation with silent intervals included (+Silence) and excluded (-Silence) in the test
material.

[r] and [R], were assigned a place feature (+rhotic) unique unto themselves in order to
accommodate their articulatory variability [85][133]. Each articulatory feature dimension
also contained a class for silence. In the manner-speci�c classi�cation the approximants
(i.e., glides, liquids and [h]) were classi�ed as vocalic with respect to articulatory manner
rather than as a separate consonantal class.

Classi�cation experiments were performed on the VIOS test material using MLPs
trained on the VIOS and NTIMIT corpora, respectively (cf. Table 3.10). Because ca. 40%
of the test material was composed of silence, classi�cation results are partitioned into two
separate conditions, one in which silence was included in the evaluation of frame accuracy
(+silence), the other in which it was excluded (-silence).

Classi�cation performance of articulatory-acoustic features trained and tested on
VIOS is more than 80% correct for all dimensions except place of articulation. Performance
is lower for all feature dimensions when silence is excluded. Overall, this performance is
comparable to that associated with other American English [14] and German [76] material.

Classi�cation performance for the system trained on NTIMIT and tested on VIOS
is lower than the system both trained and tested on VIOS (Table 3.10). The decline in
performance is generally ca. 8-15% for all feature dimensions, except for place, for which
there is a somewhat larger decrement (26%) in classi�cation accuracy. Voicing is the one
dimension in which classi�cation is nearly as good for a system trained on English as it is for
a system trained on Dutch (particularly when silence is neglected). The manner dimension
also transfers reasonably well from training on NTIMIT to VIOS. However, the place-of-
articulation dimension does not transfer particularly well between the two languages.

One reason for the poor transfer of place-of-articulation feature classi�cation for
a system trained on NTIMIT and tested on VIOS pertains to the amount of material on
which to train. Features which transfer best from English to Dutch are those trained on
the greatest amount of data in English. This observation suggests that one potentially
e�ective means of improving performance on systems trained and tested on discordant
corpora would be to evenly distribute the training materials over the feature classes and
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dimensions classi�ed.

3.5 Robustness of AFs

Acoustic interference poses a signi�cant challenge to current-generation ASR sys-
tems. ASR systems that work well under pristine acoustic conditions generally perform
much more poorly at low signal-to-noise ratios (SNRs). In contrast, human listeners typi-
cally experience little (if any) degradation of intelligibility under comparable circumstances,
except for SNRs of less than 0 dB [86]. The robust nature of human speech decoding may
re
ect the brain's application of multiple processing strategies, spanning a broad range of
time constants and structural units, providing complementary perspectives on the signal's
phonetic and lexical representation [50][51]. Previous research has demonstrated that ASR
systems incorporating broad articulatory features are more robust to acoustic interference
than systems using only phonetic segments [76].

This section describes experiments designed to reinforce this notion of robustness
of AFs by testing the AF classi�cation system on speech in a wide variety of noise back-
grounds. We compare the phonetic-segment classi�cation performance of a system with an
intermediate stage of AF classi�cation and a system without the AF-classi�cation stage. We
also compare two training methods: (1) training only on \clean" speech (i.e., speech that
has been recorded under pristine, high-SNR conditions), (2) training on speech embedded
in a variety of noise backgrounds over a wide dynamic range of SNRs. The mixed-training
scheme has been shown to perform well for both matched (included in the training set) and
novel noise conditions (not included in the training set) [15], and is similar to the multi-
condition training for noise-robustness adopted by the Aurora Evaluation of Distributed
Speech Recognition Systems [4]. In the following chapter we will extend this study to
include supra-segmental (syllable-level) information into the classi�cation system.

3.5.1 Corpus Material with Noise

The experiments described in this section were performed on the Numbers95 [12]
corpus, the same set of materials as described in Section 3.2.2. Various forms of acoustic
interference, derived from the NOISEX corpus [131], were mixed, in additive fashion, with
the Numbers95 speech material. The NOISEX material was originally recorded with 16-bit
resolution at 19.98 kHz but was down-sampled to 8 kHz for the current study. A subset
of the noise backgrounds was mixed with the speech material over a range of SNRs (as
indicated in Table 3.11). The signal-to-noise ratio was calculated from the normalized
power (computed over the entire length of the utterance) for both the speech signal and the
noise background using a procedure described in [74].

3.5.2 Experimental Results

The experiment setup is the same as the MLP-based AF-classi�cation (and sub-
sequent phonetic-segment-classi�cation) system described in Section 3.2. The classi�ca-
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tions are based on entirely automatically derived data, and the \elitist" approach and the
manner-speci�c training are not applied here. Frame-level phonetic-segment classi�cation
performance (percent accuracy) are compared across four systems:

� direct phonetic classi�cation (without AF-classi�cation) trained on \clean" speech
only (PhnClean);

� phonetic classi�cation via an intermediate stage of AF classi�cation trained on \clean"
speech only (AFClean);

� direct phonetic classi�cation trained on speech material embedded in both white and
pink noise over a 30-dB range of SNRs, as well as on \clean" speech (PhnMix);

� phonetic classi�cation via an intermediate stage of AF classi�cation trained on speech
material embedded in both white and pink noise over a 30-dB range of SNRs, as well
as on \clean" speech (AFMix).

The results are summarized in Table 3.11. The mixed-training scheme is very ef-
fective against acoustic interference. For both direct-phone-based and AF-based phonetic-
segment classi�cations the mixed-training system dramatically improved classi�cation accu-
racy not only for noise conditions included in the mixed-training set but also for novel noise
conditions absent from the mixed-training set. And in no condition does the mixed-training
system perform worse than the corresponding \clean"-trained system. The conditions where
the mixed-training system fails to signi�cantly outperform the \clean"-training system are
those in which the latter is already performing close to the optimum performance associated
with the classi�cation framework used.

AFs exhibit more robustness than phonetic segments (cf. Table 3.11). For the
\clean"-only training condition incorporating an intermediate AF-classi�cation stage re-
duces the phone-classi�cation error by an average of 9.6% (relative, and an average of 4.5%
absolute) relative to the direct-phone-based system. This signi�cant error reduction is main-
tained for the mixed-training condition where the average error reduction of the AF-based
system (compared to the direct-phone-based system) is 15.3% (relative, and an average of
5.6% absolute), and this pattern of performance improvement is observed in both seen and
unseen noise backgrounds.
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Test Clean Training Mixed Training

Noise/Condition SNR PhnClean AFClean PhnMix AFMix

1 Clean - 73.40 78.12 74.85 79.24

2 Pink 0 17.64 21.90 57.69 64.14
3 10 47.06 55.21 69.16 74.59
4 20 68.15 72.92 74.39 78.95
5 30 72.67 77.32 75.32 79.67

6 White 0 15.04 18.94 55.50 61.22
7 10 34.86 45.15 66.94 72.36
8 20 60.86 67.54 73.05 77.81
9 30 71.15 76.05 75.05 79.49

10 Mixture of White 0 16.62 20.35 56.98 63.22
11 and Pink Noise* 10 43.01 52.00 68.45 73.95
12 20 66.57 71.73 74.16 78.71
13 30 72.42 77.05 75.33 79.70

14 Speech Babble* 0 27.48 28.36 39.87 45.21
15 10 55.05 57.78 62.66 68.32

16 Buccaneer (190 knots)* 0 15.32 19.68 52.70 59.24
17 Jet Cockpit (450 knots)* 0 17.16 20.60 51.57 58.48

18 F-16 Jet Cockpit* 0 17.62 23.52 52.63 58.81

19 Destroyer Eng Room* 0 17.42 20.83 46.46 51.09

20 Destroyer Op. Room* 0 29.92 34.28 51.11 58.02

21 Leopard 2 Mil. Vehicle* 0 54.23 56.52 55.33 62.69

22 M109 Tank* 0 41.31 43.01 59.73 66.13

23 Machine Gun* 0 55.24 59.25 57.14 63.44
24 10 62.62 67.90 64.14 70.62

25 Car Factory (Floor)* 0 21.86 25.05 47.28 52.47
26 10 50.17 55.36 65.23 70.58
27 (Production Hall)* 0 35.03 37.64 59.57 65.73

28 Volvo (Interior)* 0 67.19 70.39 69.75 74.83
29 10 70.63 74.62 71.71 76.85

30 Hi-Freq Radio Channel* 0 13.95 17.94 52.59 57.99

Table 3.11: Phonetic-segment classi�cation performance (percent frame accuracy) com-
pared across four systems. Conditions (10-30) marked with an asterisk (*) are those that
the mixed-training system has not been trained on. \PhnClean" and \PhnMix" are re-
sults of direct phone classi�cation (without intermediate AF-classi�cation); \AFClean" and
\AFMix" are results of phone classi�cation via an intermediate stage of AF classi�cation.
\Clean Training" refers to training on clean data only; \Mixed Training" refers to train-
ing on both clean data and speech embeded in white and pink noises over a 30-dB range
(conditions 1-9).
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3.6 Summary

This chapter has focused on automatic extraction of articulatory-acoustic features
from speech input. Motivated by the AF-related analysis results from the linguistic dissec-
tion in the previous chapter, analyses and experiments described in this chapter provided
evidence to support incorporating AFs in models of speech processing.

� An TFM/MLP neural-network-based AF-classi�cation system was described in detail
with experimental evaluation on the Numbers95 corpus; the AF-classi�cation sys-
tem was also extended to perform automatic labeling of phonetic segments. Good
performance was obtained on AF classi�cation, as well as on phonetic labeling and
segmentation.

� AF-classi�cation experiments on the more comprehensive and phonetically balanced
NTIMIT corpus were described, and in particular, an \elitist" approach was described
to delineate regions of speech with high con�dence in AF classi�cation. Moreover, a
manner-speci�c training scheme for enhancing the place-of-articulation classi�cation
was also described.

� The cross-linguistic transferability of AF training was assessed quantitatively by
testing (American English) NTIMIT-corpus-trained AF-classi�cation networks on a
Dutch corpus (VIOS). Experiment results showed that certain AF dimensions (e.g.
voicing and manner of articulation) transfer better than others (e.g. the place of
articulation).

� Further evidence supporting the use of AFs was provided by the robustness of the AFs
as demonstrated in experiments involving speech in noisy background, particularly
when the AF-classi�cation system was trained on speech embedded in a variety of
noise backgrounds over a wide dynamic range of SNRs.

In the following two chapters further analysis of the AF-deviation patterns from
canonical forms will examine the close relationship among AFs, syllable structure and stress
accent, which can be exploited to capture the complex phenomenon of pronunciation vari-
ation in spontaneous speech in a parsimonious fashion.
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Chapter 4

Speech Processing at the Syllable

Level

From linguistic dissection of Switchboard-corpus LVCSR systems (cf. Chapter 2),
we have observed that syllable-level information plays an important role in word recog-
nition of spontaneous American English discourse. Syllable structure was found to be
an important factor in determining word errors, especially word deletions. Tolerance of
articulatory-feature errors di�ers depending on the segments' position within the syllable;
and furthermore, much prosodic information that is important for word recognition, such as
stress-accent level and speaking rate, is directly tied to the syllabic representation of speech.
This suggests that syllable-level information may have a signi�cant impact on speech recog-
nition performance and it may be bene�cial to model such syllable-related factors explicitly
in ASR systems.

In fact, there has been an increasing interest in the notion that the syllable may
be the binding unit of speech around which information at various linguistic tiers is orga-
nized [30][51], in contrast to the traditional phonetic-segment perspective of spoken lan-
guage. This chapter argues for a syllable-centric view of speech perception from three
di�erent aspects { (1) the stability of the syllable in the speech signal and the importance
of syllable-level information in speech perception, (2) the e�ciency of modeling pronuncia-
tion variation in a syllable-based representation and the close link between many important
kinds of prosodic information (such as stress-accent) and the syllable, as well as (3) the
systematic variation of the articulatory-acoustic features (AFs) as a function of syllable
position and syllable structure. First, a brief introduction of the syllable is provided.

4.1 What is a Syllable?

In his introductory phonetics textbook [78], Ladefoged concedes that there is no
agreed phonetic de�nition of a syllable. He notes that although nearly everybody can
identify syllables, it is di�cult to de�ne a syllable with precision. There have been various
attempts to de�ne the syllable either in terms of properties of sounds, such as sonority or
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prominence, or from the perspective of the speaker, principally the notion that a syllable is
a unit of organization for the sounds in an utterance. However, none of these attempts has
yielded a completely satisfactory de�nition (ibid). This thesis does not attempt to provide
a solution to this intriguing linguistic problem, but for the convenience of discussion, we
simply assume that a syllable is the smallest articulatorily coherent span of speech in the
sense that every speech utterance must contain at least one syllable.

Structurally, a syllable potentially consists of three parts1 { an onset, a nucleus
and a coda, where both the onset and coda elements are optional (e.g. the syllable in
the word \I" contains only a nucleus). The nucleus is almost always vocalic2. The onset
in English, as well as the coda, when present, can consist of one or more consonants (a
consonant cluster). For example, the word \six" (in its canonical pronunciation) has a
single-consonant onset ([s]), a vocalic nucleus ([ih]) and a consonant-cluster coda consisting
of two consonants ([k] and [s]). In this case, we may refer to this structure as a CVCC
syllable. The phenomenon of ambisyllabicity slightly complicates the picture, with certain
segments acting as both the coda of the preceding syllable and the onset of the following
syllable, such as the [r] in the word \zero" in some pronunciations. Although we discuss
syllable structures by their vocalic and consonantal constituents, this is not an excuse to
consider a syllable simply as a sequence of phones, as has been warned by Greenberg with
an analogy that the syllable can be likened to a linguistic \wolf" in phonetic clothing [51].
As he remarks, \what distinguishes the syllable from this phonetic exterior is its structural
integrity, grounded in both the production and perception of speech and wedded to the
higher tiers of linguistic organization."

Because of the possibility of having consonant clusters, syllable structure in English
can be very complex. For example, the monosyllabic word \strengths," in its canonical
pronunciation, may be of the form CCCVCCC. However, such a complex syllable structure
is relatively rare in natural speech. It was found that the \simple" (without consonant
cluster) syllable structures { CV, CVC, VC and V { together account for over 75% of the
lexicon and over 83% of the syllable tokens in the Switchboard corpus [49][51]. A similar
statistic can be observed from the Switchboard material used in the phonetic evaluation
(cf. Chapter 2), as shown in Figure 2.53. Interestingly, this preference for simple syllabic
structures put spontaneous spoken English on par with languages that are traditionally
known to have more homogeneous syllable structures, such as Japanese [1] and Mandarin
Chinese. For example, standard Mandarin Chinese does not allow any consonant in the
coda position except nasals, and the majority of Mandarin Chinese syllables contain no
more than one consonant in the onset position [81].

1In tonal languages such as Chinese, however, the tone is also an important part of a syllable.
2When a nucleus is not vocalic, it is often a syllabic consonant such as in the second syllable of the word

\button" in certain pronunciations (e.g. [b ah q en] as often heard in New York City dialect).
3Note that many polysyllabic words, such as those of the form CVCVC, also contain syllables with no

consonant cluster.
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4.2 The Stability and Importance of the Syllable in Speech

Perception

Syllable-based modeling of speech has been widely used in ASR systems for
languages that are considered more explicitly syllabic (e.g Mandarin Chinese [81] and
Japanese [97]). In recent years, there have also been several studies of incorporating
syllable-level information in English-language ASR systems, which to date, are still domi-
nated by phone-based (including context-dependent phones such as tri- and quinta-phone)
approaches [107]. For example, Wu describes building ASR systems incorporating informa-
tion from syllable-length time scales in her dissertation [144]; Ganapathiraju et al. have built
a syllable-based and syllable/phone hybrid ASR system [40] for the Switchboard corpus [42];
and Jones et al. report a syllable-based ASR system for a British English corpus [67].

4.2.1 Stability of Syllables in Speech Corpora

A commonly cited reason for adopting a syllable-based approach is the greater
stability of syllables relative to phones [51]. A study by Ganapathiraju et al. [40] showed
that the syllable deletion rate (compared to the canonical pronunciation) on the manually
transcribed portion of the Switchboard corpus [42][49] was below 1%4, while the phone-
deletion rate for the same material was ca. 12%. It should be noted that the transcribers
were carefully trained not to insert into transcriptions anything that was not truly present
in the speech signal [49]. On the Numbers95 corpus [12], which presumably is more canon-
ically pronounced than the Switchboard material, on average, due to the nature of the
material, the syllable-deletion rate was below 0.6% and the phone-deletion rate was ca. 4%
(computed on approximately 2.5 hours material). Both these statistics suggest that there is
approximately an order of magnitude di�erence between syllable- and phone-deletion rates.
This stability of the syllable is also manifested in automatic systems for AF extraction (cf.
Chapter 3), particularly for manner-of-articulation classi�cation, where vocalic segments
(usually taking the position of the non-optional syllable nuclei) enjoy the lowest error rate
among various phonetic segments.

4.2.2 Acoustic-based Syllable Detection and Segmentation

The relative stability of the syllable is also supported by evidence that it is pos-
sible to achieve reasonable performance of syllable detection and segmentation from the
acoustic signal alone. For example, Shire [118] developed a perceptually motivated method
of estimating syllable onsets and achieved a 94% onset detection rate (with a �ve-frame
tolerance) with a false positive rate of 15% (i.e., onset detected where there was none).
The onset detection method was adopted by Wu in her work on integrating syllabic onsets
into ASR system and achieved a ca. 10% (relative) word-error reduction on the Numbers95
corpus[145][144].

4The syllable-deletion rate for the subset of the Switchboard corpus that was used in the Year-2000
phonetic evaluation (cf. Chapter 2) was 1.05%.
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In our previous work [117], Shastri, Greenberg and I have developed a temporal-

ow-model (TFM) [137] (also cf. Section 3.2.1) neural-network-based syllable detection
and segmentation system using the perceptually inspired Modulation-�ltered Spectrogram
(ModSpec) pre-processing [60][75][74] (cf. Section 4.2.3 for a discussion of the relationship
between modulation spectrum and syllable duration, which is a signi�cant aspect that the
ModSpec is modeling). Two types of TFM networks were used: the global TFM network was
similar to that described in Section 3.2.1 for AF classi�cation; the tonotopically organized
TFM network provided a spectrally di�erentiated receptive �eld for di�erent hidden nodes.
The training targets for the networks were Gaussian functions approximating the syllable-
peak trajectory over time. The trained networks were able to produce outputs incorporating
syllabic information. Syllable-onset detection (on the Numbers95 corpus) derived from
network outputs using a two-level thresholding algorithm achieved an 88.5% detection rate
(with a �ve-frame tolerance), with only 4.4% false positive rate 5.

In his dissertation work on segmentation and recognition of continuous speech,
Prasad [106] developed a syllable-segmentation algorithm based on a minimum-phase,
group-delay function of short-term energy. The algorithm was demonstrated to perform
well on corpora of both American English and on a number of Indian languages (Tamil
and Telugu). The evidence above suggests that there are signi�cant acoustic correlates of
the syllable in the speech signal, which is the likely reason that acoustic-based measures of
speaking rate (e.g., MRATE) [91][92] exhibit some correlation with the linguistic measure
(syllable per second).

4.2.3 Signi�cance of Syllable Duration

Research focusing on acoustic correlates of speech intelligibility has found that
signi�cant attenuation of the key components of the modulation spectrum results in seri-
ous degradation of speech intelligibility. Drullman et al. have found by temporally �ltering
the spectral envelope of speech [34][33]. that intelligibility of spoken Dutch material does
not require modulation energy above 16 Hz. In their experiments using Japanese syllables
with �ltered time trajectories of the spectral envelope, Arai et al. showed that the modula-
tion frequency region between 1 and 24 Hz is most important for speech intelligibility [3].
In other studies, Arai and Greenberg have found that speech intelligibility (of American
English TIMIT sentences) is correlated with the magnitude of the low-frequency (3-6 Hz)
modulation spectrum from psychoacoustic experiments using a technique of cross-channel
spectral de-synchronization [2][54].

This converging evidence raises interesting questions as to whether there is any
linguistic signi�cance to the particular distribution of modulation spectral magnitude that is
important for speech intelligibility. A potentially revealing comparison between the modu-
lation spectrum and the frequency histogram of syllabic durations for spontaneous English
discourse was presented in an analysis by Greenberg et al.[49], on manually transcribed
Switchboard corpus material [42][49], and is reprinted in Figure 4.1. The modes of both the
modulation frequency and (the reciprocal of) the syllable duration are at ca. 4-5 Hz and
both have signi�cant magnitude between 2 and 8 Hz. Except for the longer tail exhibited by

5The system was optimized for minimizing the combined false positive and false negative rate.
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Figure 4.1: Modulation spectrum and frequency histogram of syllabic durations for spon-
taneous English discourse (adapted from [49]). Top panel: histogram pertaining to 2925
syllabic segments from the Switchboard corpus. Bottom panel: modulation spectrum for
two minutes of connected, spoken discourse from a single speaker.

the modulation spectrum, the two distributions are remarkably similar, suggesting that it
may be encoding information at the syllable level, and thus also suggesting the importance
of syllable-length units in speech intelligibility. A similar comparison was performed on
spontaneous Japanese material and the conclusion is essentially the same as for the English
material [1].

4.2.4 Syllables and Words

An English word can potentially contain many syllables, partially because of the
various derivational and in
ectional a�xes that can be attached (for example, consider the
word uninformatively) In the Switchboard lexicon only ca. 22% of the lexicon is mono-
syllabic, almost 40% of the lexicon contains two syllables and ca. 24% contains three
syllables [49][51]. An implication of this potential complexity of the English lexicon is a
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seemingly non-transparent relationship between syllables and words. However, an analy-
sis of corpus tokens reveals a rather di�erent trend; about 80% of the word tokens in the
Switchboard corpus are monosyllabic in form, while most of the remaining word tokens
have but two syllables [51]. The distribution of syllable structure in the phonetic evaluation
material described in Chapter 2 shows similar patterns (cf. Figure 2.5). This preference of
brevity in syllable structure suggests that syllable and word have a closer relationship in
spontaneous spoken English than may at �rst seem and that the correct identi�cation of
syllables would take a system a long way toward good performance in word recognition.

4.3 Pronunciation Variation, Prosody and the Syllable

Through linguistic dissection of the Switchboard LVCSR systems, it was shown
that current generation ASR systems generally do not adequately model pronunciation vari-
ation found in the spontaneous speech corpus (cf. Section 2.2.6). The number of pronuncia-
tion variants per word in the Switchboard corpus according to the manual transcription [49]
can often be an order of magnitude greater than the number of di�erent pronunciations con-
tained in the lexical models of the ASR systems. As we have shown in Figure 2.12, systems
incorporating more sophisticated pronunciation models tend to perform better with respect
to word recognition. One implication of this �nding is to increase the number of pronuncia-
tion variants per word in an ASR system's lexicon in order to improve the word recognition
performance. However, it has been noted that simply adding more variants to the lexical
models could increase confusibility among words and therefore result in degraded recogni-
tion performance [114][123]. The source of this problem, as concluded by McAllaster et al.
using fabricated data from the Switchboard corpus, is likely due to the mismatch between
the pronunciation models and data encountered in the recognition task [87]. Therefore, to
achieve a substantial reduction in word error, the acoustic models must be very accurate
and well-tuned to the representations of the recognition lexicon. To accomplish this, it is
essential to characterize pronunciation variation accurately and e�ciently.

However, directly examining pronunciation variation at the phonetic-segment level
often leaves a rather arbitrary and complex picture. Consider the example illustrated in
Table 4.1 with various phonetic realizations of the word \that" from the Year-2001 Switch-
board material (cf. Section 2.1.1). Among the 226 instances of this word there are a total
of 63 di�erent pronunciations6. Taking [dh ae t] as the canonical pronunciation, there are a
total of 176 phonetic-segment substitutions (26% of the 678 canonical phonetic segments),
101 deletions (15%) and 3 insertions (1%). These statistics provide little insight in and of
themselves into the pattern of pronunciation variations for the word \that" other than the
overall proportion of substitutions, deletions and insertions of phonetic segments.

Now, let us partition the data according the position of each segment within the
syllable (cf. Table 4.1 and Table 4.2). Some potentially interesting patterns of pronunciation
variation emerge:

6According to [49], there are a total of 117 di�erent pronunciations of the word \that" among 328 instances
in the original STP material (ca. four hours). Most of the pronunciations are transcribed accurately although
a very small portion of the pronunciation variations may be due to temporal misalignment between word
and phone segments.
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Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

dh ae t 53 - - - th aw t 1 S S -

dh ae 31 - - D s ax t 1 S S -

dh ae dx 13 - - S n eh 1 S S D

dh eh t 10 - S - n ax 1 S S D

dh ax 9 - S D n aw 1 S S D

dh aw 9 - S D n ae dx 1 S - S

n ae t 8 S - - n aa 1 S S D

n ae 7 S - D l ih 1 S S D

dh ax t 7 - S - l ae dx 1 S - S

dh eh 5 - S D k ih dh 1 S S S

dh ah t 5 - S - iy 1 D S D

dh ih t 4 - S - hh ih t 1 S S -

th ae t 3 S - - eh t 1 D S -

d ae t 3 S - - eh dx 1 D S S

dh ax dx 3 - S S d ax p 1 S S S

ae 3 D - D dh iy 1 - S D

t aw 2 S S D dh ih d 1 - S S

n ah t 2 S S - dh eh dx 1 - S S

d ae 2 S - D dh ah d 1 - S S

dh ih 2 - S D dh ae d 1 - - S

dh ah dx 2 - S S dh ae ch 1 - - S

ah dx 2 D S S dh ae b 1 - - S

z d ae 1 S,I - D dh aa t 1 - S -

z ah p 1 S S S ax dx 1 D S S

t dh ae 1 I,- - D ax dh 1 D S S

t b ae t 1 S,I - - ax 1 D S D

t ax 1 S S D aw 1 D S D

t ae 1 S - D ae w 1 D - S

th eh t 1 S S - ae t 1 D - -

th eh 1 S S D nx ax 1 S S D

th ax t 1 S S - nx ae 1 S - D

th ax 1 S S D

Table 4.1: Pronunciation variants of the word \that" found in the Switchboard corpus
material used in the Year-2001 diagnostic phonetic evaluation (cf. Chapter 2). For each
pronunciation the number of occurrences (#) is given, as well as the pattern of deviation
from the canonical pronunciation ([dh ae t]) with respect to syllable onset, nucleus and
coda. \S" is \substitution," \D" is \deletion," \I" is \insertion" and \-" is \no deviation."
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Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 70.7 21.8 6.1 1.3 229

Nucleus 59.7 40.3 0 0 226

Coda 46.0 15.5 38.5 0 226

Overall 58.9 25.8 14.8 0.4 681

Table 4.2: Summary of the phonetic deviation (from canonical), in percentage of total
segments (last column) at each syllable position (and overall), for the word \that" (cf.
Table 4.1) from the Year-2001 diagnostic phonetic evaluation material.

� the onsets exhibit the smallest deviation from the canonical, with far more substitu-
tions than deletions and with only three instances of insertions;

� the nuclei have many more deviations from canonical than the onsets, and all of them
are substitutions;

� the codas exhibit the largest number of deviations from the canonical; and there are
far more deletions than substitutions.

Although computed for a single monosyllabic word, these patterns roughly agree with the
statistics computed on all syllables from the Switchboard corpus [51], where 84.7% on-
sets, 65.3% nuclei and 63.4% codas are canonically pronounced, and are also in agreement
with the principles of pronunciation variation for spontaneous spoken English described by
Greenberg (ibid, section 7).

However, of course, the patterns summarized above are not su�cient to explain
the complex phenomenon of pronunciation variation in natural speech. As enumerated
by Wester [141], the sources of pronunciation variation can be attributed to either inter-
speaker or intra-speaker variability. The inter-speaker variability may be due to factors such
as vocal tract di�erences, age, gender, dialect, etc.; the intra-speaker variability may depend
on speaking style and speaking rate, stress accent and intonation patterns, emotional state
of the speaker, environmental conditions, idiolectal variation, etc. It is observed that many
of the factors a�ecting pronunciation come from linguistic levels higher than the phonetic
segment. This suggests that it would be very helpful to model pronunciation variation
at several di�erent linguistic levels, especially the suprasegmental tiers. In the following
chapter, it will be shown that incorporating stress-accent patterns yield further insight into
the phenomenon of pronunciation variation in spontaneous speech.

4.4 Articulatory-acoustic Features and the Syllable

As described in the previous chapter, articulatory-acoustic features (AFs) o�er
a number of potential advantages for models of spontaneous speech. One of the most
important is the systematic relationship between AFs and syllable position. This echoes
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what was observed from the linguistic dissection of the Switchboard LVCSR systems (cf.
Chapter 2), which showed that ASR systems' tolerance of AF errors varies as a function of
syllable position, syllable structure and the particular AF dimension of interest.

Di�erent AFs are realized di�erently across the syllable. Manner of articulation
features are mostly coterminous with the traditional phonetic segment, such that it is very
rare to have two consecutive segments associated with the same manner class. For exam-
ple, on the Switchboard corpus, at least 93% of the segments have a manner of articulation
di�erent from that of the previous segment when both intra- and inter-syllabic segmental
boundaries are considered; the rate of manner-of-articulation change is 99.6% when only
intra-syllabic segmental boundaries are considered. This suggests that segmentation of
the acoustic signal based solely on manner-of-articulation would be very close to phonetic
segmentation, particularly within the syllable. In contrast, other AF dimensions, such as
voicing and place-of-articulation, change much more slowly, evolving at a rate compara-
ble to that of the syllable. Voicing changes ca. 31% of time across segmental boundaries
when both intra- and inter-syllabic segmental boundaries are considered; the rate of voicing
change is ca. 30% when only intra-syllabic segmental boundaries are considered. Unlike
manner-of-articulation, there is relatively little di�erence between the rates of voicing change
across intra-syllabic and inter-syllabic segmental boundaries. When partitioned into coarse
anterior, central and posterior places, place-of-articulation evolves slightly faster than voic-
ing. The rate of place-of-articulation change is ca. 55% for both intra- and inter-syllabic
segmental boundaries, still much slower than manner-of-articulation changes.

As described previously, syllable nuclei are almost always associated with a vo-
calic manner of articulation, while onsets and codas are generally consonantal. Place of
articulation also exhibits di�erent distributional patterns across the syllable. For example,
Figure 4.2 illustrates the distribution of place features (partitioned into anterior, central and
posterior, plus the \place chameleons" such as [l] and [r] that adapt their place according to
the vowels in context) with respect to position within the syllable for both canonical and re-
alized (transcribed) segments, from the Switchboard corpus [42][49]7. In both the canonical
and transcribed segments, the syllable onset segments have a relatively even place distribu-
tion with a slight preference of anterior place over central and posterior places. However,
the coda segments behave very di�erently, with a decided preference of central place over
anterior and posterior places. The general preference of central place (coronal) has been
noted previously by several researchers for many di�erent languages [103][70][69]. Inter-
estingly, as shown in Figure 4.2, a signi�cant portion of the central coda segments, (as
well as the place chameleons) are deleted in the transcribed data relative to the canonical,
while the numbers of anterior and posterior segments are relatively stable. A hypothesis for
explaining the tendency of central-place coda deletion was o�ered by Greenberg et al. [56]
linking the identity of the preceding vocalic nucleus and the coda consonant by a possible
sharing of acoustic cues in the mid-frequency (ca. 1500-2200 Hz) region of the spectrum.

The intimate relationship between AFs and syllable structure is further evidenced
by a large gain in AF classi�cation performance when syllable position information was
incorporated, as described in the following experiments. Recall the experiments performed
on the Number95 corpus [12] to evaluate the robustness of AF classi�cation for speech in

7The data were originally computed by Hannah Carvey at ICSI.
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Figure 4.2: Distribution of place features (partitioned into anterior, central and posterior,
plus the \place chameleons" such as [l] and [r] that adapt their place according to the
vowels in context) as a function of the position within the syllable for both the canonical
and realized (transcribed) segments, from the Switchboard corpus [42][49]. Note the large
proportion of deleted central coda segments.
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noisy background [15] in the previous chapter (cf. Section 3.5). From those experiments (cf.
Table 3.11), it was found that AFs are relatively more robust with respect to additive noise
compared to phonetic segment and that the mixed-training regime under a variety of noise
backgrounds and over a large dynamic range of SNRs signi�cantly improved AF and phone
classi�cation performance on both \clean" and noisy speech (in both unseen and previously
seen noises). In the current experiments, another input feature pertaining to the position
of a frame within the syllable was also fed to the neural-network-based AF classi�ers, along
with the log-compressed critical-band energy front-end features [16].

This new feature of syllable position can be derived from two separate sources.
In the �rst experiment it was derived from the manual phonetic transcripts that are au-
tomatically syllabi�ed using Dan Ellis' (then at ICSI) adaptation of Bill Fisher's (NIST)
syllabi�cation program TSYLB2 [31]. For each frame a number linearly spaced between
0 and 1 indicates relative position of the current frame within the syllable, with 0 being
the initial frame and 1� 1=N being the �nal frame where N is the total number of frames
within the syllable. These fabricated data establish an upper-bound on the accuracy of the
syllable position estimate and can be used to infer the potential contribution of syllable
position in AF classi�cation. In the second experiment the syllable position feature was
estimated by an MLP neural network from the acoustic signal with Modulation-�ltered
Spectrogram [74] pre-processing (also cf. Section 4.2.2). The training targets for the MLPs
were the transcript-derived syllable position features from the �rst experiment. In both
experiments, the MLP networks for AF classi�cations were trained and tested with the new
syllable position feature included in the input.

The results of the two experiments are shown in Tables 4.3-4.5 for each of the �ve
AF dimensions, as well as for phonetic-segment classi�cation using the results of the AF
classi�cation. Both experiments used the mixed-training scheme, same as that described in
Section 3.5. \NoSyl" refers to the baseline condition where no syllable position feature is
used (i.e. same as the AFMix condition in Section 3.5); \HandSyl" refers to the results of the
�rst experiment using transcript-derived syllable position feature; and \SylMSG" refers to
the results of the second experiment using the MLP/ModSpec estimate of syllable position
features. The test condition numbers refer to the noise conditions listed in Table 3.11.

For the �rst experiment (\HandSyl" in Tables 4.3-4.5) a large improvement in
classi�cation performance from the baseline condition (\NoSyl") is evident for every noise
conditions (either seen or unseen during training) across the various AF dimensions, as well
as for the phonetic-segment (via AF classi�cation). The error rate reduction is often between
20 and 30% over the baseline, which as described in the previous chapter (cf. Section 3.5),
already enjoys a substantial improvement from the \clean"-training scheme. For the second
experiment (\SylMSG" in Tables 4.3-4.5) where the syllable position feature is automatically
computed from the acoustic signal, there are still signi�cant gains in performance for most
of the noise conditions across the various AF dimensions. However, the phonetic-segment
classi�cation (using automatic AF classi�cation results) yields mixed results; \SylMSG"
performance is better than that of the \NoSyl" for some noise conditions but not for others.
It is not entirely clear what the cause of this discrepancy is. A possible explanation is that
the evaluation of classi�cation accuracy at the AF level considers only the feature with
the maximum output as the winner along each AF dimension; however, the inputs to the
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Test Manner Place
Noise NoSyl SylMSG HandSyl NoSyl SylMSG HandSyl

1 81.83 82.44 87.95 76.42 76.50 82.92

2 66.21 68.07 74.47 61.89 62.36 70.05

3 76.28 77.60 83.38 71.70 72.00 78.85

4 81.16 81.75 87.64 76.27 75.93 82.73

5 82.26 82.72 88.40 76.95 76.72 83.43

6 65.24 68.38 73.59 60.31 61.61 68.36

7 74.02 76.29 81.61 69.81 70.79 77.20

8 79.91 80.72 86.36 75.02 75.09 81.84

9 81.99 82.33 88.19 76.75 76.58 83.27

mean (1-9) 76.54 77.81 83.51 71.68 71.95 78.74

10* 65.62 67.78 73.86 61.15 61.72 69.38

11* 75.54 77.22 82.76 71.16 71.66 78.41

12* 80.95 81.56 87.31 76.04 75.73 82.57

13* 82.26 82.68 88.42 76.96 76.73 83.46

14* 51.65 56.93 61.56 46.64 52.29 57.20

15* 70.37 73.37 78.76 64.89 68.47 74.03

16* 63.30 66.46 72.02 57.63 60.11 67.01

17* 61.15 64.61 70.61 57.03 58.93 66.55

18* 62.67 65.34 71.51 57.22 59.24 66.34

19* 59.14 64.42 68.52 52.80 57.78 62.37

20* 59.06 64.87 70.03 53.87 60.30 65.98

21* 64.28 65.06 76.24 58.58 63.24 71.58

22* 67.55 69.11 77.16 62.58 65.19 72.83

23* 66.91 68.74 74.15 61.69 64.04 69.18

24* 72.60 74.20 80.33 66.68 68.81 74.58

25* 57.91 62.21 67.62 54.02 57.27 63.32

26* 72.99 75.82 81.21 68.20 70.62 76.74

27* 68.27 69.16 76.84 63.21 64.75 72.31

28* 78.36 78.69 85.04 71.26 72.93 79.34

29* 79.73 81.18 86.52 73.21 74.69 80.87

30* 64.00 66.69 72.74 58.05 59.52 66.58

mean (10-30) 67.82 70.29 76.34 62.52 64.95 71.46

Table 4.3: Comparison of frame-level accuracy (percent) of manner and place classi�cation
for mixed-training system without syllable position (NoSyl), with ModSpec-based automatic
syllable position estimates (SylMSG), and with transcription-derived syllable position fea-
ture (HandSyl). The test noise index refers to the conditions listed in Table 3.11. Test noise
conditions 1-9 are included in the training data and conditions 10-30 are included (marked
with an asterisk).
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Test Front-back Rounding
Noise NoSyl SylMSG HandSyl NoSyl SylMSG HandSyl

1 82.81 82.87 88.37 83.31 83.80 89.35

2 68.61 72.61 78.57 69.38 73.53 79.87

3 78.38 79.87 85.51 79.12 80.89 86.61

4 82.35 82.73 88.43 83.21 83.72 89.58

5 83.29 83.30 88.83 83.92 84.27 89.92

6 66.58 70.59 76.49 67.48 71.77 77.83

7 76.16 78.59 84.17 76.88 79.55 85.18

8 81.24 82.16 87.66 82.08 83.01 88.81

9 82.98 83.35 88.79 83.89 84.13 89.87

mean (1-9) 78.04 79.56 85.20 78.81 80.52 86.34

10* 67.80 71.72 77.95 68.71 72.69 79.26

11* 77.76 79.62 85.24 78.44 80.57 86.15

12* 82.16 82.64 88.31 82.97 83.56 89.36

13* 83.24 83.32 88.87 84.01 84.29 89.91

14* 57.33 64.08 66.68 58.40 64.72 68.51

15* 71.85 76.13 80.21 72.95 76.54 82.42

16* 64.62 69.75 75.48 65.98 70.90 76.99

17* 65.00 69.69 75.76 65.61 70.48 76.87

18* 65.02 69.00 75.17 66.28 70.03 76.87

19* 59.62 66.34 70.25 61.99 67.53 72.00

20* 63.95 71.11 75.07 64.86 71.38 76.96

21* 66.34 73.29 77.41 68.25 72.61 80.00

22* 69.39 74.39 79.98 71.04 74.29 81.91

23* 70.71 73.53 77.42 71.69 74.53 78.05

24* 75.03 76.92 81.53 75.51 77.96 81.99

25* 62.84 67.45 72.64 63.64 68.36 73.86

26* 75.23 78.12 83.46 75.97 79.03 84.88

27* 69.92 73.64 79.80 71.79 74.17 81.49

28* 78.14 80.49 85.01 78.93 81.17 86.28

29* 80.48 81.63 86.89 81.29 82.67 87.59

30* 64.01 67.41 74.49 65.44 68.90 76.30

mean (10-30) 70.02 73.82 78.93 71.13 74.59 80.36

Table 4.4: Comparison of frame-level accuracy (percent) of front-back and lip-rounding clas-
si�cation for mixed-training system without syllable position (NoSyl), with ModSpec-based
automatic syllable position estimates (SylMSG), and with transcription-derived syllable po-
sition feature (HandSyl). The test noise index refers to the conditions listed in Table 3.11.
Test noise conditions 1-9 are included in the training data and conditions 10-30 are included
(marked with an asterisk).
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Test Voicing Phone (via AF)
Noise NoSyl SylMSG HandSyl NoSyl SylMSG HandSyl

1 89.48 89.89 93.98 79.24 78.51 85.60

2 77.07 80.15 84.74 64.14 62.08 73.47

3 85.03 86.77 90.81 74.59 73.64 82.66

4 88.79 89.53 93.67 78.95 77.76 85.71

5 89.72 90.11 94.24 79.67 78.69 86.09

6 77.47 81.92 85.26 61.22 60.32 70.51

7 84.19 86.66 90.30 72.36 72.19 80.68

8 88.14 89.05 93.12 77.81 77.11 84.82

9 89.47 89.87 93.98 79.49 78.65 85.97

mean (1-9) 85.48 87.11 91.12 74.16 73.22 81.72

10* 76.74 80.05 84.59 63.22 61.18 72.49

11* 84.67 86.67 90.56 73.95 73.22 82.17

12* 88.64 89.41 93.55 78.71 77.62 85.55

13* 89.71 90.05 94.21 79.70 78.72 86.12

14* 63.47 69.71 72.49 45.21 48.53 55.69

15* 77.45 82.70 86.27 68.32 69.31 76.69

16* 74.74 79.22 83.37 59.24 58.91 68.80

17* 72.14 76.17 81.44 58.48 56.71 68.45

18* 74.38 78.36 82.87 58.81 58.48 67.81

19* 72.88 78.77 80.95 51.09 54.21 61.27

20* 69.43 75.82 79.49 58.02 59.27 67.85

21* 69.68 76.25 81.66 62.69 60.51 73.51

22* 76.48 79.58 84.75 66.13 65.19 75.54

23* 75.23 78.88 81.27 63.44 62.88 71.36

24* 79.99 82.32 86.21 70.62 69.22 78.03

25* 69.40 74.64 78.24 52.47 54.43 63.46

26* 81.49 85.07 88.78 70.58 71.96 79.72

27* 77.49 79.95 85.05 65.73 64.91 74.97

28* 84.26 87.19 91.80 74.83 74.22 82.52

29* 87.70 89.02 93.56 76.85 76.29 84.10

30* 77.12 81.10 85.02 57.99 57.46 68.12

mean (10-30) 77.29 81.00 85.05 64.58 64.44 73.53

Table 4.5: Comparison of frame-level accuracy (percent) of voicing and phonetic-segment
(using the results of AF classi�cation) classi�cation for mixed-training system without sylla-
ble position (NoSyl), with ModSpec-based automatic syllable position estimates (SylMSG),
and with transcription-derived syllable position feature (HandSyl). The test noise index
refers to the conditions listed in Table 3.11. Test noise conditions 1-9 are included in the
training data and conditions 10-30 are included (marked with an asterisk).
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subsequent phone classi�cation networks are in the form of raw MLP outputs from the
AF classi�cation networks, resulting in a potential mismatch. Overall, these results are
very encouraging and suggest that there is a signi�cant relation between AFs and syllable
position which could be exploited to improve the performance of automatic systems for
speech processing.

4.5 Summary

This chapter has focused on the central role played by the syllable in spoken
language and provided evidence in support of the syllable being the binding unit of speech,
around which information at various linguistic tiers is organized.

� The stability and importance of the syllable in speech was emphasized from several
perspectives: deletion statistics frommanually annotated spontaneous speech corpora;
an acoustic-based syllable detection and segmentation experiment using TFM neural
networks and Modulation-�ltered Spectrogram features; the signi�cance of syllable
duration in speech perception; the close relationship between words and syllables in
spoken English.

� Through a concrete example of word pronunciation instances extracted from sponta-
neous speech material syllable information was shown to be very helpful in describing
the observed pronunciation variation patterns. In particular, it was shown that nuclei
and codas of syllables are more likely to deviate from canonical forms than onsets.
This example will be described in further detail in the next chapter with respect to
stress-accent information.

� The intimate relationship between articulatory-acoustic features and the syllable was
reinforced by a signi�cant gain in AF and phonetic classi�cation accuracy when
syllable-position information (either derived from manual syllable segmentation or
automatically estimated from the acoustic signal) was incorporated for speech in both
clean and noisy backgrounds.

In the following chapter it will be shown through both statistics on spontaneous
speech and concrete examples extended from the current chapter that stress accent, in con-
junction with syllable position, helps characterize pronunciation variation patterns of spon-
taneous speech. It will further be shown that a parsimonious description of pronunciation
variation phenomena may be obtained by considering the realization of articulatory-acoustic
features, within the context of syllable position and stress accent.
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Chapter 5

Stress Accent in Spontaneous

American English

Imagine that you hear a piece of speech uttered according to the canonical dic-
tionary pronunciation for each phoneme associated with a word but without any apparent
prosodic prominence. Chances are that you would have di�culty following what is said
even though it would have been perfectly intelligible if it were spoken naturally. In fact,
many early speech synthesis systems without prosodic modeling could produce such speech;
and a few people with a rare skill of uttering such speech could have been employed by
advertising agencies to provide the \tiny prints" following a TV or radio commercial that
is not intended to be heard distinctively. The problem is not that you have trouble making
out the sound of each phoneme but rather it is the lack of informational cues to parse the
utterance into a succession of shorter phrases and to specify the linguistic relationships
among them.

A major prosodic cue of spoken English is stress accent. The next section de�nes
what is meant by stress accent and provides a brief survey of previous work regarding the
acoustic correlates of stress-accent patterns, as well as our interpretation of the factors af-
fecting stress accent based on spontaneous speech material. The following section discusses
the pattern of interactions among stress accent, syllable position and articulatory-acoustic
features (AFs) in relation to pronunciation variation. The last section describes the devel-
opment of an automatic stress-accent labeling system for spontaneous spoken English and
experimental evidence to support the perceptual basis of stress accent proposed in the �rst
section.

5.1 Stress Accent in Spontaneous American English

English is a stress-accent language [5] in that it uses many di�erent acoustic pa-
rameters to engender prosodic prominence essential for lexical, syntactic and semantic dis-
ambiguation [83]. This is in contrast to non-stress-accent (e.g. pitch-accent) languages, such
as Japanese, that rely far more on pitch-related cue for providing accentual information [5].
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It is important to note that the term \stress accent" is di�erent from lexical stress
(or word stress) found in the pronunciation component of a dictionary, but rather re
ects
the perceived prominence (stress-accent level) of the phonetic realization of a syllable in
a speech utterance. Although sometimes the perceived stress accent may coincide with
lexical stress, there are many other potential factors a�ecting perceived stress accent, such
as emphasis and turn-holding (in conversation), etc.

5.1.1 The Perceptual Basis of Stress Accent

The perceived level of stress accent is a subjective matter in that it is quite possible
that di�erent listeners would give di�erent stress-accent judgments for the same phonetic
realization of syllables in an utterance. However, this is not to say that there is no consistent
set of acoustic cues associated with stress-accent level. In fact, listeners agree most of
the time on stress-accent markings for spontaneous (conversational) speech [121][57][63].
Traditionally, it was generally accepted that variation in fundamental frequency (f0), which
closely relates to pitch change1, is the primary acoustic cue for spoken English [20][41].
However, studies based on experimental data have called the traditional view into question.
For example, Beckman showed through psychoacoustic study of laboratory speech that
duration and amplitude play a more important role in the perception of stress accent than
previously thought [5]. More recent studies using statistical methods have shown that
the acoustic basis of stress accent in spontaneous American English (using OGI Stories
corpus [11]) is largely derived from amplitude and duration (as well as their product), with
f0 variation playing a largely subsidiary role [121][122], and a similar pattern has also been
found in spontaneous spoken Dutch discourse [130]. Such �ndings are also supported by
the experimental results of automatic stress-accent labeling on the Switchboard corpus,
as will be described in the �nal section of this chapter. But a more interesting �nding
coming out of the statistical analysis of a subset of the Switchboard corpus with manual
stress-accent labels, as well as from the automatic stress-accent labeling experiments, is an
intimate relationship between vocalic identity and stress-accent level, at least in spontaneous
American English dialogs [63][58].

5.1.2 Vocalic Identity and Stress Accent

Traditional linguistic theories hold that stress accent is a linguistic parameter func-
tionally orthogonal to the phonetic tier [20], in that the realization of phonetic constituents
is largely independent of the stress-accent level associated with the syllable. Thus, a non-
orthogonal relationship between vocalic identity and stress-accent level not only challenges
this traditional belief but also opens the door to more sophisticated interactions between
stress accent and phonetic realization, as will be described in the next section.

Statistical analysis of the relationship between vocalic identity and stress ac-
cent [63][58] was performed on a 45-minute subset of the Switchboard corpus [42][49] con-
sisting of 9,992 words, 13,446 syllables and 33,370 phonetic segments, comprising 674 utter-

1It is important not to confuse the concepts between the physical measure of f0 and the subjective
sensation of pitch [78].
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ances spoken by 581 di�erent speakers. This material was manually labeled by linguistically
trained individuals at the word-, syllable- and phonetic-segment levels. Two individuals
(distinct from those involved with the phonetic labeling) marked the material with respect
to stress accent [63][58]. Three levels of stress accent were distinguished - (1) fully accented
[level 1], (2) completely unaccented [level 0] and (3) an intermediate level [0.5] of accent.
The transcribers were instructed to label each syllabic nucleus on the basis of its percep-
tually based stress accent rather than using knowledge of a word's canonical stress-accent
pattern derived from a dictionary. The transcribers met on a regular basis with the project
supervisor to insure that the appropriate criteria were used for labeling.

All of the material was labeled by both transcribers and the stress-accent markings
averaged. In the vast majority of instances the transcribers agreed precisely as to the stress-
accent level associated with each nucleus { inter-labeler agreement was 85% for unaccented
nuclei, 78% for fully accented nuclei (and 95% for any level of accent, where both transcribers
ascribed some measure of stress accent to the nucleus) [63][58]. In those instances where
the transcribers were not in complete accord, the di�erence in their labeling was usually a
half- (rather than a whole-) level step of accent. Moreover, the disagreement was typically
associated with circumstances where there was some genuine ambiguity in stress-accent
level (as ascertained by an independent, third observer). In other words, it was rare for the
transcribers to disagree as to the presence (or absence) of accent.

The systematic relationship between stress accent and vocalic identity is most
evident in the distinct vowel spaces associated with the vocalic nuclei of fully accented
and unaccented syllables [55][56]. A vowel space is a convenient conceptualization of the
distribution of vowel qualities in a two-dimensional articulatory feature space [78]. The �rst
dimension relates to the front-backness of tongue position and is closely associated with the
di�erence between the second and �rst formant frequencies (f2� f1); the second dimension
relates to the height of the tongue body and is more closely correlated with the �rst formant
frequency (f1). A typical \vowel triangle" for American English is shown in Figure 5.1.

Figure 5.2 compares the vowel spaces associated with vocalic nuclei of fully ac-
cented syllables (upper panel) and that of completely unaccented syllables (lower panel).
The data pertain to realized (transcribed) vocalic segments and a similar comparison for
canonical vocalic segments (realized as such) can be found in [55][56]. For fully accented
syllables (Figure 5.2, upper panel), the distribution of vocalic segments is relatively even
across the articulatory space, except for very small numbers of [ix], [ax] and [ux] that are
usually manifest in unaccented syllables, as well as [oy] which rarely occurs in the cor-
pus. A dramatically di�erent distribution of vowels is observed in the unaccented syllables
(Figure 5.2, lower panel) where an overwhelmingly large number of vowels occur in the
high-front ([ih],[iy],[ix]) or high-central ([ax]) portion of the vowel space, with most of the
remaining segments positioned in the mid-front ([eh]) and mid-central ([ah]) locations. The
number of diphthongs ([ay],[ey],[aw],[oy],[ow],[uw]) is signi�cantly smaller in the unaccented
syllables than in fully accented syllables (except for [iy]).

The analysis above suggests that the relationship between stress accent and vocalic
identity (particularly vowel height) is clearly non-arbitrary. In fact, some of the previously
discovered perceptual basis of stress accent is found to have a systematic relationship to
vocalic identity. For example, as shown in Figure 5.3, the duration of vocalic nuclei are
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Figure 5.1: A typical \vowel triangle" for American English. The dynamic trajectories of
the diphthongs ([iy], [uw], [ey], [ow], [oy], [ay], [ow]) are not shown for illustrative clarity.

consistently longer in fully accented syllables than in unaccented ones, and the di�erences
are especially large for diphthongs and tense monophthongs ([ae],[aa],[ao]) [58]. As will be
described in the �nal section of this chapter vocalic nucleus duration (as well as its ratio
to syllable duration), the normalized vocalic nucleus energy and vocalic identity (either in
terms of the transcribed label or spectro-temporal features derived from the acoustic signal)
are found to be the most informative cues in an automatic stress-accent labeling system.

5.2 Stress Accent and Pronunciation Variation

The previous section presented a systematic relationship between vocalic identity
and stress-accent level, suggesting that stress accent is far from an independent parameter
of the speech utterance, orthogonal to the phonetic composition of the syllable. In this
section the link between stress accent and the phonetic realization of speech is further
investigated. We will describe how pronunciation in spontaneous speech is a�ected by
stress-accent level (and vice versa) for di�erent components of the syllable, as well as how
pronunciation variation patterns are manifested across various articulatory-acoustic feature
(AF) dimensions. The impact of stress accent on ASR performance has been described
in Section 2.2.4 of the linguistic dissection of LVCSR systems, where a large variation
in word-error rate (particularly the word deletion rate) was observed across stress-accent
level. The interaction patterns of stress accent, syllable position and AFs are likely to help
in developing more parsimonious models of pronunciation variation and thus improve ASR
performance if incorporated appropriately.
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Figure 5.2: The distribution of realized (transcribed) vocalic segments associated with fully
accented (upper panel) and unaccented (lower panel) syllables, from a 45-minute subset of
the Switchboard corpus with manual stress-accent labels. Vowels in fully accented syllables
have a relatively even distribution (with a slight preference to the front and central regions);
vowels in unaccented syllables are highly concentrated in the high-front and high-central
regions.
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Figure 5.3: The relationship between segment duration and vocalic identity, partitioned into
heavily accented and unaccented syllables (from [58]). The duration of vocalic nuclei are
consistently longer in fully accented syllables than in unaccented ones, and the di�erences
are especially large for diphthongs and tense monophthongs ([ae],[aa],[ao]).

5.2.1 Pronunciations of \That" { Revisited

Recall the example of the 63 di�erent pronunciations of the word \that" presented
in the previous chapter (cf. Section 4.3, Table 4.1) from the Year-2001 phonetic evaluation
data. Partitioning the pronunciation deviations by position within the syllable (cf. Ta-
ble 4.2) yields further insight into the pronunciation variation patterns than a�orded by the
overall deviation statistics. In this section, let us further partition the data by the stress-
accent level associated with each instance of the word \that." Note that this exercise would
be much less meaningful if we use lexical stress rather than perceived stress accent, as there
is simply no di�erential markings of lexical stress for the di�erent instances of the word
\that" in a dictionary. Tables 5.1, 5.3 and 5.5 show the phonetic realizations (transcribed)
associated with the unaccented, lightly accented and fully accented instances of \that,"
respectively, as well as the type of deviation partitioned according to position within the
syllable. The corresponding summary information on pronunciation deviation is shown in
Tables 5.2, 5.4 and 5.6.

Di�erent patterns of deviations are observed across the stress-accent levels for each
of the syllable positions:

� in onset position, the deviation pattern is relatively stable across stress-accent levels
but with more deletions for unaccented syllables than instances with some degree of
stress accent;

� in nucleus position, the rate of deviation (all substitutions) is very high (66.3%) for
unaccented syllables, which is more than double the deviation rate of the lightly
accented ones (30.9%), and the fully accented instances exhibit virtually no deviations
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from canonical pronunciation;

� in coda position, unaccented syllables exhibit slightly more deviations (both substitu-
tion and deletion) than lightly accented syllables, while the deviation rate of the fully
accented syllables is much smaller than that of the less accented ones.

These patterns roughly agree with those that observed on the subset of the Switchboard
corpus with manual stress-accent labels (as described in Section 5.1.2) except that the
magnitude of the di�erences as a function of stress-accent level is greater in the latter (cf.
Figure 5.4, data from [55][56]). A likely reason for the less striking di�erences of deviation
patterns in the instances of \that" is the disproportionally larger numbers of unaccented and
lightly accented instances than that of the fully accented ones due to the special syntactic
and semantic role often assumed by this word. It should also be noted that the word \that"
is unusual with respect to the onset segment (i.e. [dh] in the canonical pronunciation),
which tends to have a greater number of deviations from the canonical pronunciation than
other onset segments. To get a perspective using a di�erent word, refer to Appendix A
for the sample pronunciations of the word \but" extracted from the same set of material.
Finally, the Year-2001 phonetic evaluation data, from which the instances of the word \that"
were extracted, di�er in certain respect from the subset of the Switchboard data that were
collected earlier.

From Figure 5.4 the deviation patterns of the unaccented syllables are signi�cantly
di�erent from that of the fully accented ones, while the lightly accented syllables usually as-
sume a pattern intermediate between the accent poles but their realization is often closer to
the fully accented syllables [55]. Such deviation patterns suggest that it would be bene�cial
to explicitly model pronunciation variation with respect to stress accent.

5.2.2 Impact of Stress Accent by Syllable Position

It is evident from the previous discussion that the patterns of pronunciation vari-
ation are di�erentially realized as a function of the position of the segment within the
syllable and stress-accent level. In many cases the phonetic realization deviates from the
canonical pronunciation concurrently across several articulatory dimensions (e.g. a vocalic
nucleus may change both its height and horizontal position) and the resulting pattern of
variation, if considered at the phonetic-segment level, may appear complex and di�cult to
model. The statistics described in this section may help in the development of more par-
simonious models of pronunciation variations by considering the variation patterns along
several AF dimensions with respect to position within the syllable and stress-accent level.
In the following �gures (5.5-5.19), the AF-realization of each segment (in terms of the pro-
portion of AF labels associated with the canonical pronunciation) is displayed (as well as
segment deletions) for onset, nucleus and coda positions separately for each of several AF
dimensions. In each condition only the statistics associated with the fully accented and
unaccented syllables are displayed for illustrative clarity.
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Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

dh ae t 11 - - - n eh 1 S S D

dh ax 9 - S D n ax 1 S S D

dh ax t 7 - S - n ae t 1 S - -

dh ae 7 - - D n aa 1 S S D

dh eh t 4 - S - nx ax 1 S S D

dh eh 4 - S D l ih 1 S S D

dh ih t 3 - S - k ih dh 1 S S S

dh ax dx 3 - S S iy 1 D S D

dh ae dx 3 - - S dh iy 1 - S D

n ah t 2 S S - dh ih 1 - S D

n ae 2 S - D dh eh dx 1 - S S

dh ah t 2 - S - dh ah dx 1 - S S

ah dx 2 D S S dh ae ch 1 - - S

ae 2 D - D ax dx 1 D S S

z ah p 1 S S S ax dh 1 D S S

th ax t 1 S S - ax 1 D S D

s ax t 1 S S -

Table 5.1: Unaccented instances of the word \that" from the Year-2001 phonetic evaluation
material (cf. Table 4.1). For each pronunciation the number of occurrences (#) is given, as
well as the pattern of deviation from the canonical pronunciation ([dh ae t]) with respect to
syllable onset, nucleus and coda. \S" is \substitution," \D" is \deletion," \I" is \insertion,"
and \-" is \no deviation."

Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 72.5 17.5 10.0 0 80

Nucleus 33.8 66.3 0 0 80

Coda 40.0 18.8 41.3 0 80

Total 48.8 34.2 17.1 0 240

Table 5.2: Summary of phonetic deviations (from canonical) in terms of percentage of total
segments (last column) in each syllable position (and overall), for the unaccented instances
of the word \that" (cf. Table 5.1) from the Year-2001 diagnostic phonetic evaluation mate-
rial.
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Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

dh ae t 30 - - - l ae dx 1 S - S

dh ae 20 - - D eh t 1 D S -

dh aw 9 - S D eh dx 1 D S S

dh ae dx 9 - - S d ae t 1 S - -

n ae t 6 S - - d ax p 1 S S S

dh eh t 6 - S - dh ih t 1 - S -

n ae 4 S - D dh ih d 1 - S S

dh ah t 3 - S - dh ih 1 - S D

th ae t 2 S - - dh eh 1 - S D

d ae 2 S - D dh ah dx 1 - S S

t aw 2 S S D dh ah d 1 - S S

t dh ae 1 I,- - D dh ae d 1 - - S

t ax 1 S S D dh ae b 1 - - S

t ae 1 S - D dh aa t 1 - S -

th eh t 1 S S - ae w 1 D - D

th eh 1 S S D ae 1 D - D

th ax 1 S S D aw 1 D S D

th aw t 1 S S - ae t 1 D - -

n aw 1 S S D hh ih t 1 S S -

n ae dx 1 S - S z d ae 1 S,I - D

nx ae 1 S - D

Table 5.3: Lightly accented instances of the word \that" from the Year-2001 phonetic
evaluation material (cf. Table 4.1). For each pronunciation the number of occurrences (#)
is given, as well as the pattern of deviation from the canonical pronunciation ([dh ae t])
with respect to syllable onset, nucleus and coda. \S" is \substitution," \D" is \deletion,"
\I" is \insertion," and \-" is \no deviation."

Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 69.6 24.0 4.8 1.6 125

Nucleus 69.1 30.9 0 0 123

Coda 44.4 14.5 40.3 0 124

Total 61.2 23.2 15.1 0.5 371

Table 5.4: Summary of phonetic deviations (from canonical), in terms of percentage of total
segments (last column) in each syllable position (and overall), for the lightly accented in-
stances of the word \that" (cf. Table 5.3) from the Year-2001 diagnostic phonetic evaluation
material.
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Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

dh ae t 12 - - - th ae t 1 S - -

dh ae 4 - - D n ae t 1 S - -

d ae t 2 S - - n ae 1 S - D

t b ae t 1 S,I - - dh ae dx 1 - - S

Table 5.5: Fully accented instances of the word \that" from the Year-2001 phonetic eval-
uation material (cf. Table 4.1). For each pronunciation the number of occurrences (#) is
given, as well as the pattern of deviation from the canonical pronunciation ([dh ae t]) with
respect to syllable onset, nucleus and coda. \S" is \substitution," \D" is \deletion," \I" is
\insertion," and \-" is \no deviation."

Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 70.8 25.0 0 4.2 24

Nucleus 100.0 0 0 0 23

Coda 73.9 4.3 21.7 0 23

Total 81.4 10.0 7.14 1.4 70

Table 5.6: Summary of phonetic deviations (from canonical), in terms of percentage of
total segments (last column) in each syllable position (and overall), for the fully accented
instances of the word \that" (cf. Table 5.5) from the Year-2001 diagnostic phonetic evalu-
ation material.
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Figure 5.4: The impact of stress accent on pronunciation variation in the Switchboard
corpus, partitioned by syllable position and the type of pronunciation deviation from the
canonical form. The height of the bars indicates the percent of segments associated with
onset, nucleus and coda components that deviate from the canonical phonetic realization.
Note that the magnitude scale di�ers for each panel. The sum of the \Deletions", (upper
right panel) \Substitutions" (lower left) and \Insertions" (lower right) equals the total
\Deviation from Canonical" shown in the upper left panel. (From [55][56].)
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Syllable Onset and Coda

While manner of articulation at onset is mostly canonical in fully accented sylla-
bles (Figure 5.5, left panel), a signi�cant proportion of nasals (23%) and stops (15%) are
realized as 
aps in unaccented syllables (Figure 5.5, right panel). The only substitutions
of manner at coda are also from either nasals or stops (into 
aps). Unlike onsets, there is
little di�erence between fully accented (Figure 5.6, left panel) and unaccented (right panel)
syllables with respect to substitutions of manner at coda. The proportion of manner sub-
stitution for unaccented syllables is smaller at coda than at onset. Codas, however, possess
a signi�cantly greater proportion of deletions than onsets, particularly in unaccented sylla-
bles. For example, 63% coda approximants and 55% coda stops are deleted in unaccented
syllables, while 20% onset approximants and 11% onset stops are deleted in unaccented syl-
lables. Among various manner features at coda, approximants have the largest di�erence in
deletion rates between fully accented (63% deleted) and unaccented (11% deleted) syllables,
suggesting the preservation of coda approximants may be a potential cue for stress accent.

Voicing feature is relatively stable at onset (cf. Figure 5.7), particularly of fully
accented syllables. There is a greater proportion of unvoiced segments realized as voiced
(at onset of unaccented syllables and at coda of all syllables) than vice versa (cf. Fig-
ure 5.7 and 5.8). There is a large (and roughly equal) proportion of segment deletion for
both voiced and unvoiced codas of unaccented syllables. The relatively low proportion of
voicing substitution suggests that voicing feature does not play a signi�cant role in pro-
nunciation variation of spontaneous speech. Majority of voicing deviations (83% onset and
62% coda voicing deviations from canonical) are accompanied by a concomitant deviation
in manner of articulation, also suggesting a subordinate role of voicing feature to manner
of articulation [53].

Because of the di�erential manifestation of the place constriction for di�erent man-
ner segments, the statistics for place of articulation (for onsets and codas) are partitioned
into di�erent manner classes. Figures 5.9 and 5.10 show the place deviation patterns for
fricatives at onset and coda, respectively. Aside from deletions, most fricative place fea-
tures are stable, except for a small number of interchanges (in both directions) between
alveolars (e.g. [s],[z]) and palatals (e.g. [sh],[zh]) at onset. There are signi�cant proportions
of deletions at onset of unaccented syllables: 45% glottal fricatives (e.g. [hh]) and 20%
dental fricatives (e.g. [th],[dh]). Both labial (e.g. [f],[v]) and dental fricatives have over
30% deletions at coda of unaccented syllables.

The non-deleted stops at both onset and coda (Figures 5.11 and 5.12) are relatively
canonical with respect to place; the only deviations observed are some alveolars (and labials)
realized as glottal stops (i.e. [q]) at coda. Although the canonical forms of stops are
relatively evenly distributed across di�erent places at syllable onsets, the vast majority (ca.
75%) of coda stops are alveolar [56]. Interestingly, in unaccented syllables, a large fraction
(ca. 60%) of alveolar stops are deleted with respect to canonical, leading to a high likelihood
of overall stop-segment deletion in unaccented codas. A likely reason for the tendency of
alveolar coda deletion is the sharing of acoustic cues in the mid-frequency (ca. 1500-2200
Hz) region of the spectrum with the preceding vocalic nucleus [56]. This tendency also
appears in nasal codas (see below).
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Figure 5.5: The realization of manner of articulation in onset position (proportion of manner
labels as the canonical pronunciation), for fully accented (left panel) and unaccented (right
panel) syllables. \Del" is deletion, \Appr" is approximants, and \Fric" is fricatives. Note
that there are no 
ap segments in canonical pronunciations.

The nasals at onset (as well as at coda of fully accented syllables) are mostly
canonically realized. (Figures 5.13 and 5.14). However, at coda of unaccented syllables a
high proportion (27%) of velar nasals (e.g. [ng]) are realized as alveolars (e.g. [n]), but not
vice versa. Alveolar and labial nasals at coda exhibit a signi�cant proportion of deletions,
particularly of unaccented syllables.
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Figure 5.6: The realization of manner of articulation in coda position (proportion of manner
labels as the canonical pronunciation), for fully accented (left panel) and unaccented (right
panel) syllables. \Del" is deletion, \Appr" is approximants, and \Fric" is fricatives. Note
that there are no 
ap segments in canonical pronunciations.

Syllable Nucleus

As discussed previously (cf. Figure 5.4), syllable nuclei are far more likely to
exhibit segmental substitutions (from canonical) than onsets and codas. However, segmental
deletions are rare for nuclei even in unaccented syllables. Figure 5.15 compares the patterns
of vocalic height deviation from canonical in fully accented (left panel) and unaccented
syllables (right panel). While vowel height is largely canonical in fully accented syllables
(except for some \mid" to \low" movement), the unaccented syllables exhibit a large number
of height movements, particularly from \low" to \mid" (33%) and \high" (34%), and from
\mid" to \high" (24%). This height-raising pattern largely agrees with the tendency of
having high and mid-vowels in unaccented syllables discussed in the previous section (cf.
Section 5.1.2). The only height movement in the reverse direction is a small proportion of
high vowels that are realized as mid-vowels (but not as low vowels).

The vocalic segments in unaccented syllables also exhibit an anterior (front) pref-
erence of horizontal place. As shown in Figure 5.16 (left panel), a signi�cant proportion of
back vowels are realized as either central (32%) or front (27%). There are also many more
central vowels realized as front (19%) than realized as back (4%). This pattern also agrees
with the tendency of having front and central vowels in unaccented syllables discussed in
the previous section (cf. Section 5.1.2).

Stress accent has a large impact on the realization of lip-rounding features. As
shown in Figure 5.17, while the unrounded vowels mostly remain unrounded, the propor-
tion of rounded vowels becoming unrounded is much greater in unaccented syllables (73%)
than in fully accented syllables (22%). Since the total number of unrounded vowels (if
pronounced canonically) in the Switchboard corpus is much larger (by at least �ve times)
than the number of rounded vowels, this implies that very few vocalic segments are realized
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Figure 5.7: The realization of voicing in onset position (proportion of voicing labels as
the canonical pronunciation), for fully accented (left panel) and unaccented (right panel)
syllables. \Del" is deletion.
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Figure 5.8: The realization of voicing in coda position (proportion of voicing labels as
the canonical pronunciation), for fully accented (left panel) and unaccented (right panel)
syllables. \Del" is deletion.
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Figure 5.9: The realization of place of articulation for all fricatives in onset position (pro-
portion of place labels as the canonical pronunciation), for fully accented (left panel) and
unaccented (right panel) syllables. \Del" is deletion, \Glot" is glottal, \Pal" is palatal,
\Alv" is alveolar, \Den" is dental and \Lab" is labial.
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Figure 5.10: The realization of place of articulation for all fricatives in coda position (pro-
portion of place labels as the canonical pronunciation), for fully accented (left panel) and
unaccented (right panel) syllables. \Del" is deletion, \Glot" is glottal, \Pal" is palatal,
\Alv" is alveolar, \Den" is dental and \Lab" is labial. Note that there are no glottalic
segments in canonical pronunciations of coda fricatives.
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Figure 5.11: The realization of place of articulation for all stops in onset position (proportion
of place labels as the canonical pronunciation), for fully accented (left panel) and unaccented
(right panel) syllables. \Del" is deletion, \Glo" is glottal, \Vel" is velar, \Alv" is alveolar
and \Lab" is labial. Note that there are no glottalic segments in canonical pronunciations
of onset stops.
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Figure 5.12: The realization of place of articulation for all stops in coda position (proportion
of place labels as the canonical pronunciation), for fully accented (left panel) and unaccented
(right panel) syllables. \Del" is deletion, \Glo" is glottal, \Vel" is velar, \Alv" is alveolar
and \Lab" is labial. Note that there are no glottalic segments in canonical pronunciations
of coda stops.
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Figure 5.13: The realization of place of articulation for all nasals in onset position (pro-
portion of place labels as the canonical pronunciation), for fully accented (left panel) and
unaccented (right panel) syllables. \Del" is deletion, \Vel" is velar, \Alv" is alveolar and
\Lab" is labial.
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Figure 5.14: The realization of place of articulation for all nasals in coda position (proportion
of place labels as the canonical pronunciation), for fully accented (left panel) and unaccented
(right panel) syllables. \Del" is deletion, \Vel" is velar, \Alv" is alveolar and \Lab" is labial.
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Figure 5.15: The realization of vocalic height in nucleus position (proportion of vocalic
height labels as the canonical pronunciation), for fully accented (left panel) and unaccented
(right panel) syllables. \Del" is deletion.

as lip-rounded (particularly in unaccented syllables). There is also an interesting corre-
lation between lip-rounding deviation and horizontal-vowel-place deviation from canonical
for unaccented syllables. While only 15% lip-rounding deviations are accompanied by a
horizontal-vowel-place deviation for fully accented syllables, 82% lip-rounding deviations
are accompanied by a horizontal-vowel-place deviation for unaccented syllables. The situ-
ation is just opposite for between lip-rounding and vocalic height. While 68% lip-rounding
deviations are accompanied by a vocalic-height deviation for fully accented syllables, only
15% lip-rounding deviations are accompanied by a vocalic-height deviation for unaccented
syllables.

The last two comparisons pertain to the tenseness of a vowel (cf. Figure 5.18)
and whether the spectrum is relatively static (monophthongs) or dynamic (diphthongs) (cf.
Figure 5.19). In the �rst instance, the vowels in fully accented syllables are relatively stable
with respect to tenseness, while for unaccented syllables a large proportion (51%) of tense
vowels2 are realized as lax vowels. In the second instance, a large proportion (35%) of
diphthongs are realized as monophthongs in unaccented syllables and there are far more
diphthongs becoming monophthongs than vice versa in either fully accented or unaccented
syllables. The overwhelming tendency for unaccented syllables to contain lax vowels and
monophthongs is consistent with the vocalic duration distribution discussed in the previous
section (cf. Figure 5.3) since both of these two AF dimensions are closely related to the
duration of vocalic segments.

2All diphthongs are grouped with the tense vowels.
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Figure 5.16: The realization of horizontal vocalic place (front-central-back) in nucleus po-
sition (proportion of vocalic place labels as the canonical pronunciation), for fully accented
(left panel) and unaccented (right panel) syllables. \Del" is deletion.
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Figure 5.17: The realization of lip-rounding in nucleus position (proportion of rounding
labels as the canonical pronunciation), for fully accented (left panel) and unaccented (right
panel) syllables. \Del" is deletion.
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Figure 5.18: The realization of tense/lax features in nucleus position (proportion of
tense/lax labels as the canonical pronunciation), for fully accented (left panel) and un-
accented (right panel) syllables. All diphthongs are considered to be tense vowels. \Del" is
deletion.
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Figure 5.19: The realization of static/dynamic features (monophthong vs. diphthong) in
nucleus position (proportion of static/dynamic labels as the canonical pronunciation), for
fully accented (left panel) and unaccented (right panel) syllables. \Del" is deletion, \Diph"
is diphthong and \Monoph" is monophthong.



92

5.3 Automatic Stress-Accent Labeling of Spontaneous

Speech

The pronunciation variation patterns presented in the previous section suggest a
potentially signi�cant advantage of incorporating stress-accent information in ASR systems.
This would require an automatic means of estimating stress-accent levels of each syllable
(and of course, methods of automatic detection of the syllables as well). In [121][122],
Silipo and Greenberg describe experiments of automatically detecting prosodic stress accent
of syllables on the OGI Stories [11] corpus using features pertaining to syllable-nucleus
duration, energy and f0-related information. This section describes the development of a
neural-network-based automatic stress-accent labeling system (AutoSAL) for spontaneous
American English [58] using the Switchboard corpus [42][49].

Besides being used by an ASR system, the development of the AutoSAL system
has additional advantages. Just like manually transcribing speech phonetically, manual
labeling of stress accent is a very tedious and time-consuming task. In order to label
accurately and consistently, the transcribers are required to have special linguistic training
and substantial practice. The prohibitively high cost makes it unfeasible to totally rely on
human transcribers to label stress accent for large quantities of speech material in novel
corpora and diverse languages, which would facilitate useful statistical analysis of stress
accent such as that performed in this thesis project, as well as form the basis of training
material for ASR systems incorporating stress-accent information. Thus, an accurate means
of automatic labeling of stress accent would be very helpful.

Another motivation of developing the AutoSAL system is to assess the utility of
various features in the estimation of stress-accent levels. As discussed earlier in this chapter,
the perceptual basis of stress accent is not entirely agreed upon by linguists. Further exper-
iments of automatic stress-accent labeling would certainly help advance our understanding
of the stress-accent phenomenon.

5.3.1 System Description

The AutoSAL system uses multi-layer-perceptron (MLP) neural networks to es-
timate the stress-accent level of each syllable based on a number of features derived from
the vocalic nucleus segment and the surrounding consonantal contexts. In the experiments
described in this section, the input features to the MLP network include some or all of the
following features:

� Duration of the vocalic nucleus (in 10-ms-frame units)

� The integrated energy of the vocalic nucleus represented as a Z-score (i.e., in terms
of standard-deviation units above or below the mean) normalized over a three-second
interval of speech (or less for utterances shorter than this limit) centered on the mid-
point of the nucleus

� The average of the critical-band, log-energy (cf. Section 3.2.1), as well as the cor-
responding delta and double-delta features pertaining to the interval of the vocalic
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nucleus

� Vocalic identity { this feature has 25 possible outputs, each corresponding to a speci�c
vocalic-segment label

� Vocalic height (0 for low, 1 for mid and 2 for high)

� Vocalic place (0 for front, 1 for central and 2 for back)

� The ratio of the vocalic-nucleus duration relative to the duration of the entire syllable

� Gender of the speaker (male or female)

� Minimum-maximum (dynamic range) of vocalic f0
3

� Mean vocalic f0

� Static/Dynamic Property of Nucleus (Diphthong/Monophthong)

Each of the input features can be derived either automatically from acoustics or from
existing transcripts at phonetic-segment or syllable levels depending on availability. The
MLP network contains a single hidden layer of 40 units and is trained with a standard online
back-propagation algorithm [112] adapted to speech processing [90]. Each input feature is
normalized to have zero mean and unit variance before feeding into the MLP network.

The training data were derived from the 45-minute Switchboard material with
manual stress-accent labels (cf. Section 5.1.2). Each vocalic nucleus has an associated
�ve-level stress-accent value based on the average accent levels from the two transcribers.
Computation of the human/machine concordance is based on a 5-tier system of stress accent
(accent levels of 0, 0.25, 0.5, 0.75 and 1). In the manually transcribed material 39.9% of
the syllables are labeled as being entirely unaccented (Level-0 accent), and 23.7% of the
syllables labeled as fully accented (Level-1 accent). The remaining nuclei are relatively
equally distributed across accent levels (0.25: 12.7%; 0.5: 13%; 0.75: 10.7%).

5.3.2 Experiments on the Switchboard Corpus

Several dozen di�erent combinations of input features (as described above) were
tested for their utility in estimating stress accent. Table 5.7 shows the di�erent feature
combinations that have been used. Due to the limited amount of material with manually
derived stress-accent labels, the testing was performed using a four-fold, jack-kni�ng proce-
dure: (1) the data were partitioned into four groups; (2) three groups were used for training
and the remaining group for testing; (3) the groups were rotated and the procedure was
repeated; (4) the average of test performances on the four groups was taken.

The performance associated with various input feature combinations (cf. Ta-
ble 5.7) are presented in Figure 5.20 in terms of a normalized measure of concordance with
the manual labels. This normalized measure is obtained by linearly scaling the stress-accent
label classi�cation accuracy associated with using the various feature combinations into a

3The f0 is calculated using a gender-dependent ensemble autocorrelation method [121].
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No. Feature Set Speci�cation

1 Vocalic place (front-central-back)[Voc-Place]

2 Nucleus/syllable duration ratio [N S-Dur-Ratio]

3 Speaker gender [Gender]

4 Minimum-maximum (dynamic range) of vocalic f0 [f0-Range]

5 Mean vocalic f0 [f0-Mean]

6 Static/dynamic property of nucleus (Diphthong/Monophthong)[Voc-Dyn]

7 Vocalic height (high-mid-low) [Voc-Height]

8 Average vocalic-segment spectrum [Voc-Spec]

9 Vocalic identity [Voc-ID]

10 Vocalic-segment duration [Voc-Dur]

11 Voc-Spec+delta features [Voc-Spec D]

12 Normalized energy (of the nucleus relative to the utterance) [Z-Energy]

13 Voc-Spec+delta and double-delta features [Voc-Spec D DD]

14 (4)+(5) 30 (1)+(7)+(12)

15 (1)+(7) 31 (1)+(7)+(13)

16 (4)+(9) 32 (2)+(4)+(10)

17 (4)+(10) 33 (4)+(10)+(12)

18 (4)+(12) 34 (9)+(10)+(12)

19 (9)+(10) 35 (10)+(12)+(13)

20 (2)+(10) 36 (1)+(7)+(10)+(12)

21 (4)+(13) 37 (4)+(10)+(12)+(13)

22 (9)+(12) 38 (3)+(10)+(12)+(13)

23 (9)+(13) 39 (9)+(10)+(12)+(13)

24 (12)+(13) 40 (2)+(10)+(12)+(13)

25 (10)+(12) 41 (3)+(9)+(10)+(12)+(13)

26 (10)+(13) 42 (2)+(4)+(9)+(10)+(12)

27 (1)+(6)+(7) 43 (2)+(3)+(9)+(10)+(12)

28 (1)+(7)+(9) 44 (2)+(3)+(4)+(5)+(9)+(10)+(12)+(13)

29 (1)+(7)+(10) 45 (2)+(3)+(9)+(10)+(12)+(13)

Table 5.7: Various input features (and feature combinations) used in developing the au-
tomatic stress-accent labeling (AutoSAL) system. The speci�cations of feature sets 14-45
refer to combinations of singleton feature sets 1-13, e.g. set #14 is [f0-Range] + [f0-Mean].
Features listed pertain to those shown in Figure 5.20.
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Figure 5.20: Normalized concordance (linearly scaled between 0 and 100) between manually
transcribed stress-accent labels and the AutoSAL-generated labels using di�erent combi-
nations of input features listed in Table 5.7. A concordance of 0 is roughly equivalent
to chance performance (ca. 40% concordance, using only the prior distribution of stress-
accent levels) and 100 is comparable to the concordance between two human transcribers
(ca. 67.5%). These results are based on an analysis using a tolerance step of 0 (i.e., an
exact match between human and machine accent labels was required for a hit to be scored)
and a three-accent-level system (where 0.25 and 0.75 accent outputs were rounded to 0.5).
(Figure from [52].)

dynamic range between 0 and 100, where 0 pertains to the concordance of the most poorly
performing feature set (#1, roughly equivalent to the chance performance by using only
the prior distribution of di�erent stress-accent levels) and 100 pertains to the concordance
of the best performing feature set (# 45), comparable to the overall concordance between
two human transcribers. Figure 5.21 shows the concordance of the AutoSAL output (using
input feature combination #45) with the (average) manually labeled stress-accent material
in terms of two levels of tolerance { a quarter and a half step. A syllable is scored as cor-
rectly labeled if the AutoSAL system output is within the designated tolerance limit. Such
a metric is required in order to compensate for the inherent \fuzziness" of stress accent in
spontaneous material, particularly for syllables with some degree of accent. The average
concordance is 77.9% with a quarter-step tolerance and 97.5% with a half-step tolerance.

Features pertaining to vocalic identity (either the vocalic identity derived from
segment labels or the vocalic spectrum with delta features), vocalic-segment duration, and
normalized energy are most closely associated with stress accent. The contribution of f0-
based features is relatively small, especially when the three most e�ective features delineated
above are already present. These observations provide further evidence concerning the
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Figure 5.21: Classi�cation accuracy of the automatic (MLP-based) stress-accent labeling
(AutoSAL) system for the Switchboard corpus using two degrees of accent-level tolerance
{ quarter-step and half-step, on a �ve-level stress-accent scale. The results were obtained
using the best performing feature set (#45 in Table 5.7). (From [58].)

perceptual basis of stress accent discussed in the �rst section of this chapter. Both the ratio
of vocalic duration to syllable duration and speaker gender are also contributing features,
with information complementary to the three most e�ective features.

5.4 Summary

Stress accent is an important component of spoken English and has great impact
on the pronunciation variation of spontaneous speech. This chapter �rst introduced the
background of the stress accent with its perceptual basis in spoken language, and in partic-
ular, the relationship between vocalic identity and stress accent in spontaneous speech was
emphasized.

The link between stress accent and the phonetic realization of spontaneous speech
was investigated in detail, �rst by revisiting the word pronunciation variation example
(introduced in the previous chapter) to include the e�ect of stress-accent levels, and then by
describing the general articulatory-acoustic feature deviation patterns (from the canonical
forms) as a function of both syllable position and stress accent. Some gross AF realization
patterns are:

� Without stress accent, vocalic nuclei often move \up" (in height) and \forward" (in
horizontal vowel place) and tend to have reduced duration, less lip-rounding and
relatively stable spectra.
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� Onsets are the most canonical and the only deviations from canonical forms are usually
deletions and 
apping.

� Codas often have a large number of deletions compared to the canonical forms, espe-
cially for coda segments of central places (e.g. [t], [d], [n]).

It was shown that pronunciation variation of spontaneous speech can be largely captured
by the systematic deviation patterns of AFs from the canonical forms within the context of
particular syllable position and stress-accent levels.

To take advantage of stress-accent information in automatic speech recognition, a
neural-network-based system was developed to automatically label stress accent for spon-
taneous speech. The Switchboard-corpus-trained system was able to perform at a level
comparable to human transcribers. A large number of feature combinations were assessed
for their contribution to stress-accent labeling and the most salient features included the
duration, energy and vocalic identity (in terms of vocalic labels or spectral features), and
the pitch-related features that we chose were found to play only a minor role.

The �ndings from this chapter, especially the systematic patterns of AF deviation
from the canonical forms within the context of syllable position and stress accent, in con-
junction with the discussion of AF and syllable processing in the previous two chapters,
provide a basis for a multi-tier model of speech recognition to be introduced in the next
chapter.
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Chapter 6

A Multi-tier Model of Speech

Recognition

The linguistic dissection of LVCSR systems described in Chapter 2 identi�ed a
number of acoustic and linguistic factors that a�ect word-recognition performance. In
subsequent chapters, a detailed study of articulatory-acoustic features (AFs), syllables and
stress accent was described based on empirical data from several American English corpora.
In particular, the studies showed that the complex phenomenon of pronunciation variation
in spontaneous speech may be characterized succinctly using information pertaining to AFs
within the context of syllable position and stress accent. Motivated by such results, a
multi-tier model of speech recognition is described in this chapter for spontaneous speech.
The model adopts a syllable-centric organization for speech and uses features pertaining
to a number of AF dimensions to describe the detailed phonetic realizations organized
with respect to syllable position and stress-accent level. Although the model has obvious
limitations, it should be viewed as a �rst step toward bridging the gap between automatic
recognition and the reality of spontaneous speech using insights gained through statistical
analysis of spontaneous spoken material.

The following section provides a general description of the multi-tier model, inde-
pendent of any particular corpus, followed by a discussion of its feasibility and functionality.
In the sections to follow, an implementation of a testbed system is described based on the
model proposed. Rather than trying to develop a scalable, powerful performance system,
the implementation is designed to provide preliminary answers to questions posed about the
multi-tier model through controlled experiments within a highly constrained task domain.
Experimental results and analysis based on the implementation will be described in the
following chapter.

6.1 Model Description

In Chapter 4 evidence was presented in support of the syllable as the fundamental
binding unit of speech, around which information from other linguistic tiers is organized.
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This position is integrated within the multi-tier model, which considers speech to be or-
ganized as a sequence of syllables (in contrast to the conventional phonetic-segment-based
organization assumed by most ASR systems).

In the multi-tier model each syllable contains a nucleus element, which is almost
always a vocalic segment. In addition, the nucleus may be preceded by an optional onset
element and followed by an optional coda element; both the onset and coda elements may
contain one or more consonantal segments (i.e. a consonantal cluster).

Each syllable carries a certain level of accent (or lack of accent), which could
be stress- or nonstress-based (e.g. pitch accent) depending on the nature of the speci�c
language. The accent level can be coarse but should at least distinguish among completely
unaccented syllables, fully accented syllables, and possibly syllables of intermediate accent.
The onset, nucleus and coda of each syllable are described by features along several quasi-
orthogonal AF dimensions, such as manner of articulation, place of articulation (manner-
speci�c or manner-independent), voicing, vocalic height, tenseness (lax vs. tense) and
spectral dynamics (monophthong vs. diphthong), lip-rounding, duration, etc.

Instead of storing every possible pronunciation of each lexical entry in the vocab-
ulary, the model lexicon consists of simple representations of words (or short phrases) with
only a single canonical baseform (or in cases of distant or non-systematic variations in pro-
nunciation, a small number of such forms). Each baseform contains one or more syllables,
described by the canonical AF speci�cation and accent levels. However, the small number
of canonical baseforms does not necessarily restrict the multi-tier model from representing a
large number of pronunciation variants for each lexical entry. During recognition, pronunci-
ation transformation rules (e.g. in terms of statistical characterization of AF transformation
from canonical to realized forms) take many potential systematic variations of the baseforms
into account, e�ectively expanding the pronunciation coverage. These transformation rules
may depend on a number of contextual cues, such as syllable position and accent levels.
In order to explain the capability of human listeners to understand novel realizations of
familiar lexical entries, such a succinct representation of the lexicon with a dynamically
expanding pronunciation may be more intuitively appealing than explicitly storing all pos-
sible pronunciation variants. It is very likely that human listeners require only a few sample
pronunciations and variation patterns generalized from previous experience. In addition,
such a representation incorporating explicit pronunciation variation patterns may reduce
the problem of lexical-phonetic mismatch.

The recognition process starts by classifying features along each of the AF dimen-
sions. Not all AF dimensions are equally important for particular lexical classi�cation and
not all AFs can be determined with equally high con�dence. This is especially true for
speech in adverse acoustic conditions or spoken in an unusual way. It is thus important to
treat features di�erentially according to their potential contribution to recognition and the
level of classi�cation accuracy that can be obtained.

Among various AF dimensions, the manner of articulation, especially the vocalic
class, is particularly important and plays a key role in approximate syllable detection and
segmentation. This initial syllable processing also provides for accent-level estimation and
serves as the basis for subsequent syllable-position and accent-based pronunciation variation
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Figure 6.1: A very high-level overview of the recognition model. See text for detail.

modeling.

The syllables extracted are evaluated relative to syllable sequences of potentially
matching lexical hypotheses. For each detected and hypothesized syllable pair, the evalua-
tion is �rst performed along each AF dimension and the scores are then combined across the
dimensions appropriately, taking into account the di�erential contributions of various AFs.
For each AF dimension, the evaluation within a syllable is further decomposed into on-
set, nucleus and coda matching where the pronunciation variation patterns are interpreted
according to the contextual information ( summarized in syllable position and accent lev-
els). A score is derived for each lexical hypothesis from the matching scores of its syllable
constituents, and competing hypotheses are compared using these individual scores. This
process is summarized in schematic form in Figure 6.1.

Because of the limited scope of this thesis, higher-level knowledge pertaining to
the language model, and semantic and pragmatic processing is not explicitly considered in
the multi-tier model, although they are extremely important in the recognition (and un-
derstanding) of speech. The multi-tier model is unlikely to capture all the variability of
spontaneous speech; moreover, high-level processing is crucial for providing additional evi-
dence to reduce confusibility and to facilitate e�cient search among alternative hypotheses.
Such high-level information may in fact signi�cantly modify how the lower-level processing
is performed.

The overall recognition process can be viewed as a fusion of heterogeneous infor-
mation sources, distributed across time and space. The utility for recognition of di�erent
information sources is su�ciently variable both temporally and spatially, and hence, not all
information sources should be given equal weight at each time frame. Di�erential treatment
of the information sources relative to their contributions to the recognition task is likely to
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be the most e�cient and e�ective method for dealing with such variable information. More-
over, the appropriate information-fusion scheme should be adaptable to acoustic conditions,
speaking style and other factors in
uencing the interpretation of the speech signal.

6.2 Questions Regarding the Multi-tier Model

The high-level description of the multi-tier model raises many questions pertain-
ing to both its feasibility and functionality relative to conventional phonetic-segment-based
models, and suggests directions for improvement. The discussion in previous chapters
provided some motivation for the multi-tier model from di�erent perspectives, such as
articulatory-acoustic features, syllables and stress accent, with a special focus on capturing
pronunciation variation phenomena in spontaneous speech. It is important to understand
how the di�erent components of the multi-tier model interact to produce recognition results
and what level of accuracy is required at each level to achieve optimal performance.

The syllable is adopted as the binding unit across linguistic levels in the multi-
tier model because of its stability and its systematic relationship to both the lower-tier
units such as AFs and the supra-segmental features pertaining to stress accent. It is,
therefore, of interest to ascertain how inaccuracies in syllable detection and segmentation
a�ect recognition performance, how information at di�erent syllable positions contributes
to recognition performance, and how syllable-level information interacts with stress accent
to a�ect the interpretation of AF classi�cation.

As described in the previous chapter, stress accent plays a signi�cant role in AF
distribution and pronunciation variation of spontaneous speech. It is of interest to ascertain
the e�cacy of stress-accent modeling in recognition, especially its utility in pronunciation
modeling.

Articulatory-acoustic features are the basic building block of the multi-tier model;
their manifestation depends on the speci�c con�guration of syllable and stress accent. In
order to optimally use the information at hand, it is very useful to know the relative con-
tributions of various AF dimensions to reocognition performance, both individually and
in combination with other features. It is also of interest to know whether parsimonious
pronunciation-variation modeling using AFs is indeed e�ective for recognition of sponta-
neous speech.

To answer such questions, experiments with real data are required. In the following
section a simple test-bed system is described based on the multi-tier model for performing
preliminary experiments on a highly constrained task. The results of the experiments are
analyzed in the following chapter and initial answers to the questions posed above are
discussed based on this analysis.

6.3 Test-bed System Implementation

This section describes the development of a simple test-bed system for evaluating
the multi-tier model. The purpose of the implementation is to demonstrate the functionality
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of the multi-tier model, as well as provide some preliminary answers to the questions posed
in the previous section. The test-bed implementation is not meant to be a scalable, powerful
performance system capable of fully automatic recognition on large, unconstrained tasks.
Rather, the implementation is intended to be simple and transparent, easy to control and
manipulate with both real and fabricated data in a highly constrained task domain. The
system closely follows the multi-tier model, but is necessarily simpli�ed in those instances
where implementation is di�cult with currently available resources, and in some cases in
order to maintain a transparent system structure. E�orts have been made wherever possible
to make the system's components modular and intuitive in order to permit a systematic
dissection of functionality and performance. Limited learning capability is built-in wherever
convenient to enable data-driven analysis, but not to an extent that would obscure the
transparency and interpretation of the system structure and functionality.

The experiments were performed on the OGI Numbers95 corpus with word seg-
ment boundaries [12]1 (also cf. 3.2.2). This corpus contains the numerical portion (mostly
street addresses, phone numbers and zip codes) of thousands of spontaneous telephone
conversations (cf. Table 7.2 for a list of vocabulary), partitioned into di�erent utterances
of between one and ten words with an average of 3.9 words per utterance. An example
of a typical utterance in this corpus is \nine hundred forty six." The speakers contained
in the corpus are of both genders and represent a wide range of dialect regions and age
groups. The training data set contains ca. 2.5 hours of material with a separate 15-minute
cross-validation set. The test data set contains ca. 1 hour of material.

The isolated nature and the small vocabulary of the recognition material make
it relatively easy to implement and perform controlled experiments, thereby eliminating
the necessity (and the e�ect) of language modeling and elaborate search algorithms (as
well as associated pruning techniques). Performance is likely to be su�ciently good so
as to accommodate meaningful empirical analysis. However, the task is not a trivial one;
the corpus preserves many characteristics observed in large-vocabulary spontaneous speech
corpora, particularly much of the pronunciation variation patterns described in the previous
chapter. In the past several dissertation projects (e.g. [74][144][88]) at ICSI have successfully
used the Numbers95 corpus for developing novel algorithms for various components of ASR
systems.

This section �rst provides a high-level overview of the test-bed system, with refer-
ence to the description of the multi-tier model in the previous section. Various components
of the system are then described in detail, with particular reference to the Numbers95
corpus.

6.3.1 Overview

The overall system implementation largely follows the model description in the
previous sections. A 
ow-diagram of the test-bed system is given in Figures 6.2 and 6.3.
The inputs to the system include the raw speech pressure waveform, (word-boundary infor-

1The original OGI Numbers95 corpus distribution does not include word boundary information. The
current word boundaries are derived from the manual phonetic transcripts using Viterbi-alignment with a
multiple-pronunciation lexicon developed by Dan Gildea at ICSI; the results were veri�ed manually.
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mation is only applied at a subsequent stage of hypothesis evaluation), a lexicon of syllable-
AF-stress-accent-based canonical word models, and a set of transformation statistics from
canonical to realized forms for various AFs derived from training data. Additionally, word-
boundary information is made available as input to the hypothesis evaluation stage.

The front-end feature processing computes the log-compressed critical-band energy
features as described in Section 3.2.1, their deltas and their double-deltas (here deltas
and double-deltas refer to the �rst and second temporal derivatives, respectively). AF
classi�cation is based on the MLP-based procedure described in Chapter 3.2.1 for a number
of AF dimensions (manner-speci�c or manner-independent). The classi�cation results of the
manner-of-articulation dimension are used to perform a manner-based segmentation with a
Viterbi-like forward dynamic programming procedure. This procedure partitions the speech
utterance into coherent regions of manner features, which to a great extent are co-terminous
with the phonetic segments, as described in Section 4.4. The identi�ed vocalic segments
are classi�ed as the nuclei of syllables. For each syllable detected, the manner-partitioned
segments (especially the vowels) are used for automatic estimation of stress-accent levels
using the Switchboard-corpus-trained AutoSAL system as described in Chapter 5. For the
sake of simplicity, other AF dimensions are synchronized to manner segmentation, and for
every segment a classi�cation score is summarized for each feature along each AF dimension.

Word-boundary information is applied to delimit the AF information within each
word segment to compare against the canonical word models in the lexicon. For each word
hypothesis, a variety of syllable-sequence alignments with the inputs are considered and a
matching score is obtained based on the matching results at the syllable level (including
the possibility of syllable insertion and deletion). To evaluate each pair of reference and
hypothesis syllables, the matching scores across various AF dimensions are combined using
a fuzzy-measure and fuzzy-integral-based technique, described in detail in Section 6.3.5.
This technique was chosen (1) for its ability to model the importance of and the interactions
among the AF dimension scores, (2) for its interpretability and (3) for the lack of simplifying
assumptions. Within each syllable, the computation of the score for each AF dimension is
further decomposed into matchings at onset, nucleus and coda positions within the syllable.
At this stage of processing, pronunciation variation modeling of the AFs with respect to
syllable position and stress accent are considered through the use of statistics collected from
training data, in the form of a feature-transformation matrix that transforms the canonical
form to the realized (transcribed) form.

Once all hypotheses are evaluated, the results are returned and the best matching
hypothesis (or hypotheses) identi�ed. In the following sections each system component is
described in detail, and training methods for certain components are also presented.

6.3.2 AF Classi�cation and Segmentation

The front-end feature processing and AF classi�cation adopts the procedures de-
scribed in Chapter 3. The input speech signal is represented as a sequence of log-compressed
critical-band energy features every 10 ms (a frame) over a 25-ms window, along with their
�rst and second time derivatives (deltas and double-deltas). For each of the AF dimensions
considered, an MLP is trained to perform feature classi�cation at each frame such that the
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outputs represent the posterior probability estimates of each feature along the AF dimen-
sion. The AF dimensions include manner of articulation, place of articulation and voicing
for manner-independent classi�cations. Manner-speci�c classi�cations are performed for
place of articulation (partitioned into stops, fricatives, approximants, etc.) and vocalic-
only feature dimensions, such as lip-rounding, vowel height, spectral dynamics (monoph-
thong vs. diphthong) and tenseness (tense vs. lax). Thus, the AF classi�cation output
at each time frame is a set of vectors, each for a particular AF dimension consisting of
posterior-probability estimates of constituent features.

Manner of articulation is a key dimension, whose classi�cation results are seg-
mented into roughly homogeneous manner segments using a Viterbi-like decoder, where the
\lexicon" consists of manner features (e.g. vocalic, stop, fricative, etc.). This amounts to
smoothing and integrating frame-level classi�cation outputs in adjacent frames to identify
segments of coherent manner features. Although it is certainly possible to produce di�erent
segmentations, for simplicity the current implementation only considers a single manner
segmentation that tends to maintain a relative balance between the numbers of deleted and
inserted segments. This simpli�cation is controlled in the experiments to be described by
comparing recognition results obtained from the same initial manner segmentation (whether
it is automatically computed or derived from transcripts in fabricated data conditions).

The identi�ed vocalic segments are interpreted as the vocalic nuclei of syllables;
however, the syllable boundaries are not explicitly de�ned, so the syllable positions of con-
sonantal segments are not speci�ed at this stage. In real speech the AF dimensions are not
necessarily synchronized with each other and may overlap. This feature asynchrony has been
explored in various models of articulatory-feature-based speech processing (e.g. [129][10]).
However, for simplicity's sake, the current implementation assumes that segmentation in
various AF dimensions are synchronized to that in the manner dimension. This simpli�ca-
tion is not without merit. As discussed in Section 4.4, manner-of-articulation segments are
largely co-terminous with traditionally de�ned phonetic segments, so that synchronization
to manner segmentation means that other AF dimensions are coordinated with phonetic-
segment intervals. It should be noted that this is not to equate the implementation with the
phonetic-segment-based systems, since each AF dimension in the model has the 
exibility
of independently evolving and the segments are explicitly tied to a syllable representation.

With this form of segmentation a summarized score is derived for each feature along
each AF dimension for every segment2. Thus, each segment contains a vector of feature
\con�dence scores" along each AF dimension (cf. Table 6.1 for an example). Compared
to the frame-level MLP outputs the total amount of information retained at this stage is
greatly reduced but what remains should be the essential information germane to word
recognition.

6.3.3 Stress-accent Estimation

Identi�cation of the vocalic nuclei provides a means of estimating stress-accent
level using the AutoSAL procedure described in the previous chapter. In the current im-

2In the current implementation this is obtained by simply averaging the posterior probabilities of the
frames within the segment.
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plementation, MLP networks trained on the 45-minute subset of the Switchboard corpus
with manual stress-accent labels (cf. Section 5.3) were used as there is no manually la-
beled stress-accent material for the Numbers95 corpus. The set of features used on the
Numbers95 corpus include the duration and normalized energy of the vocalic nucleus (i.e.
features 10 and 12 in Table 5.7), the average of the vocalic segment spectra and the asso-
ciated deltas and double-deltas (feature 13), as well as the ratio of the vocalic nucleus and
syllable duration (feature 2). This four-feature set (equivalent to set 40 in Table 5.7) is able
to achieve a near-optimal stress-accent labeling performance on the Switchboard corpus (cf.
Figure 5.20).

To adopt the Switchboard-trained networks to the Numbers95 corpus, a few mod-
i�cations in the feature-generating procedure were required. The time-constant for energy
normalization was reduced from three seconds (Switchboard) to 600 milliseconds (Num-
bers95) in order to reduce the e�ect of pauses and silence period added to the beginning
and ending of utterances. Since the exact syllable segmentation is not determined at this
stage, the ratio between the vocalic segment duration and the syllable duration must use an
estimated syllable duration. For this purpose, the sum of the durations of the vocalic nu-
cleus, the preceding consonantal segment and the following consonantal segment is taken to
approximate the syllable duration. Interestingly, an experiment on the Switchboard corpus
shows that this approximation performs almost as well as using the manual-transcription-
derived syllable duration.

With the above modi�cations, all the features used in AutoSAL can be automati-
cally derived for the Numbers95 corpus. Manual inspection of selected utterances indicates
that AutoSAL performs reasonably well on the Numbers95 corpus despite having been
trained on a di�erent corpus.

6.3.4 Word Hypothesis Evaluation

Once AFs and stress-accent material is processed the system is ready to evaluate
speci�c word hypotheses. Table 6.1 shows a typical example of the information contained
in the processed input data associated with a preliminary word segmentation. The data are
listed in the order of the manner segments where the positions within the utterance (\start"
and \end") are indicated in (10-ms) frames. Each segment contains scores associated with
di�erent features along each of several AF dimensions. In particular, there is a manner-
speci�c place (MS-place) dimension determined by the initial manner segment label, as
well as a manner-independent place (MI-place) dimension that corresponds to the overall
manner-independent place classi�cation results. Some AF dimensions, such as \height," are
only included for the relevant vocalic segments. The stress-accent label associated with a
syllable is attached to the vocalic nucleus for convenience of display although it is in fact a
property of the entire syllable.

As described in the multi-tier model description, the word models contain only
canonical baseform pronunciations for each word in the lexicon. In the Numbers95 corpus
experiments, only a single model is included for each word, corresponding to the most
popular pronunciation as extracted from the training set. A typical example of a word
model (for the word \six") is shown in Table 6.2. Each word model is described by its
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ID=4728zi start=116 end=158 segments=4

1 start=116 end=129 manner=fricative
manner voc=.016 nas=.048 stp=.003 fri=.901 apr=.000
voice voi=.278 unv=.722
MS-place lab=.074 den=.004 alv=.921 glo=.000
MI-place den=.007 lab=.070 cor=.832 ret=.000 vel=.000

glo=.000 frt=.006 cen=.003 bak=.007 sil=.075

2 start=130 end=135 manner=vocalic
manner voc=.963 nas=.000 stp=.003 fri=.032 apr=.001
voice voi=.929 unv=.071
MS-place frt=.997 cen=.001 bak=.003
MI-place den=.000 lab=.000 cor=.017 ret=.000 vel=.001

glo=.000 frt=.979 cen=.001 bak=.002 sil=.000
height low=.001 mid=.008 hi=.991
round rnd=.026 unr=.974
static sta=.976 dyn=.024
tense ten=.026 lax=.974
stress str=.650

3 start=136 end=143 manner=stop
manner voc=.005 nas=.000 stp=.991 fri=.002 apr=.000
voice voi=.111 unv=.889
MS-place alv=.000 vel=1.00
MI-place den=.000 lab=.000 cor=.003 ret=.000 vel=.993

glo=.000 frt=.003 cen=.000 bak=.000 sil=.000

4 start=144 end=157 manner=fricative
manner voc=.001 nas=.000 stp=.133 fri=.809 apr=.016
voice voi=.018 unv=.982
MS-place lab=.345 den=.005 alv=.649 glo=.000
MI-place den=.005 lab=.193 cor=.585 ret=.001 vel=.131

glo=.000 frt=.000 cen=.000 bak=.051 sil=.035

Table 6.1: A typical example of the information contained in the processed input data asso-
ciated with a word segment after the initial AF classi�cation, manner-based segmentation
and automatic stress-accent labeling. The word in this example is \six" ([s ih k s]). \ID" is
the Numbers95 utterance ID; \MS-place" is manner-speci�c place; \MI-place" is manner-
independent place. \Start," \end" and \segments" are speci�ed in terms of frames (25-ms
window with a 10-ms sliding step).
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Word-label: six Syllables: 1

Stress: 0.75

Onset manner=fri voice=unv place=alv
duration mean=14 SD=5.0

Nucleus manner=voc voice=voi place=frt height=hi round=unr
static=sta tense=lax duration mean=8 SD=3.7

Coda manner=stp voice=unv place=vel
duration mean=9 SD=3.2

manner=fri voice=unv place=alv
duration mean=12 SD=5.9

Table 6.2: An example of a word model (for the word \six"). The stress-accent level is
derived from the mode of stress-accent levels for the instances of \six" found in the training
data. The duration mean and standard deviation (\SD") are speci�ed in terms of frames
(25-ms window with a 10-ms sliding step).

syllable constituents and associated typical stress-accent level (using the mode of various
instances). Each syllable contains AF speci�cations for each of its onset, nucleus and coda
segments, as well as the mean duration and the corresponding standard deviation (in 10-ms
frames).

Because the number of syllables detected in the input signal may not precisely
match that of the reference word model, an alignment (at the syllable level) between the
reference and hypothesis is required in order to evaluate a speci�c word hypothesis. Each
alignment considers the possibility of insertion and deletion of syllables, and penalties are
assigned to those occurrences. It turns out that, for experiments on Numbers95 corpus,
the overall word recognition rate is relatively insensitive to the magnitude of the penalties
assigned to the insertions and deletions over a broad dynamic range. Therefore, in the
experiments to be described, the syllable insertion and deletion penalties adopt �xed values
determined on a cross-validation data set.

For each syllable alignment the total penalty score from the insertion, deletion
and substitution of syllables are computed and the word hypothesis takes the minimum
penalty score over all alignments. This alignment requires relatively little computation
using a dynamic-programming procedure. The bulk of the computation for evaluating word
hypothesis lies in the evaluation of matching syllable pairs as described in the following
sections.

6.3.5 Cross-AF-dimension Syllable-score Combination

For each matching pair of syllables a score is computed indicating the con�dence
of the input syllable matching the reference syllable. To obtain this score, a separate score
is �rst computed for each AF dimension (the details of which are described in the next
section), and a multiple-information-aggregation approach is adopted to combine the scores
from the various AF dimensions.
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As previously discussed, di�erent AF dimensions contribute di�erently to the
recognition task and therefore should be given di�erential weights in the information com-
bining process. Moreover, the various AF dimensions are not truly orthogonal, and there
exists signi�cant coupling among them. Thus, a simple linear combination of the scores
cannot truly capture the redundancy and synergy of the information contained in sub-
sets of the AF dimensions; a highly non-linear process is required. Since the relationship
among the various AF dimensions can be quite complex, a suitable information aggrega-
tion method should be 
exible in taking information from heterogeneous sources without
pre-speci�cation of their inter-relationship. On the other hand, good interpretability of the
combining method is desired, especially for the diagnostic experiments where we would like
to ascertain the importance and interactions of various AF dimensions to the combined
decision, and this would also help in selecting appropriate features to model and in devising
e�ective adaptation methods. The current implementation adopts a fuzzy-measure/fuzzy-
integral-based, multiple-information-aggregation method that possesses a number of prop-
erties suitable for this task.

Fuzzy Measures

The concept of fuzzy measure was introduced by Sugeno [128][134] in the early
seventies in order to extend the classical (probability) measure by relaxing the additivity
property. A formal de�nition of the fuzzy measure is as follows:

De�nition 1 Fuzzy measure: Let X be a non-empty �nite set and 
 a Boolean algebra (i.e.
a family of subsets of X closed under union and complementation, including the empty set)
de�ned on X. A fuzzy measure, g, is a set function g : 
 ! [0; 1] de�ned on 
, which
satis�es the following properties:

� Boundary conditions: g(�) = 0, g(X) = 1.

� Monotonicity: If A � B, then g(A) � g(B).

� Continuity: If Fn 2 
 for 1 � n < 1 and the sequence fFng is monotonic (in the
sense of inclusion), then limn!1 g(Fn) = g(limn!1 Fn).

(X;
; g) is said to be a fuzzy measure space.

This de�nition of a fuzzy measure di�ers from that of a probability measure only in
terms of the monotonicity property. For example, by additivity, the probability measure of
the union of two disjoint subsets of X must be equal to the sum of the probability measures
of the two subsets; in contrast, the fuzzy measure of the union can be smaller or larger
than the sum of the fuzzy measures of the two subsets as long as the monotonicity property
holds { a crucial feature that accommodates synergy and redundancy among information
sources. Since additivity is a special case of monotonicity, the probability measure is, in
fact, a special case of a fuzzy measure. Other special cases of fuzzy measures include the
possibility measure [148] and the belief functions of the Dempster-Shafer theory [115], etc.
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For the present task, let X = x1; � � � ; xN represent the set of N AF dimensions
under consideration and the fuzzy measure, g, represents the contribution of each subset
of X (i.e. a set of some AF dimensions, including singleton sets) in evaluating the match
between a reference syllable and the input. In many situations, it is useful to ascertain the
contribution of a particular AF dimension in the entire evaluation process. However, since
each AF dimension is involved in many subsets of X, the contribution of the AF dimension
cannot be easily read from the fuzzy measures. A concept from cooperative game theory,
the Shapley score [116][46], can be applied here to help in the interpretation.

De�nition 2 Shapley score: Let g be a fuzzy measure on X. Shapley score for every i 2 X
is de�ned by

vi �
X

K�Xnfig

(jXj � jKj � 1)!jKj!

jXj!
[g(K [ fig) � g(K)] (6.1)

where jXj and jKj are the cardinality of X and K, respectively.

Intuitively, a Shapley score computes the additional value that i brings to various
subsets of Xnfig (the set X excluding the i and including the empty set), normalized
appropriately (cf. [116] for a derivation of Equation 6.1). A Shapley score, vi, can be
interpreted as an average value of the contribution that information source, i alone, provides
in all di�erent combinations of information sources and it can be veri�ed that Shapley scores
sum to g(X) = 1. This concept has also been extended to computing the interaction of a
pair of information sources [93].

De�nition 3 Two-way interaction index: Let g be a fuzzy measure on X. The two-way
interaction index of elements i; j 2 X is de�ned by

Iij �
X

K�Xnfi;jg

(jXj � jKj � 2)!jKj!

(jXj � 1)!
[g(K [ fi; jg)� g(K [ fjg)� g(K [ fig) + g(K)] (6.2)

where jXj and jKj are the cardinality of X and K, respectively.

The interaction index, Iij , provides an indication of the interaction between the
pair of information sources i and j. When Iij < 0, there exists a negative interaction
(redundancy) between information sources, i and j, in that the value of the pair i and j
is less than the sum of the values of i alone and j alone when they are included into sets
of information sources. On the other hand, if Iij > 0, there exists a positive interaction
(synergy) between i and j in that the value of the pair i and j exceeds the sum of the values
of i alone and j alone when included in sets of information sources. In cases where Iij = 0,
the value gained by a set of information sources from including the pair i and j is just equal
to the sum of the gains from i alone and j alone, and thus there is no interaction between
the pair. This de�nition has been further extended to the interaction of any subset of X
by Grabisch [45]:
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De�nition 4 Interaction index: Let g be a fuzzy measure on X. The interaction index of
any subset A � X is de�ned by

I(A) �
X

B�XnA

(jXj � jBj � jAj)!jBj!

(jXj � jAj+ 1)!

X
C�A

(�1)jAnCjg(C [B) (6.3)

.

The concept of the Shapley score and the interaction index makes it much easier
to interpret the importance and contribution of various information sources and can also
be used for the task of feature selection where a fuzzy measure is used. For example, if a
certain information source has a small Shapley score and mostly negative interactions with
other sources, it may be safely removed from consideration without signi�cant impact on
recognition performance.

Fuzzy Integral

To combine scores obtained from various information sources with respect to some
fuzzy measure a technique based on the concept of fuzzy integral can be adopted. There
is actually more than one kind of fuzzy integral [96]; the one adopted here is the Choquet
integral proposed by Murofushi and Sugeno [94]3.

De�nition 5 (Choquet) Fuzzy integral: Let (X;
; g) be a fuzzy measure space, with X =
fx1; � � � ; xNg. Let h : X ! [0; 1] be a measurable function. Assume without loss of generality
that 0 � h(x1) � � � � � h(xN ) � 1, and Ai = fxi; xi+1; � � � ; xNg. The Choquet integral of h
with respect to the fuzzy measure g is de�ned by:

Z
C
h � g =

NX
i=1

[h(xi)� h(xi�1)]g(Ai) (6.4)

where h(x0) = 0. Or equivalently,

Z
C
h � g =

NX
i=1

h(xi)[g
N
i � gNi+1] (6.5)

where gji = g(fxi; xi+1; � � � ; xjg); i � j and 0 otherwise.

An interesting property of the (Choquet) fuzzy integral is that if g is a probability
measure, the fuzzy integral is equivalent to the classical Lebesgue integral [32] and simply
computes the expectation of h with respect to g in the usual probability framework. The
fuzzy integral is a kind of averaging operator in the sense that the value of a fuzzy integral is
between the minimum and maximum values of the h function to be integrated. A number
of commonly used aggregation operators are special cases of the fuzzy integral [47][43]
{ for example, the min and max operators, the weighted sum and the ordered weighted

3Other kinds of fuzzy integrals include the Sugeno integral, t-conorm integrals, etc. [96]
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average. A distinct advantage of the fuzzy integral as a weighted operator is that, using
an appropriate fuzzy measure, the weights represent not only the importance of individual
information sources but also the interactions (redundancy and synergy) among any subset
of the sources. The fuzzy measures and fuzzy integrals have been applied successfully to a
number of multi-criteria decision tasks [43][48][104][95] and multiple information aggregation
for classi�cations [47][46][71][19][105].

Learning Fuzzy Measures

The introduction to fuzzy measures and fuzzy integrals above describes how they
are used to combine scores obtained along each AF dimension into an aggregated matching
score for a syllable. The intuitive interpretation of a fuzzy measure allows for the speci�ca-
tion of fuzzy-measure parameters based on knowledge of the importance and interactions of
AF dimensions. However, in practice, it is more useful to be able to learn the fuzzy-measure
parameters from data in order to discover the contribution patterns automatically.

During training the system has knowledge of which reference syllable in a pool of
canonical syllable forms in the lexicon best matches the input syllable. Such information
may be used to set up a supervised, discriminant training scheme for learning the fuzzy
measures from data by viewing the evaluation of the fuzzy integrals as a part of a syllable
classi�cation task. Di�erent algorithms have been proposed for learning fuzzy measures
using linear and quadratic programming approaches [47], heuristic measure updating rules
based on class confusions [105], as well as gradient-based methods [44]. The current system
adopts a gradient-based framework [44] for its e�ciency and scalability. Algorithms based
on two di�erent error criteria (minimum-squared-error and minimum-cross-entropy) have
been derived for the current task within the gradient-based framework. The algorithm and
derivations are described in Appendix C.

6.3.6 Within-syllable Single-AF-dimension Matching

Within each syllable, the matching score for a particular AF dimension is �rst
computed for each of the onset, nucleus and coda positions and then averaged. For the
vocalic nucleus, the computation of the matching score is straightforward since for each
pair of matched syllables there is a matched pair of vocalic nuclei in the reference and the
input syllables. At this stage the evaluation of the nucleus matching score considers the AF
deviation patterns from the canonical form in order to accommodate more pronunciation
variations than that provided by the canonical base-forms in the lexicon. This process is
roughly as follows. Let C denote the model representation (the canonical base-form in the
lexicon) of the segment along the AF dimension of interest, T , the actually realized form
as would be found in a manual transcript, and X, the acoustics. The AF matching score
is thus an evaluation of the model in the lexicon (the canonical base-form) based on the
acoustic input (for example, the posterior probability P (CjX)). Expanding this term we
obtain:

P (CjX) =
X
T

P (C; T jX) (6.6)
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Transcribed

Canonical Front Central Back

Front 83.6 8.1 0.4

Central 16.2 86.9 0.4

Back 0.2 5.0 99.1

Table 6.3: Example of transformation statistics from canonical to transcribed vocalic place
(front, central and back) for nuclei of unaccented syllables, derived from the Numbers95
corpus training set. Note that all numbers are in terms of percentage of the Transcribed
features as required by the formulation P (CjT; S) (see text for detail).

=
X
T

P (CjT;X)P (T jX) (6.7)

�
X
T

P (CjT; S)P (T jX) (6.8)

where S represents some summary statistics of X. The approximation in Equation 6.8
makes the assumption that S captures most of the important information contained in X
that a�ects the realization T of the canonical form in the model representation C. In the
current implementation, S includes information pertaining to syllable position and stress-
accent level of the containing syllable. As discussed in the previous chapters, these two
pieces of information are both essential factors to pronunciation variation and would likely
capture most of the relevant information. Given transcribed training data, the P (CjT; S)
can be estimated by simply counting the statistics of the transformation from canonical
to realized forms (cf. Table 6.3 for an example) for di�erent S (i.e.. di�erent syllable
position and stress-accent level combinations). The term P (T jX) is estimated from the
acoustic modeling (e.g. the AF classi�cation outputs). Thus, an AF matching score for each
canonical base-form (P (CjX)) is essentially a weighted average of the AF matching scores
of transcribed forms (P (T jX)), where the associated weights (P (CjT; S) are determined by
the context.

It should noted that this process only considers a limited range of pronunciation
variations. For example, it does not consider the joint variation patterns of adjacent seg-
ments. However, the multi-tier model does not preclude the modeling of more complicated
pronunciation variation phenomena. The simpli�ed modeling described above only re
ects
the scope of the current implementation.

The evaluation of the onset and coda is a little more complicated since there may
be insertions and deletions of segments, and the boundary between two adjacent syllables
within a polysyllabic word is not precisely known. To address this problem, di�erent align-
ments of the elements in the reference onset or coda are considered in conjunction with
the candidate consonantal segments in the input, and the alignment resulting in the fewest
mismatches is chosen. The penalty for mismatches considers deletions and insertions, as
well as substitutions. The substitution score is computed in the same fashion as for the
nucleus evaluation above and possible AF variations are taken into account with respect to
syllable position and stress accent. The deletion penalty is handled similarly by using the
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deletion statistics of the canonical AF segment (again, partitioned by syllable position and
stress-accent level) computed from the training data. For example, a canonical AF segment
with a particular syllable position and stress accent that is more likely to be deleted receives
a lower deletion penalty. The insertion penalty depends on two factors heuristically { the
duration of the inserted AF segment and its distance from the vocalic nucleus. Both of
these factors are modeled as an exponential function in the form d = 1� exp(�w ��) where
d is the insertion penalty and w � 0 a scaling parameter; � is either the duration of the
inserted segment or the (reciprocal of the) distance between the inserted segment and the
vocalic nucleus. Essentially, longer durations of inserted segments and shorter distances
from the vocalic nucleus yield larger insertion penalties. The parameters involved in these
heuristic penalty functions are tuned to the training data.

6.4 Summary

Evidence presented in previous chapters suggests that there are signi�cant ad-
vantages in incorporating articulatory-acoustic-feature and stress-accent information in a
syllable-centric representation of speech, particularly for e�cient modeling of pronunciation
variation phenomena in spontaneous speech. Based on such evidence the current chapter
proposed a multi-tier model of speech recognition as an alternative to conventional phone-
based models. Some key characteristics of the multi-tier model are:

� Speech is organized as a sequence of syllables, containing vocalic nuclei, and optionally,
onset and coda segments.

� Each syllable carries a certain level of accent (or lack of accent), which can be coarse
but capable of distinguishing among completely unaccented, fully accented and inter-
mediately accented syllables.

� Onset, nucleus and coda segments of each syllable are described by features along
several quasi-orthogonal, articulatory-acoustic feature dimensions, such as manner of
articulation, place of articulation, voicing, lip-rounding, etc.

� The lexicon contains only a single (or a small number of) canonical baseform repre-
sentation of words (or short phrases), each containing one or more syllables, described
by the canonical AF speci�cation and accent levels.

� During recognition the coverage of pronunciation variants is expanded by taking into
account statistical characterization of AF deviations from the canonical forms condi-
tioned on a number of contextual cues, such as syllable position and stress accent.

� The overall recognition process is viewed as a fusion of heterogeneous information
sources, distributed across time and space. The utility to recognition varies across
information sources and di�erential weighting is applied according to their relative
contribution and reliability of estimation.
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Certain useful information sources, such as higher-level linguistic processing, have not been
considered explicitly within the multi-tier model but only for simplicity of initial develop-
ments and not as a fundamental limitation.

To demonstrate the feasibility and functionality of the multi-tier model and to
understand its limitations and directions for improvements, a test-bed implementation was
developed to perform controlled experiments on a limited-vocabulary task. A detailed
description was provided for key components of the test-bed implementation:

� An array of MLP neural networks are trained to classify each frame of pre-processed,
log-compressed critical-band energy features along a number of AF dimensions.

� A Viterbi-like, dynamic-programming procedure is used to obtain a manner-based
segmentation of the speech signal from the frame-level output of manner classi�ca-
tion. The detected vocalic segments are interpreted as the vocalic nuclei of syllables.
Segmentation of various AF dimensions are synchronized to the manner-based seg-
mentation.

� An automatic stress-accent labeling system, trained on manually annotated stress-
accent labels (on a subset of the Switchboard corpus), is used to provide stress-accent
label for each syllable based on the manner-based segmentation; all input features are
automatically derived from the speech signal.

� Matches between input and word hypotheses from the lexicon are evaluated based on
syllable-level matching scores.

� For each (input and hypothesis) syllable pair, a matching score is computed along
each AF dimension of interest. AF transformation statistics from the canonical to
realized forms are computed from the training data and used to provide pronunciation
variation information conditioned on syllable position and stress accent.

� A fuzzy-measure and fuzzy-integral-based multiple information aggregation technique
is adopted to combine scores from various AF dimensions to form a single sylla-
ble matching score. The fuzzy-based technique captures the relative importance, as
well as interaction patterns, among any subset of AF dimensions. A gradient-based,
discriminant-training algorithm was developed (cf. Appendix C) to learn the fuzzy
measures from the training data.

The following chapter will describe controlled experiments performed on the test-
bed implementation as well as detailed analysis of the results.
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Chapter 7

Multi-tier Recognition {

Experiments and Analysis

The previous chapter described a model of speech recognition based on syllable,
articulatory-acoustic-feature and stress-accent information. The model uses the syllable
as the binding unit for various linguistic tiers of spoken language. Although it has many
limitations, the proposed model potentially provides a viable direction for representing
spontaneous speech in a parsimonious fashion. The proposed model raises a number of
questions regarding its functionality and e�ectiveness. To obtain some preliminary answers
a test-bed implementation was developed to perform experiments on a limited-vocabulary
task.

This chapter describes a number of controlled experiments performed on the test-
bed implementation using both real (i.e., automatically derived) and fabricated (derived
from a manual transcript) data, and discusses the results addressing the questions posed in
the previous chapter. As previously noted the implementation was designed to provide a
simple, transparent test-bed for performing controlled experiments and analysis rather than
to develop a scalable, high-performance system. Consequently, the processing in some of the
system components was simpli�ed. The experimental analysis and conclusions drawn from
the results of this analysis must take this limitation into account. For example, no higher-
level processing was incorporated, and only limited (but the most relevant) conditioning
was considered for pronunciation variation modeling.

7.1 Experimental Conditions

As described in the previous chapter (cf. Section 6.3), the experiments were per-
formed on materials from the OGI Numbers95 corpus [12] consisting of digits and numbers
extracted from spontaneous telephone dialogues. In addition, word-boundary information
was provided to the recognizer to reduce the complexity involved in hypothesis search and
to restrict word-error forms to substitutions (for simplicity of analysis). The training data
consisted of 3233 utterances (12510 words) from the training set and 357 utterances (1349
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words) from a separate cross-validation set. Testing was performed on 1206 utterances
(4669 words) from the development test set.

Because of several simplifying assumptions the system was not expected to achieve
optimal performance. To gain insights into the sources of recognition error and to be able to
focus on particular aspects of the multi-tier model, the experiments described in this section
were performed not only on entirely automatically derived data, but also on fabricated data
derived from manual transcription, and on a combination of automatic and fabricated data.
Details of these three data conditions are described �rst and will be continually referred to
throughout the subsequent description of the controlled experiments.

The �rst data condition, which will be referred to as the \baseline" in the remainder
of this chapter, used all automatically derived data from the acoustic signal, including the
classi�cation and segmentation of various AF dimensions and estimation of stress-accent
level. This condition establishes how far the current implementation is from optimum and
assesses penalties associated with various simplifying assumptions.

The \fabricated" data condition used AF \classi�cation" scores and segmentation
derived from the manual phonetic transcription and a �xed phone-to-AF mapping (cf. Ta-
ble 3.1). In this case fabricating AF \classi�cation" results amounts to assigning, for each
AF dimension, a maximum output for the reference feature of each frame and a minimum
output for all other features. This condition should make the system perform nearly opti-
mally, and hence, the system performance in this condition can serve as an upper-bound of
the performance of the current implementation.

The third data condition, referred to as the \half-way house," used automatically
computed AF-classi�cation results but \fabricated" AF segmentation and the a vocalic/non-
vocalic segment labeling, derived from manual transcription. This condition serves to assess
the contributions of accurate AF segmentation and detection of vocalic nuclei for syllables.

Note that in all three conditions stress-accent estimation was computed using
the AutoSAL system (adapted from the Switchboard corpus to OGI Numbers95 corpus).
Unless otherwise noted, the AF dimensions considered in the experiments are (1) manner
of articulation, (2) place of articulation (manner-independent and manner-speci�c), (3)
voicing, (4) vocalic height, (5) lip-rounding, (6) spectral dynamics, (7) vowel tenseness (cf.
Section 3.1 for a brief review of these feature dimensions).

7.2 Overall System Performance

The overall system performance is evaluated by computing word-error rates asso-
ciated with each data condition (cf. Table 7.1). To obtain a better assessment of the perfor-
mance, the error rates are computed with di�erent tolerance (top-N -match for N = 1; 2; 5)
where \top-1-match" refers to the criterion that the correct word must be the top-matched
hypothesis to receive a \correct" score, and \top-N -match" (for N > 1) refers to that the
correct word must be among the top N hypotheses to receive a \correct" score. For the
baseline condition, 35% of the misrecognized words (top-1-match) are actually the second
top match and 69% are among the second through �fth top matches. A similar pattern is
also observed in the recognition results of the half-way house and fabricated data conditions.
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Word-Error Rate%

Top-N-match Baseline Half-way House Fabricated

1 5.59 1.97 1.29

2 3.64 1.46 1.05

5 1.76 0.86 0.47

Table 7.1: Overall word-error rates (percentage) on the development test set for the three
data conditions. Three di�erent levels of tolerance (the correct word being within top-1-
match, top-2-match and top-5-match) are shown.

Under all three conditions, word-error rates of polysyllabic words are generally
higher than that of the monosyllabic words, and this gap is especially large for the baseline
condition in which syllable detection (the determination of vocalic nuclei) is much less ac-
curate than the other two conditions (cf. Table 7.2 for the baseline accuracy of each word
and the number of times it occurs in the test set). This pattern is very di�erent than that
observed on the Switchboard-corpus recognition output using conventional ASR systems
(cf. Figure 2.5 in Chapter 2), where polysyllabic words usually exhibit better recognition
performance than monosyllabic words. This di�erence re
ects the explicit modeling of the
syllable in the multi-tier model and the greater word-error rates associated with polysyllabic
forms are partially an artifact of the uneven distribution of monosyllabic and polysyllabic
words. Since ca. 79% word tokens in the data set are monosyllabic, the training procedure
that optimizes for overall word accuracy trades o� penalties for syllable insertion and dele-
tion in favor of monosyllabic words (e.g., by assigning relatively lower penalties to syllable
insertions relative to syllable deletions).

The overall word-error rate (top-1-match, cf. Table 7.1) of the half-way house
condition (1.97%) is much closer to the fabricated data condition (1.29%) than to the
baseline (5.59%). This suggests that the additional information incorporated into the half-
way house condition is extremely important for recognition in the current implementation.
As described in the previous section, this extra information pertains to AF segmentation, as
well as to knowledge of whether a segment is vocalic (or not), which facilitates more accurate
syllable detection. The low word-error rates for the fabricated and half-way house data
conditions suggest that if the initial AF classi�cation and segmentation can be performed
accurately, the implementation based on the multi-tier model will be able to provide a
reasonable performance on this constrained task. It also suggests that relying on a single
initial segmentation may be too restrictive and no hard commitment should be made at the
early stages of recognition.

From the trained fuzzy measures, Shapley scores (cf. Section 6.3.5) can be com-
puted to express the contribution of each AF dimension to the overall recognition. Fig-
ure 7.1 shows the mean Shapley scores derived from the trained fuzzy measures of the
baseline condition (average over 15 random trials, along with the range of �1 standard
deviation). Recall that each Shapley score, vi, represents an average value of the contri-
bution that the ith AF dimension alone provides to the combined recognition score. This
average value is computed by considering the contribution of this dimension occuring in all
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Monosyllabic Polysyllabic

Word label Count Accuracy% Word label Count Accuracy%

oh 373 97.6 zero 211 84.4

one 597 97.0 seven 349 92.0

two 495 99.0 eleven 15 60.0

three 420 98.1 thirteen 11 54.5

four 358 94.4 fourteen 12 83.3

�ve 394 98.0 �fteen 19 89.5

six 302 98.3 sixteen 9 88.9

eight 317 96.5 seventeen 9 77.8

nine 390 97.7 eighteen 7 85.7

ten 29 72.4 nineteen 9 88.9

twelve 11 0.0 twenty 82 79.3

thirty 59 72.9

forty 39 87.2

�fty 41 78.0

sixty 22 90.9

seventy 23 87.0

eighty 23 69.6

ninety 23 82.6

hundred 20 75.0

Total 3686 97.0 Total 983 84.8

Table 7.2: Overall word accuracy of the baseline data condition for each word with its num-
ber of occurrences in the development test set. The words are partitioned into monosyllabic
and polysyllabic forms for comparison.
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possible combinations of AF dimensions. A large value of Shapley score implies the asso-
ciated AF dimension provides signi�cant utility for recognition; however, a small value of
Shapley score does not necessarily imply that the associated AF dimension is of no utility
since it may still exhibit a signi�cant positive interactions with other AF dimensions. The
magnitude of the interactions can be ascertained by computing the interaction indices (cf.
Section 6.3.5). Another reason for caution in interpreting Shapley scores and interaction
indices is that they were derived from fuzzy measures trained on real AF dimension scores
that often contained a certain amount of error. Therefore, the derived Shapley scores and
interaction indices re
ect not only the inherent contribution that individual AF dimensions
provide to recognition, but also the level of reliability of the AF-dimension scores. For ex-
ample, if a particular AF dimension is very important for recognition but its matching score
estimate is unreliable, it would be very unlikely to be associated with a large Shapley score
and interaction indices. From Figure 7.1 it can be observed that both manner and place
of articulation have above-average Shapley scores, while lip-rounding and voicing have far
below-average scores. This suggests that both manner and place dimensions provide signi�-
cant contribution to recognition, while lip-rounding and voicing dimensions may not have as
much utility, depending on how they interact with other AF dimensions. This observation
intuitively makes sense, as the manner and place dimensions are expected to provide the
most information pertaining to lexical access.

To gain further insights into the interaction of various AF dimensions in performing
recognition, the interaction indices (cf. Section 6.3.5) can be computed for any subset of the
AF dimensions from the trained fuzzy measures. Figure 7.2 shows the two-way interaction
indices1 computed from the trained fuzzy measures of the baseline condition. For each pair
of AF dimensions, a square (below the minor diagonal) has the corresponding interaction
index, color-coded such that red indicates positive interaction (synergy), blue indicates
negative interaction (redundancy), and white indicates no interaction. For example, the
positive interaction between voicing and manner (+0.096) suggests these two dimensions,
when considered together, contribute more to recognition than when they are considered
separately. Together with Shapley scores, the interaction indices can be used to infer the
utility associated with each AF dimension. For example, the \lip-rounding" dimension has
a relatively small Shapley score and mostly small or negative interactions with other AF
dimensions, and thus may be removed from consideration without having a great impact
on the system performance. On the other hand, although the voicing dimension has a small
Shapley score, it may still have signi�cant utility for recognition because of the large positive
interaction between voicing and manner (as well as place).

7.3 Testing the Contribution of Stress Accent

In order to ascertain the contribution of stress-accent information, particularly
its utility in capturing the pattern of AF deviations from canonical, several experiments
were performed with and without conditioning the AF statistics on stress-accent level. For
each of the three data conditions, Table 7.3 shows word-error rates associated with each of

1Higher-order interactions are also computed but they are more di�cult to display and are omitted here.
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Figure 7.1: Mean Shapley scores computed from the trained fuzzy measures of the baseline
condition for di�erent AF dimensions, averaged over 15 random trials. The error-bar asso-
ciated with each score indicates the range of �1 standard deviation. The mean scores sum
to 1.0.
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Figure 7.2: Mean two-way interaction indices computed from the trained fuzzy measures
of the baseline condition, averaged over 15 random trials. The color-coding represents the
magnitude of the interaction where positive and negative interaction indices indicate synergy
and redundancy of information contained in the pair of AF dimensions, respectively. The
mean value of each interaction index and the standard deviation (in parenthesis) are also
shown.
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Use Stress-accent Word-Error Rate%

Onset Nucleus Coda Baseline Half-way House Fabricated

F F F 5.98 2.29 1.33

F T T 5.85 2.12 1.35

T F T 5.95 2.42 1.33

T T F 5.87 2.29 1.35

T T T 5.59 1.97 1.29

Table 7.3: Comparison of word-error rates with and without incorporating stress-accent
information at the onset, nucleus and coda positions in the pronunciation modeling for the
three data conditions. An \F" indicates no stress-accent information used at the corre-
sponding syllable position while \T" indicates using stress-accent information.

the �ve experiments. Each experiment di�ers from the others in whether the stress-accent
estimation is included in the pronunciation-variation statistics at syllable onset, nucleus and
coda. An \F" at a syllable position indicates that the pronunciation-variation statistics at
that syllable position were computed without conditioning on the stress-accent level. That
is, the S in P (CjT; S) (Equation 6.8) only includes syllable position information but not
stress-accent levels. This was accomplished by computing P (CjT; S) (cf. Section 6.3.6)
using all material at each syllable position in the training set, irrespective of stress-accent
level. On the other hand, a \T" indicates that the pronunciation variation statistics were
conditioned on both syllable position and stress-accent level. Therefore, the �rst experiment
(\F",\F",\F") does not use stress-accent information at all in modeling the AF variation
patterns, while the last experiment (\T",\T",\T") is simply the regular sort of processing.
The other experiments use stress-accent estimation at some syllable positions but not at
others.

From Table 7.3 we observe that stress-accent information appears to have greater
utility for the baseline and half-way house data conditions than for the fabricated-data
condition. This result suggests that stress accent contains information complementary to
the initial AF processing, especially when AF classi�cation is sub-optimal. However, the
magnitude of reduction in word error when using stress-accent information is not very large,
most likely due to the relatively canonical pronunciation and small stress-accent variation
in utterances contained in this corpus. A greater improvement from using stress-accent
information may be expected if the experiments were performed on more comprehensive
spontaneous speech material such as the Switchboard corpus [42].

7.4 Testing Pronunciation Modeling

The previous section described experiments for quantitatively assessing the contri-
bution of stress-accent information to recognition by the systematic control of pronunciation
variation modeling. In this section the overall e�ect of pronunciation variation modeling is
analyzed (cf. Table 7.4). The experiments described in this section bear some resemblance
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Pronunciation Variation Word-Error Rate%

Onset Nucleus Coda Baseline Half-way House Fabricated

F F F 7.03 2.81 1.76

F F T 6.15 2.31 1.50

F T F 7.03 2.70 1.56

F T T 5.91 2.16 1.33

T F F 6.77 2.63 1.82

T F T 5.91 2.21 1.61

T T F 6.70 2.55 1.63

T T T 5.59 1.97 1.29

Table 7.4: Comparison of word-error rates with and without incorporating pronunciation
variation statistics at the onset, nucleus and coda positions for the three data conditions.
An \F" indicates no pronunciation variation statistics used at the corresponding syllable
position while \T" indicates using the pronunciation variation statistics.

to the ones in the previous section. Again, experiments were performed for each data con-
dition and the pronunciation-variation statistics applied or withheld for the various onset,
nucleus and coda positions. In this case, if an experiment did not apply pronunciation vari-
ation modeling to a speci�c syllable position (e.g., an \F" in Table 7.4), the P (CjT; S) (cf.
Equation 6.8) was simply represented by an identity matrix (i.e. the realized [transcribed]
form was assumed to be the same as the canonical form for each AF).

Table 7.4 shows that incorporating pronunciation variation modeling reduces word-
error rates by 20% to 30% for the three data conditions. Since this performance improvement
is observed even for the fabricated data condition where acoustic modeling is assumed to be
near-optimal (using data derived from manually annotated phonetic transcript), it appears
that having very accurate acoustic modeling alone is not su�cient, and that some form of
pronunciation variation modeling is required to achieve better recognition performance.

More interestingly, the utility of pronunciation variation modeling (as re
ected in
the amount of word-error reduction) di�ers across syllable positions. In all three condi-
tions, the onset position has the smallest word-error rate di�erence (between using, and not
using, pronunciation variation information), when the nucleus and coda positions are held
constant { both using pronunciation variation statistics. This suggests that onset elements
of syllables are the most canonical, conforming to the pronunciation variation patterns of
spontaneous speech described in Chapters 4 and 5. In contrast, syllable nuclei and codas
exhibit greater variation in pronunciation, and therefore, bene�t more from pronunciation
variation modeling.

Just as di�erent syllable positions bene�t to varying degrees from pronunciation
variation modeling, so do di�erent words in the corpus. Table 7.5 presents word-error rates
(and relative error reductions) of each of the three data conditions, partitioned by whether
or not a word is \canonically" pronounced (according to the manual phonetic transcripts)2.

2There are approximately 17% word tokens pronounced (transcribed) non-canonically.
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Word Pronunciation Word-Error Rate%
Canonicality Variation Used Baseline Half-way House Fabricated

Canonical F 4.94 1.01 0.03

Canonical T 4.01 0.85 0.03

Error Reduction% 18.8 15.8 0

Non-Canonical F 17.15 11.51 10.14

Non-Canonical T 13.27 7.38 7.51

Error Reduction% 22.6 35.9 25.9

Table 7.5: Comparison of the e�ects of pronunciation variation modeling on word-error rates
for the canonically and non-canonically realized words. An \F" indicates no pronunciation
variation statistics is used while a \T" indicates the pronunciation variation statistics is
used at all syllable positions.

For the non-canonically pronounced words, all three conditions exhibit signi�cant error re-
duction using pronunciation variation statistics. However, for the canonical word instances,
since the fabricated data condition has already achieved almost perfect recognition, no
further error reduction is observed. For the baseline and half-way house conditions that
make use of automatically derived data, there are signi�cant error reductions even for the
canonical word instances (although smaller than that for the non-canonical words). This
suggests that either the pronunciation variation statistics is able to partially compensate for
inaccuracies in the initial AF classi�cation and segmentation, or the manual transcription
contains errors (so that some non-canonical word instances are considered as canonical).

In summary, results described in this section showed that there is a signi�cant
advantage in incorporating pronunciation variation modeling in recognition, even when
acoustic modeling is near optimal. This is especially true for the non-canonically pro-
nounced words. Since a very large proportion of words were pronounced canonically in the
Numbers95 corpus, a greater utility of pronunciation variation modeling may be observed
by extending the experiments to a corpus that contains a high proportion of non-canonical
pronunciations (e.g. the Switchboard corpus).

7.5 Testing the Contribution of Syllable Position

The results described in the previous sections show that di�erent constituents
within the syllable respond di�erently to pronunciation variation modeling. In this section
we test the contributions of the onset, nucleus and coda for word recognition. The current
implementation allows us to neutralize information pertaining to syllable position while
evaluating within-syllable matching for a speci�c AF dimension (cf. Section 6.3.6). This was
achieved by setting the matching score for a particular syllable position to a constant value
regardless of what the inputs and references were. For example, for testing the contribution
of the onset, all onset matching scores (or penalty scores) were set to a constant value (e.g.
0.5) so that no useful information could be gained by looking at the onset scores.
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Neutralized Syllable Word-Error Rate%
Position Baseline Half-way House Fabricated

Onset 15.70 11.27 9.70

Nucleus 20.22 13.28 5.95

Coda 10.13 6.60 3.92

None 5.59 1.97 1.29

Table 7.6: Comparison of the e�ect on word-error rate by withholding (neutralizing) the
contribution from each of the onset, nucleus and coda positions.

Table 7.6 shows word-error rates associated with di�erent syllable position informa-
tion neutralized. The \None" case is simply the standard system result. It can be observed
that neutralizing the \coda" information results in the least increase in errors relative to
the standard system, for all three data conditions. This suggests that the coda position
contributes the least to lexical access for this particular task. Neutralizing \nucleus" in-
formation results in a larger increase in errors relative to neutralizing \onset" information
for both the baseline and half-way house conditions (but not for the fabricated condition).
This suggests that the baseline and the half-way house conditions rely more heavily on
information contained in vocalic nuclei than does the fabricated condition.

7.6 Summary

This chapter has described a number of controlled experiments performed on the
Numbers95 corpus using the test-bed implementation of the multi-tier model introduced
in the previous chapter. Experiments were partitioned into three separate data conditions:
(1) a baseline condition with all automatically derived data, (2) a fabricated condition
with almost all information derived from manual phonetic transcripts except stress-accent
estimates, and (3) a half-way house condition where some information was automatically
derived from the acoustic signal and some information (the initial segmentation and knowl-
edge of whether a segment being vocalic or not) was derived from manual transcription.

Some signi�cant results obtained from the experiments are as follows:

� The overall system performance for the half-way house condition was much closer to
the fabricated condition than to the baseline, suggesting accurate segmentation and
knowledge of vocalic nuclei is very important for recognition within this framework.

� Shapley scores associated with various AF dimensions and interaction indices of sub-
sets of AF dimensions were computed from the trained fuzzy measures, indicating
the relative contribution of each AF dimension to overall recognition, as well as the
synergy and redundancy of information contained in subsets of AF dimension scores.
This provides a potentially useful technique for feature selection.

� The utility of stress-accent information in word recognition was ascertained by per-
forming experiments either with or without conditioning AF statistics on stress-accent
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information. Results showed that word recognition performance improved signi�cantly
when stress accent was incorporated, in the baseline and the half-way house conditions.
However, stress-accent information did not improve word recognition performance for
the fabricated condition, which presumably has near-optimal acoustic modeling.

� The contribution of pronunciation variation modeling was assessed by performing
recognition experiments while withholding pronunciation variation statistics associ-
ated with some or all of the onset, nucleus and coda positions within each sylla-
ble. Signi�cant improvements in word recognition were observed in all three data
conditions when pronunciation variation modeling was used, even for the fabricated
condition, suggesting the advantage of modeling pronunciation variation explicitly
even when acoustic modeling was near optimal. Results also showed that syllable
onsets appear to be the most canonical and bene�ted the least from pronunciation
variation modeling, while codas are the least canonical and bene�ted the most from
pronunciation variation modeling. It was also shown that pronunciation variation
modeling provides greater gain in word-recognition performance for words that were
non-canonically pronounced than words that were canonically realized, but the di�er-
ence was smaller for the baseline and halfway-house conditions than for the fabricated
data condition.

� The test-bed implementation allowed explicit testing of the contribution of the onset,
nucleus and coda to word recognition, by neutralizing input information associated
with each of the syllable positions separately. Results showed that onsets and nuclei
provided greater contributions to lexical access than codas, suggesting a di�erential
treatment of di�erent syllable positions may be appropriate.

The experiments and analysis described in this chapter show that there may be
signi�cant advantages of incorporating information from various linguistic tiers, such as
articulatory-acoustic features and stress accent, within a syllable-centric model of speech.
Pronunciation variation modeling within this framework was e�ective in improving recog-
nition performance of spontaneous speech. These results also suggest promising directions
that could be the focus of future development.
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Chapter 8

Conclusions and Future Work

Relying on the conventional phone-based model of speech and statistical pattern
recognition techniques, current-generation automatic speech recognition systems are able to
perform well on many tasks with certain constraints. However, the performance of state-of-
the-art ASR systems still falls far short of expectation on unconstrained, large vocabulary,
spontaneous speech tasks. At least part of the problem lies in the potential mismatch be-
tween assumptions made by the conventional phonemic-beads-on-a-string model of speech
and the reality of spoken language, particularly with respect to pronunciation variation
phenomena of spontaneous, natural speech. In Chapter 1 it was suggested that an accu-
rate and e�cient alternative model of speech should incorporate information from several
linguistic tiers both below and above the phone level; successful recognition may be a re-
sult of converging evidence from various sources. An approach was outlined for �nding
signi�cant elements and structure in speech, and for seeking an alternative model of speech
beyond the conventional ones. The remaining chapters described the �rst few steps along
that approach. This concluding chapter �rst summarizes the main �ndings of the preced-
ing chapters along with further discussion, then describes some promising future research
directions, and ends with some concluding thoughts in the �nal section.

8.1 Summary and Conclusions

8.1.1 Linguistic Dissection of LVCSR Systems

The �rst step toward �nding a better alternative model of speech was to identify
signi�cant factors underlying recognition errors made by state-of-the-art ASR systems on a
large vocabulary, spontaneous speech discourse { the Switchboard corpus. The details of the
linguistic dissection of LVCSR systems were described in Chapter 2. A statistical analysis
was performed on the system outputs at both the word and phonetic-segment levels for both
unconstrained recognition and forced-alignment systems, with respect to dozens of linguistic
and acoustic parameters. It was found that a correlation exists between word-error rate and
phone-error rate across the evaluation sites, suggesting a dependency of word recognition
on accurate phone classi�cation and hence on accurate acoustic modeling. It was also found
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that there is a signi�cant correlation between word-recognition performance and the average
number of pronunciations per word found in the systems' output. Although this comparison
did not control for all parameters across the systems, a general dependency of recognition
performance could be discerned on the level of sophistication of the pronunciation lexicon.
Furthermore, the average number of pronunciations per word found in the systems' output
(between 1 and 2.5) was an order of magnitude smaller than that found in the manually
annotated transcription, indicating an apparent gap between models and observed data.

Many other linguistic parameters were found to signi�cantly a�ect word recogni-
tion performance. For example, certain types of syllable structure (e.g. vowel-initial forms)
exhibit much higher word-error rates than others (e.g. consonant-initial and polysyllabic
forms). Prosodic features, such as stress accent and speaking rate, also a�ect word recog-
nition performance. Systems' tolerance to articulatory feature errors varies as a function
of position within the syllable and particular feature dimension of interest. These �ndings
provided valuable information on the signi�cant factors underlying recognition errors that
the subsequent development should focus on.

8.1.2 Detailed Analysis of the Elements of Speech

Chapter 3 focused on a more granular representation of the phonetic tier of speech
{ articulatory-acoustic features. It �rst reviewed the background of articulatory-acoustic
features, surveyed previous research using articulatory-like features and described some of
the advantages of using AFs often cited by other authors, particularly the representational

exibility. The rest of the chapter concentrated on the computational aspect of automatic
AF processing, providing further evidence for incorporating AFs into speech recognition. A
TFM/MLP neural-network-based AF-classi�cation system was described in detail illustrat-
ing feasibility of accurate AF extraction from the acoustic signal, as well as demonstrating
the utility of extending the AF classi�cation to a system for automatic phonetic labeling.
Further experiments were performed on the more comprehensive NTIMIT corpus, and in
particular, an "elitist" approach was presented to delineate regions of speech with high
con�dence in the AF classi�cation and a manner-speci�c training scheme was described for
enhancing place-of-articulation classi�cation, potentially useful in conjunction with accu-
rate manner classi�cation. The cross-linguistic transferability of AF training was assessed
quantitatively by testing (American English) NTIMIT-corpus-trained AF-classi�cation net-
works on a Dutch corpus (VIOS). Experimental results showed that certain AF dimensions
(e.g. voicing and manner of articulation) transfer better than others (e.g. place of ar-
ticulation), suggesting that caution must be exercised when attempting to transfer ASR
systems across languages. Further evidence supporting the use of AFs was provided by the
robustness of AFs, as demonstrated in experiments involving speech in noisy backgrounds,
particularly when the AF-classi�cation system is trained on speech embedded in a variety
of noise backgrounds over a wide dynamic range of SNRs (\mixed-training"). Incorporating
AF classi�cation as an intermediate stage often yields signi�cant improvements to phonetic
classi�cation; system trained under the \mixed-training" scheme not only performed well
under noise conditions included in the training but also generalized to superior performance
to many novel noise conditions.
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Chapter 4 was devoted to the analysis of a suprasegmental unit of speech { the
syllable. It described the central role played by the syllable in spoken language and provided
evidence to support the syllable being the binding unit of speech, around which information
at various linguistic tiers is organized. The stability and importance of the syllable in speech
perception was emphasized by several sources of evidence: (1) statistics from spontaneous
speech corpora, and (2) acoustics-based syllable detection and segmentation, as well as
(3) the signi�cance of syllable duration in speech perception. Through concrete examples
of word instances extracted from spontaneous speech material, syllable-level information
was shown to be very helpful in describing the observed pronunciation variation patterns.
In particular, the analysis showed that the nuclei and codas of syllables are more likely
to deviate from canonical pronunciation than the onsets. Moreover, the common types
of deviation patterns (substitution, insertion and deletion) di�er with respect to position
within the syllable. The intimate relationship between articulatory-acoustic features and the
syllable was reinforced by the signi�cant gain in AF and phonetic classi�cation accuracies
when the syllable position information was incorporated for speech in both clean and noisy
backgrounds. The evidence from this chapter supports an explicit incorporation of the
syllable as the fundamental binding unit in models of speech recognition. It also illustrated
a speci�c structural framework of speech, through which information from various linguistic
tiers can be linked to each other.

Chapter 5 focused on an important prosodic feature of spoken English { stress
accent, and especially on the impact of stress-accent level on pronunciation variation in
spontaneous speech. In the survey of background information, the perceptual basis of stress
accent and the intimate relationship between stress accent and vocalic identity were dis-
cussed. The interdependency of vocalic identity and stress-accent levels [63] is a signi�cant
departure from the traditional linguistic perspective, but could potentially prove very useful
for automatic speech processing [58]. The impact of stress accent on pronunciation variation
in spontaneous speech was demonstrated �rst by using examples of word instances extracted
from the Switchboard corpus and then by using overall deviation patterns from canonical
pronunciation computed over a subset of the Switchboard material that has been manu-
ally labeled at the prosodic stress-accent level. A signi�cant contrast was observed among
di�erent stress-accent levels when patterns of pronunciation deviation from the canonical
were partitioned by stress-accent level, in conjunction with syllable position. Furthermore,
detailed statistics of the pronunciation deviation patterns from the canonical were com-
puted based on the realization of articulatory-acoustic features, with respect to syllable
position and stress-accent level. Such results demonstrated that pronunciation variation of
spontaneous speech can be largely captured via the systematic relationship among the AFs,
syllable structure and stress accent in a parsimonious fashion, and these �ndings formed
the basis of an alternative model of speech. In addition, a neural-network-based system
was developed to automatically label stress accent for spontaneous speech and experimen-
tal results showed that the automatic system was able to perform at a level comparable
to a human transcriber. This development demonstrated the feasibility of automatically
extracting prosodic stress-accent information from the acoustics and provided useful infor-
mation for assessing the contribution of di�erent cues for stress-accent determination. It
was found that, in contrast to the traditional linguistic framework, the most salient features
for stress accent are related to energy, duration and vocalic identity. Pitch-related features
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were found to play only a minor role.

8.1.3 An Alternative Model of Speech

The analysis and experiments presented in Chapters 3-5 provided evidence in sup-
port of an alternative model of speech, incorporating articulatory-acoustic features, syllable
structure and stress accent. Chapter 6 described a multi-tier model based on this framework.
The multi-tier model views speech as organized at the syllable level, with each syllable in an
utterance capable of manifesting a distinctive level of stress accent. A syllable consists of a
vocalic nucleus and optionally a consonantal onset and coda constituents, which are char-
acterized by features along several quasi-orthogonal AF dimensions. Much pronunciation
variation is captured parsimoniously by AF deviation patterns from the canonical within
the context of syllable position and stress accent. Recognition using the multi-tier model
is viewed as combining evidence from heterogeneous information sources across time and
space.

A test-bed implementation was built based on the multi-tier model to perform
controlled word-recognition experiments on a limited-vocabulary task. The implementation
made a number of simplifying assumptions in order to provide a simple and transparent
system to facilitate convenient diagnostic analysis, rather than to build a scalable, high-
performance system. Major components of the system are the initial AF classi�cation
and manner-based segmentation, stress-accent labeling, word-hypothesis scoring based on
syllable alignments, computing individual AF dimension scores and their combination for
syllable matching. A fuzzy-measure/fuzzy-integral-based multiple-information-aggregation
approach was adopted to combine matching scores from various AF dimensions, which
can take into account the relative importance and interaction of various AF dimensions.
The di�erential contributions associated with the features can be interpreted using the
automatically learned fuzzy-measure parameters. The statistic patterns of AF-deviations
from canonical realization can be obtained from the training data and used in the evaluation
of individual AF matching scores at the onset, nucleus and coda positions within the syllable,
to facilitate syllable-position and stress-accent-based pronunciation variation modeling.

A number of controlled experiments were performed on the Numbers95 corpus
using the test-bed implementation of the multi-tier model. To enable informative diagnos-
tic analysis, three di�erent data conditions were adopted: (1) a baseline condition with
entirely automatically derived data, (2) a fabricated data condition with most information
derived from manual transcription, and (3) a half-way house condition where the initial
segmentation and the knowledge of whether a segment is vocalic or not were derived from
the manual transcription (with all other features automatically computed). Analysis of the
overall system performance showed that the half-way house condition had a performance
very close to that of the fabricated data condition, highlighting the importance of accu-
rate phonetic segmentation and knowledge of vocalic location. This result conformed, from
a di�erent perspective, the importance of segmentation and syllable position information
as observed in previous research. For example, in their Time Index Model experiments,
Konig and Morgan [77] observed that word-error rate could be greatly reduced if accurate
segmental boundary information were available. In another study, Wu and colleagues re-
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ported signi�cant gains in word recognition performance by integrating syllable boundary
information into speech recognition systems [145].

Shapley scores and interaction indices of various AF dimensions were computed
from the trained fuzzy measures, providing information pertaining to the relative contribu-
tions to word recognition associated with various AF dimensions, as well as the redundancy
and synergy among subsets of AF dimensions. The result agreed with the intuition of
di�erent utility being provided by various AF dimensions to recognition and may be a po-
tential basis for feature selection. Results from recognition experiments with and without
using stress-accent estimation showed that stress-accent information was particularly help-
ful when the initial AF processing was sub-optimal such as when automatically derived data
were used instead of fabricated data. The contribution of pronunciation variation model-
ing was assessed at di�erent positions within the syllable. It was found that incorporating
pronunciation variation statistics signi�cantly reduced recognition error for all three data
conditions and utilities of the pronunciation variation modeling were greater at the nucleus
and coda positions than at the onset position. This result suggests that it is important to
have models of pronunciation variation even when acoustic modeling is near optimal (as in
the fabricated data condition). Finally, by neutralizing information from onsets, nuclei or
codas separately di�erential contributions from the three positions were ascertained and it
was found that onsets and nuclei are more important than codas for word recognition by
machine.

8.2 Future Directions

This thesis has described a few important steps toward the development of speech
recognition models and systems that would perform as well as humans do under many
realistic conditions, using the approach outlined in Chapter 1. Much remains to be done.
This section describes a few promising directions of future research, as well as possible
applications of insights and ideas generated from this current work to other approaches.

8.2.1 Incorporation into Conventional Systems

It should be possible to incorporate some of the insights and ideas from the current
work into current-generation ASR systems without an overhaul of the conventional model
of speech that such systems are based on. One way to accomplish this is through a dynamic
pronunciation modeling framework, such as the one developed by Fosler-Lussier in his the-
sis [36]. Such a method is most suitable in a multi-pass system where an N-best list or
a recognition lattice is rescored by a dynamic dictionary containing pronunciation models
produced by statistical decision trees based on contextual information from the output of
the previous pass [36][37]. Within such a framework, quasi-independent estimation of stress
accent and articulatory-acoustic features can be taken into consideration by decision trees
(or other modeling techniques) to provide more accurate conditioning for pronunciation
variation. Such an approach is likely to provide some gain in recognition performance but
may not be able to take full advantage of AF and prosodic information since the models
are still constrained by limitations of using the phone as the fundamental unit of speech.
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Another perspective that may be taken is that, instead of generating di�erent
pronunciation models given the context, the system can re-interpret acoustic modeling re-
sults depending on the recognition context, while keeping pronunciation models relatively
canonical and simple. This is, in fact, the approach taken by the current work in the multi-
tier model and the test-bed implementation where detailed AF classi�cation results are
re-interpreted depending on syllable-position and stress-accent context. How this approach
may be incorporated into a conventional system would depend on the particular implemen-
tation. A combination of the two perspectives may be the most desirable approach. Since
a system incorporating additional information such as AF and stress-accent information
is likely to have di�erent characteristics from a purely conventional phone-based system,
combining the two should, in principle, yield superior (or at the very least not inferior)
performance than that of either one alone.

8.2.2 Further Analysis and Experiments

The exploratory analysis and experiments described in Chapters 3-5 concentrated
on the roles played by AF, syllable structure and stress accent in modeling spoken English.
Although these primary components, interacting within a systematic structure, are able to
provide an accurate and parsimonious description of pronunciation variation in spontaneous
speech, it would be useful to extend the detailed analysis to other parameters. For example,
one may consider speaking rate, intonation, word predictability, hesitation and dis
uency,
dialectal accent, etc., many of which have been shown to be important factors in
uencing
the speci�c phonetic realization of speech (e.g. [36][51][119]). It would be important to
ascertain how much pronunciation variation due to these various factors has been captured
by such factors as syllable position and stress accent. It would also be interesting to perform
comparable analysis on di�erent languages other than English, in particular on languages
that have very di�erent prosodic accent characteristics (such as Japanese) and on those
languages that make use of certain linguistic properties di�erently from English (such as
tonal languages where the tone is used for lexical distinction). It is expected that these
other languages would have some di�erent manifestation of detailed pronunciation variation
patterns and have di�erent parameters to provide contextual information. However, it is
likely that a similar structural organization (with possibly di�erent elements) is shared in
common across di�erent languages and a similar framework to the one described in the
current work applies.

One of the contributions of the test-bed implementation and controlled experi-
ments is the identi�cation of those aspects of the multi-tier model which would bring the
most bene�t to overall recognition. For example, through the comparison of recognition
performance among the baseline, fabricated and half-way house data conditions, the ini-
tial phonetic segmentation and the identi�cation of vocalic nuclei of syllables exhibit great
importance in successful recognition and therefore may be worth signi�cantly improving.
As the basis for segmentation and subsequent processing, the AF classi�cation certainly
requires further enhancement. Among various articulatory-acoustic feature dimensions, the
relative contribution to recognition may be used as an indicator for allocating resources to
improve classi�cation accuracy. The combination of the \elitist" approach and the manner-
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speci�c training also provides a promising direction of further investigation. Although the
front-end signal processing has not been a major focus of this thesis, development of better
front-end techniques would certainly be highly bene�cial to AF processing. For example,
since di�erent AF dimensions possess very di�erent spectro-temporal characteristics, it may
be useful to adopt di�erent front-end processing strategies for various AF dimensions.

The test-bed implementation and experiments described in the current work have
been limited to a constrained task with a relatively modest vocabulary size. Although
the test material possesses many characteristics of spontaneous speech, it does not cover
the full range of variability observed in large vocabulary, spontaneous corpora such as
the Switchboard corpus. Consequently the experimental results may have not fully shown
the advantage of modeling techniques employed and the analysis may not be conclusive.
Therefore it would be very useful to extend the implementation and experiments to an
unconstrained, large vocabulary spontaneous speech corpus such as Switchboard. Such an
extension would be a quite challenging task due to the requirement of scalability as well as
the increased di�culty of acoustic modeling and greater reliance on higher-level processing
such as language modeling.

8.2.3 An Improved Framework and Implementation

The test-bed implementation described in the current work made many simplifying
assumptions such as (1) manner-based segmentation, (2) synchronization of AF dimensions
to manner segments, and (3) the heuristic matching score evaluation of AF dimensions for
each syllable position. Although these simplifying assumptions were not without merit and
did not cause any signi�cant performance degradation on the constrained recognition task,
they should be addressed in future system implementations, particularly if more compre-
hensive and di�cult recognition tasks are to be considered.

In both the multi-tier model of speech as well as the test-bed implementation,
higher-level processing such as language modeling, semantic and pragmatic modeling were
not explicitly considered, in order to simplify system development. However, these higher-
level factors are certainly very important in speech recognition and may also exert a signif-
icant in
uence on pronunciation variation. In most practical situations, there will always
be a certain degree of confusibility in pronunciation and acoustic models that requires the
higher-level processing to reduce or eliminate. Future developments, especially those that
aim at good scalability and high performance, would certainly need to incorporate such
higher-level processing.

In the long run, a uni�ed framework that combines information from various lin-
guistic levels is desirable; in addition, more elegant and sophisticated mathematical tech-
niques should be adopted where appropriate. A successful model of speech recognition and
its implementation must also provide satisfactory solutions to problems of adaptability and
robustness.
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8.3 Coda

The current study relied heavily on the availability of realistic speech data, partic-
ularly that with high-quality manual annotation at various linguistic tiers, at least during
the exploratory analysis and diagnostic experiment stages. Such data provide important
information pertaining to properties of natural speech that laboratory speech (e.g. speech
data that are planned, scripted and recorded in a laboratory environment) may not be
able to provide, such as broad range of variability in pronunciation. Statistical analyses of
natural speech data with respect to manual annotation by linguistically trained individuals
help us gain insights into speech perception by human listeners, as well as provide us with
a more accurate reference for evaluating experimental results than existing automatic sys-
tems provide. Interestingly, the ability to analyze a signi�cant amount of natural speech
data may lead to observations inconsistent with traditional linguistic theories, and very
often the statistical analysis of natural speech presents a more realistic characterization and
may thus provide a basis for re�ning current linguistic theory. Although the bene�ts are
abundant, acquiring natural speech data is often an expensive and time-consuming task, es-
pecially manual annotation, which requires intensive labor and expertise from highly trained
individuals. Consequently, such data exist for few languages. Thus, one of the goals of de-
veloping accurate automatic transcription systems is to make such data collection process
simpler and cheaper; the bene�t is likely to go beyond just ASR applications, but should
also advance the state of linguistic and cognitive science studies in general.

A major force behind the progress in ASR research during the past few decades is
the advancement of modern, machine-learning techniques, particularly statistical pattern-
recognition methods such as hiddenMarkov models and neural networks. These technologies
not only enable elegant recognition system design but also provide means to automatically
learn the necessary system parameters from a vast amount of data in a relatively e�cient
manner. However, the contribution of computational technology is paralleled by linguistic
knowledge, and such insights (from linguistics, cognitive and neural science) can also aid in
the development of the technology. Such scienti�c understanding helps direct the focus of
computational and engineering developments to more e�ciently navigate through a near-
in�nitely large space of models and techniques toward building superior systems. Thus,
the surest path to a solution of the ASR problem may be to maintain a relative balance
between basic science and engineering.

The approach taken in the current work is toward a general solution to the problem
of speech recognition that can be adopted for many di�erent tasks. However, it is often the
case that how a system is developed, trained and assessed depends heavily on the criterion
for evaluating system performance. The most commonly used criterion, word-error rate
(the sum of the substitution, deletion and insertion rates), may not be optimal for every
task. For example, a recognition result with a 25% word-error rate is far from optimal
speech transcription but may be su�cient for certain information retrieval tasks [143] where
redundancy in the transcription output can be productively exploited. As another example,
it has often been observed that increasing the accuracy of phonetic classi�cation or reducing
the language-model perplexity does not necessarily lead to a signi�cantly decreased word-
error rate in conventional ASR systems[18]. Therefore, caution must be taken when selecting
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a suitable evaluation metric, which should be closely linked to the ultimate goal of the
application.

Naturally spoken speech is full of variability and uncertainty. Complete reliance
on a single source of information, derived from only one single linguistic tier, is likely to
fail in capturing the full range of possibilities and thus will result in serious performance
degradation when the test environment changes. When an unexpected variation occurs,
evidence from a single source may be distorted and misleading but recognition as a result
of converging evidence from many (quasi-)independent sources is likely to remain robust
since a certain invariance is likely to be found in some of the various representations for a
particular condition. Similarly, agreement derived from an ensemble of techniques is a good
indication that an accurate and reliable result has been achieved.

Natural speech is a very complex phenomenon and a rich information source.
However, not all information contained in the speech signal is relevant for a particular
recognition task. It is therefore important to identify structure that helps capture the
relevant information in a well-organized and parsimonious fashion. The computational e�ort
may be better concentrated on interesting and reliable cues of speech rather than divided
equally across time and space. Finally a computational technique should not attempt to
provide an overly precise characterization of elements of speech that are inherently vague and
ambiguous. An overly strong commitment to a precise description may lead to unnecessarily
restricted hypotheses and ultimately to recognition errors.
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Appendix A

Supplementary Information on

Linguistic Dissection of LVCSR

Systems

This appendix provides additional information on the linguistic dissection of
Switchboard-corpus LVCSR systems described in Chapter 2. A mapping procedure be-
tween the reference phone set and submission sites' phone set, along with inter-labeler
agreement patterns, is presented �rst. The following section provides a detailed description
of the evaluation procedure, including �le format conversion, recognition output scoring
and analysis data generation.

A.1 Phone Mapping Procedure and Inter-labeler Agreement

Because each of the participating sites used a quasi-custom phone set, it was
necessary to convert each submission to a common format. This was done by �rst devising
a mapping from each site's phone set to a common reference phone set (cf. Table A.1 for
a description of the reference phone set), which was based on the STP [49] material, but
was adapted to match the less granular symbol sets used by the submission sites. The
reference phone set was also inversely mapped to the submission site phone sets to ensure
that variants of a phone were given due credit in the scoring procedure. For example,
[em] (a syllabic nasal) was mapped to [ix] + [m] and the vowel [ix] was mapped in certain
instances to both [ih] and [ax], depending on the speci�cs of the phone set. This two-way
phone mapping procedure was used in both years' evaluations.

For the Year-2001 evaluation in particular, we have added another phone mapping
procedure to allow for certain phones commonly confused among human transcribers to be
scored as \correct" even though they would otherwise be scored as \wrong." We call this
speci�c mapping the transcription-compensated form, in contrast to the uncompensated
form where only common phone ambiguities were allowed.

In order to devise the transcription-compensated phone mappings, we analyzed
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Phone Example/Description Phone Example/Description

b `bob' el `bottle'

d `dad' r `red'

g `gag' w `wet'

p `pop' y `yet'

t `tot' hh `hay'

k `kick' iy `beat'

dx `forty' ih `bit'

q glottal stop eh `bet'

jh `judge' ey `bait'

ch `church' ae `bat'

s `sis' aa `robot'

sh `shoe' aw `down'

z `zoo' ay `bite'

zh `measure' ah `much'

f `�ef' ao `bought'

th `thief' oy `boy'

v `verb' ow `boat'

dh `they' uh `book'

m `mom' uw `boot'

em `bottom' er `bird'

n `non' ax (unaccented) `the'

nx `winner' ix (unaccented) `roses'

ng `sing' h# non-speech other than silence

en `button' pv �lled pause-vocalic

eng `Washington' pn �lled pause-nasal

l `led' sil silence

Table A.1: Description of the reference phone set used in the Switchboard-corpus LVCSR
system phonetic evaluations.
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Segment Uncompensated Transcription Compensated

[d] [d] [d] [dx]

[k] [k] [k]

[s] [s] [s] [z]

[n] [n] [n] [nx] [ng] [en]

[r] [r] [r] [axr] [er]

[iy] [iy] [iy] [ix] [ih]

[ao] [ao] [ao] [aa] [ow]

[ax] [ax] [ax] [ah] [aa] [ix]

[ix] [ix] [ih] [ax] [ix] [ih] [iy] [ax]

Table A.2: Selected forms of segment interchanges allowed in the transcription-compensated
and uncompensated scoring.

the inter-labeler agreement patterns among three transcribers on a subset of the evaluation
material. Figure A.1 shows the average agreement rate for each phone among the three
transcribers. The overall inter-labeler agreement rate is 74 percent but the disagreement
patterns di�er across segments. For the consonantal segments, stop (plosive) and nasal
consonants exhibit a low degree of disagreement, fricatives exhibit slightly higher degree of
disagreement and liquids show a moderate degree of disagreement; for the vocalic segments,
lax monophthongs exhibit a high degree of disagreement, diphthongs show a relatively low
degree of disagreement and tense, low monophthongs show relatively little disagreement.

From these inter-labeler disagreement patterns, we have devised transcription-
compensated phone mappings for the Year-2001 evaluation. Table A.2 shows the forms of
tolerances allowed in the transcription-compensated scoring.

A.2 Evaluation Procedure

A.2.1 File Format Conversion

In order to score submissions in terms of phone-segments and words correct, as
well as perform detailed analyses of the error patterns, it was necessary to convert the
submissions into a common format. The following steps were required:

� A reference set of materials at the word, syllable and phone levels was created from
the transcript to include:

{ word-to-phone mapping

{ syllable-to-phone mapping

{ word-to-syllable mapping

{ time points for the phones and words in the reference material
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Figure A.1: Average concordance for each phone (partitioned into consonants and vowels)
among three transcribers. The overall inter-labeler agreement rate is 74%. For the conso-
nantal segments, stop (plosive) and nasal consonants exhibit a low degree of disagreement,
fricatives exhibit slightly higher degree of disagreement and liquids show a moderate de-
gree of disagreement; for the vocalic segments, lax monophthongs exhibit a high degree
of disagreement, diphthongs show a relatively low degree of disagreement and tense, low
monophthongs show relatively little disagreement.
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Figure A.2: Flow diagram of the �le conversion process for the diagnostic evaluation. For
each site, word and phone �les (in CTM format) were generated from the original submission
and a site-to-STP phone map was applied to phone labels. Reference word and phone �les
(in CTM format) were generated from the original STP transcripts, and a word-syllable-
mapping �le and a word-phone-mapping �le were also created.

� Word and phone level reference �les were created in NIST's Time-Marked Conversa-
tion (CTM) format [99].

� Phone mapping procedures as described in the previous section were applied to the
sites' submissions (both unconstrained and constrained recognitions) and �les (in
NIST's CTM format) were generated at both the word and phone levels.

The NIST's CTM format speci�es for each token (a word or phone segment) a label,
the beginning time point, the duration and optionally a con�dence score. In addition, the
CTM format allows alternative tokens to be speci�ed for the same temporal segment, this
capability was very useful for the transcription-compensated phonetic scoring where certain
phonetic segments were allowed to map without penalty to any of several di�erent reference
phones. Figure A.2 shows the steps involved in the �le-conversion process.

A.2.2 Scoring the Recognition Systems

Once the reference and submission �les were converted into the CTM format we
were able to temporally align the words and phones in the submission material unambigu-
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Figure A.3: Flow diagram of the scoring procedure used in the diagnostic evaluation. For
each site, time-mediated alignment between submission material and reference material was
performed at both the word and phone levels separately. Each word and phone segment
was scored in terms of being correct or not; each incorrect segment was also assigned an
error type. Word- and phone-error �les were aligned and merged into a single �le according
to the temporal relationship between words and phones.

ously to that in the reference set, and to perform time-mediated scoring using SC-Lite [99],
a program developed by NIST to score competitive ASR evaluation submissions. This strict
time mediation was used in both years' evaluations. However, since the word and phone
segmentation of the submission material often deviates from those of the STP-based refer-
ence material, for the Year-2001 evaluation we also developed a lenient time mediation by
de-weighting the time-mismatch penalty in the SC-Lite's alignment algorithm.

SC-Lite scores each word (and phone) segment in terms of being correct or not, as
well as designating the error as one of three types { a substitution (i.e., a! b), an insertion
(a ! a + b) or a deletion (a ! �). A fourth category, null, occurs when the error cannot
be clearly associated with one the the other three categories (and usually implies that the
error is due to some form of formatting discrepancy). The lenient time mediation generates
about 20% fewer phone \errors" than the strict time mediation. The sample output in
Tables A.3 and A.4 illustrates the two time-mediated scoring methods.

Finally, the SC-Lite output �les at the word and phone levels were aligned and
merged, and the resulting word-phone error mapping was used as the basis for generating
the data contained in the summary tables (\big lists") (described in Section A.2.3). The
entire scoring procedure is depicted in Figure A.3.
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Figure A.4: Flow diagram of the generation of \big lists" used in the diagnostic evaluation.
Word-centric and phone-centric \big lists" were separately generated from each word-phone
mapped error �le (cf. Figure A.3). A number of linguistic parameters pertaining to each
word and phone segment were computed and included in the \big lists," which were used
to perform statistical analyses.
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ID REF WD HYP WD WS RB HB RP HP PS RB HB

SWB I'D UP S 2.82 2.82 AY AX S 2.82 2.82

40035 D ** S 2.89 **

-A- P P C 2.97 2.92

0053 PREFER FOR S 2.97 3.10 F F C 3.12 3.10

ER ER C 3.19 3.17

THE THE C 3.31 3.27 DH DH C 3.31 3.27

AX AX C 3.37 3.36

H# H# C 3.42 3.43 H# H# C 3.42 3.43

CITY CITY C 3.71 3.71 S S C 3.71 3.71

IH IH C 3.79 3.78

** DX I ** 3.84

DX ** D 3.82 **

IY IY C 3.85 3.87

Table A.3: A sample, composite output from SC-Lite strict -time-mediated scoring at the
word and phone levels. ID (SWB 40035-A-0053) pertains to the entire word sequence, REF
WD is the the reference word (H# for silence), HYP WD is the recognized word, WS
is the word score (C=correct, S=substitution), RB is the beginning time (in seconds) of
the reference word or phone, HB is the beginning time of the recognizer output, RP is
the reference phone, HP is the recognized phone, and PS is the phone score (I=insertion,
D=deletion). The insertion/deletion of the phone, DX, is due to temporal misalignment
(cf. Table A.4 for lenient time-mediation).

ID REF WD HYP WD WS RB HB RP HP PS RB HB

. . .

SWB CITY CITY C 3.71 3.71 S S C 3.71 3.71

40035 IH IH C 3.79 3.78

-A- DX DX C 3.82 3.84

0053 IY IY C 3.85 3.87

Table A.4: A sample, composite output from the SC-Lite lenient-time-mediated scoring
at the word and phone levels for the word \CITY" in the same utterance as shown in
Table A.3. Note that the insertion/deletion of the phone DX in the strict time-mediation
is scored as \correct" in the lenient time-mediation.
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A.2.3 Data Generation

In order to easily manipulate the scoring results and perform statistical analyses
on the data, we generated summary tables (\big lists") from the word-phone mapped �les
and included dozens of separate parameters pertaining to speaker-speci�c, linguistic and
acoustic properties of the speech material, including energy level, duration, stress-accent
pattern, syllable structure, speaking rate and so on (cf. Table A.5 for a complete list of the
parameters). The \big lists" were generated in either word-centric or phone-centric format
(cf. Figure A.4) to provide for analysis at either word or phone level. A sample subset of a
word-centric \big list" �le is shown in Table A.6.
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Appendix B

Pronunciations of \But"

In Chapter 4 various phonetic realizations of the word \that," extracted from the
Year-2001 phonetic evaluation material, were compared to the canonical pronunciation, [dh
ae t](cf. Tables 4.1 and 4.2). The deviations from canonical were further partitioned by
stress-accent level in Chapter 5 (cf. Tables 5.1-5.6). The word \that" is unusual with
respect to the onset segment (i.e., [dh] in the canonical pronunciation), which tends to
have a greater number of deviations from canonical than other onset segments in general.
To get a perspective using a di�erent word, this Appendix shows sample pronunciations
of the word \but" extracted from the same set of material. Tables B.1 and B.2 compare
various pronunciations of the word \but" to the canonical pronunciation, [b ah t], as well as
display a summary of deviation-from-canonical statistics (partitioned by syllable position).
Tables B.3-B.8 further partition the pronunciation variants of the word \but" by stress
accent and display the associated deviation-from-canonical statistics. Note that the onset
segment of the word \but" is generally pronounced far more canonically than the onset
segment of the word \that" (which is representative of words in the Switchboard corpus).
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Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

b ah t 35 - - - ah t 1 D - -

b ah 24 - - D ax dx 1 D S S

b ax t 14 - S - ax t 1 D S -

b ah dx 8 - - S b ih d 1 - S S

b ax 8 - S D b iy 1 - S D

b ax dx 7 - S S b ow 1 - S D

ah dx 2 D - S m ah t 1 S - -

ax 2 D S D v ah 1 S - D

b ax q 2 - S S v ah dx 1 S - S

ah 1 D - D v ah t 1 S - -

Table B.1: Pronunciation variants of the word \but" found in the Year-2001 phonetic
evaluation material. For each pronunciation the number of occurrences (#) is given, as
well as the pattern of deviation from the canonical pronunciation ([b ah t]) with respect to
syllable onset, nucleus and coda. \S" is substitution, \D" is deletion, \I" is insertion and
\-" is no deviation.

Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 89.4 3.5 7.1 0 113

Nucleus 66.4 33.6 0 0 113

Coda 46.9 19.5 33.6 0 113

Overall 67.6 18.9 13.6 0 339

Table B.2: Summary of phonetic deviation (from canonical) in terms of percentage of total
segments (last column) for each syllable position (and overall), for the word \but" (cf.
Table B.1) from the Year-2001 phonetic evaluation material.
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Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

b ax t 12 - S - ax 2 D S D

b ah 8 - - D b ax q 2 - S S

b ax 7 - S D ah t 1 D - -

b ah t 5 - - - b ah dx 1 - - S

b ax dx 4 - S S b iy 1 - S D

Table B.3: Unaccented instances of the word \but" from the Year-2001 phonetic evaluation
material. For each pronunciation the number of occurrences (#) is given, as well as the
pattern of deviation from the canonical pronunciation ([b ah t]) with respect to syllable
onset, nucleus and coda. \S" is substitution, \D" is deletion, \I" is insertion and \-" is no
deviation.

Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 93.0 0 7.0 0 43

Nucleus 34.9 65.1 0 0 43

Coda 41.9 16.3 41.9 0 43

Total 56.6 27.1 16.3 0 129

Table B.4: Summary of phonetic deviation (from canonical) in terms of percentage of total
segments (last column) for each syllable position (and overall), for the unaccented instances
of the word \but" (cf. Table B.3) from the Year-2001 phonetic evaluation material.

Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

b ah t 27 - - - ax t 1 D S -

b ah 15 - - D b ax 1 - S D

b ah dx 6 - - S b ih d 1 - S S

b ax dx 3 - S S b ow 1 - S D

ah dx 2 D - S m ah t 1 S - -

b ax t 2 - S - v ah 1 S - D

ah 1 D - D v ah dx 1 S - S

ax dx 1 D S S

Table B.5: Lightly accented instances of the word \but" from the Year-2001 phonetic
evaluation material. For each pronunciation the number of occurrences (#) is given, as
well as the pattern of deviation from the canonical pronunciation ([b ah t]) with respect to
syllable onset, nucleus and coda. \S" is substitution, \D" is deletion, \I" is insertion and
\-" is no deviation.
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Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 87.5 4.7 7.8 0 64

Nucleus 84.4 15.6 0 0 64

Coda 48.4 21.9 29.7 0 64

Total 73.4 14.1 12.5 0 192

Table B.6: Summary of the phonetic deviation (from canonical), in terms of percentage of
total segments (last column) in each syllable position (and overall), for the lightly accented
instances of the word \but" (cf. Table B.5) from the Year-2001 phonetic evaluation material.

Pron. # Deviation Type Pron. # Deviation Type
Onset Nuc. Coda Onset Nuc. Coda

b ah t 3 - - - b ah dx 1 - - S

b ah 1 - - D v ah t 1 S - -

Table B.7: Fully accented instances of the word \but" from the Year-2001 phonetic evalu-
ation material. For each pronunciation the number of occurrences (#) is given, as well as
the pattern of deviation from the canonical pronunciation ([b ah t]) with respect to syllable
onset, nucleus and coda. \S" is substitution, \D" is deletion, \I" is insertion and \-" is no
deviation.

Syllable Deviations from Canonical
Position Canonical% Substitution% Deletion% Insertion% Total

Onset 100.0 0 0 0 6

Nucleus 100.0 0 0 0 6

Coda 50.0 16.7 33.3 0 6

Total 83.3 5.6 11.1 0 18

Table B.8: Summary of the phonetic deviation (from canonical), in terms of percentage of
total segments (last column) in each syllable position (and overall), for the fully accented
instances of the word \but" (cf. Table B.7) from the Year-2001 phonetic evaluation material.
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Appendix C

Learning Fuzzy Measures

This appendix describes a supervised, gradient-based algorithm for learning the
fuzzy measures used in combining AF-dimension matching scores into a syllable-level score
(cf. Section 6.3.5), similar in spirit to an algorithm of fuzzy measure learning introduced
by Grabisch and Nicholas [47][44]. The following sections �rst provide a formulation of
the learning problem, then describe the algorithm in steps, followed by derivation of the
parameter update equations under two di�erent error criteria.

C.1 Formulation of the Problem

For the purpose of learning the fuzzy measures, let us re-cast the combining of AF-
dimension matching scores into a single syllable score as a classi�cation problem. Suppose
there are M reference syllable classes, N AF dimensions under consideration and D data
points (input syllables) in the training set. Following the notation from Chapter 6, let
X = fx1; � � � ; xNg denote the set of N AF dimensions (each as a separate information
source). For the dth input syllable data point, let Hm

d = fhmd (xi); i = 1; � � � ; Ng be the
set of the matching scores provided by the AF dimensions for the mth reference syllable,
and ymd = fm(Hm

d ) the combined score for reference syllable class m, where fm() is the
overall combining function for reference syllable class m (with its parameters). A well-
known result in pattern recognition [29] is that the minimum expected classi�cation error is
obtained if one always selects the winning class according to the maximum of the posterior
probabilities of the classes given the input. In [108], Richard and Lippmann showed that a
discriminant function trained with one-of-M target outputs (i.e., one for the correct class
and zeros for the others) approximates the posterior probabilities of the classes using either
a minimum-squared-error (MSE) or a minimum-cross-entropy (MCE) error criterion. Thus,
in the current implementation, the target outputs for the combining function adopt the one-
of-M scheme such that for each input data point d, the target output for class m is tmd = 1 if
the input \belongs" to class m and tmd = 0 otherwise. The total error for the MCE criterion
is

EMCE =
DX
d=1

EMCE
d =

DX
d=1

MX
m=1

tmd log
tmd
ymd

(C.1)
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and the total error for the MSE criterion is

EMSE =
DX
d=1

EMSE
d =

DX
d=1

MX
m=1

(ymd � tmd )
2: (C.2)

In the formulation so far, the combining function fm() is not constrained to any
speci�c form. In the subsequent description, let fm() take the following form:

fm(Hm
d ) =

exp(�Cm(Hm
d ))PM

j=1 exp(�C
j(Hj

d))
(C.3)

where Cj(Hj
d) =

R
C H

j
d �g

j is the (Choquet) fuzzy integral (cf. De�nition 5 in Section 6.3.5)
of the AF dimension matching scores for reference syllable j with respect to the fuzzy mea-
sure gj . The � is a scaling factor and the exponential softmax form in (C.3) serves two
purposes: (1) to provide a normalization for the fuzzy integral outputs so that they are
proper probability terms, (2) to adjust the sharpness of the estimated posterior probability
distribution where a large � represents a narrow distribution concentrating on the maxi-
mum class output and a small � is associated with a broad distribution. For the current
implementation system performance is not very sensitive to the choice of the scaling factor,
�, over a large numerical range. � was set to 10 using trial-and-error methods for the exper-
iments described in Chapters 6 and 7. Note that the softmax transformation is only used
for learning the fuzzy measures and it is actually Cj(Hj) terms that are used during the
recognition. Thus, the learning problem is essentially to �nd the optimal fuzzy measures,
g, minimizing the error criteria EMCE or EMSE given the input AF dimension matching
scores H and the desired target outputs t (in one-of-M representation).

C.2 Algorithm Description

Before presenting the detailed steps of the algorithm, a description to a lattice
representation of a fuzzy measure is in order, following the original introduction by Grabisch
and Nicholas [47]. For a fuzzy measure g on an N -dimension set X = x1; � � � ; xN , there are
a total of 2N fuzzy measure parameters and they can be arranged in a lattice with the usual
ordering of real numbers. The main purpose of the lattice is to show the monotonicity
of the fuzzy measure parameters and the particular values involved in a fuzzy integral
evaluation. Figure C.1 shows a lattice representation of a fuzzy measure, with N = 4, i.e.,
X = x1; x2; x3; x4 (adopted from [47]).

The lattice contains N+1 layers (referred to as layer 0; � � � ; N from top to bottom)
of nodes. Each node represents the fuzzy measure of a particular subset of X (for simplicity,
g23 denotes g(fx2; x3g) and similarly for others) and it is assumed g(�) = 0 and g(X) = 1.
Two nodes in adjacent layers are connected only if there is a set-inclusion relationship
between the two subsets of X whose measures they represent. A node in layer l thus has l
connected nodes in layer l�1 and N� l connected nodes in layer l+1. By monotonicity, for
any pair of nodes that are directly connected, the fuzzy measure of the node in the upper
layer is less than or equal to the fuzzy measure of the node in the lower layer. For one fuzzy
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4321

φ

Figure C.1: An example of a lattice representation of a fuzzy measure, with N = 4. The
path < g�; g3; g23; g234; g1234 > is highlighted. (Adapted from [47].)

integral evaluation of H = h(x1); � � � ; h(xN ) with respect to g, only one path from g(�) to
g(X) is involved, depending on the order of H. For example, if h(x1) � h(x4) � h(x2) �
h(x3), the path involved in the fuzzy integral evaluation contains nodes g�, g3, g23, g234 and
g1234 (cf. the highlighted path in Figure C.1).

With the lattice representation of the fuzzy measure, we are now ready to describe
the detailed steps of the learning algorithm. The algorithm is similar in spirit to that
described in [44], with some di�erences in the detailed update equations due to the di�erent
normalization and error criteria adopted. The major steps of the algorithm are:

� Step 0 { initialization: each of the fuzzy measures gm for m = 1; � � � ;M is initialized
at the so-called equilibrium state [44], i.e., gm(fxig) = 1=N for all i = 1; � � � ; N and
the gm is additive (i.e., gm(A[B) = gm(A)+gm(B) 8A � X;B � X and A\B = �).
With respect to this initial fuzzy measure, the (Choquet) fuzzy integral reduces to
simply computing the arithmetic mean { a least committing averaging operator in the
absence of any information.

� Step 1 { computing the fuzzy integral: for an input-output learning data pair (H =
fHm; m = 1; � � � ;Mg, t = ftm; m = 1; � � � ;Mg), evaluate the fuzzy integrals and the
softmax normalization to obtain ym = fm(Hm) for m = 1; � � � ;M .

� Step 2 { updating fuzzy measures: for each of the m = 1; � � � ;M , do the following:

{ Step 2.1: compute the output error �m = ym � tm.

{ Step 2.2: let gm(0); g
m
(1); � � � ; g

m
(N) denote the nodes on the path involved in the fuzzy

integral evaluation of ym in the order from g� to g1;���;N where the parenthesis
\()" around a subscript indicates its being ordered. (Of course, this order is
determined by the input matching scores such that hm(x(N)) � hm(x(N�1)) �
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� � � � hm(x(1)). For example, for the highlighted path in Figure C.1 gm(0) = g� = 0,

gm(1) = g3, g
m
(2) = g23, g

m
(3) = g234 and gm(4) = g1234 = 1.)

For each i = 1; � � � ; N � 1, compute �(i) = hm(x(N+1�i)) � hm(x(N�i)) and then
update each gm(i) by

gm
new

(i) = gm
old

(i) � ���m�(i) (C.4)

for the MCE error criterion and by

gm
new

(i) = gm
old

(i) � 2��ym[�m �
MX
q=1

�qyq]�(i) (C.5)

for the MSE error criterion and in both equations � is a learning rate parameter,
which can be decreased over the course of learning to obtain better convergence.
Note that for the MSE error criterion Step 2.1 has to be completed for all m
�rst.

{ Step 2.3: verify the monotonicity relations to ensure that each gm is still a proper
fuzzy measure. For each gm(i) updated in the previous step, its value is compared

to its neighboring (connected) nodes in the layers above or below. If a violation
of monotonicity occurs between gm(i) and some node, gm(i) is set to the value of that
node, which results in the least amount of correction required. The veri�cation
should be carried out in the order from gm(1) to g

m
(N�1) if �

m > 0, and in the reverse
order if �m < 0.

For each training epoch, Steps 1 and 2 are repeated for all training data points. Several
training epochs can be carried out and a separate cross-validation data set should be used
to determine the total number of epochs to avoid over-training. In [44], an extra step was
described to smooth those fuzzy measures that have not been updated previously due to the
scarcity of training data. However, because of the large amount of data in our experiments,
this additional step was not necessary.

C.3 Derivation of Parameter Update Equations

This section shows the derivation of the update equations (C.4) and (C.5). Ma-
terial pertaining to the MCE criterion is presented �rst, followed by analogous material
pertaining to the MSE criterion where steps common to both criteria are not repeated. To
make the derivations easier to follow, a description of the symbols used is listed here:

Symbol Description

E total error on the training data, equivalent to EMCE for minimum-
cross-entropy criterion andEMSE for minimum-sum-of-squared-error
criterion

EMCE total MCE error on the training data

EMSE total MSE error on the training data
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Ed error on the dth data point

gk fuzzy measure for the syllable class k

gk(i) ith ordered fuzzy measure parameter for syllable class, k, on a par-
ticular path determined by the input, Hk

Hk the vector of N AF-dimension matching scores for syllable class k

hk(x(i)) the ith ordered value in Hk

Ck the fuzzy integral function with respect to fuzzy measure gk for syl-
lable class k

yk the output value for class k (the result of the softmax normalization
of Ck as in Equation (C.3))

� the scaling factor used in the softmax normalization in Equa-
tion (C.3)

tk the desired (target) output for syllable class k

C.3.1 Cross-Entropy Error

Following the problem formulation and notations from the previous sections, the
goal of the learning problem is to �nd the optimal fuzzy measure gk

�

for each syllable class
k such that

gk
�

= argmingkE (C.6)

where

E = EMCE =
DX
d=1

MX
m=1

tmd log
tmd
ymd

for the MCE criterion given by Equation (C.1). Thus the iterative, gradient-descent learning
algorithm requires the computation of the gradient @E=@gk(i) for each i and k. Since the

algorithm is online (i.e., parameters are updated after each data point is presented), we will
only consider the gradient computed for each data point (i.e., @Ed=@g

k
(i) for some d) in the

subsequent derivations. However, for convenience of notation, the subscript d is omitted
from all symbols except Ed without confusion.

For each gk(i), the partial derivative of Ed can be computed as

@Ed

@gk(i)
=

@Ed

@Ck(Hk)
�
@Ck(Hk)

@gk(i)
: (C.7)

From the de�nition of fuzzy integral (cf. Equation (6.4)), we have

Ck(Hk) =
NX
i=1

[hk(x(N+1�i))� hk(x(N�i))]g
k
(i) with hk(x(0)) = 0: (C.8)
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The second term on the right-hand side of Equation (C.7) is thus

@Ck(Hk)

@gk(i)
= hk(x(N+1�i))� hk(x(N�i)): (C.9)

The �rst term on the right-hand side of Equation (C.7) is evaluated as:

@Ed

@Ck(Hk)
=

MX
j=1

@Ed

@yj
�

@yj

@Ck(Hk)
(C.10)

where, from Equation (C.3),

yj = f j(Hj) =
exp(�Cj(Hj))PM
q=1 exp(�C

q(Hq))
:

Therefore, we get

@yj

@Ck(Hk)
=

8>>>><
>>>>:

� exp(�Ck)PM

q=1
exp(�Cq)

+ �� exp(�Ck) exp(�Ck)

(
PM

q=1
exp(�Cq))2

= �yk(1� yk); forj = k

exp(�Cj) � �� exp(�Ck)

(
PM

q=1
exp(�Cq))2

= ��yjyk; forj 6= k

(C.11)

From the de�nition of the MCE criterion, we get:

@Ed

@yj
=

@
PM

q=1 t
q log tq

yq

@yj

= tj �
yj

tj
�
�tj

(yj)2

= �
tj

yj
(C.12)

Using Equations (C.11) and (C.12), Equation (C.10) becomes

@Ed

@Ck(Hk)
= �

tk

yk
� �yk(1� yk) +

X
j 6=k

(�
tj

yj
)(��yjyk)

= �tk � � + tk � �yk + �
X
j 6=k

tjyk

= �tk � � + �yk (tk +
X
j 6=k

tj)

| {z }
=1

= �(yk � tk) (C.13)

where the last step uses the fact that the desired outputs are in one-of-M form. Putting
together Equations (C.7), (C.9) and (C.13), we get the gradient term

@Ed

@gk(i)
= �(yk � tk)(hk(x(N+1�i))� hk(x(N�i))) (C.14)

and hence the update equation (C.4).
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C.3.2 Sum-of-Squares Error

When the MSE criterion is used, the goal of the learning problem is to �nd the
optimal fuzzy measure gk

�

for each syllable class k such that

gk
�

= argmingkE (C.15)

where

E = EMSE =
DX
d=1

EMSE
d =

DX
d=1

MX
m=1

(ymd � tmd )
2:

Again since the algorithm is online, as for the MCE criterion, we will only consider
the gradient computed for each data point (i.e., @Ed=@g

k
(i) for some d) in the subsequent

derivations. Now for the MSE criterion, Equations (C.7) through (C.11) remain identical
to that of the MCE criterion. However, from the de�nition of the MSE criterion, instead of
Equation (C.12) we get:

@Ed

@yj
=

@
PM

q=1(y
q � tq)2

@yj

= 2(yj � tj) (C.16)

Now with Equations (C.11) and (C.16), Equation (C.10) for the MSE criterion becomes

@Ed

@Ck(Hk)
= 2(yk � tk) � �yk(1� yk)�

X
j 6=k

2(yj � tj) � �ykyj

= 2�yk[(yk � tk)(1� yk)�
X
j 6=k

(yj � tj)yj] (C.17)

= 2�yk[(yk � tk)�
MX
j=1

(yj � tj)yj]: (C.18)

Finally, putting together Equations (C.7), (C.9) and (C.18), we get the gradient term for
the MSE criterion

@Ed

@gk(i)
= 2�yk[(yk � tk)�

MX
j=1

(yj � tj)yj ] � [hk(x(N+1�i))� hk(x(N�i))] (C.19)

and hence the update equation (C.5).

C.3.3 Parameter Sharing

The descriptions so far assume that each syllable class m = 1; � � � ;M has its
separate fuzzy measure gm in the most general case. However, this assumption is not
necessary and di�erent syllable classes can certainly share the same fuzzy measure. For
example, in the extreme case, only one fuzzy measure is shared among all of the M syllable
classes. The reduced number of parameters leads to less risk of over-training and can be
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more easily interpreted. Interestingly, in case of such sharing of the fuzzy measure, the
algorithm and the parameter update equations described above are still valid, as shown in
the simple proof for the one-fuzzy-measure-for-all case (which can also be extended to other
cases of fuzzy-measure sharing).

Suppose g1 = g2 = � � � = gM = r. Let us denote the error criterion (either MCE
or MSE) by E(g1; � � � ; gM ) to make its dependency on the fuzzy measures explicit. The
partial derivative of E with respect to r is then

@E(g1; � � � ; gM )

@r
=

@E(g1; � � � ; gM )

@g1
�
@g1

@r
+ � � �

@E(g1; � � � ; gM )

@gM
�
@gM

@r

=
MX
i=1

@E(g1; � � � ; gM )

@gi
(C.20)

since @gi

@r
= 1 for all i = 1; � � � ;M . This shows that the gradient of the error criterion with

respect to the shared fuzzy measure is the same as the sum of the gradients with respect
to the fuzzy measures considered individually. Thus, the algorithm described above also
achieves the appropriate learning e�ect for the shared fuzzy measure.
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