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Abstract

Perceptually Inspired Signal-processing Strategies for Robust Speech Recognition in

Reverberant Environments

by

Brian E. D. Kingsbury

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Nelson Morgan, Chair

Natural, hands-free interaction with computers is currently one of the great unfulfilled

promises of automatic speech recognition (ASR), in part because ASR systems cannot re-

liably recognize speech under everyday, reverberant conditions that pose no problems for

most human listeners. The specific properties of the auditory representation of speech likely

contribute to reliable human speech recognition under such conditions. This dissertation

explores the use of perceptually inspired signal-processing strategies—critical-band-like fre-

quency analysis, an emphasis of slow changes in the spectral structure of the speech signal,

adaptation, integration of phonetic information over syllabic durations, and use of multiple

signal representations for recognition—in an ASR system to improve robustness to reverber-

ation. The implementation of these strategies was optimized in a series of experiments on a

small-vocabulary, continuous speech recognition task. The resulting speech representation,

called the modulation-filtered spectrogram (MSG), provided relative improvements of 15–

30% over a baseline recognizer in reverberant conditions, and also outperformed the baseline

in other acoustically challenging conditions. The MSG and baseline recognizers may be com-

bined to obtain more accurate recognition than is possible with either recognizer alone. Pre-

liminary tests with the Broadcast News corpus indicate that the MSG representation is use-

ful for large-vocabulary tasks as well.

Professor Nelson Morgan
Dissertation Committee Chair
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Chapter 1

Introduction

Automatic speech recognition has only recently emerged from the research labora-

tory as a viable technology. Currently, several companies are marketing document dictation

software for desktop computers that can recognize tens of thousands of different words, and

it is becoming more common to interact with automated systems over the telephone using

speech-based interfaces with limited vocabularies. These two classes of recognizer mark

opposite poles of the continuum of realizable automatic speech recognition (ASR) systems

today. In order to reliably recognize speech, the large-vocabulary desktop systems rely on

head-mounted close-talking microphones, a relatively quiet operating environment and con-

siderable speaker adaptation. In contrast, the telephone-based systems can work reliably

over a wide range of telephone channel conditions (although cellular telephones and speaker

phones are still problematic) with minimal, if any, speaker adaptation; however, they must

restrict the speech input by recognizing only isolated words instead of continuous speech, by

limiting the vocabulary to a few thousand words, or by employing a constrained grammar.

Significant obstacles still must be overcome to reach the ultimate goal of ASR, which is

machine recognition of speech at levels comparable to human performance across the full

range of possible speakers, vocabularies, and acoustic environments.

One of the key challenges in ASR research is the sensitivity of ASR systems to

real-world levels of acoustic interference in the speech input. Ideally, a machine recognition

system’s accuracy should degrade in the presence of acoustic interference in the same way a

human listener’s would: gradually, gracefully and predictably. This is not true in practice.

Tests on different state-of-the-art ASR systems carried out over a broad range of different



CHAPTER 1. INTRODUCTION 2

vocabularies and acoustic conditions show that automatic recognizers typically commit at

least ten times more errors than human listeners [Lip97]. ASR systems deployed in real-

world applications must often be retrained on field data following their development in order

to achieve intended levels of accuracy, even when their original training data were thought

to adequately reflect field conditions [Tho97].

Acoustic interference can take many forms. The speech signal may contain extra-

neous sounds (additive noise) from the speaker’s environment or the communication channel

that transmits the speech to the recognizer, the signal may have some unknown spectral

shaping or nonlinear distortion imposed on it by the microphone or communication channel,

or the signal may include reverberation from the room in which the speaker is talking. Nor

are these distortions mutually exclusive: the signal may be affected by all of them. The

focus of this work is on the improvement of ASR accuracy in the presence of one specific

form of acoustic interference — reverberation.

1.1 Reverberation

Reverberation is the name commonly given to the effect a room has on an acoustic

signal produced within it. When speech or any other acoustic signal is produced in a room,

it follows multiple paths from source to receiver. Some portion of the signal energy that

reaches the receiver is transmitted directly through the air, while the remainder is reflected

off of one or more surfaces in the room prior to reception. Usually the earliest reflections

arrive discretely, while later reflections arrive in rapid succession or concurrently as the

number of paths the sound may take increases. The reverberation process can be modeled

as a convolution of the speech signal with a room impulse response. This model does ignore

many effects, though. It ignores the fact that the characteristics of the transmission of

sound from source to receiver can change significantly as the positions and orientations of

the source and receiver vary [Mou85], as air currents in the room shift, and as objects change

their positions (e.g., as doors open and close and as people move about). It also ignores the

nonlinear properties of sound propagation within enclosures. Despite these shortcomings,

the convolutional model is accurate enough to be useful for simulating many of the effects

room reverberation and will be used in the present study.

Figure 1.1 illustrates the structure of a typical room impulse response. The impor-
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tant features of the impulse response are the initial direct response, the discrete early echoes

and the reverberant tail, which is similar to exponentially decaying noise. The noise-like

character of the tail is a consequence of the summation of a large number of transmission

paths having different magnitudes and phases. The tail decays in an exponential manner

because, with each reflection, some of the acoustic energy is absorbed by the reflecting sur-

face. In a time-frequency representation the effect of reverberation is akin to a smearing

of the signal along the time dimension, as illustrated in Figure 1.2. Reverberation can also

alter the spectrum of the signal (even for a steady-state signal), as illustrated in Figure 1.3.

Spectral shaping (also known as spectral coloration) of sound is a linear, convolu-

tional form of distortion. The characteristics of the receiver determine whether a convolu-

tional distortion is better described as spectral shaping or reverberation. If the distorting

impulse response distributes energy over a significantly longer duration than the temporal

window of the receiver’s spectral analyzer, the distortion is reverberant. If most of the

distorting impulse response’s energy falls within the temporal window of the receiver, the

distortion is spectral shaping.

1.1.1 Characterizing Reverberation

The transmission of sound from a source to a receiver at fixed positions and orien-

tations within a given room may be described by two parameters that are correlated with

speech intelligibility, the reverberation time and the direct-to-reverberant energy ratio. The

reverberation time, T60, is the interval required for sound energy to decay by 60 dB after

the sound source is turned off.1 It may be based on a broadband measurement or it may be

measured in restricted frequency bands, typically one octave in bandwidth. Because most

surfaces reflect low-frequency acoustic energy more efficiently than high-frequency energy,

and because the absorptive properties of air increase with frequency, the reverberation time

is typically shorter at high frequencies than at low frequencies. Broadband reverberation

time measurements are usually dominated by the low-frequency room response. Rever-

beration time is dependent upon the size of a room (smaller rooms typically have shorter

reverberation times than larger rooms) and on the absorptive properties of the room sur-

faces. This can be seen by considering Sabine’s approximation for computing reverberation

1In the room acoustics literature, the abbreviations RT60 and RT60 are also used.
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Figure 1.1: A typical room impulse response. The important features are the strong, initial
response from the direct transmission path, a number of strong echoes in the first 100 ms
of the impulse response (the strongest of which comes just before the 50 ms mark in this
example), and the exponentially decaying reverberant tail of the response. It should be
noted that the tail of the response has been truncated for clarity. The impulse response
contains significant energy up to 0.9 s after the direct response.
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Figure 1.2: Wideband spectrograms for an adult female saying “oh one one” in clean and
moderately reverberant conditions. The reverberant version of the utterance was generated
by convolution with an impulse response characterized by a reverberation time of 0.5 s and
a direct-to-reverberant energy ratio of 1 dB. The dominant effect of the reverberation is a
temporal smearing of the signal, which is most evident in low-energy segments of the signal
following high-energy segments (for example, the part between 0.6 and 0.7 s above). The
signals are pre-emphasized with a filter, H(z) = 1− 0.94z−1, prior to the computation of
the spectrograms. The spectrograms are based on 256-point FFTs computed from 8-ms
segments of the signal weighted by a Hamming window function, using a window step of
2 ms. The energy scale is in dB relative to the peak level of the signal and has a lower
bound of -60 dB.
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Figure 1.3: A comparison of short-time power spectra of the clean and reverberant signals
portrayed in Figure 1.2. The plotted spectra are computed from 8-ms windows centered
at 0.2 s. This time point is sufficiently early in the utterance that the major effect of the
reverberation is in the form of spectral shaping rather than temporal smearing.
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time [Sab22],

T60 ≈ 0.163
V

Sα

where V is the room volume in m3, S is surface area of the room’s walls, in m2, and α is the

mean acoustic absorption coefficient of the room’s walls. Typical reverberation times for

average-sized offices are 0.4–0.6 s, while conference rooms usually have reverberation times

of 0.8–1.2 s, and large auditoria may have reverberation times of 2 s or longer.

The direct-to-reverberant-energy ratio, which is usually expressed in decibels, is

computed as

Ed
Er

= h(kd)
2/

kmax∑
i=kd+1

h(i)2

where h(k) is the discrete-time room impulse response, kd is the time of arrival for the

direct sound, and kmax is the effective duration of the room impulse response, which is

determined by the recording conditions and the noise floor of the measurement system.

This ratio drops as the distance between speaker and receiver increases. For a given room

and speaker position, the distance from the speaker at which the direct-to-reverberant

energy ratio drops to 0 dB is called the critical distance. Critical distances of 0.5–1 m are

typical of offices and conference rooms.

1.1.2 Performance of Human Listeners in Reverberation

Reverberation degrades speech recognition accuracy for human listeners. The

degree of degradation increases with increasing reverberation time and decreasing direct-

to-reverberant energy ratios. Monaural listening tests on young adults with normal hearing

using relatively low-predictability speech material (words from the Modified Rhyme Test

[HWHK65] embedded in a constant carrier phrase) show that recognition accuracy degrades

from 99.7% correct for a reverberation time of 0.0 s (anechoic conditions) to 97.0%, 92.5%,

and 88.7% correct for reverberation times of 0.4 s, 0.8 s and 1.2 s, respectively [NR82]. The

ratio of direct to reverberant energy was not specified in these experiments. These levels of

accuracy are sufficiently high to ensure that more natural, redundant speech material will

be recognized reliably in everyday conditions. Binaural listening improves recognition accu-

racy in the presence of reverberation somewhat [MD67, NR82], while recognition accuracy

decreases for children and elderly listeners [NR82], for fluent non-native listeners [ND84]

and for hearing-impaired listeners [NP74].



CHAPTER 1. INTRODUCTION 8

Thus, reverberation reduces the intelligibility of speech for human listeners, but

the impact of reverberation is usually not severe for natural speech materials presented

to unimpaired listeners in typical environments. As will be shown in the next section,

reverberation presents a much greater challenge for reliable automatic speech recognition.

1.1.3 Performance of ASR Systems in Reverberation

There are relatively few published data on the performance of ASR systems in the

presence of reverberation, but the available data show that reverberation significantly re-

duces the accuracy of automatic recognizers. One recent study [GOS96] reports recognition

results for simulated room reverberation with T60 ranging from 0.1–1 s using either a single

omnidirectional microphone or an array of four omnidirectional microphones located 1.5 m

from the speaker. The recognizer used state-of-the-art techniques: continuous-density hid-

den Markov models (HMMs) and a front end that produced eight mel-cepstral coefficients

normalized via cepstral mean normalization, a normalized log-energy measure as well as

first- and second-order temporal derivatives of all features. The system was trained on a

clean set of phonetically diverse, Italian utterances collected with a close-talking micro-

phone from both male and female speakers. The single-microphone results under simulated

reverberant conditions show that recognition accuracy degrades from around 80% of words

correct for T60 = 0.1 s to around 50% correct for T60 = 0.3 s, and to around 10% correct

for T60 = 0.5 s. When an MAP re-estimation procedure [GL94] was used to perform HMM

adaptation by adjusting the means of the Gaussian mixture components, system perfor-

mance in reverberation improved to about 40% correct for T60 = 0.5 s. However, human

listeners maintain an accuracy of better than 90% correct for reverberation times up to 0.8 s

on more difficult test material.

Similar results were obtained in another study [San94, SG95] that compared the

performance of recognizers using either a mel-cepstral front end or an auditory front end

(the ensemble interval histogram (EIH) [Ghi86]) for the classification of a reduced set of

phones in TIMIT utterances that had been downsampled to 8 kHz. The performance of

the recognizers, which had been trained only on unreverberated utterances, was measured

under both clean conditions and simulated room reverberation with a T60 < 0.35 s. A

simplified classification task, in which the recognizer was provided with the locations of

phone boundaries taken from hand transcriptions of the utterances, was used in order to
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simplify the analysis of the results by eliminating phone insertions and deletions. Although

recognition performance using features from either the mel-cepstral or EIH front end (sup-

plemented with first- and second-order differential features) was reasonably good for clean

test data (phone classification accuracies of 66.2% and 57.6% for the mel-cepstral and EIH

front ends respectively), performance under reverberant conditions was severely degraded

(phone classification accuracies of 18.7% for the mel-cepstral front end and 17.3% for the

EIH front end).

1.2 Scope of This Thesis

The goal of this thesis is to demonstrate that the performance of ASR systems

in the presence of reverberation may be improved by making them more robust under

reverberant conditions. An ASR system is robust if it can perform well in the presence of

acoustic interference not represented in its training data. The approach explored in this

work is the development of new signal-processing algorithms for the recognizer front end

that are based on properties of human speech perception, are applicable to single-channel

speech data and do not attempt to explicitly learn and invert the room impulse response.

The perceptual approach employed in the current work assumes that the reliability

of human speech recognition is attributable, at least in part, to the characteristics of the

auditory representation of speech, and that the use of similar representations in ASR systems

may improve their reliability as well. Thus, the signal-processing strategies examined here

were chosen because they are similar to those employed by the human auditory system for

speech perception or because they are similar to those employed in the auditory systems of

other organisms whose auditory processing is presumed to be similar to that of humans.

Although examination of human speech perception can suggest signal-processing

strategies worth exploring, the details of the signal processing cannot be based solely on

perceptual knowledge. Often, the available perceptual data are not sufficiently complete to

provide all the necessary details. Also, the front-end signal processing must be compatible

with the algorithms used by the ASR system. Therefore, the detailed implementation of the

signal processing was guided by the results of automatic speech recognition experiments.

The resulting algorithms are not intended to serve as detailed models of auditory processing.

Instead, they follow only the general strategies employed by the auditory system for the
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robust representation of speech.

Only single-channel speech is considered in this study. While human listeners do

recognize reverberant speech more accurately with binaural presentation than with monau-

ral presentation, the “binaural advantage” in reverberation is not very large under most

circumstances [NP74], and human monaural performance in reverberation is much bet-

ter than ASR system performance under similar conditions. Moreover, a signal-processing

method that improves the robustness of ASR systems for single-channel input could po-

tentially be combined with multiple-microphone, beam-forming algorithms to achieve even

greater robustness to reverberation.

The algorithms explored in the current work are “blind” in the sense that they

do not attempt to determine or model the room impulse response and suppress the effect

of reverberation via inverse filtering. Dereverberation of signals via inverse filtering is an

extremely difficult task because of the non-stationary nature of the room response, because

of the large number of parameters that must be estimated to properly characterize the room

response and because room impulse responses are typically not minimum-phase and thus

are not invertible using causal processing methods [NA79]. In addition, the extraction of

reverberation-robust features for ASR that primarily describe the linguistic content of the

speech signal may be a simpler task than the complete dereverberation of the speech signal

because the extraction of the ASR features discards much of the spectro-temporal detail.

1.3 Overview

The rest of this thesis proceeds as follows. Chapter 2 provides an overview of the

signal-processing strategies employed by the human auditory system that may contribute

to the reliability of human speech perception in acoustically challenging conditions. Par-

ticular emphasis is given to temporal factors in the auditory processing of speech, such as

adaptation and sensitivity to slow changes in the speech spectrum over time, because they

may play a significant role in the robust auditory representation of speech. An overview

of automatic speech recognition technology is provided in Chapter 3, with a focus on the

speech-recognition system used in this work. A review of some current temporal processing

approaches to robust speech recognition is also presented. Chapter 4 describes experiments

on the visual display of speech and the automatic recognition of speech with a simple
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signal-processing system that uses some of the strategies described in the overview of hu-

man auditory processing of speech. Chapter 5 presents a series of experiments that led to

improvements in the perceptually inspired signal processing, yielding both better recognizer

performance under clean and reverberant conditions and a signal-processing system that

operates on-line. The applicability of the signal-processing system developed in Chapter 5

to different acoustic conditions and to a different recognition task is tested in Chapter 6.

Finally, Chapter 7 summarizes the work done in this thesis and discusses the broader lessons

that may be learned from it.
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Chapter 2

Speech Recognition by Humans

Signal processing in the human auditory system is complex, adaptive, and highly

nonlinear, and it supports a wide variety of functions in addition to speech recognition

(e.g., localization of sound sources and characterization of sources in terms of pitch and

other parameters). Thus, results from perceptual and physiological studies of the auditory

system must be interpreted with caution if they are to be applied to automatic speech

recognition. The most applicable results are those obtained using speech stimuli or stimuli

with speech-like spectral and temporal characteristics as test signals. Tests using simple

pure tone or noise stimuli may not accurately predict auditory processing of speech signals.

Likewise, results using experimental tasks that require signal identification are more likely

to be relevant than results obtained with signal detection or discrimination tasks.1

From an engineering standpoint, the most immediately useful perceptual results

may be those that indicate which aspects of the speech signal carry relatively little linguistic

information and may therefore be excluded from the signal representation provided to an

ASR system [Her97]. Such results may enable the development of representations with lower

dimensionality and lower levels of variability attributable to nonlinguistic factors, leading

to more reliable and robust ASR systems.

The potential benefits of perceptual processing in ASR are illustrated by consid-

ering the use of front-end speech representations having human-like frequency resolution.

1Detection, discrimination, and identification are all standard psychophysical tasks. In a detection task,
subjects are asked to determine whether or not a test stimulus is present. In a discrimination task, subjects
are asked to determine whether or not two test stimuli are different. In an identification task, subjects are
asked to state the identity of test stimuli.



CHAPTER 2. SPEECH RECOGNITION BY HUMANS 13

Many early ASR systems employed representations of the speech signal having a constant

frequency resolution (a linear frequency scale). In contrast, the frequency resolution of the

human auditory system decreases with increasing frequency. When speech representations

with frequency resolution similar to that of humans were used, recognizer performance im-

proved [DM80]. The representations with human-like frequency resolution give relatively

precise locations for the first, second, and sometimes third formants (spectral prominences

corresponding to resonances of the vocal tract) in the signal, while the locations of the

higher formants are estimated with less precision. For many, but not all, voiced speech

sounds, the location of the first two (or three, in some cases) formants depends strongly on

the speech sound being produced, while the locations of higher formants are more strongly

influenced by the geometry of the vocal tract of the individual speaker. The use of human-

like auditory frequency resolution improved speaker-independent recognizer performance by

enhancing the representation of a more speech-dependent aspect of the signal (the locations

of the first and second formants) and blurring the representation of more speaker-dependent

properties of the signal (such as the higher formants).

The linguistic content of the speech signal is encoded in both its spectral and tem-

poral structure. Thus, the processing of speech in both frequency and time by the human

auditory system may suggest signal-processing strategies useful for ASR. This chapter re-

views the perceptual evidence for the various signal-processing strategies explored in this

study. In the spectral domain, only the frequency resolution of the human auditory system

will be considered, while three temporal processing schemes will be discussed: selectivity

for changes in the spectral structure of incoming signals that occur at rates characteristic

of speech, automatic gain control (adaptation) and integration of phonetic information over

segments of the signal approximately 200–250 ms in duration. The use of multiple signal

representations in perceptual processing will also be considered.

2.1 Frequency Resolution in Human Speech Perception

The processing of speech and other signals in the auditory system begins with a

frequency analysis performed in the cochlea. This frequency analysis is preserved and en-

hanced in both the peripheral and central auditory systems, and may readily be measured

via behavioral tests. The standard metric of auditory frequency resolution is the critical
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bandwidth: the minimum frequency separation for which components of a signal are pro-

cessed in a relatively independent manner as derived from psychoacoustic measurements.

The term “critical bandwidth” was coined by Fletcher [Fle40] to describe the re-

sults of an experiment that measured the detection threshold for a sinusoidal probe tone

in the presence of a variable-bandwidth, constant-power, bandlimited masking noise cen-

tered on the probe frequency. For any given masker power, the tone-detection threshold

was constant for maskers narrower than the critical bandwidth, but decreased for masker

bandwidths above this limit. The critical bandwidth may be interpreted as an estimate of

the bandwidth of the highest-SNR frequency channel. As the bandwidth of the masker is

increased, the SNR in the highest-SNR frequency channel remains constant and thus sub-

jects’ detection thresholds remain unchanged as long as the noise bandwidth is less than the

channel bandwidth. Once the noise bandwidth exceeds the bandwidth of the highest-SNR

channel, the SNR in that channel will increase as some of the noise power falls outside the

channel passband, and subjects’ performance on the task will improve.

Fletcher also noticed that the critical bandwidth was frequency dependent, with

narrower bandwidths at low frequencies and broader bandwidths at high frequencies. Other

researchers, using different experimental methods such as tone detection thresholds in

notched (bandstop) noise [Pat76] or loudness summation [ZFS57], have obtained similar

estimates of auditory frequency selectivity. Although the signals used in the measurement

of critical bandwidths are simple, the measured critical bandwidths are applicable to speech.

The masked intelligibility of speech whose spectral structure has been smoothed is not af-

fected unless the smearing window exceeds the critical bandwidth [tKFP92].

Although measured human auditory filters behave in a nonlinear manner, with

the slope of the low-frequency cutoff decreasing as the filter output level increases [RB94],

auditory frequency analysis is most frequently modeled by a bank of linear, bandpass filters

whose bandwidths increase with increasing frequency because the linear approximation is

much simpler to implement.

Because of its importance for the modeling of auditory processing, the relationship

between critical bandwidth and frequency has received considerable attention. Of the many

auditory frequency scales that have been proposed, three scales are used in this study:

1. The Bark scale defines the critical bandwidth as 1 Bark, where the relationship be-
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1/3-octave 0.231f

1/4-octave 0.173f

Bark 0.167
√
f2 + 360000

Greenwood 0.124f + 20.6

Table 2.1: Expressions for estimated critical bandwidth as a function of center frequency,
f (in Hz), for two constant-Q scales, the Bark scale and Greenwood’s cochlear frequency-
position function.

tween frequency in Hz and Barks is designed to match published measurements as of

1960 [Zwi61]. The present study uses a mapping proposed by Schroeder [FAF+77],

b = 6 sinh−1
(
f

600

)
where f is frequency in Hz and b is frequency in Barks.

2. Greenwood’s cochlear frequency-position function [Gre61, Gre90] relates frequency in

Hz to position along the cochlear partition in mm as follows:

f = A (10ax − k)

where f is frequency, x is position, and the species-dependent parameter values are

a = 0.06, k = 1.0, andA = 165.4 for humans. It is assumed that the critical bandwidth

corresponds to equal spatial intervals along the cochlea of approximately 0.9 mm.

3. The logarithmic frequency scale approximates critical bandwidths by constant inter-

vals in logarithmic frequency (a “constant-Q” approximation). One-third of an octave

is a commonly used interval, while the current work uses one-quarter of an octave.

Figure 2.1 shows the relationship between estimated critical bandwidth and cen-

ter frequency for four different scales of auditory frequency resolution—the Bark scale,

Greenwood’s function, a one-third octave scale and a quarter-octave scale—while Table 2.1

gives the corresponding mathematical expressions. Note that for all the scales the analysis

bandwidth approaches a constant fraction of the center frequency as the center frequency

becomes large. That is, all four scales are approximately logarithmic for a sufficiently large

f . At low frequencies the Bark and Greenwood scales have approximately constant fre-

quency resolutions, while the constant-Q scales are logarithmic for all center frequencies.
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Figure 2.1: Plots of estimated critical bandwidth as a function of center frequency for two
constant-Q scales, the Bark scale and Greenwood’s cochlear frequency-position function.
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Of the four scales reviewed, Greenwood’s function is the best match to both physiologi-

cal [Lib82] and recent psychoacoustic [Gre90, MG83] measurements of auditory frequency

resolution.

2.2 Temporal Analysis in Human Speech Perception

2.2.1 The Importance of Slow Modulations for Speech Intelligibility

A key aspect of human speech perception that has important implications for

speech processing, including the design of front-end feature extraction stages for ASR sys-

tems, is that the bulk of the linguistic information is encoded in relatively slow changes

(below about 16 Hz) in the spectral structure of the speech signal.

Evidence for this perspective first emerged from the work of Homer Dudley and his

colleagues at Bell Labs on the development of the channel vocoder. The channel vocoder

models the production of the speech signal as the filtering of a source signal by a time-

varying filter. The source may be either a periodic “buzz” signal that approximates the

sound produced by the periodic opening and closing of the glottis during voiced speech

segments, or it may be an aperiodic noise signal that approximates the hiss of air passing

through a constriction in the vocal tract during production of unvoiced sounds. The time-

varying filter models the influence of the vocal tract upon the source signal. The vocoder

transmits speech by extracting parameters for the production model from a speech signal,

transmitting those parameters to a receiver/synthesizer unit and then resynthesizing the

speech signal from the parameters. Dudley and his colleagues found that they could obtain

highly intelligible speech using filter control signals that had been lowpass filtered with a

25-Hz cutoff frequency and that the dominant frequencies in the filter control signals were

10 Hz and below [Dud39].

The Modulation Spectrum of Speech

The concept of spectral change over time has received a formal treatment in the

study of room acoustics with the measurement of the modulation spectrum of speech and

the characterization of sound propagation in rooms in terms of their modulation transfer

functions [HS72, HS73]. The modulation spectrum, |m(f)|, is a characterization of the way
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Figure 2.2: The modulation index is a measure of the change in a signal’s energy over time
that is computed by taking the ratio of modulation depth and the average level of a signal’s
energy envelope. A modulation index of 1 means that the dips in signal energy go all the
way down to zero and the peaks go to twice the average energy level, while a modulation
index of 0 means that the signal energy is constant.

a signal’s energy changes over time. It is computed by performing a spectral analysis of the

signal’s energy envelope and normalizing by the average energy of the signal. That is, the

modulation spectrum of a signal is computed as

|m(f)| =
1

〈x(t)〉

∣∣∣∣∫ ∞
−∞

x(t)e−j2πftdt

∣∣∣∣
where x(t) is the energy envelope of the signal and 〈x(t)〉 is the average value of x(t). The

energy envelope of a signal may be computed by filtering the signal squared with a lowpass

filter having a cutoff frequency just above the highest modulation frequency of interest. Note

that the modulation frequencies measured must be well below the frequencies contained in

the signal being analyzed. For all f , 0 ≤ |m(f)| ≤ 1, so the modulation spectrum is an

estimate of the modulation index (see Figure 2.2) of each sinusoidal component of a signal’s

energy envelope.

The modulation spectrum provides a statistical characterization of the temporal

structure of a signal. For a very simple signal the modulation spectrum may be an exact

characterization of the change in the signal over time; however, for more complex signals,

such as speech, the modulation spectrum should be considered a description of average tem-
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poral structure. For example, the modulation spectrum of a sinusoid amplitude-modulated

by the signal x(t) =
√

1 +m cos(2πft+ φ), where f is the modulation frequency (in Hz),

φ is the phase of the modulation, and m is the modulation index, is

|m(ω)| = δ(ω) +
m

2
δ(ω − 2πf)

(if windowing effects and other details of the spectral analysis are ignored). A Gaussian

noise signal with the same amplitude modulation has the same modulation spectrum, but

the modulation spectrum only reaches this ideal in the limit, when it is averaged over an

infinite number of sample points.

In a spectrally complex signal, such as speech, different frequency bands may be-

have in a relatively uncorrelated manner, such that the full-bandwidth energy envelope of

the signal does not adequately reflect its temporal variation.2 Thus, for spectrally com-

plex signals, a modulation-spectral analysis is more appropriately applied to band-limited

versions of the signal. One-octave bands are often used for speech. The modulations in

these bands have two principal origins. The first is changes in the overall level of energy

in the speech signal that correspond to the alternation between voiced segments, unvoiced

segments and silence. The second is changes in the spectral distribution of speech energy,

such as formant movements.

Figure 2.3 illustrates typical modulation spectra for speech. The modulation spec-

tra are lowpass in form, with the roll-off beginning around 4 Hz.3 The 4–8 kHz band is

more strongly modulated over the range of modulation frequencies measured than are the

other bands. The reason for this is that speech energy falls into the 4–8 kHz band more

intermittently than it does into the other bands, with bursts and fricatives being the only

speech sounds with significant energy in the 4–8 kHz range. The relatively high cutoff fre-

2For an extreme example, consider a signal synthesized by summing two noise bands which have the
same level, do not overlap in frequency and which are each modulated by a square-wave signal. If the two
modulating signals have the same frequency and opposite phases, then the energy envelope of the final signal
will not fluctuate, but the signal itself will still have a distinct temporal structure.

3It should be noted that the modulation spectra in Figure 2.3 look quite different from those reported by
Houtgast and Steeneken, who showed modulation spectra with a bandpass shape having a peak around 4 Hz.
The reason for this difference is that Houtgast and Steeneken performed the spectral analysis of the energy
envelope with a one-third-octave filterbank in which each filter had the same peak magnitude response.
Such a filterbank does not produce a spectrum in the usual sense, that is, an estimate of energy density as
a function of frequency, unless the output of each filter in the filterbank is weighted in inverse proportion
to its bandwidth. This compensation was not performed, as is apparent in Figure 2 in [HS72], which shows
the modulation spectrum for a one-octave band of Gaussian white noise as having a +3 dB/octave slope.
In Figure 2.3, the modulation spectrum of a one-octave band of Gaussian white noise would be flat.
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Figure 2.3: Modulation spectra for one-octave bands from 0.25–8 kHz, computed from a
206-s segment of speech taken from the Broadcast News corpus. The segment is from one
female speaker giving a weather report.
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quency for the modulation spectrum of speech distinguishes it from many common noise

signals, which are not significantly modulated at rates above ca. 1 Hz.

The Modulation Transfer Function of a Channel

Because changes in the speech spectrum over time are responsible for conveying

linguistic information to listeners, the fidelity with which a channel (such as a room) trans-

mits these changes will determine the intelligibility of the transmitted speech. A channel

may be characterized by its modulation transfer function, which is simply the ratio between

the modulation spectrum of a transmitted signal and the modulation spectrum of the orig-

inal input signal. The modulation transfer function (MTF) is a useful characterization of a

channel because it concisely summarizes the effects of multiple forms of acoustic distortion

that may be imposed on a signal by the channel.

For a noisy channel, the modulation transfer function, |Hm(ω)|, is simply a con-

stant attenuation factor independent of modulation frequency:

|Hm(ω)| =
is

is + in

where is is the average energy of the signal and in is the average energy of the noise.

Nonlinear distortion may be modeled as signal-correlated noise with an expected level that

is some proportion of the signal level that may differ across frequency bands [SH80].

A channel with an impulse response h(t) has a modulation transfer function [Sch81]

|Hm(ω)| =

∣∣∣∣∣
∫∞

0 h2(t)e−jωtdt∫∞
0 h2(t)dt

∣∣∣∣∣
That is, the modulation transfer function is the magnitude of the Fourier transform of the

squared impulse response divided by the total energy of the impulse response. Thus, for a

room with an “idealized” impulse response of an exponentially decaying white noise with

reverberation time, T60, the modulation transfer function is lowpass:

|Hm(ω)| =

[
1 +

(
ωT60

13.8

)2
]− 1

2

As illustrated in Figure 2.4, actual rooms have lowpass MTFs as well, but the modulation

attenuation flattens for sufficiently high modulation rates. For combinations of distortions
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Figure 2.4: Modulation transfer function for the room impulse response illustrated in Fig-
ure 1.1. The impulse response is characterized by a T60 of 0.9 s and a direct-to-reverberant
energy ratio of -9 dB.
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(i.e., a noisy channel with impulse response, h(t)), the MTFs for the individual distortions

combine multiplicatively.

The predictive power of the modulation transfer function for speech intelligibility

has been demonstrated with the speech transmission index (STI) [SH80], a simple numerical

score that summarizes the MTF of a channel for frequencies of 125–8000 Hz and modulation

frequencies of 0.625–12.5 Hz. The STI has been shown to be highly predictive of speech

intelligibility for reverberant and noisy auditoria tested with multiple languages [SH82] and

for communication channels with noise, spectral shaping, and nonlinear distortion [SH80].

The broad applicability of the STI measure for predicting speech intelligibility is further

evidence for the view that the slow changes in the speech spectrum carry the linguistic

information.

Perceptual Studies on the Intelligibility of Temporally Smeared Speech

More direct evidence for the importance of slow changes in the speech signal for

conveying linguistic information comes from recent perceptual experiments which measure

the intelligibility of speech processed to suppress modulations above a given rate.

One such study [DFP94] used a vocoder-like analysis-synthesis system to study the

intelligibility of temporally smeared Dutch sentences in noise and temporally smeared Dutch

CVC and VCV syllables4 in quiet. The temporal modification of the speech material was

performed using the signal-processing system illustrated in Figure 2.5. The input speech

signal was analyzed into separate frequency channels using a constant-Q FIR (finite impulse

response) filterbank. In each channel an amplitude envelope was determined by computing

the magnitude of the analytic signal associated with the filterbank output.5 Each amplitude

envelope signal is smoothed by processing it non-causally with a lowpass FIR filter. The

filters have odd-length, symmetric impulse responses which are centered on the current

sample such that, if the filter length is 2m + 1, there is an m-point lookahead into the

future. Next, a temporally smoothed version of the filterbank output is synthesized via

pointwise multiplication of the original filterbank output and the ratio of the filtered and

original amplitude envelopes. In effect, the division of the original filterbank output by the

4That is, consonant-vowel-consonant and vowel-consonant-vowel syllables.
5Given a real-valued signal s(t), the analytic signal associated with s(t) is s̃(t) = s(t) + jŝ(t) where ŝ(t)

is the Hilbert transform of s(t).
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original amplitude envelope flattens the filterbank output so that it may be given a smoothed

amplitude envelope via pointwise multiplication by the filtered envelope signal. There was

sufficient noise in the input speech (due to tape hiss) that the original amplitude envelope

signal was always greater than zero. Finally, the speech is resynthesized by summing the

smoothed subband signals and normalizing the sum to have the same level as the original

input signal.

For tests of speech intelligibility in noise, the speech reception threshold (SRT) was

measured for Dutch sentences processed with filterbanks having one-octave, half-octave, or

quarter-octave filter bandwidths covering the frequency range 125–4000 Hz and with lowpass

envelope filters having cutoff frequencies of 64, 32, 16, 8, 4, 2, 1, 0.5, or 0 Hz. For the 0-

Hz case, each envelope signal was replaced by its average value for the utterance, which is

equivalent to infinite peak-clipping of the signal with preservation of its average energy. The

SRT is a standard measure of speech intelligibility and is defined as the signal-to-noise ratio

for which 50% of the speech material is correctly recognized. In these tests, the masking

noise has the same spectrum as the average spectrum of the test sentences.

For envelope filters having cutoff frequencies of 2 Hz or below, the processed sen-

tences were not completely intelligible in quiet, precluding the use of the SRT measure.

For these sentences, intelligibility in quiet was measured instead. Intelligibility was highest

for the 2-Hz envelope filters and the one-octave filterbank, and decreased with decreasing

cutoff frequency and filterbank bandwidth. For reasons explained below, the intelligibility

of the sentences processed with the 0-Hz filters was quite high for some test conditions.

The intelligibility of sentences processed with the one-octave filterbank was 90% with the

2-Hz envelope filter and dropped to 80% for the 0-Hz envelope filter, while the intelligibility

of sentences processed with the quarter-octave filterbank was 20% with the 2-Hz envelope

filter and dropped to under 5% for the 0-Hz envelope filter.

The comparatively high intelligibility of the sentences processed with the one-

octave filterbank may be attributed to the relatively wide bandwidth of the spectral analysis

compared to critical bandwidths, which are narrower than one-third of an octave over

much of the audio frequency range (see Figure 2.1). Even if all amplitude fluctuations are

eliminated for a one-octave bandwidth (as in the 0-Hz case above), changes in the amplitude

of one-third octave bands within the one-octave bandwidth may remain.6 As the analysis

6This may been seen by considering an octave-wide noise band synthesized by summing three non-
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bandwidth used for the temporal smearing approaches that of the human auditory system,

however, the temporal fluctuations of the speech signal that carry linguistic information are

obliterated by the smearing process.

For envelope filter cutoff frequencies of 4 Hz and above there was no significant

effect of analysis bandwidth, although there was a significant effect of envelope filter cutoff

frequency. For envelope filter cutoffs of 16 Hz and above, a performance ceiling was reached.

Thus, the envelope fluctuations of 16 Hz and above did not contribute to speech intelligibility

in noise. The SRT for the 8-Hz envelope filter was significantly higher than that for the

16-Hz filter, and the SRT of the 8-Hz envelope filter was significantly higher than that for

the 4-Hz filter. Nevertheless, even with the 4-Hz envelope filter, speech intelligibility was

quite good, with an SRT of 0 dB. This is only 5.6 dB higher than the SRT of unprocessed

sentences.

Analysis of phone recognition scores for the processed CVC and VCV syllables

demonstrated that the effects of the temporal smearing are akin to those of room reverber-

ation. Vowels are recognized more reliably than consonants, with stops being more vulnera-

ble than other consonants. Vowel confusions are predominantly diphthong-to-monophthong,

long-to-short, and short-to-long confusions. Unlike reverberation, however, the recognition

of medial and final consonants is as accurate as the recognition of initial consonants in the

temporally smeared, isolated syllables. This difference is due to the non-causal filtering of

the amplitude envelopes in the temporal-smearing process.

Similar results have also been obtained for Japanese V and CV syllables processed

with an analysis-synthesis system that temporally smoothes the LPC cepstral coefficients

of the input signal [APHA96]. In this system, the zero-order cepstral coefficient is not

filtered, so in each analysis frame the input and output signals will have exactly the same

total energy. Thus, the system will not suppress modulations caused by changes in the

overall level of the speech signal, but will suppress modulations caused by changes in the

spectral distribution of speech energy. Filtering cepstral coefficients instead of amplitude

envelopes simplifies the study of highpass and bandpass filtering, because negative values

for cepstral coefficients are valid.7 As in the earlier study, it was found that changes in

overlapping, equal-energy noise bands that are one-third octave in width, where each band is modulated by
a pulse train with a 33% duty cycle and the pulses in the three modulating pulse trains do not overlap in
time. The energy of the one-octave-wide noise band will not fluctuate, but a finer frequency analysis will
reveal a high degree of temporal structure in the signal.

7The application of highpass or bandpass filtering in the vocoder-like scheme employed in [DFP94] is
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the spectral shape of the speech signal occurring at rates above 16 Hz are not required for

speech intelligibility. It was also found that changes at rates below 1 Hz were not required.

More recent studies have highlighted the importance of the relative timing of these

changes across frequency bands in conveying linguistic information. One set of experiments

measured the intelligibility of utterances from the TIMIT corpus that were processed so

only a few spectral “slits” remained [GAS98]. The speech material was filtered through an

FIR filterbank into fourteen 1/3-octave-wide channels, and only the four channels covering

298–375 Hz, 750–945 Hz, 1890–2381 Hz, and 4762–6000 Hz were retained.

Test utterances were then synthesized by summing together the four channels with

groups of one to three channels delayed with respect to the other channels by 25, 50, or

75 ms. If no delay was introduced, the intelligibility of the test utterances was 88.3%. As the

delay increased, intelligibility decreased. The intelligibility of the utterances was between

70.7% and 80.4% for delays of 25 ms, between 53.6% and 65.0% for delays of 50 ms, and

between 40.7% and 58.9% for delays of 75 ms. The degradation of speech intelligibility

caused by the introduction of the delays indicates that the temporal relationship between

the different channels carries crucial information.

There is an apparent contradiction between these results and the results of an

earlier study [AG98] that measured the intelligibility of TIMIT utterances processed to

desynchronize them across frequency. The utterances were filtered into nineteen frequency

bands in which the lowest channel covered the 0–265 Hz range and the others were 1/4-

octave in width. Test stimuli were synthesized by delaying the channels by randomly selected

amounts between 0 ms and a variable maximum delay that ranged from 60 ms to 240 ms

in 20-ms steps and then adding the delayed channels together. The delays were chosen so

that any pair of adjacent frequency channels were shifted with respect to one another by

more than one quarter of the maximum delay.

In this study it was found that the intelligibility of the stimuli was 80% or more for

maximum delays of up to 140 ms. This result would seem to suggest that the relative timing

of different frequency channels is not important for speech intelligibility, contradicting the

more recent study. There may be no contradiction, however, because a re-analysis of the

problematic because negative amplitude envelope values, which correspond to negative values for signal
energy, are meaningless and it is unclear how they should be handled. This difficulty complicates the
interpretation of experiments with highpass and bandpass filtering using the vocoder-like processing.
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stimuli used in [AG98] showed that they could contain sets of channels distributed across

frequency for which there were relatively low degrees of desynchronization. If the auditory

system is able to identify and use these synchronous sets, then the apparent contradiction

is likely to be resolved.

Summary

The design parameters for the channel vocoder, the successful use of the temporal

modulation transfer function and STI for predicting speech intelligibility across a wide range

of rooms and communication channels, and the perceptual results for the intelligibility

of temporally smeared speech all support the view that the primary carrier of linguistic

information in the speech signal is changes in the spectral structure of speech occurring at

rates between 1 and 16 Hz and that an adequate spectral resolution for characterizing these

changes is the critical bandwidth.8 Additional support for this account may be found in

the study of speech production, where it has been shown that the motions of the lips and

jaw during articulation may be described by a linear second-order system with a damped

frequency between 2 and 12 Hz [SBMK93], and in neurophysiological measurements that

have shown the existence of large populations of primary auditory cortical neurons selective

for amplitude modulations at relatively slow rates: 4–15 Hz in laboratory rats [GO95] and

under 20 Hz in cats [SU88].

2.2.2 Adaptation

Auditory adaptation also contributes to the reliable recognition of speech by hu-

man listeners in different acoustic environments. Fibers of the auditory nerve respond most

strongly to signal onsets. Following onset, their firing rate gradually drops to a lower,

steady-state level. Similar adaptive behavior is observed in more central auditory nuclei,

such that at the level of the inferior colliculus (of anesthetized cats) strong responses to a

speech signal are found only for syllable onsets and stop-consonant bursts [DHC99].

This adaptive processing is functionally similar to automatic gain control applied in

a frequency-local manner, and it has important consequences for human speech perception.

8A very similar signal-processing architecture has been proposed as a model for rhythm and prosody
perception [Tod94].
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Most notably, speech intelligibility for human listeners is quite insensitive to the frequency

response of the channel transmitting the speech. The speech reception threshold for Dutch

sentences is constant for channels with spectrally sloped frequency responses over a range

of slopes from -6 to +9 dB/octave. Moreover, listeners perform well even when the slope is

time-varying, for rates of variation up to 1 Hz [vDAP87]. Both peripheral adaptation and

more specific, central compensation mechanisms appear to contribute to the insensitivity

of human listeners to static or slowly changing channel frequency responses [Wat91].

2.2.3 Perceptual Processing Time and Units of Recognition

The integration of phonetic information over time by the auditory system may

also contribute to reliable human speech recognition. Most accounts of human auditory

processing hypothesize a pre-perceptual auditory memory (sometimes called the “echoic

memory”) that stores a relatively detailed and unprocessed form of the recent auditory

input. Such a store is believed to be necessary because of the transient, dynamic nature

of auditory input. Many auditory judgments require integration of information over the

recent past, and thus need some sort of buffering of the auditory input in order to function.

The storage capacity of the pre-perceptual store is of interest because it may constrain the

duration of the speech signal which may contribute directly to a phonetic judgment at a

given time. A number of studies using different experimental protocols estimate the pre-

perceptual auditory capacity at ca. 200–250 ms. These studies, which are reviewed below,

include investigations of backwards recognition masking, measurements of the intelligibility

of interrupted or temporally segmented speech, and studies on the vowel sequence illusion.

Backwards Recognition Masking

In a backwards recognition masking task, subjects are presented with a target

stimulus, followed by a variable-duration silent interval and a long-duration masker stimulus.

The subjects’ task is to identify the target. Targets and maskers used in such tests include

high and low pure tones with an intermediate-frequency pure tone masker, brief vowels

with vowel or vowel-like maskers and synthesized English CV syllables with synthesized CV

syllable maskers [Mas72, Mas74]. These studies have three results that are relevant to the

question at hand:
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1. Identification accuracy increases as the silent interval between the target and masker

increases, up to a silent interval of roughly 150–250 ms. Beyond this duration, recog-

nition accuracy reaches an asymptote.

2. The identity of the masker has only a small effect on recognition accuracy. Thus, for

example, an [i] target may be masked as effectively by an [i] as by an [a].

3. If the silent interval is set to zero and the duration of the target is varied, recognition

accuracy increases as the target duration increases, up to about 200 ms. Increments

in the target duration beyond 200 ms provide no improvement in accuracy.

These results suggest that auditory processing of the target may require up to ca.

200 ms (based, perhaps, on a pre-perceptual auditory store with a 200 ms capacity) and

that the processing of the target stimulus may somehow be disrupted by the presentation

of a second stimulus within the 200-ms time window. The precise nature of this disruption

cannot be deduced from these results, however. The presentation of the masker stimulus

may halt processing of the target stimulus, or it may alter or overwrite the representation

of the target in early auditory memory.

The Intelligibility of Interrupted or Temporally Segmented Speech

Studies on the intelligibility of interrupted speech [ML50], and temporally seg-

mented speech [Hug75] shed light on the nature of the disruption found in the backwards

recognition masking experiments. An interrupted speech signal is one in which portions of

the signal are replaced by silence, so not all of the speech is heard. A temporally segmented

signal is one into which silent gaps have been inserted. In a temporally segmented speech

signal, all of the speech is heard. Studies of the intelligibility of these signals demonstrate

a deleterious effect on the intelligibility of speech only when the duration of the speech

fragments falls below 180 ms and the spacing of successive fragment onsets exceeds 180 ms.

If the speech fragments are relatively short, but longer than about 33 ms, and if two or

more fragments are heard every 180 ms, or if the speech fragments are at least 180 ms in

duration, the speech is quite intelligible.

With these interrupted or segmented stimuli, listeners are able to integrate in-

formation from speech fragments separated by silent intervals, provided that the interval
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is short enough. This result makes it unlikely that backwards recognition masking occurs

because processing of the target is terminated by presentation of the masker. If the pre-

sentation of the masker did indeed halt processing of the target, then with the interrupted

or segmented speech stimuli one would expect an improvement in intelligibility for speech

fragments separated by more than ca. 200 ms. Instead the converse is true: speech intel-

ligibility improves when the fragments are separated by silent intervals less than 180 ms.

It is therefore more likely that the auditory system integrates sounds over a window of

ca. 200 ms, and that this obligatory integration interferes with target identification in the

backwards recognition masking experiments, although it improves recognition accuracy in

the interrupted and temporally segmented speech studies.

The Vowel Sequence Illusion

Given the backwards recognition masking results, it is (perhaps) not surprising

that listeners presented with repeated sequences of six steady-state vowels are unable to

report the identity and order of the vowels if their durations are under 100 ms. If the

vowel durations are over 200 ms, however, the task is simple [THCG70, CEST77]. When

listeners are presented with sequences in which the vowel durations are under 100 ms, they

typically report hearing two simultaneous voices with different timbres each repeating a

different series of two or three syllables [WHC96]. This effect is called the “vowel sequence

illusion.” The syllable sequences reported by a given listener for a given vowel sequence

are stable for tests performed one week apart. Moreover, different subjects report hearing

the same syllable sequences for the same vowel sequences if a 250-ms silence is inserted

between repetitions of the vowel sequence, and even if no silence is inserted between sequence

repetitions, subjects are able to match the illusory syllable sequences reported by other

subjects to their corresponding vowel sequences.

Given that the mean duration of phones in conversational speech is 72 ms [GHE96],

these results call into question the popular model of human speech recognition as a process

that begins with the identification of phones in the speech signal. When presented with stim-

uli that have the spectro-temporal characteristics of speech but that are not interpretable

as words, listeners hear syllables, not phones.
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2.3 The Role of Multiple Representations in Perceptual Sys-

tems

A recurring motif in sensory systems is the use of multiple representations of the

input as the basis for perceptual processing. This strategy is employed in a diverse array

of organisms and sensory systems. Examples include

• the electrosensory system of gymnotiform fish, where the amplitude and phase of

electric organ discharges are processed in separate loci prior to central integration

[Hei89],

• the auditory system of the barn owl, which processes interaural intensity differences

and interaural time differences in separate paths prior to integration in the inferior

colliculus [TMK84], and

• the visual system of the macaque, in which form, motion, color, and stereoptic infor-

mation are processed in a somewhat independent, parallel streams within a complex,

hierarchical network of cortical centers [DE88, FE91].

Human speech perception is also, most likely, based on multiple representations

of the speech signal. One way in which a multiplicity of representations may be generated

is by processing frequency-limited bands of the speech signal separately. Such a model for

human speech recognition was originally proposed by Fletcher to explain human recogni-

tion of nonsense syllables transmitted via a wide variety of channel characteristics, and

was more recently restated by Allen [All94]. Concrete evidence for this hypothesis may

have been found in the experiments on the vowel sequence illusion [WHC96] described in

Section 2.2.3. In these experiments, listeners frequently hear two voices, each with a differ-

ent timbre, repeating different words or syllables. The two voices correspond to separate

spectral regions, one is ca. 300–1200 Hz and the other is ca. 1500–3500 Hz [CW94]. This

spectral fissioning may reflect an additional processing step taken by the auditory system in

the face of an ambiguous input, as proposed by Chalikia and Warren, or it may reflect the

premature termination of the speech recognition process, based on the integration of partial

recognition results derived from independent processing of different frequency channels.

The reasons for the use of multiple representations in sensory systems are manifold.

In some sensory systems, averaging of many estimates of a perceptual variable may be



CHAPTER 2. SPEECH RECOGNITION BY HUMANS 33

required to overcome the relatively low precision afforded by individual neurons [Hei89,

Cal83]. The important features of the input may be present at many scales, such that

processing at a single scale is not efficient, or feature detection may rely on agreement from

processing performed at more than a single scale [Mar76, MH80]. The robust representation

of one form of information about an input may require the suppression of other, relevant

information, necessitating multiple representations. Finally, different representations of the

input may be insensitive to different forms of distortion, and thus basing perception on

combinations of multiple representations may lead to more reliable sensory processing.

2.4 Summary

The reliability of human speech recognition in the face of a wide range of speaker

characteristics and acoustic environments is attributable, at least in part, to the auditory

representation of the speech signal. There are a number of strategies used by the human

auditory system that appear to contribute to the relatively invariant representation of fea-

tures of the speech signal that convey linguistic information and that may also be used to

improve the reliability of ASR systems. These strategies include the following:

Critical-band frequency resolution. The use of critical-band-like frequency resolution

in automatic speech recognition systems is already widespread because it reduces the

recognizer’s sensitivity to speaker-dependent signal characteristics and enhances its

sensitivity to speech-dependent signal characteristics. An ASR system’s performance

in the presence of noise may also be improved because a critical-band-like frequency

analysis enhances the representation of the lower frequency portions of the signal

which contain the bulk of the signal energy.

A focus on slow changes in the spectral structure of the speech signal.

Change in the spectral structure of the speech signal occurring at rates between 1

and 16 Hz appears to be the primary carrier of linguistic information in speech. Pro-

cessing that suppresses changes outside of this important band may act as a sort

of matched filtering operation for speech and should improve the reliability of ASR

systems.

Adaptation. The inclusion of frequency-local adaptation in an ASR system should reduce
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the system’s sensitivity to unknown spectral shaping of its input. As shown in Chap-

ter 3, there are already front ends for ASR systems which do this (e.g., cepstral mean

normalization and RASTA-PLP).

Integration of phonetic information over syllabic durations. The integration of

phonetic information over syllabic durations in the speech signal may improve ASR

reliability in the presence of intermittent interference by averaging judgments over

a relatively long period of time. Integration of information over syllabic time scales

is also likely to be an effective strategy because coarticulation appears to distribute

information about phonetic identity over entire syllables [MSE93].

The use of multiple signal representations in the recognition process. The

use of multiple signal representations in the speech recognition process may provide

another means for improving the reliability of ASR systems. An improvement in re-

liability is possible if the different representations have markedly different properties

such that phonetic decisions based on individual representations have different error

patterns, and if a means can be found to combine the decisions such that correct

decisions tend to overrule incorrect decisions.

The application of perceptual signal-processing strategies to automatic speech recognition

may improve the reliability of ASR systems in the presence of acoustic interference, such as

reverberation, if they are implemented in a manner that is compatible with the limitations

of the recognition algorithms currently in use. Experiments in automatic speech recogni-

tion testing different implementations of these perceptual strategies are required to ensure

compatibility.
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Chapter 3

Speech Recognition by Machines

Recognizing speech is essentially a process of finding the sequence of words that

best corresponds to a given acoustic sequence, based on some similarity metric which should

account not only for acoustic similarity but also for higher-level constraints such as phono-

tactics, syntax, and pragmatics. Like the vast majority of modern automatic speech recog-

nizers, the ASR system described in this thesis is based on statistical pattern recognition

techniques that use probability as a similarity metric. Basing recognition algorithms on

probability theory is useful because it provides a well-defined framework for making deci-

sions in the face of uncertainty.

Ideally, an ASR system based on statistical pattern recognition techniques will

recognize a sequence of acoustic vectors X = (x1, x2, . . . , xt) by finding the most probable

sequence of models M̃ = (m1,m2, . . . ,mn) given the acoustics, X, and a set of parameters,

Θ̃, for the set of models from which elements of M̃ are drawn. That is, to recognize an

acoustic sequence, X, an ASR system should compute

M̃ = argmax
M∈L

P (M |X, Θ̃)

where L is the set of all possible model sequences. The models that are matched to the

acoustics by the recognition process may model sequences of words, individual words, or

basic sound elements such as syllables or phones. Prior to recognition, the model parameters

Θ̃ should be learned by computing

Θ̃ = argmax
Θ

K∏
k=1

P (Mk|Xk,Θ)
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where each (Mk,Xk) pair is drawn from a training data set in which all acoustic sequences

are labeled with their corresponding model sequence. These recognition and training meth-

ods are called MAP (maximum a posteriori) methods because they maximize model prob-

abilities given observed data and model parameters — a posteriori probabilities. Using the

MAP criterion minimizes the probability of recognition errors.

The training of ASR systems is usually based on the maximum likelihood (ML)

criterion instead of the MAP criterion. While there exist training algorithms based on the

MAP criterion for ASR systems [BBdSM86, KBM96], the ML-based training algorithms

require significantly less computation. The ML criterion is derived by applying Bayes’ rule

and making a set of simplifying assumptions. Thus,

P (M |X) =
P (X|M)P (M)

P (X)

The simplifying assumption made in ML training is that the prior probability of the acoustic

sequence, P (X), is constant. While this assumption is true during recognition, it is not

during training. The prior probability of a model sequence, P (M), is estimated by a

statistical model, called the language model, which is usually trained independently of

the other parts of the system. The computation of P (X|M), which is a computation of

probabilities of sequences, is performed using hidden Markov models (HMMs).

HMMs model the speech signal (the sequence of acoustic vectors) as the output

of a stochastic system that can be described by a set of states, {q1, q2, . . . , qp}, a set of

time-independent transition probabilities between the states, p(qt+1 = qj|qt = qi), and a

probability distribution for each state describing the distribution of acoustic vectors, p(x|q).

Figure 3.1 illustrates a simple two-state HMM. An HMM is described as “hidden” because

the process that produces the sequence of acoustic vectors (the sequence of HMM states) is

not directly observable and must be inferred from the acoustics.

As mentioned above, the HMMs used in an ASR system may correspond to words,

sequences of words, or parts of words. The specific identity of the HMMs and HMM states

is a design decision that varies from system to system. In many systems, the HMMs model

basic sound elements in speech such as phones, diphones,1 or syllables and the HMM states

1Diphones represent transitions between successive phones, and are usually defined as going from the
midpoint of the steady-state part of one phone to the midpoint of the steady-state part of the following
phone. Thus, if a system defines N different phones, there are N2 possible diphones, although not all
diphones will occur in practice due to phonotactic constraints.
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Figure 3.1: A hidden Markov model is a stochastic, finite-state automaton that is typi-
cally defined by a set of states, {q1, q2, . . . qp}, transition probabilities between the states,
p(qt+1 = qj |qt = qi) and a probability distribution, p(x|qi), that describes the acoustic vec-
tors associated with that state.
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correspond to short segments of these sound elements. In such systems, words are modeled

by concatenating the HMMs for the more basic speech sounds. In systems where the

HMMs represent specific sound units, the models may be context-independent or context-

dependent. In a context-independent system, there is a single model for each sound unit,

while in a context-dependent system there are multiple models for each sound unit, with

each one modeling the sound given the identity of one or more of its neighboring units.

For example, a context-independent, phone-based system would use the same model for the

“a” sound in the words “cat,” “rack,” and “gab,” while a context-dependent system might

use three different “a” models. Other systems use HMMs to model whole words. In these

systems the HMM states correspond to segments of the words that do not have any specific

linguistic identity. Instead, the correspondence between states and acoustics is determined

automatically during training.

Choosing the identity of the HMMs and HMM states involves trade-offs between

model complexity, model accuracy, and training data requirements. If the HMMs model

whole words or context-dependent sound units, then the complexity of the model for each

state may be lower because it models a specific sound in a specific context. This potential

for model simplicity in the states comes at the price of more states in the system, increasing

the number of parameters in the system and, therefore, increasing the need for training data.

In contrast, a context-independent system may require more complex models at the level

of individual states to account for the variability introduced by different acoustic contexts,

but will require fewer states overall, and may therefore require less training data.

3.1 Implementation of ASR Systems

Most automatic speech recognition systems break the recognition process down

into a series of steps:

feature extraction in which the speech signal is processed to produce a set of features

that describe the signal, usually in terms of spectral shape,

acoustic modeling in which the likelihoods that the acoustic features were produced by

the different HMM states are computed,

language modeling in which the prior probability of sequences of words is estimated, and
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Figure 3.2: Structure of a typical HMM-based automatic speech recognition system. The
processing is broken down into a series of stages: feature extraction, acoustic modeling,
word modeling, language modeling, and search.

search in which the evidence from the acoustic model, language model, and lexicon of

HMM word models is combined to determine the most probable utterance.

This structure is illustrated in Figure 3.2. The implementation of these different stages is

discussed below, with a particular focus on the ASR system used in this thesis.

The primary recognition task used in the current work is a small-vocabulary task,

namely recognition of continuous, spontaneously spoken numbers over the telephone. More

details about this task are presented in Chapter 4. In Chapter 6 some preliminary results

are described for a large-vocabulary recognition task (Broadcast News).

3.1.1 Feature Extraction

The purpose of the front-end feature extraction stage of an ASR system is to

produce a description of the incoming signal that carries as much information as possible

about the linguistic content of the signal (the phonetic identity of the incoming speech)

and suppresses as much of the non-linguistic content of the signal as possible. This non-

linguistic content includes information about speaker identity, such as gender, vocal tract

length, accent and age, as well as information about the acoustic environment and the

channel carrying the speech to the ASR system, such as background noise, filtering and

reverberation.

Most ASR systems use feature extraction algorithms that produce a description

of the spectral shape of the incoming speech, measured over segments (called “frames”)

of around 16–32 ms and updated every 8–16 ms. These spectral shape features are of-
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ten supplemented with differential features (also called “delta features”) that describe the

change in spectral shape over time. Currently, the most popular features for ASR systems

are mel-frequency cepstral coefficients (MFCCs) and perceptual linear prediction (PLP)

[Her90] coefficients. Both representations generate a description of the short-time spectral

shape of the input signal that is based, in part, on auditory-like signal processing. While

their details differ somewhat, the MFCC and PLP algorithms are sufficiently similar that

they may be described together:

1. Both algorithms begin with the computation of the short-time power spectrum of the

input signal. This is done by applying the FFT to windowed frames of the input. In

the computation of MFCCs, the spectrum of the input signal is usually flattened prior

to the computation of the power spectrum by filtering the signal with a pre-emphasis

filter.

2. Next, a critical-band-like spectrum is derived by convolving the power spectrum with

a bank of filters. For the computation of MFCCs, a typical design may use around

twenty overlapping filters (for telephone-bandwidth speech) having triangular mag-

nitude responses, constant bandwidths for frequencies below 1 kHz and bandwidths

proportional to the filter center frequencies for frequencies above 1 kHz. For the com-

putation of PLP coefficients, the filterbank contains a set of overlapping, filters that

are equally spaced on the Bark frequency scale with bandwidths and center frequency

spacings of about 1 Bark, high-frequency rolloffs of -25 dB/Bark and low-frequency

rolloffs of -10 dB/Bark. The implementation of PLP used in this thesis used filters

having a trapezoidal magnitude response, while other implementations use triangular

filters.

3. The dynamic range of the critical-band-like spectrum is compressed. For the com-

putation of MFCCs, the logarithm of the spectrum is computed (this is also crucial

if homomorphic processing such as cepstral mean normalization is to be applied to

the cepstral coefficients). For the computation of PLP features, the critical-band-like

power spectra are warped to a scale that is similar to perceptual loudness by equalizing

them according to a static equal-loudness weighting and taking the cube root.

4. Cepstral coefficients are then computed. For the computation of MFCCs, this is done

directly, by computing the discrete cosine transform (DCT) of each log-compressed,
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critical-band-like power spectrum. For the computation of PLP features, the percep-

tually warped spectrum is approximated by an autoregressive all-pole model, and the

resulting LPC coefficients are transformed into cepstral coefficients. The autoregres-

sive modeling serves to emphasize peaks in the spectrum of the input.

5. Typically, for both MFCCs and PLP features, only the eight to twelve lowest-order

coefficients are used (for telephone-bandwidth speech). The zero-order coefficient,

which is simply a measure of the total frame energy, is often discarded because, if

it is not normalized in some way, it primarily conveys information about the overall

energy level of the utterance.

In the experiments described in this work, the focus will be on different percep-

tually inspired feature extraction algorithms, with comparisons against PLP features and

various forms of RASTA-PLP features (described in Section 3.2.5), an extension to PLP

that improves robustness to unknown spectral shaping or joint spectral shaping and additive

noise.

3.1.2 Acoustic Modeling

The purpose of the acoustic modeling stage in an ASR system is to estimate local

acoustic likelihoods (HMM emission probabilities) p(x|qt = qi) — the probability of acoustic

features given an HMM state. This estimation is most often performed using a Gaussian

mixture model trained using the maximum-likelihood criterion. The recognizer used in

this work, however, is a hybrid hidden Markov model/multilayer perceptron (HMM/MLP)

system [BM94] that estimates the acoustic likelihoods using a multilayer perceptron. The

MLP used for acoustic modeling in these experiments is a 2-layer, feedforward MLP, as

illustrated in Figure 3.3. The input layer presents a context window of 2c + 1 consecutive

frames, centered on the current frame. In other words, the MLP input is the sequence

of acoustic vectors xt−c, xt−c+1, . . . , xt, xt+1, . . . , xt+c, where xt is the vector of acoustic

features for the current frame. A context window of nine frames is used in most of the

experiments in this thesis. The MLP contains a variable number of hidden units (usually

in the range of 300–600 in this thesis), and as many output units are needed to represent

the context-independent phones that compose the recognizer vocabulary. The vocabularies

used in the study required between thirty-two and fifty-four phone units. The hidden units
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Figure 3.3: Structure of the multilayer perceptron used for acoustic likelihood estimation.
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are standard sigmoid units which compute the output activation y as

y(x) =
1

1 + e−w
Tx

where w is the unit’s weight vector and the input, x, is augmented with a constant element

having a value of 1 so that wTx is an affine transform of x. The output layer of the MLP

is a softmax layer [Bri90], in which the k-th output unit computes its activation, gk, as

gk =
ew

T
k
x∑K

i=1 e
wTi x

where wk is the weight vector for the k-th output unit and the input vector, x, is augmented

with a constant element having a value of 1.

The features are normalized to have zero mean and unit variance before they are

input to the MLP. The mean and standard deviation for each feature is estimated from the

MLP training set, and the features are normalized by subtracting the means and dividing

by the standard deviations. This step speeds up the MLP training because it ensures that

the majority of the inputs to the MLP units (the wTx values) will fall into the high-gain

region of the units’ nonlinearities.

The MLP is trained using on-line error backpropagation with a cross-entropy er-

ror criterion. The training targets are hard targets, so that in a given frame the target

output for the unit corresponding to the frame label is 1, while the target outputs for

all other units are 0. The use of these targets along with error-backpropagation training

and a cross-entropy error criterion ensures that the MLP estimates posterior probabilities,

p(qt = qi|xt−c, xt−c+1, . . . xt+c) [BW89, RL91]. The estimates of probabilities from the MLP

will not be completely accurate because

1. the training procedure will not necessarily reach the global error minimum,

2. the training data set may not be completely representative of the potential range of

inputs, and

3. the accuracy of the estimates will be limited by the size of the MLP.

Given these limitations, the softmax normalization is useful because it ensures that the MLP

outputs will sum to one. Also the softmax function is the correct form for the a posteriori

probability density for a wide range of class-conditional probability density functions [Jor95].
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The posterior probabilities estimated by the MLP are converted to scaled likelihoods by

dividing them by class prior probabilities, p(qt = qi). The priors are estimated by counting

the labels in the training data.

To prevent overfitting on the training data, roughly ten percent of the training ut-

terances are set aside as a cross-validation set and classification performance on this set is

used to control the training process. The learning rate for the error-backpropagation train-

ing is initially set at 0.008. Once the frame classification accuracy on the cross-validation

set does not improve by at least 0.5% (absolute) in an epoch of training, the learning rate is

halved for each subsequent training epoch. When the classification accuracy on the cross-

validation set again does not improve by at least 0.5% the training is halted. This particular

MLP training schedule was developed in earlier work at ICSI [BM94] and has proven to be

a reasonable one for the tasks described in this thesis.

The training targets for the MLP may be based on hand transcriptions of the

training data or on a labeling of the training data generated by another ASR system using

a forced-alignment procedure. Forced alignment is described in more detail in Section 3.1.6.

MLP training is a computationally demanding task. The MLPs used in this study

typically have on the order of 100,000 weights, and they are trained in seven to ten epochs

over about two hours’ worth of training data (675,000 training patterns). A special-purpose

hardware accelerator, the SPERT-II system [WAK+96, WAK+95] was used to speed up the

training (by a factor of 4–10 over available workstations). The SPERT-II system integrates

a full-custom, fixed-point vector microprocessor (called “T0”) [AKB+96, ABI+95], 8 MB

of static RAM for the T0 processor, and a Xilinx FPGA on a double-wide Sbus card.

SPERT-II functions as an attached coprocessor in a host Sun-compatible workstation. The

MLP training and forward pass operations were performed using the qntrain and qnfwd

programs, written by David Johnson of ICSI.

3.1.3 The Lexicon

The lexicon of HMM word models used in this study contains multiple pronuncia-

tions for each word in the recognizer’s vocabulary. Minimum phone duration constraints are

enforced by repeating states in the HMMs. The HMM transition probabilities in the lexicon

are not trained. Instead, they are fixed to 1/T , where T is the number of transitions leaving
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a given state (including the self-loop). This is done because the scaled acoustic likelihoods

from the MLP have a much greater dynamic range than do the transition probabilities, and

they therefore dominate the calculation of the acoustic sequence likelihoods. The lexicon

was generated as follows:

1. A set of pronunciations that covered about 90% of the pronunciations in the training

set was derived from the phonetic transcriptions of the training utterances.2

2. Average context-dependent phone durations were calculated from the hand transcrip-

tions of the training data.

3. An initial HMM lexicon was generated that incorporated all of the pronunciations

determined in step 1 and the context-dependent phone durations found in step 2.

The durations are included in the model by repeating states such that each phone is

modeled by a sequence of n states, where n = d/(2s), d is the average duration of the

phone, and s is the frame step time. Thus, an [a] sound having an average duration

of 80 ms would be modeled by a sequence of four [a] states in a system with a 10-ms

frame step. This repetition of states matches the expected duration of the modeled

phone to the average phone duration measured from the training set.

4. An ASR system was then trained using the hand transcriptions of the training set as

targets and the lexicon generated in step 3. The resulting recognizer was then used

to relabel the training data via forced alignment.

5. The final lexicon was generated by eliminating any of the pronunciations found in

step 1 that were not used in the relabeling of the training set, computing new phone

durations from the relabeling and compiling a new lexicon using the pruned set of

pronunciations and the newly derived durations.

The iterative procedure described above may be repeated multiple times; however,

a single iteration was sufficient (in most cases) to give good performance for the current

study.

2Thanks to Dan Gildea of ICSI for deriving the pronunciations.
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3.1.4 Language Modeling

The language model estimates the prior probability of a sequence of words,

M = m1,m2, . . . ,mn. The recognizer used in this work uses a bigram grammar which

approximates P (M) as

P (M) ≈ P (m1|s)P (e|mn)
n∏
i=2

P (mi|mi−1)

where s is the start symbol, P (m1|s) is the probability that m1 is the first word of an

utterance, e is the end symbol, and P (e|mn) is the probability that mn is the last word of

an utterance. The bigram probabilities, P (mi|mi−1), are estimated by counting word pairs

in the training data. The probabilities of word pairs that never occur in the training set or

do not occur frequently enough to permit reliable estimation of the conditional probability

are approximated using a simple backoff method:

P (y|x) ≈ bxP (y)

where P (y) is the prior probability of word y and bx is the “backoff weight” for word x. The

prior probabilities for the individual words are calculated by counting words in the training

set. Methods for calculating backoff weights are described in [CG91].

3.1.5 Search

Recall that speech recognition in a statistical framework is accomplished by finding

the model sequence, M̃ , such that

M̃ = argmax
M∈L

P (X|M)P (M)

where L is the set of all possible model sequences, X is the sequence of acoustic feature

vectors to be recognized, P (M) is the prior probability of a model sequence calculated by

the language model, and P (X|M) is the probability that model sequence, M , produced the

acoustic sequence, X. The search stage of an ASR system is responsible for computing M̃ ,

given the stream of acoustic likelihoods from the acoustic model, the lexicon of HMM word

models and the language model. This search process is also referred to as “decoding.”

The computation of P (X|M) requires a summation over all possible state se-

quences corresponding to model sequence M . While it is possible to perform this sum-

mation in a computationally efficient manner, P (X|M) is frequently approximated by the
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probability of the most likely state sequence through M — the summation in the compu-

tation of P (X|M) is replaced by a maximization. In other words, the best state sequence

is found instead of the best model sequence. This approximation is known as the Viterbi

approximation.

The use of various scaling factors and penalties in the decoding process is a second

common approximation in speech recognition systems. According to theory, the final score

for a hypothesized word string should be the sum of the log likelihoods from the acoustic

model and the language model.3 In practice, most ASR systems compute a score for a

hypothesis that is not an actual likelihood, but rather is a sum of the acoustic model’s

log likelihood, the language model’s log likelihood multiplied by a language-model scaling

factor, and additional penalty terms. A common penalty term is the word-transition penalty,

which is a fixed value that is added to the score for a hypothesis once for each word-to-word

transition in the hypothesized word string. These scaling factors and penalties are usually

set empirically to minimize the word error rate on a given collection of development test

utterances.

The recognizer used in this thesis is based on Y0, a decoder that uses a dynamic-

programming search to compute the best state sequence (the Viterbi approximation) given

the scaled acoustic likelihoods from the MLP, the lexicon of HMM models and the bigram

probabilities from the language model. While Y0 is capable of speeding up the search by

only considering a limited set of high-scoring hypotheses at each point in the search (a

technique known as Viterbi beam search), most of the recognition tasks used in the current

study were small enough that it was practical to employ a full Viterbi search.

3.1.6 Forced Alignment

The Y0 decoder, like many other speech decoding programs, may also be used for

forced alignment. In the forced alignment procedure the decoder produces the most likely

sequence of states for an utterance, given the stream of scaled acoustic likelihoods from

the MLP, the lexicon of HMM models and the actual word sequence in the utterance. The

correct word sequence functions as a trivial form of language model in forced alignment,

3ASR systems typically do not represent probabilities directly, combining them by multiplication, but
instead work with log probabilities and combine them by addition. Use of log probabilities can speed up
the search process (if additions require less time than multiplications) and can reduce (but not eliminate)
underflow problems caused by the multiplication of many small numbers.
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with the correct model sequence having a probability of 1 and all other sequences having

probabilities of 0. Labels from forced alignment may be used as training targets for a new

MLP and for generation of new lexicons (as described above). The process of iteratively

training a recognizer, using it in forced-alignment mode to relabel the training data and

then training a new recognizer based on the relabeling of the training data is often called

embedded training. The embedded training process is useful for training recognizers on

data for which no hand transcription of phonetic labels is available and for obtaining the

best possible recognition performance by ensuring consistency between the acoustic models

(the MLP, in this instance) and the HMM lexicon.

3.1.7 Combining Recognizers

As described in Chapter 2, many perceptual systems use multiple representations

of their input as the basis of processing. A similar strategy is also useful for automatic

pattern classification and recognition systems, including ASR systems. The reasons for

using multiple representations in automatic systems are essentially the same as those pro-

posed for perceptual systems. Multiple representations of the input may be needed because

important features exist at different scales in the input or because processing to reliably

represent one important feature obscures the representation of another. Better overall sys-

tem performance may be obtained by combining decisions from sub-recognizers that use

different input representations if the sub-recognizers tend to make different errors and the

combination method allows correct decisions to override incorrect ones.

There are a number of levels at which different input representations or decisions

based on those representations may be combined within an ASR system. In this thesis, only

the two simplest approaches are considered—more than one speech representation may be

supplied as input to the MLP, or scaled log acoustic likelihoods from more than one MLP

may be combined by averaging them. The presentation of multiple representations to the

same MLP may improve system performance if all the representations provide useful in-

formation about the linguistic content of the signal, if the information provided by each

representation is somehow different from that provided by the others and if the MLP is able

to learn to integrate the information from the representations. The combination of MLPs

by averaging their estimates of acoustic log likelihoods may improve system performance if

the distribution of likelihoods from each MLP tends to be relatively uniform (that is, if the
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entropy of the distribution is relatively high) when its likelihood estimates are unreliable

and if the MLPs have different error patterns. A common form of this combination strategy

is the use of both static and time-differentiated features (described in more detail in Sec-

tion 3.2.3) in recognition systems. In hybrid HMM/MLP systems and in continuous-density

HMM systems, the feature and differential feature vectors are frequently concatenated and

presented as a single input to the acoustic model. In many discrete HMM systems, vec-

tor quantization is applied to the feature vector and differential feature vector separately

and the resulting acoustic log likelihoods are combined by summation. It is also possible

to combine recognizers at higher levels in the recognition process. For example, acoustic

likelihoods from different recognizers may be averaged at syllable boundaries in the decoder

or at the ends of entire utterances [Wu98, WKMG98a, WKMG98b].

3.1.8 Evaluating Recognizer Performance

The standard measure of an ASR system’s performance is its word error rate

measured on a specified test set — some collection of utterances on which it was not

trained. Word error rate is computed on a test set by finding the best alignment between

the word string hypothesized by the ASR system and the actual spoken word string for

each utterance using a dynamic-programming search, then counting the number of word

substitutions, deletions, and insertions between all the aligned word strings and normalizing

by the total number of words in the test set. A substitution is counted when one word

appears in the correct word string and a different word appears in the hypothesized word

string. A deletion is counted when a word appears in the correct word string but has

no corresponding word in the hypothesized word string. An insertion is counted when a

word appears in the hypothesized word string but has no corresponding word in the correct

word string. Note that it is possible to have a word error rate of more than 100% because

insertions are included in the measure.

When comparing the word error rates for two different recognizers, measured on

the same test set, it is necessary to account for some randomness in the performance of the

two systems. In hybrid HMM/MLP systems this randomness arises from the training of the

MLPs. The MLP weights are initialized to small, random values prior to backpropagation

training, and the on-line MLP training algorithm selects examples in a random order from

the training set. The word error rate for a recognizer should therefore be considered as
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an individual sample from a distribution of possible word error rates, and not as a fixed

value. To account for the stochastic nature of the word error rate, recognizer performance

measurements are compared using a one-tailed statistical significance test with a significance

level of p < 0.05.

3.2 Robustness

One of the primary advantages of the statistical approach to automatic speech

recognition is that it permits the development of usable recognition systems without requir-

ing complete, detailed understanding of how linguistic information is encoded in the speech

signal. Instead, relatively general and powerful learning methods are applied to large cor-

pora of training data to automatically find patterns that enable recognition of speech. This

data-driven approach has a weakness, however, in that it is difficult to ensure that the

patterns a trained system learns will generalize to input not seen during training. An ASR

system will usually not work as reliably on input that is not well-represented by its training

data as it does on input that is similar to the training data. The problem of minimizing

this degradation in performance is the problem of robustness.

There are a number of approaches that may be used to enhance the robustness of

an ASR system. One of the simplest and most effective is to increase the size and diversity

of the training set. This is currently an indispensable step for deploying an ASR system in

a real-world application [Tho97]. Unfortunately, gathering additional training data is often

time-consuming and expensive, and it may be difficult to completely characterize potential

input variability in the training set. A second approach is to modify the recognition system

so that it can model input variability and, by modeling it, compensate for it. Parallel model

combination [GY92] and vocal-tract-length normalization [CKA94, LC95] are examples of

this approach to enhancing ASR system robustness. The limitation of this approach is

that the variability being compensated for must be modeled by the recognizer. This can

increase the amount of processing time required by the recognizer. Also, the model of

undesired variability may require its own training set. The final approach, which is the one

explored in this thesis, is to make the recognition system insensitive to undesired variability

by focusing the recognizer on essential features of the input. This may be done at the level

of the classifier by, for example, using missing-data techniques [CGC94, MCG98] or using
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a distance metric that is insensitive to interference, but most commonly changes are made

to the front-end signal processing to try to produce a robust representation of the linguistic

information in the speech input.

These three approaches to robustness—using larger and more diverse training data,

modeling undesired variability and using robust features and classification metrics—are

complementary. The most successful systems will often use all three methods together.

For example, the development of potentially usable speaker-independent ASR systems for

American English was driven by the collection of large, multi-speaker corpora for ASR

training and testing, by the development of systems that perform speaker clustering or vocal

tract normalization, and by the use of front-end processing that incorporates auditory-like

spectral analysis to reduce system sensitivity to speaker characteristics.

3.2.1 Temporal-processing Approaches to Robust Feature Extraction

Because it is a fundamental, long-standing problem in ASR research, the literature

on robustness is vast, and a full review is beyond the scope of this dissertation. For a

comprehensive review of the literature on robustness to noise in ASR systems, the reader

is referred to [Gon95]. The various temporal approaches to robust feature extraction that

have preceded and inspired the approaches explored in the current work are reviewed here,

however, to place it in perspective.

The key idea behind temporal approaches to ASR robustness is that the spectrum

of the speech signal changes at rates that are distinctive from the rates at which potential

forms of acoustic interference are likely to change. When this is true, filtering of the time

sequences of spectral parameters (the spectral trajectories) of the input signal in a domain

in which the speech and interference are (approximately) additive can suppress the effects

of the interference. This approach is essentially an extension of homomorphic filtering

[OSTGS68].

Thus, it is possible to suppress additive noise whose spectrum changes more slowly

or more rapidly than do the portions of the speech signal that carry linguistic information

by filtering power spectral trajectories [HMR91] because the speech and noise signals are

additive in the power spectral domain. This idea is similar to that of spectral subtraction

[Bol79], but does not require speech detection.
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Similarly, unknown spectral shaping of the speech signal may be suppressed by

filtering log power spectral trajectories [HMBK91, HM94]. If a speech signal, s(t) with

short-time Fourier transform S(n, ω) is filtered by an unknown filter with impulse re-

sponse h(t) and transfer function H(ω), then the resulting signal will be x(t) = h(t) ∗ s(t),

the convolution of h(t) and s(t). The short-time Fourier transform of x(t) will be

X(n, ω) ≈ H(w)S(n, ω), provided that h(t) is short compared to the length of the window-

ing function used in the short-time Fourier transform [Ave97b]. In the log power spectral

domain S(n, ω) and H(ω) will be approximately additive, and filtering of the log spectral

trajectories will be effective for suppressing the effects of the unknown filtering, provided

that H(ω) is stationary or changes at rates outside the linguistically important 1–16 Hz

range, that h(t) is short compared to the window used in the short-time spectral analysis,

and that H(ω) does not contain any spectral zeroes. If the filtering of the log spectral

trajectories includes a highpass component that suppresses changes at rates below about

1 Hz, it will also suppress the average spectrum of the speech signal, which can improve the

speaker independence of the ASR system [NPLJ97].

More generally, a highpass component in the filtering of spectral trajectories in any

given domain will tend to equalize the modulation spectrum of the features presented to the

ASR system [NJ94]. This equalization can produce features whose temporal statistics better

match HMMs than do those of the unfiltered features [NPLJ97]. A lowpass component in the

filtering of spectral trajectories that suppresses changes at rates above 16 Hz or so can also

improve ASR system performance because these changes do not carry significant linguistic

information and because changes at these rates may not be accurately characterized by the

front-end signal processing [NJ94, NPLJ97].

3.2.2 Cepstral Mean Normalization

One of the oldest and most widespread temporal-processing methods for compen-

sating for spectral shaping of speech by an unknown channel characteristic in ASR systems

is cepstral mean normalization (CMN) [Ata74]. In CMN, the average cepstrum for an

utterance, ĉ, is calculated as

ĉ =
1

T

T∑
n=1

cn
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where cn is the cepstrum of the n-th frame and T is the number of frames in the utterance.

The average cepstral vector, ĉ is then subtracted from each cn, and recognition is performed

on these normalized cepstra. Because the cepstrum is a linear transform of the log power

spectrum of the input signal, this operation normalizes any spectral shaping imposed on the

input speech, as well as the average spectrum of the speech. CMN is simple to implement,

computationally inexpensive, and reasonably effective at compensating for unknown spec-

tral shaping. Its primary disadvantages are that its use increases the response latency of an

ASR system because recognition cannot begin until an entire utterance is received and that

CMN may introduce some undesirable variability in the input because the modulation fre-

quency response of the filtering performed by CMN is dependent on utterance length. Both

of these problems may be alleviated by normalization with an average cepstrum computed

over a fixed-duration, sliding window on the input signal.

3.2.3 Delta Features

Delta features [Fur81, Fur86b] are a second widespread temporal-processing

method for improving the robustness of ASR systems to noise and spectral shaping. The

first, and occasionally second and higher-order, time derivatives of the feature vectors may

be calculated using either

1. a regression analysis, e.g.

∆cn =

∑k
i=−k cn+ii∑k
i=−k i

2

where ∆cn is the first derivative of the n-th feature vector cn and the regression is

performed over a 2k + 1-frame window centered on cn, or

2. using finite differences, e.g.

∆cn = cn+d − cn−e

where d and e specify the location of the points, relative to cn, used to estimate the

first derivative.

The time window used to estimate the differential features (using either the regression or

finite difference methods) may range from 30 ms to 100 ms. Differential features are usually

supplied to a recognizer as additional features, although other approaches in which the
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features and differential features are combined in a weighted sum or the differential features

are used to weight distances in a dynamic time warping recognizer have also been explored

[EB82].

When the feature vectors from which the deltas are computed are cepstral vectors,

the use of delta features will tend to enhance the robustness of a recognizer to spectral

shaping of the input, much in the way that CMN does. Delta features, however, appear to

be more generally useful. They usually improve recognition accuracy on clean speech, most

likely because they enhance the representation of changes in the speech signal that appear

to be particularly important for carrying phonetic information [Fur86a]. Delta features

have also proven to be useful for improving recognizer accuracy on noisy speech and speech

influenced by the Lombard effect [HA90].4

3.2.4 Basis Functions for Spectral Trajectories

The representation of the temporal structure of the speech signal in an ASR system

may also be enhanced by describing a sequence of feature vectors in terms of a set of

orthogonal basis functions. The most common version of this approach is the use of two-

dimensional cepstra [ASNS89], computed by performing a two-dimensional discrete cosine

transform (DCT) of a matrix representing a sequence of spectra, usually with auditory-

like frequency resolution. For the DCT, the time sequence of spectra is segmented into

blocks 50–70 ms in duration, usually with an overlap of 50% between adjacent blocks.

The transformed features are spectro-temporally smoothed by truncation; only the matrix

elements with low-order transformed frequency (quefrency) and low-order transformed time

indices are output as features. Other basis functions for the time dimension have also proven

to be useful for improving ASR accuracy [Mil96].

Like delta features, two-dimensional cepstra and other representations that expand

the time sequence of spectral vectors in terms of a set of basis functions generally improve

the performance of ASR systems. By enhancing the representation of the dynamics of the

4When a speaker is talking in the presence of background noise, the level of vocal effort is generally higher
than when speaking in a quiet environment. This increment in vocal effort in response to noise is known as
the Lombard effect, and is named for the French otorhinolaryngologist Etienne Lombard who first noted the
effect in his patients in 1909 and reported on it in 1911 [Lom11] (cited in Lane and Tranel’s comprehensive
review on the Lombard effect [LT71]). Changes in vocal effort can significantly alter the characteristics of
the speech signal [Sch85, HHP88], causing problems for automatic speech recognition systems.
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speech signal in a relatively compact manner, their use increases recognizer accuracy on

clean speech. The robustness of a recognizer to unknown spectral shaping may be improved

by omitting the matrix elements with transformed time indices of zero (which are most

influenced by spectral shaping) from the feature set.

3.2.5 Modulation Filtering

All three of the previously described methods for enhancing robustness—cepstral

mean normalization, delta features, and expansion of spectral trajectories in terms of basis

functions—perform a linear filtering operation on features derived from the speech spectrum

(usually cepstral features), with the form of the filter rather strictly defined by the processing

method. It can be advantageous, however, to treat the design of the filters more generally,

because the filter parameters and the domain in which the filtering is performed may be

optimized for a particular task and class of acoustic distortions.

Speech Enhancement Via Modulation Filtering

Modulation filtering was originally tested as a speech enhancement method to

improve the intelligibility of speech corrupted by additive noise or reverberation [LS82].

Filtering was applied to critical-band power spectral or log-power spectral trajectories.

The filter was designed to be the inverse of the ideal, theoretically derived modulation

transfer function of a specific noise or reverberant condition [HS73], but modified in order

that the filtering did not enhance very rapid fluctuations. Resynthesis of the signal from

the processed power spectra was accomplished via an overlap-and-add procedure. This

method was tested both as a pre-processing step, applied before distortion was imposed,

and as a post-processing step. An improvement in intelligibility was observed only for

the case of filtering in the log-power spectral domain prior to the addition of white noise.

Somewhat greater improvements in intelligibility were then achieved by performing the

filtering in a nonlinear domain which was approximately logarithmic for low amplitudes and

approximately linear for higher amplitudes. The use of this hybrid nonlinearity reduced the

occurrence of strong, annoying peaks in the resynthesized output.

A more successful method for enhancing the intelligibility of reverberant speech

was a post-processing method that performed filtering in the power spectral domain, based
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on an auditory-like, time-frequency representation and resynthesized the speech from the

processed spectra with a set of frequency- and amplitude-modulated sinusoids [Sch89]. The

filtering was performed using a filter designed to invert the smoothed, averaged modula-

tion transfer function of a room, to try to achieve position-independent compensation for

reverberation within a specific room.

Highpass Filtering of Spectral Trajectories for Robust ASR

Modulation filtering was first applied to ASR to improve the robustness of a rec-

ognizer to room reverberation [Hir88, Hir92]. The filtering was performed using a highpass

FIR filter applied to power spectral trajectories. The processed power spectra were then

converted to cepstra and used as features in a speaker-dependent, isolated-word recognizer

with a vocabulary of forty-three short, monosyllabic German words selected for maximal

variability in their phonetic sequences. For tests with artificial reverberation, the mod-

ulation filtering improved the recognizer error rate from about 50% to about 20% for a

reverberation time of 2.5 s and from about 35% to about 2% for a reverberation time of

1.0 s, using a filter optimized for a reverberation time of 1.2 s. Later work [HMR91] demon-

strated that high-pass filtering in the critical-band power spectral domain could improve

the robustness of a speaker-independent, isolated-word recognizer to additive white noise

and car noise, and that high-pass filtering in the log critical-band power spectral domain

could improve the performance of a speaker-independent, continuous German digit recog-

nizer on a corpus collected under a diverse range of acoustic environments (e.g., an anechoic

chamber and several offices) with different levels of background noise, using different micro-

phones. It was also observed that the high-pass filtering did not improve the performance

of a speaker-dependent recognizer with matched acoustic conditions for training and test

data.

RASTA-PLP

A set of robust front ends based on modulation filtering that are of particular

relevance to this work are the RASTA-PLP (relative spectral perceptual linear prediction)

front ends [HM94, MH92, HMBK91]. They are reviewed here in detail because they are

in many ways the direct precursors of the front ends explored in this study, are reasonably
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expansive nonlinearity

critical-band filtering

compressive nonlinearity

bandpass filtering

loudness equalization and cube root

cepstral transform

autoregressive modeling

speech signal

RASTA-PLP features

short-time Fourier power spectrum

Figure 3.4: RASTA-PLP signal flow. The steps enclosed in the dashed box (compressive
nonlinearity, bandpass filtering and expansive nonlinearity) are added to the PLP algorithm
to compute RASTA-PLP features.
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representative of most modulation filtering methods, and are the front ends against which

the experimental front ends in this thesis are compared. RASTA-PLP is an extension to PLP

that incorporates modulation filtering to compensate for unknown spectral shaping (log-

RASTA-PLP) or to compensate jointly for unknown spectral shaping and additive noise

(J-RASTA-PLP). The compensation is accomplished by filtering the critical-band power

spectral trajectories in a domain appropriate for separating the speech and distortion. The

general RASTA-PLP algorithm, which is summarized in Figure 3.4, proceeds as follows:

1. Critical-band-like power spectra are computed as for PLP, then the output of each

critical-band filter is processed through a compressive, memoryless nonlinearity. In

log-RASTA processing this nonlinearity is y = lnx. In J-RASTA it is y = ln(1 + Jx),

which is approximately linear for small Jx and approximately logarithmic for large Jx.

During recognition, J is varied in inverse proportion to an estimate of the noise power

in the incoming speech, so that channels with low power relative to the estimated

noise are processed to suppress the noise, and channels with high power relative to

the estimated noise are processed to suppress spectral coloration.

2. The nonlinearly transformed, critical-band power spectral coefficients are filtered

through an IIR (infinite impulse response) bandpass filter with a passband between

1 and 12 Hz. This filtering emphasizes those parts of the signal that are changing at

rates characteristic of speech, while suppressing elements changing at slower or faster

rates. The RASTA filter, designed for a sampling rate of 100 Hz, is

H(z) = 0.1 ∗
2z2 + z − z − 2z−2

1− 0.94z−1

3. The filtered power spectral coefficients are processed through an expansive, memo-

ryless nonlinearity. In log-RASTA processing this nonlinearity is x = ey, while in

J-RASTA processing it is x = ey/J . Finally, the PLP processing continues with the

conversion of the power spectra to a loudness-like scale, autoregressive modeling and

generation of cepstral coefficients.

Data-driven Filter Design

The general design of the filter used in the RASTA-PLP front end was chosen

a priori, based on the idea that differentiation followed by leaky integration would be
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an effective strategy for reducing sensitivity to relatively stationary effects such as spectral

shaping of the speech signal by an unknown channel. The specific parameters of the RASTA

filter were set to optimize the performance of an ASR system that was trained on speech

with one form of spectral shaping and tested on speech with a different spectral shaping.

It is also possible, however, to design the filters automatically from training data.

Data-driven methods for designing filters have been successfully applied to both speech

enhancement [HWA95, AH96, Ave97b] and to robust ASR [AvVH96, HAvVT97, Ave97b].

The signal-processing systems used for both the speech enhancement and speech recognition

tasks are very similar:

1. A short-time Fourier transform is performed on the input signal and the resulting

complex spectrum is split into magnitude and phase components. For the speech

recognition task the phase is discarded. The magnitude coefficients may be processed

individually or they may be integrated into a critical-band-like spectrum, as in the

RASTA-PLP front end.

2. The magnitude coefficients are processed through a memoryless nonlinearity of the

form y = xα, where α is a design parameter for the system.

3. The trajectories of the nonlinearly processed spectral magnitudes are filtered with

an FIR filter that was designed automatically from training data. Depending on the

application, there may be a different filter design for each spectral channel, or a single

filter design may be used across the spectrum.

4. The filtered spectral trajectories are processed through the inverse nonlinearity

x = y1/α.

5. In a speech enhancement application, the speech signal is resynthesized from the pro-

cessed magnitude and unprocessed phase data using an overlap-and-add or filterbank

summation technique. In a speech recognition application, the processed magnitudes

may be used directly as speech features or they may be the basis of additional signal

processing such as the autoregressive modeling in RASTA-PLP.

For both speech enhancement and speech recognition tasks the filters may be

designed to minimize the differences between filtered, nonlinearly processed spectral mag-

nitude trajectories computed from clean and distorted versions of the same utterances. If
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a least-squares criterion is used, the trajectory filters may be determined by solving the

Wiener-Hopf equation for each spectral channel [AH96] or by solving a nonlinear, con-

strained optimization problem [AvVH96].

If the goal is to design a front end for robust ASR, the filters may instead be

designed using linear discriminant analysis (LDA) [AvVH96]. In this case, the training

data must be phonetically labeled. To derive filters for a spectral channel, fixed-length

segments of nonlinearly processed spectral magnitude trajectories from that channel are

assigned to different classes (based on the phonetic labeling of the data), and then an LDA

procedure is run to find a set of filters that maximize the discriminability of the different

segment classes. This procedure may be performed for training data for a single acoustic

condition or the training data may include multiple conditions.

Filters designed using all three methods show strong similarities to the RASTA

filter. They tend to be bandpass in form, with passbands covering the 1–16 Hz range.

Unlike the RASTA filter, the automatically derived filters do not have zero response at

0 Hz. Instead, they usually have only 5–10 dB attenuation at 0 Hz.

A Long-time Technique for Reverberation-robust ASR

Although reverberation may be modeled as a form of convolutional distortion,

temporal-processing methods, such as cepstral mean normalization and RASTA-PLP, gen-

erally have not been very effective for reducing the impact of reverberation on ASR per-

formance (as demonstrated for RASTA-PLP in Chapter 4). One reason that CMN and

RASTA-PLP are relatively ineffective for reverberation is that the impulse response asso-

ciated with room reverberation is typically 0.5–2 s long, while the window used for spectral

analysis in an ASR front end is much shorter, usually 16–32 ms in duration. Convolutional

distortion is only (approximately) additive in the log spectral domain if the spectral analysis

window is two to four times longer than the distorting impulse response.

A normalization technique that suppresses reverberation by operating on a long-

time spectral representation of the speech signal has recently been proposed [Ave97b,

HAvVT97]. This technique works as follows:

1. A long-time spectral representation of the speech signal, based on a 2-s analysis win-

dow, is generated using a DFT-based, critically sampled filterbank. The resulting
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time-frequency representation is split into magnitude and phase components and the

logarithm of the spectral magnitudes is computed.

2. Channel normalization is performed by computing the mean log magnitude in each

channel over a 10-s, sliding window and subtracting this mean level.

3. The complex, long-time time-frequency representation is reconstituted from the pro-

cessed log magnitude and unprocessed phase data. Then, a partial resynthesis of

the original signal is performed, producing a short-time spectral representation of the

input signal which is suitable for use as input features to an ASR system.

This dereverberation technique was tested on the same telephone-quality, con-

tinuous numbers recognition task used in this thesis. To test it, two hybrid HMM/MLP

recognition systems were trained, one using RASTA-PLP features with eighth-order au-

toregressive analysis and first-order delta features and a second using features from the

long-time dereverberation processing. The two systems were tested on a clean test set and

on a reverberant test set that was generated by convolving the clean test set with a room

impulse response having a 0.5 s reverberation time (T60) and a 1-dB direct-to-reverberant

energy ratio. The system using the long-time dereverberation processing had a word er-

ror rate of 22.8% on the reverberant test set, which was a significant improvement over

the 34.8% word error rate obtained by the RASTA-PLP system on the reverberant test

set. This performance improvement under reverberant conditions came at the cost of less

accurate recognition for clean conditions, however. On the clean test the RASTA-PLP sys-

tem had a word error rate of 8.6%, while the system using the long-time dereverberation

processing had a word error rate of 13.5%.

3.3 Summary

Like most modern ASR systems, the recognition system used in this thesis is based

on statistical pattern recognition techniques. The task of recognizing speech is broken down

into a series of steps:

1. The front-end signal processing, which attempts to derive features from the speech

signal which carry as much information as possible about the linguistic content of the

signal and as little information as possible about the non-linguistic content.
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2. The acoustic model, which estimates the probability of the acoustic features’ belonging

to different phonetic classes. The recognizer used in this work performs the classifica-

tion using a multilayer perceptron, while most other state-of-the-art recognizers use

Gaussian mixture models.

3. The HMM lexicon, which models the pronunciations and temporal characteristics of

the words in the recognition system’s vocabulary.

4. The language model, which estimates the prior probabilities of word sequences. The

recognizer in the current work uses a backoff-bigram grammar for language modeling.

5. The decoder, which determines the most likely word sequence for a given acoustic

input from the stream of acoustic likelihoods from the acoustic model, the constraints

embodied in the HMM lexicon and the estimates of word sequence prior probabilities

from the language model. The decoder used in this work performs a Viterbi search

using dynamic programming.

The application of statistical methods to ASR has enabled the development of

practical, usable recognition systems in the absence of a comprehensive model accounting

for the encoding of linguistic information in the speech signal. Because ASR systems must

be trained on some finite set of data, though, they tend to perform poorly on input which

was not well-represented in the training set. The problem of reducing the degradation in

performance caused by such input is the problem of robustness in ASR. An ASR system’s

robustness may be improved by making changes in any or all of the processing stages

outlined above, but much of the work in robustness has focused on the front-end signal

processing. Temporal-processing approaches to ASR robustness are of particular interest

in this work because they have proven to be useful strategies for dealing with many forms

of acoustic distortion and because there are interesting parallels between them and human

auditory processing of speech.
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Chapter 4

Initial Experiments with a

Modulation-based Representation

As illustrated in Chapter 2, the robustness of human speech recognition to various

forms of acoustic interference arises in part from specific properties of the auditory cortical

representation of speech. Critical-band filtering, sensitivity to slow modulations, adaptation

and the use of multiple representations of the input appear to be particularly important.

Work on robust ASR has confirmed the utility of some of these strategies for improving the

performance of automatic recognition systems in the presence of different forms of acoustic

variability. By devoting more frequency resolution to the range of frequencies into which the

first and second formants usually fall and having a coarser resolution in the higher frequen-

cies, speech representations with auditory-like spectral resolution, such as mel-frequency

cepstral coefficients and PLP, improve the performance of speaker-independent ASR sys-

tems. The robust temporal-processing methods that operate in the log spectral or cepstral

domains perform an adaptive, automatic-gain-control function, and all of the temporal-

processing strategies reviewed alter a recognizer’s sensitivity to different modulation rates,

although they may not exhibit a sensitivity similar to that observed in humans or other

mammals. The combination of multiple representations of the input (and of multiple deci-

sions based on different input representations) has been shown to improve ASR accuracy

in a number of acoustic conditions [Wu98].

This chapter describes experiments with an initial, simple signal-processing sys-
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tem that incorporates some of the promising perceptually inspired strategies reviewed above.

The representation was first developed to generate visual displays of speech that are stable

across a range of acoustic distortions. This representation has been named the modulation-

filtered spectrogram (MSG).1 The signal-processing system developed on the basis of the

visual displays was tested as a front-end processor for an ASR system. It was found that

the new MSG representation was significantly better than the PLP, log-RASTA-PLP, and

J-RASTA-PLP front ends for a highly reverberant recognition test, but that it was signif-

icantly worse than any of the RASTA-PLP front ends for a clean recognition test. The

intelligibility of the reverberant utterances for human listeners was then measured because

relatively poor performance (word error rates on the order of 70%) was observed for all the

ASR systems on the reverberant test. The reverberant test was found to be challenging

for human listeners, but by no means impossible. The average word error rate for human

listeners on the reverberant test was 6.1%. Next, variations on the original MSG processing

were tested with the goal of improving ASR performance and determining how the different

processing steps contribute to robustness to reverberation. Finally, an improved version of

the MSG front end was tested on its own and in combination with the different RASTA-

PLP front ends for a different, more moderate and more realistic reverberant test set and

for a range of noisy test conditions.

4.1 Visualization Experiments

To try to gain insight into the effects of different perceptually inspired signal-

processing strategies on the representation of speech, an initial speech visualization study

was performed [GK97]. A simple and flexible signal-processing system that produces

spectrographic-format displays of speech and includes auditory-like frequency resolution,

adaptation, sensitivity to slow modulations, and emphasis of spectro-temporal peaks was

developed, and the effects of different signal-processing parameters on the visual representa-

tion of clean and corrupted speech were examined. The generation of a modulation-filtered

spectrogram, which is illustrated in Figure 4.1, proceeds as follows:

1This name represents a slight departure from previously published work [KMG98, Wu98, WKMG98a,
WKMG98b, KMG97, KM97, GK97] that used the name “modulation spectrogram” instead of “modulation-
filtered spectrogram.” The name of the representation was changed because the name “modulation spec-
trogram” often caused listeners to mistakenly assume that the representation would explicitly portray the
modulation spectrum of the signal at any given time.
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Figure 4.1: Signal-processing system used in initial visualization studies.
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1. A speech signal (sampled at 8 kHz for all the experiments reported here) is analyzed

into eighteen approximately critical-band-wide channels using an FIR filterbank. The

filters were designed using a Kaiser window and were specified to have a trapezoidal

magnitude response, 40 dB of stopband rejection, and minimal overlap between adja-

cent filters. The filterbank was designed to approximately cover the telephone band-

width (300-3300 Hz) and, with the exception of the lowest two filters, which had

bandwidths of 50 Hz, the filter passband edges were set to correspond to critical

bands, defined as corresponding to ca. 0.9 mm segments of the basilar membrane

based on the following modified form of Greenwood’s function [Gre95]:

f = 160
(
100.06x − 0.4

)
2. Following the spectral analysis, the amplitude envelope is computed in each channel

by half-wave rectifying and lowpass filtering the filterbank output. The lowpass filter

is a linear-phase FIR filter with a cutoff frequency of 24 Hz and 40 dB of stopband

rejection. To reduce the computational costs of the signal processing, and to match

typical data rates into ASR systems, the envelope signals are downsampled by a factor

of 100 to a sampling frequency of 80 Hz.

3. The amplitude envelopes are then normalized by computing the long-term average

level (over an entire utterance) in each channel and then dividing each envelope sig-

nal by its average value. This normalization, which is analogous to cepstral mean

normalization, is intended to capture some aspects of auditory adaptation, namely in-

sensitivity to overall signal energy, and insensitivity to spectral shaping of the speech

signal. It does not, however, provide the enhancement of signal onsets that is seen

in the auditory system or in representations such as RASTA-PLP that use on-line

automatic gain control.

4. The modulation frequency content of the normalized amplitude envelope signals is

then analyzed by performing an FFT over a sliding Hamming window on each signal.

The log magnitude of each result is computed, and one of the bins is selected for

display. The duration of the modulation analysis window and the displayed FFT

bin were experimental parameters. This processing step is intended to model the

selectivity for slow modulation frequencies observed in the auditory system.
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Frequency Range T60

0–250 Hz 3.1 s

250–500 Hz 2.6 s

500–1000 Hz 2.2 s

1000–2000 Hz 1.6 s

2000–4000 Hz 1.4 s

Table 4.1: Estimated reverberation times (T60) in different frequency bands for a highly
reverberant hallway.

5. The log magnitudes from the selected FFT bin are normalized by locating the maxi-

mum over all channels and all times in a given utterance, and this maximum level is

subtracted from all of the log magnitudes. A thresholding operation is then applied in

which all normalized log magnitudes equal to or below a given threshold are set equal

to the threshold level, with the threshold level being an experimental parameter. The

thresholding operation serves to emphasize spectro-temporal peaks in the signal by

eliminating the representation of portions of the signal below the threshold.

6. The processed log magnitudes are then plotted in a spectrographic format, on the

time-frequency plane, with bilinear smoothing used to produce the final image.

By plotting clean and corrupted samples of speech in this format and comparing

their representations, the stability of the representation produced with different settings of

the parameters was tested. The forms of acoustic interference that were examined were

additive pink noise2 at different signal-to-noise ratios, and severe reverberation. Using a

250-ms (20-sample) Hamming window for the modulation analysis, selecting the 4-Hz bin

from the modulation analysis and thresholding all points 30 dB or more below the peak

level in an utterance produced a relatively robust representation.

The severe reverberation was imposed by convolving clean speech samples with

an impulse response designed to match the gross acoustic properties of a hallway approxi-

mately 6.1 m long, 2.4 m high, and 1.7 m wide with a floor, ceiling, and walls of concrete.

The reverberation time of the hallway in different frequency bands was estimated from a

recording of speech produced in the hallway and simultaneously recorded onto digital tape

2The power spectral density of pink noise is constant on a logarithmic frequency axis, above some specified
cutoff frequency. The pink noise used in this study was taken from the NOISEX CD-ROM [VS93].
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with a head-mounted, close-talking microphone and with an omnidirectional microphone

located on the floor about 2.5 m from the talker. The estimated reverberation times are

listed in Table 4.1. To synthesize the reverberant tail of the impulse response, a Gaussian

white noise sample was filtered into subbands matching those used in the estimation of the

hallway’s reverberation times. Each subband was modulated with a decaying exponential

envelope matched to the reverberation time for that subband. The modulated noise bands

were then added together. The early reflections in the impulse response were estimated

using a time-domain image expansion simulation [AB79], while the direct-to-reverberant

energy ratio was manually adjusted to match the original recording. The final impulse re-

sponse has an overall reverberation time of about 2.2 s and a direct-to-reverberant energy

ratio of -16 dB. While a direct-to-reverberant energy ratio of -16 dB seems very severe

(speech-shaped additive noise with an SNR of -16 dB would greatly reduce speech intelligi-

bility), it is important to note that the direct-to-reverberant energy ratio is not equivalent

to a signal-to-noise ratio because reflections arriving within about 80 ms of the direct sound

contribute to speech intelligibility rather than detracting from it. The “early-to-late energy

ratio” for this impulse response, which counts all energy arriving within 80 ms of the direct

sound as contributing to intelligibility, is -2 dB.

To illustrate the properties of the modulation-filtered spectrogram representation,

standard wideband spectrograms and modulation-filtered spectrograms are plotted for the

utterance “two oh five,” collected from a female speaker over the telephone, for the following

five acoustic conditions:

clean conditions are shown in Figure 4.2.

moderately noisy conditions are shown in Figure 4.3. The moderately noisy utterance

was generated by adding babble noise from the NOISEX CD-ROM to the clean ut-

terance at an SNR of 20 dB, measured over the entire utterance.

very noisy conditions are shown in Figure 4.4. The very noisy utterance was generated

by adding babble noise from the NOISEX CD-ROM to the clean utterance at an SNR

of 0 dB, measured over the entire utterance.

moderately reverberant conditions are shown in Figure 4.5. The moderately reverber-

ant utterance was generated by convolving the clean utterance with a room impulse

response with T60=0.5 s and a direct-to-reverberant energy ratio of 1 dB.
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Figure 4.2: Wideband spectrogram and modulation-filtered spectrogram for the clean ver-
sion of the utterance “two oh five,” collected from a female speaker over the telephone.
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Figure 4.3: Wideband spectrogram and modulation-filtered spectrogram for the moderately
noisy version of the utterance “two oh five,” collected from a female speaker over the
telephone. To generate this utterance, babble noise from the NOISEX CD-ROM was added
to the clean utterance at an SNR of 20 dB, measured over the entire utterance.
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Figure 4.4: Wideband spectrogram and modulation-filtered spectrogram for the very noisy
version of the utterance “two oh five,” collected from a female speaker over the telephone.
To generate this utterance, babble noise from the NOISEX CD-ROM was added to the
clean utterance at an SNR of 0 dB, measured over the entire utterance.
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Figure 4.5: Wideband spectrogram and modulation-filtered spectrogram for the moderately
reverberant version of the utterance “two oh five,” collected from a female speaker over the
telephone. To generate this utterance, the clean utterance was convolved with a room
impulse response with T60=0.5 s and a direct-to-reverberant energy ratio of 1 dB.
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Figure 4.6: Wideband spectrogram and modulation-filtered spectrogram for the highly
reverberant version of the utterance “two oh five,” collected from a female speaker over
the telephone. To generate this utterance, the clean utterance was convolved with a room
impulse response with T60=2.2 s and a direct-to-reverberant energy ratio of -16 dB.
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highly reverberant conditions are shown in Figure 4.6. The very reverberant utterance

was generated by convolving the clean utterance with a room impulse response char-

acterized by a T60=2.2 s and a direct-to-reverberant energy ratio of -16 dB.

The displayed utterance was hand-labeled by an experienced phonetic transcriber. The pho-

netic labeling for the utterance is shown along the top of each display, and the syllable onsets

are indicated by vertical bars on each display. The wideband spectrograms were calculated

as for Figure 1.2. The speech signal was pre-emphasized with a filter, H(z) = 1− 0.94z−1,

and then segmented into 8-ms windows with a 2-ms window step. Next, power spectra were

calculated using 256-point FFTs. The power spectra were normalized with respect to the

peak level in the signal and then plotted on a color scale with a lower threshold of -60 dB.

The wideband spectrogram and modulation-filtered spectrogram representations

are very different from one another. The wideband spectrogram of the clean utterance shows

a great deal of spectro-temporal detail in the signal, such as pitch pulses in voiced segments,

sharp onsets and formant trajectories. In contrast, the modulation-filtered spectrogram of

the clean utterance shows only the gross distribution of slowly modulated speech energy

in time and frequency, with a warping of the frequency axis that expands the display

of the lower frequencies and compresses the display of the higher frequencies. The fine

spectro-temporal detail that appears in the wideband spectrogram for the clean utterance

is gradually obscured as the level of noise or reverberation increases. Thus, the wideband

spectrogram is not an especially stable speech representation.3 On the other hand, the

modulation-filtered spectrogram is quite stable, with the displays of the clean, moderately

noisy and moderately reverberant utterances being nearly identical to one another and the

displays of the very noisy and highly reverberant utterances showing strong similarities to

the other modulation-filtered spectrograms.

4.2 ASR Experiments with the Visual Features

While it is possible to demonstrate representational stability in visual displays

of speech, it is not so simple to show that the linguistically relevant information required

3It should be noted that the stability of the wideband spectrograms could be enhanced by using a lower
threshold of -30 dB with respect to the global peak, as in the modulation-filtered spectrogram processing.
A -60 dB threshold was used for the wideband spectrograms because it is a more standard value for speech
displays.
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zero five eleven seventeen fifty thousand
oh six twelve eighteen sixty a
one seven thirteen nineteen seventy and
two eight fourteen twenty eighty double
three nine fifteen thirty ninety dash
four ten sixteen forty hundred hyphen

Table 4.2: Vocabulary for the Numbers 93 subset used in initial ASR experiments.

for speech recognition is present using such displays.4 To see if the processing preserves

linguistic information, and to determine if the visual stability of the modulation-filtered

spectrogram translates into improved ASR robustness, it was necessary to perform exper-

iments in automatic speech recognition using the modulation-filtered spectrogram as an

ASR front end. This section describes these ASR experiments.

4.2.1 Experimental Speech Material

The recognition experiments described in this section were all performed using

material from the Numbers 93 subset of the Numbers corpus [CNLD95] from the Center for

Spoken Language Understanding at the Oregon Graduate Institute. Numbers is a collection

of continuous, naturally spoken numbers excised from spontaneous responses to various

census-related queries (e.g., for street addresses, ZIP codes and telephone numbers). A

sample utterance from the corpus is “nine double oh one eight.” The responses were recorded

from a diverse population over local and long-distance telephone lines, and were digitally

sampled at 8 kHz with 16-bit resolution. The Numbers 93 subset had a vocabulary of thirty-

six different words. Listed in Table 4.2, they are primarily numbers, including confusable

sets such as “six,” “sixteen,” and “sixty,” with a few additional words. The Numbers 93

subset was selected for these experiments because it is a relatively small data set and

thus these preliminary experiments could proceed quickly. The utterances used for these

experiments were partitioned into a set of 875 training utterances (containing a total of

3315 words) and 657 test utterances (containing a total of 2426 words). Two test sets were

used, an unaltered, clean version and a reverberant version created by convolving all of the

4After all, a very stable display could be generated by multiplying the input signal by 0, but one would
be hard-pressed to recognize speech using such a “representation.”



CHAPTER 4. INITIAL EXPERIMENTS 76

utterances in the clean version with the impulse response used in the visualization study

described in Section 4.1.

4.2.2 Structure of the Experimental Recognizers

The automatic recognition system used in the initial experiments was a hybrid

HMM/MLP recognizer, as described in Chapter 3. A multilayer perceptron with a single

hidden layer was used to estimate phonetic probabilities from the acoustic input. Un-

less otherwise stated, the size of the hidden layer was set so that every MLP contained

approximately 90,000 weights. The labeling of the training data was optimized using it-

erative embedded Viterbi training. Forty context-independent phone units were used in

the word models. Language modeling was done with a class bigram grammar trained on

the utterances used for recognizer training. The language model scaling factor and word

transition penalty were optimized over the portion of the training data that was reserved

for cross-validation during MLP training.

To speed up the recognition process in these initial experiments, the following

simplifications were made to the recognizer:

• An input context window of fifteen frames centered on the current frame was used,

and no delta features were used.

• The output layer was a set of sigmoidal units, not a softmax layer.

• The lexicon was simpler than the one described in Chapter 3, having only a single pro-

nunciation for each word in the vocabulary and using fixed minimum phone durations

of two states.

These changes reduced the time needed to compute features, to train the MLP, and to

perform recognition; however, they also reduced the recognizer accuracy. Thus, only the

relative performance of the different recognizers in this set of experiments should be con-

sidered. Later experiments, described in Section 4.3 and Chapters 5 and 6, used a more

complex recognition system capable of matching the best performance reported for context-

independent recognizers on the Numbers corpus.

The PLP, log-RASTA-PLP, and J-RASTA-PLP front ends were all tested in this

series of experiments. For all three feature sets, the initial FFT power spectrum was com-
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Features Clean test error rate Reverberant test error rate
total sub. del. ins. total sub. del. ins.

PLP 15.8% 9.2% 3.2% 3.5% 70.1% 33.5% 33.8% 2.7%

log-RASTA-PLP 14.5% 8.9% 3.0% 2.5% 72.7% 39.3% 31.4% 2.0%

J-RASTA-PLP 15.1% 10.1% 3.2% 1.8% 77.3% 44.5% 30.0% 2.9%

MSG 30.1% 21.0% 6.6% 2.5% 65.2% 41.3% 20.5% 3.4%

Table 4.3: Word error rates on the clean and reverberant Numbers 93 test sets for PLP,
log-RASTA-PLP, J-RASTA-PLP, and MSG features. The total error rates are presented
and are also broken down in terms of substitutions (sub.), deletions (del.), and insertions
(ins.).

puted over a 25-ms window with a 12.5-ms window step. The nine lowest-order cepstral

coefficients, including the zero-order coefficient, were used as features for recognition. No

delta features were used.

The generation of the MSG features differed slightly from the generation of the

modulation-filtered spectrogram displays of speech. The filterbank used for spectral anal-

ysis was a constant-Q filterbank covering the frequency range 297–4000 Hz with fifteen

quarter-octave bandwidth filters, and the modulation analysis was performed using a com-

plex, lowpass FIR filter with a cutoff frequency of 8 Hz instead of using an FFT and

retaining only one frequency bin. These changes do not greatly alter the representation of

speech, but they did simplify the design of subsequent ASR experiments. The constant-Q

filterbank was simpler to parameterize than a filterbank based on Greenwood’s cochlear

place-to-frequency map, although it produced a representation with finer resolution in the

low frequencies than is necessary or psychoacoustically justifiable. The complex filter anal-

ysis was more efficient than the FFT-based analysis. Like the RASTA-PLP front ends, the

MSG processing produced output vectors at a rate of one every 12.5 ms.

4.2.3 Baseline Recognition Results

Two sets of experiments were performed to establish initial baseline performance

measurements. In the first set, a recognizer was trained on clean training data for each of the

four front ends and then tested on clean and reverberant versions of the test set. The results

of the clean test indicate how well a front end represents speech under matched acoustic
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Features Clean test error rate Reverberant test error rate
total sub. del. ins. total sub. del. ins.

PLP 72.5% 34.1% 4.2% 34.2% 48.5% 27.5% 13.4% 7.6%

MSG 45.4% 33.8% 6.8% 4.8% 43.5% 30.0% 10.4% 3.2%

Table 4.4: Word error rates on the clean and reverberant Numbers 93 test sets for PLP
and MSG recognizers trained on reverberant data. In this case the reverberant test is the
condition matched to the training data.

conditions, for a given MLP, lexicon and language model. The results of the reverberant test

indicate how well a front end suppresses the reverberation in its representation of speech

— it measures the invariance of the representation. The results of this first experiment are

summarized in Table 4.3.

In the second set of experiments, recognizers were trained on a reverberant version

of the training set, created by convolving the training utterances with the same impulse

response used to create the reverberant test set and then tested on the clean and reverberant

test sets. In this experiment, performance on the clean test measures the invariance of the

front-end representation. The word error rate on the reverberant test may be considered a

lower bound for the reverberant test for a given front end, MLP, lexicon and language model,

because it is obtained with matched training data. Only the PLP front end (which was the

best of the RASTA-PLP front ends on the reverberant test in the initial experiments) and

the MSG features were tested. The results of this experiment are summarized in Table 4.4.

In the first experiment, in which the recognizers were trained on clean speech,

the three RASTA-PLP front ends yield essentially identical performance on the clean test,

while on the reverberant test the PLP features are significantly better than the log-RASTA-

PLP features, and the log-RASTA-PLP features are, in turn, significantly better than the

J-RASTA-PLP features. The MSG features are much worse than the PLP features on

clean speech, with a word error rate that is nearly twice that of PLP; however, they are

significantly better than the PLP features on the reverberant test. Their poor performance

on the clean test indicates that the MSG features fail to represent certain information

important for recognizing speech. The information that the MSG features do represent,

though, is relatively resistant to the effects of reverberation. The results of the experiment

in which recognizers were trained on reverberant speech support these conclusions. Even
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Subject total sub. del. ins.

A 146 108 25 13

B 153 103 35 15

C 145 91 40 14

average 148 100 33 14

error rate 6.1% 4.1% 1.4% 0.6%

Table 4.5: Number of errors (out of 2426 words) made by human listeners on the rever-
berant Numbers 93 test. Percent error rates are also given for the averages. The average
substitutions, deletions, and insertions do not sum to 148 due to rounding.

with matched training and testing conditions, performance on the reverberant test is quite

poor, with total word error rates of 44–49%. This drop in performance occurs because

temporal smearing of the speech signal increases the variability of the acoustic realizations

of different phonetic segments. In the case of clean speech, the acoustics are influenced pri-

marily by the identity of the current phonetic segment and by the identities of the preceding

and succeeding phonetic segments (ignoring speaker characteristics). However, under re-

verberant conditions the acoustics are strongly influenced by additional phonetic segments

due to temporal smearing. This effect will make recognition more difficult, especially for

relatively small training sets.

4.2.4 Measuring Human Performance on the Reverberant Test

To obtain a second, independent measurement of the difficulty of the reverberant

speech recognition task, the intelligibility of the reverberant test set was measured for three

human listeners. The subjects, who were all native speakers of American English, had no

known hearing impairments, and had considerable experience in the phonetic transcription

of speech, were asked to lexically transcribe all 657 utterances in the reverberant test set.

The utterances were generated using the 16-bit digital-to-analog converter in a Sun SPARC-

5 workstation at a sampling rate of 8 kHz and presented over headphones at a comfortable

level in a quiet office. The subjects were given a list of the thirty-six possible words in the

test set, and were allowed to listen to each utterance as many times as desired. The order

of the utterances was randomized to prevent the subjects’ adjusting to the characteristics of

the speakers in the database. To familiarize the subjects with the transcription task, they
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were given a practice set of ten reverberant utterances from the training set to transcribe

before the actual test session commenced. During the practice session the subjects were

given feedback on their transcription accuracy, but they did not receive any feedback in the

test phase.

The results of the listening test are summarized in Table 4.5. The performance of

each individual subject is given, as well as an average for all three subjects. The average

word error rate for the three subjects is 6.1%, which is ten times more accurate than the

best ASR system (trained on clean speech) on the reverberant test and over two times

better than the best ASR system on the clean test. This experiment illustrates that the

recognition task is a challenging, but not impossible one, for human listeners.

4.2.5 Variants on the Modulation-Filtered Spectrogram Features

Although the performance on clean speech with the new features was poor in

comparison to that obtained using the PLP and RASTA-PLP features, the new features

did provide a significant improvement in recognition accuracy on the reverberant test. To

gain a better understanding of what signal-processing steps contribute to the improvement

in reverberation and to try to improve the overall utility of the MSG features for ASR,

a number of processing variations were tested. All of the tests used the same recognition

architecture as the baseline study and all of the recognizers were trained on the clean

training set only.

Using Higher Modulation Frequencies

The modulation filtering used in the initial version of the MSG processing is quite

severe, passing only frequencies below 8 Hz. In comparison, the filter used in RASTA-PLP

has a cutoff frequency of 12 Hz and the lowpass filters applied to the envelope signals in

channel vocoders typically have cutoff frequencies of 20–25 Hz. To ascertain whether the

higher modulation frequencies were useful in this case, two experiments were performed.

First, the complex modulation filter was changed to have a passband of 8–16 Hz, and the

features generated using this bandpass filter were used for recognition. Second, the features

generated with both the lowpass modulation filter and the bandpass modulation filter were

used together for recognition, doubling the number of features per frame. In the second
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Filter Clean test error rate Reverberant test error rate
Passband total sub. del. ins. total sub. del. ins.

8–16 Hz 47.1% 30.7% 11.5% 4.9% 79.1% 47.4% 26.5% 5.1%

0–8 and 8–16 Hz 29.8% 20.7% 4.9% 4.2% 70.1% 45.8% 18.4% 5.9%

Table 4.6: Word error rates on the clean and reverberant Numbers 93 test sets for MSG
features generated using a bandpass modulation filter with a 8–16 Hz passband and for the
standard features and bandpass features used together at the input to a single MLP.

Clean test error rate Reverberant test error rate

total sub. del. ins. total sub. del. ins.

31.0% 21.9% 6.4% 2.7% 66.5% 44.7% 17.1% 4.7%

Table 4.7: Word error rates on the clean and reverberant Numbers 93 test sets for MSG
features with spectral smoothing accomplished via truncation of the DCT of the spectral
features.

experiment, the size of the hidden layer of the MLP in the recognizer was reduced to keep

the total number of MLP weights approximately constant.

The results of these two experiments are summarized in Table 4.6. The recognition

systems based on the bandpass features alone are significantly less accurate than those based

on the original, lowpass features (Table 4.3). Using the two feature sets together does not

provide a significant improvement on the clean test and leads to a significant decrease in

accuracy on the reverberant test. Thus, for this specific combination of signal processing,

ASR system and testing regime, the 8–16 Hz modulations do not appear to carry useful

linguistic information.

Applying Cepstral Smoothing

It is generally believed that a spectral representation with critical-band frequency

resolution provides more detail than is necessary for speech recognition, and that using a

lower-resolution representation may improve the speaker independence of an ASR system

[Kla82, Her90]. To test if such spectral smoothing would improve the accuracy of the MSG

features, a discrete cosine transform was applied to the original features, and only the nine

low-order coefficients, including the zero-order coefficient, were used for recognition.
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The results of this experiment are summarized in Table 4.7. The performance

on both tests was not significantly different from the MSG baseline recognizer. While the

smoothing did not lead to any performance improvements, this experiment did demonstrate

that it might be possible to reduce the number of features used for recognition without

significantly impacting system performance. The cepstral transform can also be useful in an

ASR system based on a Gaussian mixture acoustic model, to the extent that the transform

decorrelates the features, making them a better match to the diagonal-covariance Gaussians

which are typically used in mixture models.

Omitting Various Stages of the Processing

To develop a clearer picture of which steps in the MSG processing contributed to

robustness in reverberation, a series of recognition experiments were performed using MSG

variants that omitted different signal-processing steps. The steps that could be omitted

were the normalization of each amplitude envelope signal by its average level, filtering of

the envelope by the complex, lowpass modulation filter, normalization of all amplitude

signals with respect to the global peak level and thresholding of levels more than 30 dB

below the global peak level to -30 dB. Note that if all four steps are omitted, the signal

processing generates a short-term log power spectrum with quarter-octave resolution.

The outcomes of these experiments are summarized in Table 4.8. These data

illustrate a number of important points:

• The thresholding operation (T), vital for producing stability in the visual displays,

is detrimental to the accuracy of an ASR system on both the clean and reverberant

tests. In comparing all pairs of experiments that differ only by the presence or absence

of the thresholding (experiments 0 and 3, 1 and 5, and 2 and 4), it is evident that

omission of the thresholding drastically improves accuracy on the clean test and either

has an insignificant effect on accuracy for the reverberant test or results in slight

improvements. It is likely that the thresholding operation masks low-energy parts

of the speech signal that carry important phonetic information. A comparison of

experiments 0 and 1 supports this hypothesis. If the thresholding is performed and the

normalization of the amplitude signals by their average levels is not performed, then

the recognition accuracy on both tests is significantly degraded. The normalization
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# A F P T Clean test error rate Reverberant test error rate
total sub. del. ins. total sub. del. ins.

0 + + + + 30.1% 21.0% 6.6% 2.5% 65.2% 41.3% 20.5% 3.4%

1 - + + + 40.0% 27.5% 9.2% 3.4% 70.7% 38.2% 28.9% 3.7%

2 + - + + 30.6% 21.2% 7.0% 2.4% 67.8% 42.6% 21.6% 3.6%

3 + + + - 17.5% 11.8% 3.5% 2.1% 66.1% 37.7% 25.9% 2.6%

4 + - + - 13.6% 9.2% 2.1% 2.2% 69.9% 40.8% 24.6% 4.4%

5 - + + - 17.8% 12.3% 3.0% 2.6% 63.8% 32.3% 28.3% 3.4%

6 - + - - 18.3% 12.0% 2.7% 3.6% 68.8% 30.7% 34.4% 3.8%

7 - - - - 16.1% 10.5% 2.7% 2.9% 73.5% 31.8% 39.0% 2.7%

Table 4.8: Word error rates on the clean and reverberant Numbers 93 test sets for MSG
variants that omit one or more of the key processing steps: (A) normalization of the ampli-
tude envelope signals by their average levels; (F) filtering of the amplitude envelope signals
with a lowpass, complex filter; (P) normalization of the amplitude signals by their global
peak value; (T) thresholding of all values more than 30 dB below the global peak to -30 dB.
A “+” indicates that the processing step is included in a given experiment, while a “-”
indicates that the step is omitted. The results from the baseline experiment are reiterated
here as experiment 0, to facilitate comparison with the other results.

by average levels tends to flatten the spectrum of the speech, reducing the differences

between high-energy and low-energy bands. If this normalization is not performed,

more of the speech signal is masked by the thresholding and recognition accuracy is

reduced.

• The modulation filtering operation (F) is crucial for accuracy on the reverberant test,

but decreases accuracy on the clean test. Comparing the experiments that differ only

by the presence or absence of the filtering (experiments 0 and 2, 3 and 4, and 6 and 7),

its inclusion always provides a significant improvement in accuracy on the reverberant

test, but in two of the three tests it also causes a significant loss of accuracy on the

clean test.

• Automatic gain control (AGC) may be beneficial or detrimental, depending on the

acoustic conditions of a test set and the specific properties of the AGC. Comparing

experiments 3 and 5, it appears that without the thresholding, the normalization of

the amplitude envelopes by their average levels (A) has a detrimental effect for the

reverberant test and no significant effect on performance for the clean test. Com-

paring experiments 5 and 6 shows that the normalization of the amplitude signals
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by the global peak level in an utterance (P) significantly improves accuracy on the

reverberant test and has no significant effect on accuracy for the clean test. The best

performance on the clean test is obtained in experiment 4, with a front end that in-

cludes both normalization steps, but no other processing. Utterances in the “clean”

test were collected over many different telephone handsets and lines. The two normal-

ization/AGC steps are useful for reducing the variability resulting from the spectral

shaping imposed by these different channels.

Changing the Modulation Filter

The role of the modulation filtering was examined in more detail by splitting

the complex filter into its real and imaginary parts and using the parts either separately

or together for speech recognition. The outputs of the real and imaginary filters were

compressed using a cube-root function instead of a logarithm. These variations on the

filter were tested with a signal-processing system that performed neither thresholding nor

normalization of the amplitude signals by their average levels. For the cube-root compressed

signals, normalization with respect to the global peak was performed by finding the point

in an utterance with the greatest absolute value and dividing all points in the signal by that

magnitude. In the experiment where the real and imaginary parts of the original complex

filter were used together, one normalization factor was used for the outputs of the real filters

and a separate one used for the outputs of the imaginary filters (as illustrated in Figure 4.9).

As a control, an experiment was run in which the recognition features were computed by

taking the cube root of the magnitude of the output of the complex filter.

The results of these experiments are summarized in Table 4.9. Changing the

compression from logarithmic to cube root significantly degrades recognition accuracy on

the reverberant test, but has no significant effect on accuracy on the clean test. With cube

root compression, there is no significant difference in performance on either test between

using the complex filter and only its real part. Using the imaginary part of the filter gives

a significant improvement in accuracy on the reverberant test and no significant change on

the clean test. Using both filters in parallel, however, produces a significant improvement

in accuracy for the clean test over all the other configurations, and on the reverberant

test achieves an accuracy on par with that obtained using the complex filter with log

compression.
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Figure 4.7: The magnitude of the impulse response of the complex filter and the impulse
responses of its real and imaginary components. The complex and real filters are lowpass,
with the complex filter having a broader response than the real filter. The imaginary filter
is a time-local differentiator.
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Figure 4.8: The frequency responses of the complex filter and its real and imaginary com-
ponents. The complex filter is lowpass, with some degree of attenuation at 0 Hz. The real
filter is strictly lowpass. The imaginary filter is bandpass with a zero at 0 Hz.
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Filter Compress. Clean test error rate Reverberant test error rate
total sub. del. ins. total sub. del. ins.

complex log 17.8% 12.3% 3.0% 2.6% 63.8% 32.3% 28.3% 3.4%

complex cube root 17.8% 12.2% 4.0% 1.6% 67.2% 34.8% 29.5% 2.9%

real cube root 16.5% 11.1% 2.6% 2.7% 68.3% 33.9% 30.9% 3.4%
part

imaginary cube root 17.3% 12.2% 2.6% 2.5% 64.3% 40.9% 14.3% 9.1%
part

real and
imaginary cube root 14.7% 9.8% 2.3% 2.6% 63.5% 37.9% 15.7% 9.9%
part

Table 4.9: Word error rates for the clean and reverberant Numbers 93 test sets obtained
using different modulation filters.

These results may be explained by examining the properties of the three filters.

The magnitude of the impulse response of the complex filter and the impulse responses

for the real and imaginary filters are shown in Figure 4.7. The frequency responses of the

three filters are shown in Figure 4.8. Using the real and imaginary components of the

complex filter separately has two advantages. First, the real filter has a slightly narrower

temporal response than the complex filter. Second, and more importantly, the use of the

real and imaginary filters provides two distinctly different representations of the speech

signal to the recognizer. The one produced by the real filter is essentially a normalized,

temporally smoothed spectral representation, while the one produced by the imaginary filter

is a normalized, smoothed, and differentiated spectral representation.

Summary

These initial experiments with MSG variants demonstrated how the signal pro-

cessing could be changed to produce a more useful representation for ASR. Most important

is the elimination of the thresholding, which leads to dramatic improvements in recognition

accuracy on clean speech without significantly affecting recognition accuracy on reverberant

speech. Other important changes from the original visual representation include the elim-

ination of the normalization of the amplitude envelope signals by their average levels, the

replacement of the complex FIR filter by its real and imaginary components, which are used
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in parallel and the replacement of the log compression of the filtered amplitude envelopes

by cube-root compression. Figure 4.9 depicts the resultant signal-processing system.

4.3 Combining MSG and RASTA-PLP Features

The performance of the MSG features in combination with other features is of

great interest because the use of multiple representations in combination frequently yields

more accurate recognizer performance. The MSG processing, as outlined in Figure 4.9, is

somewhat distinct from RASTA-PLP processing, so a recognizer that uses both represen-

tations in combination may be more accurate than a recognizer that uses only one of the

two front ends. This possibility was tested in another series of recognition experiments.

4.3.1 Experimental Speech Material

These experiments, and almost all subsequent experiments, used a larger subset of

the Numbers corpus [CNLD95] known as Numbers 95. Utterances included in this subset

were chosen to have valid phonetic transcriptions and to not contain any words truncated

by the segmentation routine used to isolate the numbers from their carrier utterances. The

subset vocabulary of thirty-two different words was the same as that listed in Table 4.2, but

without the words “a,” “and,” “double,” “dash,” “hyphen,” and “thousand.” The subset

was divided into a training set of 3590 utterances (containing a total of 13873 words), a

development test set of 1206 utterances (containing a total of 4673 words) and a final test

set of 1227 utterances (containing a total of 4757 words). The final test set was not used

in the following series of experiments.

Recognizers were tested on six different versions of the development test set: a

clean version, a reverberant version and four noisy versions. The four noisy test sets were

generated by adding pink noise from the NOISEX CD-ROM to the clean set at signal-

to-noise ratios of 30 dB, 20 dB, 10 dB and 0 dB. The signal-to-noise ratio was set on an

utterance-by-utterance basis and was measured over an entire utterance. The reverber-

ant test set was generated by convolving the clean test set with a room impulse response

characterized by a T60 of 0.5 s and a direct-to-reverberant energy ratio of 1 dB. The early-

to-late energy ratio for this impulse response, counting all sound arriving within 80 ms

of the arrival of the direct sound as contributing to intelligibility, is 22 dB. The impulse
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Figure 4.9: Diagram of the signal processing that produces an optimized form of the
modulation-filtered spectrogram features, based on the experiments with the Numbers 93
subset.
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Subject clean reverb.

1 0.3% 0.5%

2 0.3% 0.0%

Table 4.10: Word error rates for human listeners for 100 utterances from the clean Num-
bers 95 development test set and 100 different utterances from the reverberant Numbers 95
development test.

response is one of a set of impulse responses collected in the Bell Labs Varechoic chamber

[MPC97, WEKM94, Ave97a].5 The varechoic chamber is a 6.71 m × 5.94 m × 2.74 m room

in which the walls, floor, and ceiling are covered by a total of 368 individually controlled

panels with variable acoustic absorbance. The panels contain two perforated metal sheets

that may be positioned so that the holes align with one another to expose sound-absorbing

material behind the sheets, creating a highly absorbant surface. The sheets may also be po-

sitioned so that the holes in the top sheet are entirely occluded by the lower sheet, creating a

highly reflective surface. Each panel may be set to the highly reflective or highly absorbant

state. For the collection of the impulse responses used in this thesis, four omnidirectional

microphones were placed at distances of 2 m, 2.35 m, 2.7 m, and 3.05 m from a source, and

measurements were recorded from each microphone for one of three panel settings: 100%

of the panels open, 43.7% open, or none open [Ave97a]. The room impulses were measured

using a chirp-excited system identification program. For the current experiment as well as

the bulk of the experiments in this thesis, the impulse response for the microphone located

2 m from the source with 43.7% of the panels open was used. The remaining eleven impulse

responses were reserved for final tests, described in Chapter 6.

Intelligibility of the Numbers 95 Utterances

The intelligibility of the Numbers 95 utterances for human listeners in both the

clean and reverberant conditions was measured. Two native speakers of American English

with no known hearing impairments lexically transcribed 100 utterances from the clean

development test set and 100 different utterances from the reverberant test set. The tests

were counterbalanced so that the clean utterances heard by one listener were the same as

5I am most grateful to Jim West, Gary Elko, and Carlos Avendaño for collecting the impulse responses
and making them available to me.
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the reverberant utterances heard by the other listener, and vice-versa. The utterances were

generated using the 16-bit digital-to-analog converter in a Sun SPARC-5 workstation at

a sampling rate of 8 kHz and presented over headphones at a comfortable listening level

in a quiet office. The listeners could hear each utterance up to four times. The subjects’

transcriptions were scored using the same program that was used to score recognizer output.

The error rates for each subject, in each condition, are shown in Table 4.10. Clearly, both

conditions are trivial for human listeners.

4.3.2 Structure of the Experimental Recognizers

The automatic speech recognition system used in these experiments was also a

hybrid HMM/MLP recognizer. The MLP used for phonetic probability estimation had an

input context window of nine frames centered on the current input, a single hidden layer and

a softmax output layer. Unless otherwise specified, the size of the hidden layer was set so

that every MLP had approximately 106,000 weights. For recognizers in which two front ends

are combined, the combination was accomplished by averaging the phone log likelihoods

from the MLPs. The lexicon used in these experiments was a multiple-pronunciation lexicon

with simple context-dependent phone duration modeling.6 The labeling of the training data

and the pronunciations and duration constraints in the lexicon were optimized using iterative

embedded Viterbi training. Thirty-two context-independent phone units were used in the

word models. Language modeling was done with a backoff bigram grammar trained on

the utterances used for recognizer training. The language model scaling factor and word

transition penalty were fixed, based on a set of pilot experiments. Recognizer training was

performed only on clean speech.

The PLP, log-RASTA-PLP, J-RASTA-PLP, and MSG front ends were all tested.

The PLP and RASTA-PLP feature calculations were based on an FFT power spectrum

computed over a 25-ms window with a 10-ms window step. The nine lowest-order cepstral

coefficients, including the zero-order coefficient, were used as features for recognition, sup-

plemented with delta features computed via a regression over a nine-frame window centered

on the current frame. The MSG features were calculated as shown in Figure 4.9. A down-

sampling factor of 80 was used, so that the MSG front end generated one feature vector

every 10 ms, like the RASTA-PLP front ends.

6Thanks to Su-Lin Wu for creating this lexicon.
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Features Test condition
clean reverb. 30 dB SNR 20 dB SNR 10 dB SNR 0 dB SNR

PLP 6.4% 37.6% 28.3% 43.5% 60.7% 78.8%

log-RASTA 6.4% 26.0% 11.4% 16.3% 27.8% 51.6%

J-RASTA 6.6% 27.9% 15.6% 23.5% 35.7% 54.4%

MSG 8.5% 27.3% 14.6% 22.9% 38.7% 61.5%

Table 4.11: Word error rates on the clean, reverberant, and noisy Numbers 95 development
test sets for recognizers using a single front-end representation.

4.3.3 Baseline Results

The results using a single front-end representation are summarized in Table 4.11.

Except for the clean test, where all three RASTA-PLP front ends have a similar performance

level, the log-RASTA front end is significantly more accurate than the other front ends on

all tests. The J-RASTA front end is the runner-up, followed by the MSG front end. On

the moderately reverberant test, the 30-dB-SNR noisy test and the 20-dB-SNR noisy test,

the MSG and J-RASTA-PLP front ends are equally accurate. The PLP front end, which is

the only front end that does not perform any temporal processing of the incoming signal, is

the least accurate front end (except on the clean test, where it outperforms the MSG front

end).

These results are somewhat unexpected in light of the earlier tests with the smaller

Numbers 93 subset, where the optimized version of the MSG front end performed as well

as the three RASTA-PLP front ends on the clean test and significantly better on the highly

reverberant test (see Table 4.3 for the various RASTA-PLP results and the last line of

Table 4.9 for the optimized MSG results). The difference may arise because the earlier tests

were performed using a simple lexicon that had not been optimized via embedded Viterbi

training, while the tests on the larger data set were performed with a lexicon that was

optimized via embedded Viterbi training using a recognizer with log-RASTA-PLP features.

4.3.4 Combining Results

The results for combining two front-end representations are summarized in Ta-

ble 4.12. Because the combination of two front ends, as implemented here, doubles the
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Features Test condition
clean reverb. 30 dB SNR 20 dB SNR 10 dB SNR 0 dB SNR

PLP and 5.7% 26.9% 15.9% 26.6% 43.7% 67.3%
log-RASTA

PLP and 6.1% 29.1% 20.5% 36.1% 53.5% 71.3%
MSG

log-RASTA and 5.5% 20.1% 10.4% 14.7% 23.2% 44.7%
MSG

log-RASTA,
double num. 5.9% 26.1% 10.8% 16.4% 29.7% 54.7%
MLP weights

MSG,
double num. 8.2% 27.9% 14.4% 22.1% 39.8% 65.3%
MLP weights

Table 4.12: Word error rates on the clean, reverberant, and noisy Numbers 95 development
test sets for recognizers using a combination of two front-end representations and for rec-
ognizers with twice as many MLP parameters (ca. 212,000 weights) and a single front-end
representation.

number of MLP parameters used in the recognizer (by doubling the number of MLPs),

results for using the log-RASTA and MSG front ends alone, but with twice as many pa-

rameters in the MLP, are also shown. In these tests the combination of log-RASTA and

MSG features is significantly better than combinations of PLP and log-RASTA or PLP and

MSG features, except on the clean test, where all three combinations have roughly identical

performance. It should also be noted that the log-RASTA and MSG combination is the

only one to perform significantly better than the log-RASTA baseline for this data set.

The success of the log-RASTA and MSG combination may arise from two factors.

First, both front ends incorporate modulation filtering to enhance robustness, while the

PLP front end does not. Second, the log-RASTA and MSG front ends have somewhat

different temporal characteristics, as illustrated in Figure 4.10. The lowpass portion of the

MSG representation has the largest output in syllable nuclei, while the bandpass portion of

the MSG representation shows strong responses to onsets and offsets occurring on phonetic-

segment time scales. In contrast, log-RASTA-PLP shows strong onset responses, followed

by a gradual decay, and moderate offset responses. The PLP and lowpass portion of the

MSG representation are somewhat similar in that both respond most strongly to syllable
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Figure 4.10: A comparison of the temporal characteristics of the lowpass MSG, bandpass
MSG, PLP, and log-RASTA-PLP representations. The graphs show the temporal evolution
of the output for a single frequency channel (ca. 600–700 Hz for all representations) for the
clean utterance “two oh five,” collected from a female speaker over the telephone. The PLP
and log-RASTA-PLP features were obtained by converting cepstral coefficients back into
spectra. To facilitate comparison of the different feature trajectories, they were normalized
to have means of zero and maximum magnitudes of one. The phonetic transcription of
the utterance is given along the top edge of each plot, and the vertical bars mark syllable
onsets.
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nuclei, but the lowpass MSG features evolve much more smoothly over time.

4.4 Summary

A simple signal-processing system that implemented some of the perceptually in-

spired signal-processing strategies laid out in Chapter 2 — critical-band-like frequency anal-

ysis, adaptation, an emphasis of slow changes in the spectrum of the input and a crude model

of masking (the thresholding applied to the final display) — could be used to generate visual

displays of speech that were relatively stable across a range of acoustic distortions. The

same signal-processing system proved to be a better front end for ASR in highly reverberant

conditions than any of the RASTA-PLP front ends, although the new system’s performance

under clean conditions was quite poor, committing nearly twice as many word errors as the

PLP-based recognizer.

The MSG features were as good as PLP on the clean test and surpassed the perfor-

mance of the original “visual” modulation-filtered spectrogram features on the reverberant

test after some modifications to the MSG processing were made. These modifications were

as follows:

• elimination of the thresholding operation,

• elimination of the per-channel adaptation,

• replacement of the original log compression by cube-root compression,

• and replacement of the original complex lowpass modulation filter by two real modu-

lation filters, one lowpass and one bandpass.

Several signal-processing steps contributed to the better performance of the MSG features

reverberation. Of these, the most crucial was the modulation filtering. Adaptation was

also important, provided that it was implemented correctly: per-channel normalization was

detrimental to recognizer accuracy in reverberant conditions, but normalization with respect

to the global peak was beneficial.

The combination of different representations also appears to be useful for improv-

ing ASR performance. Using two MSG representations with different filters as the input to
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the MLP-based acoustic model gives better performance than using only one representation.

Also, combining MSG features and log-RASTA-PLP by averaging phone log likelihoods from

two MLPs gives better performance than using a single representation across a wide range of

acoustic conditions, including a reverberant test and noisy tests at several different SNRs.
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Chapter 5

Optimizing the Features for

Automatic Speech Recognition

Despite the relative success of the initial experiments, described in Chapter 4, a

number of challenges remained. The first concerned the generality of the MSG features.

When MSG features were tested on the Numbers 95 subset with a more sophisticated ASR

system than the one used in the Numbers 93 tests, the performance was worse than that

obtained using log-RASTA-PLP. This was true under all conditions, including the focus

reverberation condition. However, a system that used the MSG features in combination

with log-RASTA-PLP did yield a statistically significant improvement in performance for

many conditions and outperformed all other test systems. The second challenge concerned

computing time. The computation of the MSG features required an off-line processing step,

namely the normalization with respect to the global peak level. Use of this off-line processing

meant that the MSG computation could not be completed until an entire utterance was

received. Real-time applications typically require that feature computation proceed on-line

in order to minimize system response latency.

This chapter describes an extensive series of recognition experiments whose pri-

mary goals were the improvement of MSG features and the development of an on-line algo-

rithm for computing them. The optimization experiments started from the signal processing

illustrated in Figure 4.9. Different aspects of the signal processing were systematically var-

ied, with changes leading to improvements in recognition accuracy being retained for later
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experiments. The experiments are therefore presented in chronological order. To see the

final outcome of these experiments, refer to Section 5.12 for a description of the best MSG

features for the Numbers task and to Section 6.2.1 for a description of a slightly different

set of MSG features that yielded the best performance for the large-vocabulary Broadcast

News task.

Virtually all the experiments described in this chapter follow the same pattern.

First, different versions of the front-end signal processing were created (via a systematic

alteration of the processing or its parameters). Next, an ASR system was trained on features

computed by each version of the front end on the clean Numbers 95 training set. Finally, the

performance of each recognizer was measured on both the clean and moderately reverberant

Numbers 95 development test sets (described in Section 4.3.1). Because the recognizers were

trained only on features computed from clean data, performance on the clean test material

indicated how well the features described phonetic information, while performance on the

reverberant test material reflected how robust the features were to reverberation.

The structure of the recognizers was kept nearly constant for all experiments.

Unless otherwise specified, each recognizer

• used an MLP acoustic model that processed nine frames of input at a time and

contained roughly 92,000 weights. In some experiments the total number of input

features was varied and the number of hidden units changed to keep the total number

of weights approximately constant.

• used the multiple-pronunciation lexicon described in Section 3.1.3.

• used the backoff bigram grammar described in Section 3.1.4.

• was trained using an embedded training procedure in which an initial recognizer was

trained on a labeling of the training data produced by a log-RASTA-PLP-based Num-

bers 95 recognizer. The initial recognizer was then used to relabel the training data

via a forced alignment procedure, and a final recognizer was trained on this relabel-

ing of the data. The final recognizer was then tested on the clean and reverberant

Numbers 95 development tests.
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5.1 Modulation Filter Optimization I

The goal of the experiments described in this section was to design a set of envelope

filters that provided good performance in both clean and reverberant conditions. The design

of the envelope filters was briefly considered in the experiments described in Chapter 4.

However, in those earlier experiments the filter designs were constrained to match FFT

analysis of Hamming-windowed or Kaiser-windowed segments of the envelope signal. In the

experiments described in this section, the filter design was much less constrained.

IIR envelope filters were systematically examined in this set of experiments. IIR

filters can concisely realize many different frequency responses, but at the cost of having

non-uniform group delay characteristics. Nonuniformities in the envelope filter’s group delay

could have detrimental effects on recognizer performance because the timing of envelope

modulations carries linguistic information [GAS98]. This potential problem was addressed

by designing the IIR filters to have relatively little group delay variance in their passbands.

The IIR filters used in this set of experiments were designed in MATLAB by

Deczky’s method for IIR filter design (described in [OS89]) using the constr routine for

constrained, nonlinear minimization.1 Initially, a single optimization was used to satisfy

all the design requirements at once, but this approach proved to be impractical because

the cost function defined by Deczky’s method has many local minima which tend to “trap”

the optimization routine. Instead, it proved to be more effective to break the filter design

into a series of discrete stages. Thus, the development of a bandpass filter began with the

design of a lowpass filter with the required upper cutoff frequency and upper stopband

attenuation. It continued with the design of a highpass filter with the required lower cutoff

frequency and lower stopband attenuation, and concluded with the design of an allpass filter

that equalized the filter group delay in the passband. Once all three elements of the filter

were designed, they were concatenated into a single filter, tested to ensure that the design

requirements were satisfied, converted into a cascade of second-order sections and written

out in a form that could be read by the MSG software.

Two series of envelope-filtering experiments were run. The first tested lowpass

envelope filters with a variable cutoff frequency. The second tested bandpass envelope filters

1These experiments used the constr routine distributed in the MATLAB version 5 Optimization
Toolbox.
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Combined with
Cutoff MSG alone log-RASTA-PLP

frequency (Hz) clean reverb. clean reverb.

24 11.0% 33.3% 6.0% 21.6%

20 9.6% 28.5% 5.5% 19.6%

16 10.1% 27.3% 5.6% 19.4%

12 11.4% 26.6% 5.4% 20.1%

8 13.6% 28.1% 6.5% 20.0%

Table 5.1: Word error rates for lowpass MSG features on their own and in combination
with log-RASTA-PLP on the clean and reverberant Numbers 95 development test set as a
function of envelope-filter cutoff frequency.

with a variable lower cutoff frequency and a fixed upper cutoff frequency using the results of

the lowpass filter experiments. Both the lowpass and bandpass filters were designed to have

40 dB of attenuation in the upper stopband, an upper transition bandwidth of, at most,

3 Hz, and no more than ±1 sample of group delay ripple in the passband. The bandpass

filters were designed to have a magnitude response proportional to modulation frequency

below their lower cutoff frequency. Thus, all bandpass filters had a zero at 0 Hz modulation

frequency. Aside from the new envelope filters and the use of only a single envelope filter,

the MSG processing was identical to that described in Section 4.3. The MSG features based

on the different envelope filters were tested alone and in combination with log-RASTA-PLP.

The results of the lowpass experiments are summarized in Table 5.1. For the

tests of the lowpass MSG features on their own, the best performance on the clean test was

obtained with a cutoff frequency of 20 Hz, and the best performance on the reverberant test

was obtained with a cutoff of 12 Hz. For both tests, the performance with a cutoff of 16 Hz

was lower by a statistically insignificant amount. For the tests of the lowpass MSG features

combined with log-RASTA-PLP, the best performance on the clean test was obtained for a

cutoff of 12 Hz, and the best performance on the reverberant test was obtained with a cutoff

of 16 Hz. On the clean test, the difference in performance between the 16 Hz and 12 Hz

cutoffs was not statistically significant. Based on these results, an upper cutoff frequency

of 16 Hz was chosen for the filters used in the subsequent bandpass experiments.

The results of the bandpass experiments are summarized in Table 5.2. When the

bandpass MSG features are used on their own, the best performance on the clean test
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Combined with
Lower cutoff MSG alone log-RASTA-PLP

frequency (Hz) clean reverb. clean reverb.

0.5 18.7% 29.9% 7.1% 19.3%

1 16.9% 26.3% 6.4% 17.8%

2 14.3% 23.5% 5.9% 16.8%

4 12.7% 21.9% 5.6% 17.7%

8 11.4% 23.6% 5.3% 18.0%

16 12.5% 23.8% 5.3% 17.7%

Table 5.2: Word error rates for bandpass MSG features on their own and in combination
with log-RASTA-PLP for the clean and reverberant Numbers 95 development test set as a
function of the lower cutoff frequency of the envelope filter. The upper cutoff frequency of
the envelope filter was fixed at 16 Hz, based on the results of the experiments summarized
in Table 5.1. Because the bandpass filters were constrained to have a magnitude response
proportional to modulation frequency below their lower cutoff frequency, the bandpass filter
with a 16-Hz lower cutoff frequency is a differentiator for modulation frequencies of 0–16 Hz
and suppresses modulations above 16 Hz.

was obtained with a lower cutoff frequency of 8 Hz, while the best performance on the

reverberant test was obtained with a lower cutoff of 4 Hz. For the tests of the bandpass

MSG features combined with log-RASTA-PLP, the best performance on the clean test

was obtained for lower cutoffs of 8 Hz and 16 Hz (with only insignificant decrements in

performance for cutoffs of 4 Hz and 2 Hz), and the best performance on the reverberant test

was obtained with a lower cutoff of 2 Hz (with only insignificant decrements in performance

for cutoffs of 1 Hz, 4 Hz, 8 Hz, and 16 Hz).

These experiments did not identify a single best envelope filter for both the clean

and reverberant conditions. The lowpass filters generally provide the best performance on

clean tests, while the bandpass filters generally yield the best performance on reverberant

tests. Because earlier tests had demonstrated that combinations of representations could

give good performance, two filters were chosen for use in subsequent tests: the lowpass

filter with a 16-Hz cutoff frequency (which performed consistently well on all tests) and

the bandpass filter with cutoffs at 2 Hz and 16 Hz, which gave the best performance on

the reverberant test in combination with log-RASTA-PLP. The impulse responses of these

two filters are shown in Figure 5.1, their frequency responses are shown in Figure 5.2,

and their group delay characteristics are shown in Figure 5.3. These choices are in broad
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agreement with the perceptual results summarized in Section 2.2.1 as well as with a set of

ASR experiments that demonstrated that modulation frequencies between 2 Hz and 16 Hz

are the most reliable basis for speech recognition in a noisy environment [KAHP97].

5.2 Development of an On-line Automatic Gain Control

The next problem considered was the replacement of the off-line normalization

step in the computation of MSG features with an on-line automatic gain control (AGC).

Inclusion of frequency-local AGC in the MSG processing was anticipated to improve recog-

nizer robustness by reducing the effects of unknown spectral shaping of the input signal and

changes in overall signal level on the speech representation. An on-line AGC was preferred

because it is more compatible with real-time recognition systems, it allows the ASR system

to adapt to changes in the acoustic environment that occur in the course of an individual

utterance, and it enhances the representation of the dynamics in the speech signal. In

the modulation-spectral domain, the enhancement of dynamics performed by on-line adap-

tation corresponds to a suppression of slowly-varying components of the signal (that is,

components with very low modulation frequencies).

The AGC needed to work with both positive and negative inputs, as well as with

the long sequences of zero input that frequently occur in telephone applications. A simple

feedback AGC design used in a computational model of forward masking [KPA92] appeared

promising because it does not require a significant amount of computation and because it

has adaptive properties similar to those observed in the auditory system—it adapts rapidly

to signal onsets, recovers more slowly following signal offsets, and its rate of adaptation is

higher for large input steps than for small input steps. The AGC is illustrated in Figure 5.4.

In its original form, it operated in continuous time, and only functioned for non-negative

input signals. As shown in Figure 5.5, it was possible to modify the design to function in

discrete time and to operate with both positive and negative inputs.

At first glance, it would appear that this AGC attempts to compute 0/0 when given

a long sequence of zeros as input. However, this does not occur because of the feedback

loop in the design. If the input to the AGC is x(t), the output of the AGC is y(t), and the
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Figure 5.1: Impulse responses for the lowpass and bandpass IIR filters chosen for subsequent
experiments with the MSG features.
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Figure 5.2: Frequency responses for the lowpass and bandpass IIR filters chosen for subse-
quent experiments with the MSG features.



CHAPTER 5. OPTIMIZING THE FEATURES FOR ASR 105

0 2 4 6 8 10 12 14 16 18 20
22

23

24

25

26

27

28

Frequency (Hz)

G
ro

up
 D

el
ay

 (
sa

m
pl

es
)

0−16 Hz Lowpass Filter Group Delay Characteristic

0 2 4 6 8 10 12 14 16 18 20
26

27

28

29

30

31

32

Frequency (Hz)

G
ro

up
 D

el
ay

 (
sa

m
pl

es
)

2−16 Hz Bandpass Filter Group Delay Characteristic

Figure 5.3: Passband group delay characteristics for the lowpass and bandpass IIR filters
chosen for subsequent experiments with the MSG features.
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Figure 5.4: The original, continuous-time design for the feedback AGC proposed by
Kohlrausch et al. [KPA92].
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Figure 5.5: A discrete-time version of the feedback AGC unit that processes positive and
negative input signals. The lowpass RC circuit in the continuous-time design is replaced
with a single-pole lowpass filter to give a discrete-time design, and the absolute value of
the divider output is fed back to permit the processing of both positive and negative input
signals.
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output of the lowpass filter is g(t), and the transfer function for the lowpass filter is

H(z) =
1− a

1− az−1

(so that the filter has a DC gain of 1), then the AGC obeys the following two equations:

x(t) = y(t)g(t) (5.1)

g(t) = (1− a)|y(t)|+ ag(t− 1) (5.2)

Substituting the right-hand side of Equation 5.2 for g(t) in Equation 5.1 gives the following

expression for the output of the AGC:

y(t) =


−ag(t−1)+

√
a2g2(t−1)+4(1−a)x(t)

2(1−a) if x(t) ≥ 0

ag(t−1)−
√
a2g2(t−1)−4(1−a)x(t)

2(1−a) otherwise

(5.3)

For a steady-state input, the magnitude of the AGC output is the square root of the

magnitude of the input, and the sign of the AGC output is the sign of the input. When the

input varies, the AGC output is nearly proportional to the square root of the magnitude

of the input, but the constant of proportionality is greater than one. Thus, this AGC is

essentially a square-root compressor with a variable gain that depends on the dynamics of

the input. To prevent large transients on start-up, the AGC gain, g(t), is initialized such

that g(0) =
√
|x(0)|.

5.2.1 Experiments with a Single Feedback AGC Unit

The first experiments with this feedback AGC were designed to compare its per-

formance to the off-line normalization. Two versions of the MSG processing were tested.

In one the feedback AGC replaced the cube-root compression and off-line normalization,

while in the other only the cube-root compression was replaced by a feedback AGC unit.

The feedback AGC processing has two effects on the final MSG representation which might

lead to better recognizer performance: it enhances the representation of onsets in the sig-

nal and, to some extent, it normalizes for unknown gains applied to the input signal. In

contrast, the off-line processing only normalizes for unknown gains applied to the input

signal, but it does so more effectively than the feedback AGC. Thus, the MSG features

computed with only the feedback AGC could result in worse recognizer performance on the



CHAPTER 5. OPTIMIZING THE FEATURES FOR ASR 108

on-line AGC
on-line AGC followed by

only off-line norm.
Filter AGC τ (ms) clean reverb. clean reverb.

lowpass 40 9.7% 42.9% 10.4% 27.4%
0–16 Hz 80 9.7% 38.3% 10.3% 24.9%
passband 160 9.7% 35.9% 11.0% 24.6%

320 10.1% 33.9% 12.3% 27.5%
640 10.9% 33.7% 14.0% 30.3%

bandpass 40 13.2% 33.7% 13.0% 22.5%
2–16 Hz 80 12.9% 32.7% 13.2% 22.7%
passband 160 12.8% 30.7% 13.3% 21.6%

320 12.7% 29.5% 13.7% 21.9%
640 11.9% 28.4% 14.4% 22.5%

Table 5.3: Word error rates for lowpass and bandpass MSG features as a function of AGC
time constant, τ , for front ends using the feedback AGC as the sole gain control and for
front ends that perform off-line normalization after the on-line, feedback AGC. Recall from
Tables 5.1 and 5.2 that the lowpass MSG features with only the off-line normalization gave
an error rate of 10.1% on the clean test and an error rate of 27.3% on the reverberant test,
while the bandpass MSG features with only the off-line normalization gave an error rate of
14.6% on the clean test and an error rate of 23.3% on the reverberant test.

reverberant test even if the onset enhancement is beneficial because of the feedback AGC’s

lower effectiveness for gain normalization. The tests with MSG features that include both

forms of AGC constitute a control — these features have both the onset enhancement of

the feedback AGC and the highly effective gain normalization of the off-line normalization.

Recognition tests were performed with MSG features computed using either the

lowpass envelope filter with a 16-Hz cutoff or the bandpass envelope filter with cutoffs of

2 Hz and 16 Hz. The time constant, τ , of the lowpass filter in the feedback AGC was

variable, with time constants of 40 ms, 80 ms, 160 ms, 320 ms, and 640 ms tested. Aside

from the changes to the AGC, the MSG computation was identical to that performed in

Section 5.1. The results of these experiments are summarized in Table 5.3.

The effect of the feedback AGC time constant on recognizer accuracy was highly

dependent on the test condition. For the tests with only the feedback AGC, performance

decreased as the AGC time constant increased for lowpass MSG features on the clean test,

but increased for the other three combinations of acoustic condition and envelope filter. For
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the tests incorporating both the feedback AGC and the off-line normalization, performance

in both clean conditions decreased as the AGC time constant increased, while performance in

reverberant conditions stayed roughly constant for the bandpass MSG features and attained

a maximum at τ = 80 ms or τ = 160 ms for the lowpass MSG features. The variability of

these results made it impossible to find a good choice for the AGC time constant.

The effect of including the off-line normalization in the MSG processing was also

dependent on the test condition. For tests on the clean condition, inclusion of the off-line

normalization was detrimental, while for tests on the reverberant condition inclusion of the

off-line normalization greatly improved recognizer accuracy. These results suggest that a

single feedback AGC unit does not provide sufficient gain normalization and that the off-line

normalization is not the best AGC strategy.

The results of these experiments also indicate that the onset enhancement per-

formed by the feedback AGC is beneficial to recognizer accuracy. Recall that lowpass MSG

features with only the off-line normalization resulted in an error rate of 10.1% on the clean

test and an error rate of 27.3% on the reverberant test, while the bandpass MSG features

with only the off-line normalization yielded an error rate of 14.6% on the clean test and an

error rate of 23.3% on the reverberant test. In most cases, the best performance obtained

for a given condition (lowpass vs. bandpass MSG features and clean vs. reverberant acoustic

conditions) with the on-line AGC is significantly better than the performance with only the

off-line normalization.

5.2.2 Experiments with Two or Three Feedback AGC Units

Based on the results described above, MSG processing using two or three feedback

AGCs in series was tested. It was expected that the additional AGC units would provide

better gain normalization while also performing additional onset enhancement. The time

constants of the AGC units were constrained so that units later in the chain had time

constants greater than the preceding AGC units. This constraint matches the auditory

system, for which it has been observed that more central regions have longer adaptation

time constants than their more peripheral counterparts. None of the recognizers tested in

this set of experiments included the off-line normalization, and aside from the changes in

the AGC processing, the recognizers were identical to those in Section 5.2.1.
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second first AGC τ (ms)
filter AGC τ (ms) 40 80 160 40 80 160

lowpass 160 9.4% 9.3% — 29.9% 26.6% —
0–16 Hz 320 9.1% 9.0% 9.8% 28.7% 25.6% 23.6%
passband 640 8.8% 9.2% 9.8% 27.5% 25.4% 23.9%

bandpass 160 13.1% 13.4% — 27.0% 25.9% —
2–16 Hz 320 12.7% 12.9% 12.6% 25.9% 23.2% 22.9%
passband 640 12.4% 12.0% 12.2% 24.3% 22.9% 21.9%

clean tests reverberant tests

Table 5.4: Word error rates for lowpass and bandpass MSG features as a function of the
time constants of the first and second feedback AGCs.

second third first AGC τ (ms)
filter AGC τ (ms) AGC τ (ms) 40 80 40 80

lowpass 160 320 10.2% 10.6% 24.6% 23.5%
0–16 Hz 640 10.0% 10.2% 23.5% 22.3%
passband 320 640 9.7% 10.3% 22.6% 22.0%

bandpass 160 320 15.7% 14.2% 24.6% 22.5%
2–16 Hz 640 13.8% 14.0% 22.9% 22.4%
passband 320 640 14.2% 12.9% 22.5% 20.6%

clean tests reverberant tests

Table 5.5: Word error rates for lowpass and bandpass MSG features as a function of the
time constants of the first, second, and third feedback AGCs.

The results of the experiments with two feedback AGC units are summarized in

Table 5.4. For the lowpass MSG features there is no significant variation in performance for

the different AGC time constants on the clean test. On the reverberant test the performance

in the two cases where τ = 160 ms for the first AGC is significantly better than any of the

other cases. For the bandpass MSG features the performance on the clean test generally

improves as the time constants of the two AGCs increase, but only a small number of the

differences in performance are significant. On the reverberant test, the best performance

is obtained when τ = 160 ms for the first AGC and τ = 640 ms for the second AGC. This

result is significantly better than all other tests except for the two instances where a word

error rate of 22.9% was obtained.

The results of the experiments with three feedback AGC units are summarized in
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Table 5.5. The only significant improvement over the two-AGC MSG features is obtained

on the reverberant test with lowpass MSG features and three AGCs having time constants

of 80 ms, 320 ms, and 640 ms. This outcome indicates that two AGC units in series are

sufficient.

It is difficult to relate these results directly to measurements of adaptation in

the human auditory system obtained via measurements of forward masking. However, it

is interesting to note that the best time constant for the first AGC is 160 ms for both

the lowpass and bandpass MSG features. This is nearly identical to the time constant of

the filter that, sandwiched between two nonlinearities, performs automatic gain control in

RASTA processing. A correspondence between some measurements of forward masking

and RASTA processing has been noted [PH94]. More generally, these results indicate that

normalization of the short-time spectrum of speech with respect to an average spectrum

measured over a duration corresponding to several syllables can lead to a more stable

representation of speech, at least as characterized by these ASR experiments.

5.2.3 Cross-coupling the AGCs

The coupling of AGCs across frequency channels has been proposed in a number of

computational auditory models (e.g., [Lyo82]). In a cross-coupled AGC system, the signal

in a given channel is normalized by a gain that is estimated not only from the signal itself,

but also from signals in neighboring channels. Because it is a form of lateral inhibition,

an important effect of the coupling is to emphasize spectral peaks and, more generally, to

preserve spectral shape information that could be eliminated by fast-acting, per-channel

AGC processing. Figure 5.6 illustrates the cross-coupling of the feedback AGC units for

the case where only adjacent channels are coupled.

The addition of cross-coupling complicates the AGC computation somewhat. It

was necessary to place unit delays in the cross-channel coupling paths to ensure that the

AGC output at a given time has a closed-form solution. Without the unit delays, the AGC

computation would require some sort of general, numeric root-finding procedure. With the

unit delays, the AGC computation is described by the following equations:

ui(t) = agi(t− 1) + (1− a)
ch∑

d=−cl

wi+d,i|yi+d(t− 1)|
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Figure 5.6: Signal processing for cross-coupled feedback AGC unit. In each channel the
signal, xi(t), is normalized by a factor, gi(t), that is a temporally smoothed, weighted
average of the signal level in the channel itself (yi(t)) and in other channels (yj(t), where
j 6= i.). This processing is a form of lateral inhibition (as well as automatic gain control)
that serves to enhance energy peaks in time and frequency. The unit delays (the boxes
labeled z−1) are included to simplify the coupled AGC computation. The wi,j factors are
the coupling weights between channels. In this figure, only coupling between neighboring
channels is portrayed.
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vi(t) =
√
u2 + 4(1− a)wi,i|xi(t)|

gi(t) =
u+ v

2

yi(t) =


v−u

2(1−a)wi,i
if xi(t) ≥ 0

− v−u
2(1−a)wi,i

otherwise

where xi(t) is the input from the i-th channel, yi(t) is the output for the i-th channel,

gi(t) is the normalization factor for the i-th channel, wi,j is the weight applied to yj in the

computation of gi, the AGC for the i-th channel is coupled to channels i− cl through i+ ch,

and the lowpass filters in the AGC units all have the same transfer function

H(z) =
1− a

1− az−1

The boundary conditions are handled by padding the input vectors, x(t), with copies of the

highest and lowest channels.

As with the uncoupled feedback AGCs, it was desirable to initialize the outputs

of the cross-coupled AGCs to the steady-state response to the first input for an utterance

in order to prevent start-up transients. Performing this initialization for the cross-coupled

AGCs was more complicated than for the uncoupled AGCs, however, because there was no

closed-form expression for the steady-state response to an input vector. At first, the cross-

coupled AGCs were initialized by clamping their inputs to the initial values for an utterance

and then running the AGC computation until the outputs converged to the steady-state

response. While this approach was simple, it was also very slow. For many of the Numbers

95 utterances the AGC initialization required more time than the actual processing of the

utterance, so the initialization of the cross-coupled AGCs was sped up using a Newton-

Raphson root-finding procedure.

In the first experiment using the cross-coupled AGC processing, a single AGC

block with variable time constant was used, and no other normalization was performed on

the features. The coupling weights between channels were set arbitrarily to wi,i = 0.5 and

wi−1,i = wi+1,i = 0.25. Only lowpass MSG features were tested.

The results of these experiments are summarized in Table 5.6. The only significant

difference between the results with the cross-coupled AGC and the results with the uncou-

pled AGC (summarized in Table 5.3) was that the performance of the coupled AGC with

τ = 320 ms on the reverberant test was significantly worse than the comparable uncoupled
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AGC τ (ms) clean reverb.

40 10.2% 43.6%

80 9.8% 39.3%

160 9.7% 35.4%

320 10.2% 35.5%

Table 5.6: Word error rates for lowpass MSG features computed with a single cross-coupled,
feedback AGC unit on the clean and reverberant Numbers 95 development test sets, as a
function of AGC time constant. Experiments with τ = 640 ms failed due to an overflow in
the fixed-point MLP training procedure.

AGC test. A test with τ = 640 ms failed due to an overflow in the fixed-point MLP train-

ing procedure. No attempt was made to work around the overflow problem because it was

assumed that the performance would be inferior to that obtained with uncoupled AGCs,

given the result with coupled AGCs having τ = 320 ms. These results may indicate that

any lateral-inhibitory processing of speech spectra should be relatively fast-acting, working

over durations of time shorter than a syllable and are consistent with the observation that

spectral peaks in the speech signal generally change their positions significantly over the

course of a syllable.

Next, two cross-coupled AGCs were used in series to normalize the features. It was

expected that this configuration would produce better performance, as had occurred in the

experiments using uncoupled feedback AGCs, described in Section 5.2. The experiments

described in this section are identical to those summarized in Table 5.4, with the exception

of the cross-coupling in the AGCs. In these tests the first AGC had coupling weights

of wi,i = 0.5 and wi−1,i = wi+1,i = 0.25, while the second AGC had coupling weights of

wi,i = 3/9, wi−1,i = wi+1,i = 2/9, and wi−2,i = wi+2,i = 1/9. As in the earlier experiment,

the selection of coupling weights was arbitrary. As summarized in Table 5.7, there was no

significant improvement in performance over the best results using two uncoupled feedback

AGCs.

Because no consistent benefit could be obtained by using more than two feedback

AGC units in series or by using cross-coupled feedback AGC units, subsequent experiments

computed MSG features using two uncoupled feedback AGC units in series. For the lowpass

MSG features (calculated using the IIR lowpass filter with a 16 Hz cutoff) the first AGC

had a time constant of 160 ms and the second had a time constant of 320 ms. For the
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second first AGC τ (ms)
filter AGC τ (ms) 40 80 160 40 80 160

lowpass 160 9.2% 9.2% — 30.1% 27.4% —
0–16 Hz 320 9.2% 8.9% 8.7% 29.2% 26.7% 25.1%
passband 640 8.9% 9.1% 8.9% 29.6% 26.9% 26.0%

bandpass 160 12.6% 12.5% — 25.5% 24.0% —
2–16 Hz 320 12.1% 12.0% 12.3% 24.5% 23.2% 22.1%
passband 640 11.5% 11.5% 11.5% 23.7% 23.0% 21.7%

clean tests reverberant tests

Table 5.7: Word error rates for lowpass and bandpass MSG features computed with two
cross-coupled, feedback AGC units on the clean and reverberant Numbers 95 development
test sets, as a function of the AGC time constants.

bandpass MSG features (calculated using the IIR bandpass filter with a 2–16 Hz passband)

the first AGC had a time constant of 160 ms and the second had a time constant of 640 ms.

5.3 Modifying the Resolution of the Initial Frequency Anal-

ysis

The MSG features have about twice the spectral resolution of the most common

speech representations used for ASR. For telephone-bandwidth speech, the MSG processing

produces thirty features per frame (fifteen lowpass features and fifteen bandpass features),

while PLP and RASTA-PLP processing typically produce eighteen features per frame (nine

features and nine delta features). The spectral resolution of an ASR front end should not

be any higher than necessary to produce a good description of the speech signal because

the higher resolution can increase the complexity of the acoustic model and can make the

recognizer more sensitive to speaker-dependent signal characteristics.

The experiments described in this section tested the effects of reducing the spectral

resolution of the MSG features by the simplest means possible: reducing the resolution of

the initial spectral analysis in the MSG processing. In these experiments, the bandwidth

and spacing of the filters in the constant-Q FIR filterbank were varied independently. For

both the filter bandwidth and the filter spacing, values of 1, 1/2, 1/3, and 1/4 octave were

tested. The spacing between adjacent filters was constrained to be less than or equal to the
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lowpass bandpass
bandwidth spacing 0–16 Hz 2–16 Hz
(octaves) (octaves) clean reverb. clean reverb.

1 1 16.5% 41.3% 21.4% 38.0%
1/2 12.2% 36.4% 16.6% 32.2%
1/3 11.3% 33.4% 14.8% 29.8%
1/4 11.4% 34.7% 14.1% 28.8%

1/2 1/2 11.2% 31.3% 13.8% 26.6%
1/3 8.9% 27.8% 12.2% 24.0%
1/4 9.0% 28.1% 12.2% 24.5%

1/3 1/3 9.4% 28.3% 12.2% 23.4%
1/4 9.6% 26.5% 11.5% 22.8%

1/4 1/4 9.9% 24.1% 12.0% 22.1%

1/8 1/8 8.9% 22.2% — —

Table 5.8: Word error rates for lowpass and bandpass MSG features on the clean and
reverberant Numbers 95 development test sets, as a function of the bandwidth and spacing
of the filters in the initial constant-Q FIR filterbank.

filter bandwidth so that no spectral gaps would occur in the representation. Both lowpass

and bandpass MSG features were tested, and except for the changes to frequency analysis,

the recognizers in these experiments were identical to those used in the previous section.

The results of these experiments are summarized in Table 5.8. On the clean tests,

performance for both envelope filters reached an optimal plateau for bandwidths of 1/2

octave or less and filter spacings of 1/3 octave or less. This outcome is consistent with

the view that a detailed representation of the speech spectrum is not required, nor even

particularly desirable, for recognition of speech.

On the reverberant tests, performance for both envelope filters improved as the

filterbank bandwidth and spacing decreased, with the best performance obtained with 1/4-

octave bandwidths and 1/4-octave spacings. To see if this pattern continued, a test was

also run for lowpass MSG features computed with 1/8-octave bandwidths and 1/8-octave

spacings. Recognizer performance improved significantly under reverberant conditions with

the 1/8-octave filterbank. This result is consistent with the idea that increasing the temporal

window of the initial spectral analysis (thereby increasing its spectral resolution) makes

compensation for reverberation via techniques such as AGC or cepstral mean normalization

possible [Ave97b].
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Based on these experiments, the quarter-octave filterbank was retained. While

it appeared that using a spectral resolution higher than a quarter octave could give bet-

ter performance under reverberant conditions, this approach was not adopted since it has

already been explored [Ave97b]. The filterbank resolution was eventually changed when

tests, described in Section 5.5, demonstrated that a Bark-scale filterbank having coarser

resolution than the quarter-octave filterbank in the lower frequencies yielded equally good

recognizer performance.

5.4 Variations on the AGC

5.4.1 An Experiment with Off-line Feature Normalization

Recall from Section 5.2.1 that the feedback AGC processing basically computes

the square root of its input signal, multiplied by a variable gain. This processing reduces the

effect of an unknown gain term but does not completely eliminate it. While the experiments

in Section 5.2.2 demonstrated that two feedback AGC units in series could yield better

performance than off-line gain normalization, it is conceivable that further improvements of

the AGC could be made. In order to test this possibility, additional, off-line normalization

of the features was performed, based on statistics computed from the test data.

As described in Section 3.1.2, the speech features are normalized to have approx-

imately zero mean and unit variance by subtracting an estimate of the mean value of the

features and dividing by an estimate of the standard deviation of the features before they

are input to the MLP acoustic model. These mean and standard deviation estimates are

computed from the recognizer’s training data; however, better recognition performance on

a given test may usually be obtained by computing these estimates over the test data,

especially in cases where the acoustic conditions differ between the training and test sets.

Computing the means and variances from the test data is only possible in off-line applica-

tions. In this study, algorithms operating on-line are preferred because they can be applied

to both on-line and off-line tasks. The use of test-set statistics for feature normalization

can (to a certain extent) indicate if performance on acoustically mismatched test data can

be improved by making changes to the front-end signal processing. If their use does not

improve the recognition performance on acoustically mismatched test data, then the front-
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Training Set Test Set
Normalization Normalization

21.8% 18.6%

Table 5.9: Word error rates on the reverberant Numbers 95 development test set for a
recognizer that uses both lowpass and bandpass MSG features and normalizes the features
using either the training data (the usual case) or the reverberant test data.

end signal processing may already be performing adequate normalization of the means and

variances of the speech features.

The recognizer used in this experiment differed from the ones used in the experi-

ments described in Sections 5.1 to 5.3 in that the lowpass and bandpass MSG features were

both presented to a single MLP for acoustic likelihood estimation. The MLP had 270 input

units (30 features per frame × 9 frames of input), 400 hidden units, and 32 output units,

for a total of 120,800 weights (about 30% more weights than the other recognizers).

The recognizer’s performance was measured on the reverberant test with the fea-

tures being normalized using estimates of the means and standard deviations from the

training set (the usual case) or from the reverberant test set. The results are summarized

in Table 5.9. Using the means and standard deviations from the test data improved the

performance on the reverberant test by 15% (an absolute reduction in word error rate of

3.2%). This improvement was statistically significant, and suggested that better normal-

ization of the features in the MSG signal processing could improve recognizer performance

under reverberant conditions.

5.4.2 An Alternative AGC Design

In light of the test-set normalization results, a second on-line AGC was designed

that performs a more complete normalization of signal variance than the original feedback

design. This alternative operates according to the following two equations:

y(t) =

 g(t)x(t) if x(t) ≥ 0

0 otherwise

g(t+ 1) = g(t)− ay(t) + b(1− g(t))
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AGC τ (ms) clean reverb.

40 Failed Failed

80 15.6% 52.1%

160 15.5% 45.7%

320 15.6% 41.8%

640 16.9% 40.0%

Table 5.10: Word error rates for the clean and reverberant Numbers 95 development tests
using lowpass MSG features, as a function of AGC time constant. The τ = 40 ms test failed
due to an overflow in the fixed-point MLP training procedure.

That is, the output of this AGC, y(t), is the input, x(t), halfwave rectified and multiplied by

a variable gain term g(t). At each time step the gain is reduced by a factor proportional to

the AGC output and is increased by a factor proportional to one minus the gain. The value

b controls the recovery rate of the AGC, and the ratio a/b controls the adaptation rate.

This design is loosely based on a single-reservoir model for the inner-hair-cell/auditory-

nerve-fiber complex (e.g., [OS75]). Unlike the other feedback AGC, this design is a “true”

AGC in the sense that the output converges to a fixed value of b/a for a fixed input level

x, provided that x� b.

The first experiments with this design used a single AGC unit, with the AGC time

constant being an experimental parameter. The adaptation and recovery time constants

were set to be approximately equal. Only lowpass MSG features were tested because it was

expected that the halfwave rectification would eliminate important data in the bandpass

features. The results of these experiments are summarized in Table 5.10. The experiment

with an AGC time constant of 40 ms failed because of an overflow in the fixed-point MLP

training routine. Performance in the other cases was markedly worse than with a single

feedback AGC unit (compare to Table 5.3).

A second series of experiments was run in which a single AGC unit was used and

the adaptation and recovery time constants were varied independently, with adaptation

time constants of 40 ms or 60 ms and recovery time constants of 160, 240, or 320 ms. All

of the tests with the 40-ms adaptation time constant failed due to overflow in the MLP

training procedure, so only the 60-ms results are shown in Table 5.11. The performance in

these experiments is worse than that obtained in the experiments with equal time constants,

so no further work was done with this AGC design.
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AGC recovery τ (ms) clean reverb.

160 17.0% 49.3%

240 17.0% 47.9%

320 18.0% 47.1%

Table 5.11: Word error rates for the clean and reverberant Numbers 95 development tests
using lowpass MSG features, as a function of AGC recovery time constant. The AGC
adaptation time constant was fixed at 60 ms.

5.4.3 Normalizing the Features On-Line

The test-set normalization results in Section 5.4.1 suggested another approach to

improving recognizer performance in reverberation: performing an on-line normalization of

the feature means and variances [CCC+96, TH97]. This processing will reduce the effects of

slowly varying additive offsets and multiplicative gain terms caused, for example, by additive

noise and spectral shaping. The signal processing used to perform on-line normalization is

illustrated in Figure 5.7. The lowpass IIR filter in the first stage computes an estimate of the

signal mean (with an exponentially decaying window into the past) which is subtracted from

the signal. The lowpass IIR filter in the second stage computes an estimate of the signal’s

standard deviation, with the signal being normalized by that estimate. A small offset, ε,

is added to the estimate of the standard deviation to preclude division by zero. For the

first utterance in a set of test data, the estimates of the mean and standard deviation are

initialized from estimates computed over the training data. For each following utterance,

the final estimates from the previous utterance are used.

The time constants of the lowpass filters in the normalization control the duration

of the processing’s memory. The longer the time constant, the more reliable the estimates

of the mean and variance; however, longer time constants also entail slower adaptation to

changes in the acoustic environment. To determine suitable time constants for the lowpass

filters, recognition experiments were run. In the experiments, the time constants of the

two lowpass filters were constrained to be equal, and the offset ε to the standard deviation

estimate was set to 1. As usual, lowpass and bandpass MSG features were tested separately.

The results of these experiments are summarized in Table 5.12.

The performance in reverberation was significantly better with on-line feature
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Figure 5.7: Implementation of the on-line feature normalization.
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lowpass bandpass
Normalization 0–16 Hz 2–16 Hz

τ (ms) clean reverb. clean reverb.

250 12.2% 21.3% 14.6% 20.7%

500 11.8% 20.2% 14.1% 20.6%

1000 11.4% 19.5% 13.7% 20.1%

2000 10.9% 19.5% 13.4% 20.2%

3000 10.7% 20.2% 12.8% 19.5%

4000 10.4% 20.1% 13.7% 20.7%

none 9.8% 23.6% 12.2% 21.9%

Table 5.12: Word error rates for the clean and reverberant Numbers 95 development tests
using lowpass and bandpass MSG features with on-line normalization of the features as a
function of the time constant of the on-line normalization. The comparable results without
on-line normalization are listed in the row labeled “none,” and are copied from Table 5.4.

normalization than without for all values of τ that were tested. On the clean test there was

a significant degradation in performance with the lowpass features for τ < 3.0 s and with

the bandpass features for all values of τ except for τ = 3.0 s. For subsequent tests, τ was set

to 2.0 s because it was expected that longer time constants might not allow sufficiently rapid

adaptation to changes in acoustic conditions and because the degradation in performance

on the clean test was acceptably small. This setting of τ is identical to that arrived at in

[TH97] using a different recognition task.

A second set of experiments was run to measure the effect of different settings of

the offset ε. These experiments were run only for the lowpass MSG features, and τ = 2.0 s

for the on-line normalization. The results of these tests are summarized in Table 5.13.

Varying ε had no significant impact on recognizer performance, so the original setting of

ε = 1 was retained in subsequent experiments.

5.5 A Power-spectral Implementation of the Initial Fre-

quency Analysis

Compared to the RASTA-PLP front end, MSG processing was very slow: for a

given utterance it took ten times as long to compute MSG features as it did to compute PLP
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ε clean reverb.

0.01 11.1% 19.6%

0.03 11.1% 19.3%

0.1 11.2% 19.7%

0.3 10.9% 19.2%

1.0 10.9% 19.5%

Table 5.13: Word error rates for the clean and reverberant Numbers 95 development tests
using lowpass MSG features with on-line normalization of the features as a function of the
offset, ε, added to the estimate of standard deviation.

lowpass bandpass
Filter Filter Frequency 0–16 Hz 2–16 Hz
Implementation Shape Scale clean reverb. clean reverb.

direct FIR trapezoidal quarter-octave 10.9% 19.5% 13.4% 20.2%

power trapezoidal quarter-octave 8.8% 19.4% 11.3% 20.1%
spectral Bark 9.0% 19.7% 10.9% 20.0%

triangular quarter-octave 9.0% 18.5% 11.0% 18.3%
Bark 8.4% 18.5% 10.8% 18.5%

Table 5.14: Word error rates for the clean and reverberant Numbers 95 development tests
using lowpass and bandpass MSG features computed with different initial filterbanks.

or RASTA-PLP features. Profiling of the MSG code showed that the bulk of the processing

time was spent in the core routines of the initial FIR filterbank. Because this code was

already implemented efficiently (using an FFT-based block convolution), replacement of the

FIR filterbank with a bank of filters operating on power spectra computed with the short-

time Fourier transform was investigated as a means of speeding up the MSG processing.

This filterbank operates in the power-spectral domain, so the square root of its output is

computed to produce an amplitude spectrum at the output. Two different filter shapes,

trapezoidal and triangular, and two different auditory-like frequency scales, quarter-octave

and Bark, were investigated. The results of these experiments are summarized in Table 5.14.

On the clean test, the performance with features computed using the power spec-

tral filterbank was significantly better than the performance with features computed using

the FIR filterbank for all conditions. On the reverberant test, the performance with features

computed using the power spectral filterbank, triangular filters, and bandpass modulation
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Quarter-
Bark octave

Filter # Scale Scale

1 3680 3670

2 3100 3070

3 2620 2590

4 2200 2180

5 1850 1830

6 1550 1540

7 1300 1300

8 1070 1090

9 880 920

10 720 770

11 570 650

12 440 550

13 320 460

14 — 390

15 — 320

Table 5.15: Filter passband centers for the Bark-scale and quarter-octave filterbanks. The
two filterbanks are essentially identical for frequencies above 1 kHz. Below 1 kHz the
quarter-octave filterbank has finer frequency resolution.
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filters was significantly better than the performance with comparable features computed

using the FIR filterbank. There was no significant difference in performance between us-

ing features computed with the quarter-octave or Bark-scale filterbanks, indicating that

the quarter-octave filterbank has finer resolution in the lower frequencies than is necessary

for the recognition task. As can be seen from Figure 2.1, which shows filter bandwidth

as a function of center frequency, and from Table 5.15, which gives the passband centers

for the Bark and quarter-octave filterbanks used in this set of experiments, the Bark and

quarter-octave scales are nearly identical for frequencies above 1 kHz, while for frequencies

below 1 kHz the quarter-octave scale has finer frequency resolution. Because the Bark-scale

filterbank produced two fewer features per frame, a Bark-scale power spectral filterbank

with triangular filters was used for all subsequent experiments.2

5.6 Modulation Filter Optimization II

The optimizations made to the MSG feature processing in Sections 5.1 through

5.5 had an unexpected consequence: the improved lowpass MSG features were as accurate

as the improved bandpass MSG features on the reverberant test (see Table 5.14). Using

both the lowpass and bandpass MSG features still produced better performance, though.

A system in which both feature sets were input to a single MLP acoustic model with 400

hidden units had a word error rate of 7.8% on the clean test and 17.4% on the reverberant

test. The performance on the reverberant test is a great improvement over that reported

in Section 4.3.3 for a comparable recognizer using an earlier version of the lowpass and

bandpass MSG features. This earlier recognizer had a word error rate of 8.5% on the clean

test and 27.3% on the reverberant test.

The earlier version of the MSG features used FIR envelope filters with passbands

of 0–8 Hz for the lowpass features and 2–8 Hz for the bandpass features, while the newer

version used IIR envelope filters with passbands of 0–16 Hz for the lowpass features and

2–16 Hz for the bandpass features. One of the motivations for using the broader envelope

filters was that they were anticipated to yield better performance on clean speech; however,

2These results also show that more accurate auditory modeling does not necessarily produce better
recognition performance. As demonstrated in Section 2.1, the Bark scale has unrealistically low resolution
in the low frequencies. Nevertheless, in these experiments features computed with a Bark-scale filterbank
provided performance similar to that obtained using features computed with a quarter-octave filterbank,
even though the resolution of the quarter-octave filterbank is more realistic in the 300–1000 Hz range.
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this expectation was not met. Thus, the design of appropriate envelope filters was re-

examined, but now using the optimized choices for the other signal-processing steps in the

MSG computation. In the experiments described in this section, FIR filters were tested

because they are simpler to implement, may require less computation than IIR filters, and

have uniform group delay characteristics (because linear-phase FIR filters are used) that

better preserve envelope timing information.

5.6.1 FIR Lowpass Filters

Lowpass MSG features produced using FIR filters having different lengths and dif-

ferent cutoff frequencies were tested on the clean and reverberant Numbers 95 development

test sets. The FIR filters had at least 40 dB of stopband rejection. The filter transition

bandwidth varied with filter length, from a minimum of 3 Hz for the 49-point filters to a

maximum of 10 Hz for the 13-point filters. The results of these experiments are summarized

in Table 5.16.

The results of the experiments with the 49-point and 25-point filters indicated

that the cutoff frequency could be as low as 12 Hz with no statistically significant, negative

impact on recognizer performance. The results of the experiments with the shorter 19-point

and 13-point filters demonstrated that there was no advantage to using longer filters with

narrower transition bandwidths. Filters shorter than 13 points were not studied because it

was not possible to design shorter filters that had the desired 40 dB of stopband rejection.

It is possible that shorter filters with less stopband rejection would be equally effective, but

this possibility was not explored.

5.6.2 FIR Lowpass Filters with DC Suppression

A consistent result from work on the data-driven design of envelope filters

[Ave97b, HAvVT97, AH96, AvVH96, HWA95] is that the filters produced by the automatic

procedures suppress DC somewhat, but are generally lowpass in form. This suggested that

recognizer performance might be improved by adding some DC suppression to the filter

used to produce lowpass MSG features. To test this possibility, a set of lowpass filters with

a cutoff frequency of 12 Hz and variable DC suppression was generated by convolving a

14-point lowpass FIR filter with a 2-point highpass FIR filter of the form H(z) = 1− xz−1,
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Cutoff
Num. Points Frequency (Hz) clean reverb.

49 24 8.0% 18.4%
20 7.7% 18.6%
16 8.4% 18.6%
12 8.6% 19.1%
8 10.7% 19.8%
4 18.7% 27.6%

25 22 7.4% 18.7%
20 7.3% 18.5%
18 7.6% 18.5%
16 8.8% 18.2%
14 7.3% 17.8%
12 8.0% 19.0%
10 8.7% 19.0%

19 16 7.6% 18.2%
14 8.0% 18.6%
12 8.5% 19.2%

13 16 7.8% 18.0%
14 8.1% 17.9%
12 7.8% 18.0%

Table 5.16: Word error rates for the clean and reverberant Numbers 95 development tests
using lowpass MSG features computed with FIR envelope filters as a function of filter
length and cutoff frequency. The relatively poor performance on the clean test using the
25-point filter with a cutoff frequency of 16 Hz appears to be an outlier caused, perhaps,
by a relatively poor initialization of the MLP weights during recognizer training.
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DC Magnitude
Response (dB) clean reverb.

-4 8.1% 17.9%

-5 8.1% 18.1%

-6 7.8% 16.9%

-7 8.1% 17.2%

-8 8.0% 16.6%

-9 8.0% 16.4%

-11 7.9% 16.2%

-12 7.8% 17.1%

-13 8.2% 16.7%

-17 8.6% 17.4%

-∞ 9.1% 18.9%

Table 5.17: Word error rates for the clean and reverberant Numbers 95 development tests
for lowpass MSG features computed with filters having variable amounts of DC suppression.

where the value of x set the amount of DC suppression (as suggested in [NJ94]). For x = 1,

the resulting filter has a zero at DC; for x = 0, the resulting filter has no DC suppres-

sion. These filters were then used to generate MSG features which were tested in the usual

recognition experiments.

Table 5.17 summarizes the results of these experiments. Performance on the clean

test was relatively insensitive to the amount of DC suppression, with no significant differ-

ences in performance between any of the conditions. Performance on the reverberant test

was significantly better for lowpass filters with 8, 9, or 11 dB of DC suppression than for a

lowpass filter with no DC suppression. This result is consistent with the studies on the data-

driven design of envelope filters, and with the notion that it is the dynamically-changing

portions of the speech signal that are most important for characterizing its linguistic con-

tent.

5.6.3 Lowpass and Bandpass FIR Envelope Filters

Next, the use of lowpass and bandpass MSG features together was examined, with

the passbands of the lowpass and bandpass envelope filters being jointly optimized. All

filters were symmetric FIR filters with 40 dB of stopband rejection and transition band-

widths of no more than 6 Hz. The filter lengths were chosen to be as short as possible while
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Bandpass
Lowpass Lower

Cutoff (Hz) Cutoff (Hz) clean reverb.

9 9 8.9% 18.9%
8 7.9% 17.0%
7 8.3% 17.7%
6 7.8% 16.8%
5 7.4% 17.3%
4 8.0% 17.5%
3 7.8% 17.4%

8 8 8.2% 17.5%
7 8.6% 18.0%
6 7.4% 16.5%
5 7.8% 17.2%
4 7.9% 17.6%
3 7.4% 17.1%

7 7 8.5% 18.2%
6 7.9% 16.5%
5 7.7% 17.1%
4 8.2% 17.2%
3 7.8% 17.4%

6 6 7.9% 16.0%
5 7.5% 16.6%
4 7.9% 17.8%
3 8.3% 17.1%

5 5 7.9% 16.3%
4 8.4% 16.6%
3 8.2% 17.6%

4 4 8.7% 17.2%
3 9.0% 17.3%

3 3 9.1% 17.0%

Table 5.18: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using both lowpass and bandpass MSG features as a function of the cutoff
frequency of the lowpass filter and the lower cutoff frequency of the bandpass filter. For
these experiments the upper cutoff frequency of the bandpass filter was fixed to 12 Hz.
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still meeting all the design goals. The lowpass filter did not include any DC suppression.

The upper cutoff frequency of the bandpass filter was fixed at 12 Hz, and the lower cutoff

frequency of the bandpass filter and the cutoff frequency of the lowpass filter were varied.

The upper cutoff was set to 12 Hz because the experiments in Section 5.6.1 appeared to

indicate that it could be set that low without significantly affecting recognition accuracy

and because there were potential advantages to setting the cutoff to be as low as possible

(for example, the filtered envelope signals could then be downsampled, reducing the compu-

tation required by the rest of the recognizer). As shown in Sections 5.8 and 6.2, the 12-Hz

cutoff proved to be overly aggressive, discarding information needed for the discrimination

of phone sets larger than the one used for Numbers. The MLP acoustic model used in the

recognizers had 234 input units (26 features per frame × 9 frames of input), 344 hidden

units, and 32 output units, for a total of ca. 92,000 weights.

The results of these experiments are summarized in Table 5.18. Although the

results are somewhat variable, the best overall performance was obtained with an even

partition of the modulation frequency range into a 0–6 Hz lowpass portion and a 6–12 Hz

bandpass portion. It should be noted, though, that equally good performance could be

obtained with a single set of lowpass MSG features computed with a lowpass filter having

a 12 Hz cutoff and 8–11 dB of DC suppression.

The next experiment tested banks of three envelope filters with fixed bandwidths

of 4, 5, or 6 Hz and minimal overlap covering modulation frequencies of 0–12 Hz, 0–15 Hz,

and 0–18 Hz, respectively. Keeping the number of weights in the MLP acoustic model

constant at around 92,000 meant that the hidden layer contained fewer units than the

input layer, so a second series of experiments was run in which the number of hidden units

was doubled. The results of these experiments are summarized in Table 5.19. None of

the three-filter results were significantly better than the best two-filter results, so the next

round of experiments focused on the two-filter features, with the filters having passbands

of 0–6 Hz and 6–12 Hz.

Because the performance of MSG features generated with a single lowpass filter

was improved by addition of DC suppression to the filter, it seemed reasonable to try

adding DC suppression to the lowpass filter in the two-filter case as well. In a first set of

experiments, a set of lowpass filters with a cutoff frequency of 6 Hz and variable degrees

of DC suppression was generated by convolving a lowpass FIR filter with 2-point highpass
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Filter 92,000 weights 184,000 weights
Bandwidth (Hz) clean reverb. clean reverb.

4 8.9% 16.7% 8.2% 14.9%

5 8.4% 16.0% 7.3% 15.4%

6 7.9% 16.3% 7.2% 15.9%

Table 5.19: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using lowpass and two sets of bandpass MSG features generated with a
bank of three envelope filters with fixed bandwidth and minimal overlap between filters as
a function of the filter bandwidth.

FIR filters having the formH(z) = 1− xz−1, where 0 < x ≤ 1, and the performance of MSG

features generated with these lowpass filters and the 6–12 Hz bandpass filter was measured.

The results of these experiments are summarized in Table 5.20.

The best overall performance was obtained for a DC suppression of 4 dB, with a

word error rate of 8.1% on the clean test and a word error rate of 14.8% on the reverberant

test. The performance on the reverberant test using the lowpass filter with 4 dB of DC

suppression was significantly better than the performance obtained with no DC suppression.

In general, the filters with DC suppression of no more than 8 dB gave good performance

on both the clean and reverberant tests, although the results were somewhat variable.

The filters used in the first experiment had non-uniform group delay in their pass-

bands, which could negatively impact recognizer performance by distorting the timing in-

formation in the features. Thus, a second set of experiments was run using linear-phase

lowpass filters with variable amounts of DC suppression. The filters were generated by

designing a lowpass FIR filter with a 6-Hz cutoff frequency and then manipulating the po-

sitions of the pair of real-axis zeroes in the filter. Figure 5.8 shows the pole-zero plot for

the base lowpass filter. The results of these experiments are summarized in Table 5.21.

The results of these experiments were somewhat more consistent than the first

set of experiments, with the best overall performance obtained for a DC suppression of

4 or 5 dB. For the next set of experiments the MSG features were generated using two

linear-phase FIR filters: one lowpass filter with a cutoff frequency of 6 Hz and 5 dB of DC

suppression and one bandpass filter with a passband of 6–12 Hz.
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DC Magnitude
Response (dB) clean reverb.

-1 8.2% 15.6%

-2 8.4% 16.0%

-3 8.5% 15.1%

-4 8.1% 14.8%

-5 8.4% 15.3%

-6 8.6% 14.8%

-7 8.8% 15.3%

-8 8.6% 15.2%

-9 9.1% 15.8%

-11 9.4% 16.4%

-12 9.3% 16.6%

-14 9.1% 15.9%

-17 9.3% 16.4%

-20 9.5% 17.1%

-26 10.0% 17.3%

-∞ 9.7% 16.7%

Table 5.20: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using lowpass and bandpass MSG features as a function of the level of DC
suppression in the lowpass envelope filter. The lowpass filter cutoff frequency is 6 Hz, and
the bandpass filter passband is 6–12 Hz. The lowpass filters were generated by convolution
of a lowpass FIR filter with a set of highpass filters of the form H(z) = 1− xz−1, where
0 < x ≤ 1.
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Figure 5.8: Pole and zero locations for the lowpass FIR filter from which a family of lowpass
filters with variable amounts of DC suppression was derived by manipulating the positions
of the pair of real-axis zeroes.
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DC Magnitude
Response (dB) clean reverb.

-1 8.0% 16.3%

-2 7.9% 15.7%

-3 8.3% 15.3%

-4 8.1% 14.9%

-5 8.5% 14.6%

-10 9.0% 15.8%

-15 9.6% 16.7%

-20 9.9% 16.7%

-25 10.2% 17.1%

-30 10.2% 17.3%

-35 10.2% 16.6%

-40 10.7% 17.6%

-∞ 10.3% 17.0%

Table 5.21: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using lowpass and bandpass MSG features as a function of the level of DC
suppression in the lowpass envelope filter. The lowpass filter cutoff frequency is 6 Hz, and
the bandpass filter passband is 6–12 Hz. The lowpass filters were generated by manipulating
the locations of the pair of real-axis zeroes in a base filter.
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Figure 5.9: Implementation of the feedforward AGC unit.

5.7 A Feedforward AGC Design

The design of the on-line normalization processing suggested another AGC de-

sign: the feedforward design illustrated in Figure 5.9. Like the other on-line AGC designs,

this feedforward design enhances signal onsets, and like the AGC design described in Sec-

tion 5.4.2, it is a “true” AGC in the sense that its output converges to 1 for a constant

input.

In the first series of experiments with this AGC design, it replaced the two feedback

AGC units. The time constants for the AGCs applied to the lowpass and bandpass MSG

features were varied independently, and the value of ε was set to 1, based on the results

from the on-line normalization experiments. The results of these tests are summarized in

Table 5.22.

The best performance was obtained with τ = 320 or 640 ms for both the lowpass

and bandpass MSG features. Performance on the reverberant test was not as good with

the feedforward AGC as it was with the two feedback AGC units (see Table 5.21). Thus,

a second series of experiments were run in which two feedforward AGC units were used in

series, with a variable time constant for the first AGC and a fixed time constant of 320 ms

for the second AGC. In these experiments the AGCs for the lowpass and bandpass features

had the same time constants. The results, summarized in Table 5.23, were significantly
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Lowpass Bandpass AGC τ (ms)
Condition AGC τ (ms) 40 80 160 320 640

clean 40 11.5% 10.8% 10.2% 9.4% 9.3%
80 10.8% 10.5% 10.0% 8.9% 8.5%

160 10.0% 9.8% 9.0% 8.6% 8.8%
320 9.3% 9.2% 8.6% 8.0% 8.2%
640 9.1% 9.0% 8.3% 8.1% 8.0%

reverb. 40 23.3% 22.0% 22.3% 21.2% 20.4%
80 20.6% 19.5% 18.3% 18.0% 18.6%

160 18.7% 17.8% 17.5% 17.7% 17.0%
320 18.7% 17.9% 17.1% 17.0% 17.2%
640 18.1% 17.2% 16.8% 16.6% 16.8%

Table 5.22: Word error rates for the clean and reverberant Numbers 95 development tests for
a recognizer using lowpass and bandpass MSG features computed with a single feedforward
AGC as a function of the AGC time constant, τ .

First
AGC τ (ms) clean reverb.

40 12.5% 26.8%

80 10.9% 21.2%

160 10.1% 18.4%

Table 5.23: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using lowpass and bandpass MSG features computed with two feedforward
AGCs as a function of the time constant of the first AGC unit. The time constant of the
second AGC unit was fixed at 320 ms.

worse with two feedforward AGCs than they were with a single feedforward AGC. Based

on the results of these experiments, the two feedback AGCs were retained in subsequent

experiments.

5.8 Using Broader Envelope Filters

A set of experiments that tested the efficacy of the MSG features for recognition of

the large-vocabulary Broadcast News corpus were proceeding concurrently with the Num-

bers 95 experiments described in this chapter. While the Broadcast News experiments will
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be described in more detail in Chapter 6, they must be mentioned briefly here because re-

sults with Broadcast News altered the course of the Numbers 95 experiments. Recognizers

for the Broadcast News task had been trained with two different sets of MSG features:

1. The best features from Section 5.5, which were computed with

• a power-spectral Bark-scale filterbank with triangular filters,

• IIR envelope filters with passbands of 0–16 Hz and 2–16 Hz,

• and two feedback AGCs with τ1 = 160 ms and τ2 = 320 ms for the lowpass MSG

features and with τ1 = 160 ms and τ2 = 640 ms for the bandpass MSG features,

and

2. The best features from Section 5.6.3, which were computed in the same way as the

other feature set, expect that the envelope filters were FIR filters with passbands of

0–6 Hz and 6–12 Hz, and the lowpass filter included 5 dB of DC suppression.

While the FIR-filter-based MSG features gave better performance on the Num-

bers 95 task, the IIR-filter-based MSG features gave significantly better performance on

the Broadcast News task. It was hypothesized that the 12–16 Hz modulation frequency

range, which had not appeared to be important for the Numbers 95 recognition task in the

experiments in Section 5.6, were important for accurate recognition of the large-vocabulary

Broadcast News task. This difference may be understood by comparing the number of

phones and phonetic contexts represented in the two tasks. The Numbers task requires the

recognition of just thirty-two different words based on a phone set of thirty-two elements.

In contrast, the Broadcast News task requires the recognition of 65,000 different words

based on a phone set of fifty-four elements. It is not surprising that the discrimination of

a larger set of phones occurring in a much more diverse array of contexts requires a more

(temporally) detailed description of the input. Thus, an alternate set of FIR envelope fil-

ters with passbands of 0–8 Hz and 8–16 Hz were designed and tested on the Numbers 95

tests. The lowpass filter included a variable amount of DC suppression. The results of these

experiments are summarized in Table 5.24.

As in the experiments in Section 5.6.3, the best performance was obtained with a

DC suppression of 5 dB. Compared to the features computed with the 0–6 Hz and 6–12 Hz
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DC Magnitude
Response (dB) clean reverb.

0 7.8% 17.0%

-5 7.5% 15.7%

-10 8.1% 15.8%

-15 8.3% 16.0%

Table 5.24: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using lowpass and bandpass MSG features computed with filters having
passbands of 0–8 Hz and 8–16 Hz, respectively, as a function of the level of DC suppression
in the lowpass filter.

FIR filters, these features gave better performance on the clean test (by 1% absolute) and

worse performance on the reverberant test (by 1.1%). As will be seen in Chapter 6, these

broader filters gave much better performance on the Broadcast News task (although the

best performance was obtained with the 0–16 Hz and 2–16 Hz IIR filters), so all subsequent

experiments with Numbers used these filters. The impulse responses for the two filters are

shown in Figure 5.10 and their frequency responses are shown in Figure 5.11. In contrast

with the presentation of the IIR filters in Section 5.1, it is not necessary to plot the filter

group delay characteristics here because the FIR filters are linear-phase filters that, by

definition, have uniform group delay characteristics.

5.9 Verifying the AGC Time Constants

Because significant changes had been made to the MSG processing since the time

constants for the feedback AGCs had been set (in Section 5.2), it seemed prudent to test

different values for time constants again. In these experiments the time constants of the first

and second AGCs for the lowpass and bandpass MSG features were varied independently

of one another. Time constants of 80 and 160 ms were tested for the first AGC. Time

constants of 160, 320, or 640 ms were tested for the second AGC. Table 5.25 summarizes the

experimental results. There was very little variation in performance on the clean tests. In

fact, none of the differences in performance on the clean test are statistically significant. On

the reverberant tests, performance was consistently better with τ1 = 160 ms and τ2 = 160

or 320 ms for the computation of the lowpass MSG features. There was no clear, best choice
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Figure 5.10: Impulse responses of the lowpass and bandpass FIR filters chosen for the final
version of the MSG features used in the Numbers experiments.
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Figure 5.11: Frequency responses of the lowpass and bandpass FIR filters chosen for the
final version of the MSG features used in the Numbers experiments.
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Lowpass
AGC τ (ms) Bandpass AGC τ2 (ms)

Condition τ1 τ2 160 320 640 160 320 640

clean 80 160 7.5% 7.2% 7.1% 7.6% 7.3% 7.7%
320 7.3% 7.1% 7.0% 7.1% 7.2% 7.0%
640 7.1% 7.0% 7.2% 7.2% 7.1% 7.5%

160 160 7.6% 7.3% 7.1% 7.6% 7.6% 7.7%
320 7.8% 7.4% 7.3% 7.3% 7.5% 7.3%
640 7.9% 7.8% 7.4% 7.6% 7.9% 7.6%

reverb. 80 160 16.7% 17.3% 16.4% 16.6% 17.4% 16.3%
320 17.1% 16.2% 16.6% 16.7% 16.1% 16.1%
640 17.7% 16.8% 16.9% 16.9% 16.6% 17.3%

160 160 16.3% 15.1% 15.8% 15.8% 16.6% 15.5%
320 16.3% 15.8% 15.7% 16.2% 15.7% 15.3%
640 17.0% 16.3% 15.7% 16.0% 16.6% 16.1%

80 160
Bandpass AGC τ1 (ms)

Table 5.25: Word error rates for the clean and reverberant Numbers 95 development tests for
a recognizer using lowpass and bandpass MSG features as a function of the time constants
of the feedback AGC units.
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Lowpass
AGC τ (ms) Bandpass AGC τ2 (ms)

Condition τ1 τ2 160 320 640 160 320 640

clean 160 160 7.4% 7.3% 7.3% 7.6% 7.5% 7.3%
320 7.3% 7.4% 7.4% 7.7% 7.4% 7.8%

reverb. 160 160 16.0% 15.4% 15.6% 15.7% 16.0% 15.2%
320 16.2% 15.5% 16.0% 16.2% 15.3% 14.8%

80 160
Bandpass AGC τ1 (ms)

Table 5.26: Word error rates for the clean and reverberant Numbers 95 development tests for
a recognizer using lowpass and bandpass MSG features as a function of the time constants
of the feedback AGC units. These tests used a fixed MLP training schedule to try to reduce
the variance of the results.

for the time constants for the computation of the bandpass features, however, due to the

variability of the recognition results.

An examination of records from the different experiments showed that there was

some correlation between the performance of a recognizer on the clean and reverberant

tests and the number of epochs of training performed on the MLP acoustic model. Recall

from Section 3.1.2 that MLP training stops when the performance on a cross-validation

set improves by less than 0.5% in a training epoch. For the Numbers task, it is possible

that this stopping criterion leads to too early a termination of MLP training because the

recognizers which were trained for more epochs generally outperform recognizers which were

trained for fewer epochs. To try to reduce the variability of the experimental results, the

MLP training schedule was fixed to four epochs with a learning rate of 0.008 followed by

six epochs with a learning rate one-half of the learning rate from the previous epoch (thus,

the learning rate in the final epoch is 0.000125).

Some of the experiments from Table 5.25 were performed again using the new, fixed

MLP training schedule. The results of these experiments are summarized in Table 5.26.

While the variability of the results was reduced somewhat, there was still no clear, best

choice of AGC time constants. For subsequent experiments, settings of τ1 = 160 ms and

τ2 = 320 ms were selected for both the lowpass and bandpass features. The fixed MLP

training schedule was also used in all subsequent experiments with the Numbers 95 data.
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Lowpass Bandpass Order
Order 13 11 9 13 11 9

13 7.4% 7.4% 7.3% 15.6% 16.3% 15.3%

11 7.4% 7.5% 7.3% 15.8% 16.6% 15.5%

9 7.2% 7.2% 7.5% 15.3% 15.8% 15.7%

clean tests reverb. tests

Table 5.27: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using MSG features smoothed by DCT truncation as a function of the
number of DCT coefficients used for each stream. These results should be compared to
those in Table 5.26 with τ1 = 160 ms and τ2 = 320 ms.

5.10 Spectral Smoothing of the Features

The spectral resolution of the MSG features, while reduced slightly by the change

from a quarter-octave filterbank to a Bark-scale filterbank, was still higher than most other

representations for ASR. The MSG processing produced 26 features per frame (lowpass and

bandpass features streams with 13 features per frame in each stream), while comparable

PLP or RASTA-PLP processing produced 18 features per frame (static and delta feature

streams with 9 features per frame in each stream). As shown in Section 5.3, simply reducing

the resolution of the initial frequency analysis was not a viable way to reduce the overall

resolution of the MSG representation because it also reduced recognition accuracy. The

experiments described in this section explored another way to reduce the spectral resolution

of the MSG representation: spectral smoothing of the features following the AGC but prior

to on-line normalization.

In the first set of spectral smoothing experiments, the discrete cosine transform

(DCT) of the features was computed (with separate DCTs applied to the lowpass and band-

pass streams), and smoothing was performed by discarding some number of the higher-order

DCT coefficients. The results of these experiments are summarized in Table 5.27. There

was no significant difference in performance between the results with the untransformed

features (see Table 5.26) and the transformed features except for the reverberant test using

the lowest 11 DCT coefficients from both the lowpass and bandpass streams, where per-

formance was significantly worse than the performance with untransformed features. It is

likely that this case is an outlier, because it is not consistent with the other test results.
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From these results, it appears that the resolution of the MSG representation could be re-

duced to match that of the PLP and RASTA-PLP front ends using DCT truncation, with

minimal impact on recognizer performance.

Although DCT truncation is an effective method for smoothing spectral features,

it does have an important disadvantage in that it transforms local spectral distortions

into global distortions of the features. For example, if a single channel in the spectral

representation coincides with a spectral zero in the speech transmission channel, the spectral

features will be unaffected, with the exception of the one that coincides with the zero.

However, if the DCT of the features is computed, all of the DCT coefficients will be changed

by the presence of the spectral zero in a single channel.

This transformation of local spectral distortions into global feature distortions

poses a problem for some speech recognition architectures, especially multi-band approaches

[BD96, HTP96, Mir98] that perform independent classification or recognition on separate

frequency bands and then combine the frequency-local decisions. Thus, a second smoothing

method that performs frequency-local smoothing was also tested. In this method the fea-

tures in each stream are transformed by replacing adjacent pairs of spectral features with

the sum and difference of the features. In matrix notation, the transformed feature vector

y is computed as

y1

y2

y2

y3

...

yn−1

yn


=



1 1 0 0 . . . 0 0

1 −1 0 0 . . . 0 0

0 0 1 1 . . . 0 0

0 0 1 −1 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 1 1

0 0 0 0 . . . 1 −1





x1

x2

x3

x4

...

xn−1

xn


where x is the vector of features for a frame and n is the number of features. Because

n must be even, the bandwidth and spacing of the filters in the Bark-scale power spectral

filterbank is reduced from 1.0 Bark to 0.95 Bark, producing a representation with 14 spectral

channels. Thus, the transformation, which is essentially a Haar transform in the frequency

domain, produces 7 sum terms and 7 difference terms. Recognition tests were run with

three conditions:
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Lowpass Bandpass Transform
Transform s+d sum diff. s+d sum diff.

s+d 7.6% 7.3% 8.7% 15.3% 14.8% 17.5%

sum 7.4% 8.2% 9.9% 15.3% 16.8% 18.3%

diff. 9.8% 9.5% 19.4% 16.5% 17.3% 31.3%

clean tests reverb. tests

Table 5.28: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using Haar-transformed MSG features. In the s+d condition both the sum
and difference terms from the transform were used, and thus no smoothing was performed.
In the sum and diff. conditions only the sum or difference terms, respectively, were used,
and thus some smoothing was performed. If no transformation is applied to the features,
the word error rate is 7.5% on the clean test and 15.0% on the reverberant test.

1. using both the sum and difference terms,

2. using just the sum terms,

3. or using just the difference terms,

for each of the lowpass and bandpass streams. The results of these experiments are sum-

marized in Table 5.28.

If no transformation was performed on the features, the word error rate on the

clean test was 7.5% and the word error rate on the reverberant test was 15.0%. These

results are not significantly different from those obtained with 13 spectral channels. With

the transformed features, using only the difference terms from either or both the lowpass and

bandpass streams led to significantly worse performance on both the clean and reverberant

tests. Performance was also significantly worse on the reverberant test if only the sum

terms from both streams were used. Thus, the total number of features per frame in the

MSG representation could be reduced to 21 by using only the sum terms for either the

lowpass or bandpass stream without affecting recognizer accuracy. This smoothing was

local in frequency, and therefore a better match to some recognition algorithms. Reduction

of the total number of features produced by the MSG representation is desirable because it

may reduce the number of weights required in the MLP acoustic model. A final test was

performed in which the lowpass stream was not processed and the only the sum terms from

the Haar transform of the bandpass stream were used. With this feature set, the word error
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rate on the clean test was 7.4% and the word error rate on the reverberant test was 14.9%.

This was the feature set selected for use in subsequent experiments.

5.11 Changing the Size of the Context Window

There is considerable evidence (reviewed in Section 2.2.3) that humans base their

phonetic judgments on information integrated over segments of the speech signal roughly

200–250 ms in duration. This integration over relatively long segments may contribute to

the reliability of human speech recognition by averaging out transient distortions in the

speech signal and by capturing phonetic information that is distributed over syllable-like

intervals by coarticulation. The automatic recognizers described so far in this thesis base

their acoustic likelihood estimates on shorter segments of only 90 ms. In this section, the

effect of increasing the duration of the input to the MLP acoustic model is measured.

As in the other experiments, the number of MLP weights was held constant by

varying the number of hidden units as the size of the input layer changed. For these

experiments the number of MLP weights was increased to 164,000 so that there would

be a reasonably large number of hidden units even for the largest input size. In the first

set of experiments, recognizers using the MSG features or log-RASTA-PLP were tested

with MLPs taking 9, 13, 17, 21, or 25 frames of input. The log-RASTA-PLP features

were normalized using exactly the same on-line normalization as the MSG features. The

results of these experiments are summarized in Table 5.29. For both the MSG and RASTA

features, the best overall performance was obtained with an input duration of 13 frames

(130 ms). A second set of experiments, summarized in Table 5.30, were performed using

PLP features with on-line normalization and MLPs using 9, 13, or 17 frames of input.

Again, the best performance was obtained for an input duration of 13 frames. Based on

the results of these experiments, the duration of the MLP input was increased to 13 frames

in the subsequent experiments, and PLP features were compared against the MSG features

instead of log-RASTA-PLP features.

The results with the MLP context window size clearly do not match human speech

perception, in which phonetic judgments appear to be based on segments of the speech

signal that are roughly 200–250 ms in duration. This difference may be the result of the

different units of recognition employed by human listeners and the automatic recognizers
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Num. Frames Features
Context MSG RASTA MSG RASTA

9 7.1% 6.3% 13.9% 23.3%

13 6.7% 6.3% 13.9% 22.4%

17 7.0% 6.5% 14.2% 22.3%

21 7.0% 6.5% 14.1% 22.4%

25 7.5% 7.1% 15.2% 23.0%

clean tests reverb. tests

Table 5.29: Word error rates for the clean and reverberant Numbers 95 development tests
for recognizers using MSG features or log-RASTA-PLP features with on-line normalization
as a function of the length of the MLP input.

Num. Frames Condition
Context clean reverb.

9 5.7% 23.6%

13 5.7% 20.9%

17 6.0% 21.6%

Table 5.30: Word error rates for the clean and reverberant Numbers 95 development tests
for a recognizer using PLP features with on-line normalization as a function of the length
of the MLP input.
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used in this thesis. It is most likely that syllable-like units that cover 110–260 ms segments

of the speech signal [GHE96] play a prominent role in human speech perception. The

automatic recognizers used in this work use phone-like units that cover 60–100 ms segments

of the speech signal [GHE96]. The shorter input to the MLP acoustic model may be a

better match to the automatic recognizer’s shorter units of recognition. While it appears

that coarticulation spreads information about phonetic segments over entire syllables, the

automatic recognizers may not be able to use all of this information, either because there

is not enough training data available or because longer recognition units may be required

to exploit this information, as suggested in [Wu98].

5.12 The Final Version of the MSG Features for Numbers

The series of experiments described in this chapter ultimately led to the MSG

processing illustrated in Figure 5.12. This feature extraction algorithm, which proved to be

the best design for the Numbers recognition task, proceeds according to the following steps:

1. The speech signal is segmented into 25-ms frames with a 10-ms frame step, each

frame is multiplied by a Hamming window, and the power spectrum for each frame is

computed with an FFT.

2. The power spectrum is accumulated into critical-band-like frequency channels via con-

volution with a bank of fourteen overlapping, triangular filters that have bandwidths

and spacings of 0.95 Bark and cover the 230–4000 Hz range. The critical-band-like

power spectrum is converted into an amplitude spectrum by taking the square root

of the filterbank output. The experiments leading to this choice of filterbank are

described in Section 5.5.

3. The critical-band-like amplitude signals are filtered by two different FIR filters in

parallel: a lowpass filter with a 0–8 Hz passband and 5 dB of DC suppression, and

a bandpass filter with an 8–16 Hz passband. The experiments leading to this pair of

filters are described in Section 5.8.

4. Both the lowpass and bandpass streams are processed through two feedback AGC

units where the first AGC a time constant of 160 ms and the second has a time constant
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Figure 5.12: Signal processing for the final version of the modulation-filtered spectrogram
(MSG) features used for Numbers recognition.
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of 320 ms. See Figure 5.5 for an illustration of the AGC design and Sections 5.2 and

5.9 for descriptions of the experiments used to select the number of AGC units and

their time constants.

5. The spectral resolution of the bandpass stream is halved by summing the features from

adjacent channels. The experiments summarized in Section 5.3 led to this decision.

6. All features are normalized to have means of zero and variances of one using an on-line

normalization procedure. The feature means and variances are estimated using single-

pole lowpass filters with a time constant of 2 s. Figure 5.7 illustrates the normalization

processing, and Section 5.4.3 describes the experiments in which the parameters of

the normalization were selected.

5.13 Optimizing the Lexicon

All of the recognizers described so far in this chapter have used the lexicon de-

scribed in Section 3.1.3: a multiple-pronunciation lexicon in which the word pronunciations

and phone durations were optimized in an iterative embedded training procedure that used

a recognizer based on log-RASTA-PLP features. Thus, the recognizers used a lexicon that

was not matched to the features they used. As a final step in the recognizer optimization,

new lexicons were created for three different recognizers and optimized via embedded train-

ing. It was expected that recognizer performance would improve somewhat if the lexicon

was better matched to the features. The three recognizers were:

1. A recognizer that used the final version of the MSG features for the Numbers experi-

ments.

2. A recognizer that used eighth-order PLP features and delta-PLP features (calculated

via linear regression over a nine-frame window) normalized using the same on-line

normalization procedure that was applied to the MSG features.

3. A recognizer that combined the MSG and PLP features. In this recognizer, two

MLPs were trained, with one taking MSG features as input and the other taking PLP

features as input. The MLPs were trained with identical training targets. During

recognition and forced alignment the acoustic likelihoods from the two MLPs were
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MSG PLP Combined

6.4% 5.8% 5.5%

Table 5.31: Word error rates on the clean Numbers 95 development test set for recognizers
using optimized lexicons and either MSG features, PLP features with on-line normalization,
or a combination of MSG and PLP features.

combined by averaging them. The MLPs used in the combined recognizer had half as

many weights as those in the other two recognizers, so all three systems had the same

total number of MLP weights.

For all three recognizers, the training process began with the hand-transcribed

labels and the lexicon that included 90% of the training set pronunciations and had phone

durations derived from the hand transcriptions. For each recognizer, several iterations of

embedded MLP and lexicon training were performed. The performance of the recognizers

was measured on the clean Numbers 95 development test set, and the best-performing

recognizer was chosen.

Table 5.31 shows the performance using the three best lexicons on the clean de-

velopment test set. Compared to the tests (see Tables 5.29 and 5.30) using the original

lexicon, which had been optimized for log-RASTA-PLP features, performance of the MSG

recognizer improved and performance of the PLP recognizer degraded, each by statistically

insignificant amounts.

5.14 Summary

A comparison of Figures 4.9 and 5.12 shows that over the course of the experiments

described in this chapter nearly all of the details of the MSG processing were changed:

• The implementation of the initial frequency analysis was changed from direct FIR

filtering to filtering in the power-spectral domain.

• The filter shapes used for the initial frequency analysis were changed from trapezoidal

to triangular and the filterbank resolution was changed from quarter-octave to 0.95

Bark.
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• The envelope filters ultimately remained FIR filters, but their design changed and the

passband of the bandpass filter was changed from 2–8 Hz to 8–16 Hz.

• The cube-root compression and off-line normalization of the features with respect to

the global peak was replaced by a series of two on-line, feedback AGC units and an

on-line normalization of the feature means and variances.

• Processing to halve the spectral resolution of the bandpass features was added.

As shown in Section 6.2, a slightly different version of these features that used broader, IIR

envelope filters proved to be best for the large-vocabulary Broadcast News task, although

this difference may reflect a misalignment between the features and training labels in the

Broadcast News experiments rather than some fundamental difference between Broadcast

News and Numbers.

A comparison of the MSG results in Table 4.11 and the performance of the best

MSG features for Numbers recognition (see the conclusion of Section 5.10) shows that these

changes improved the word error rate on the clean Numbers 95 development test set from

8.5% to 7.4%, for a 13% relative reduction in error rate, and they improved the word error

rate on the reverberant Numbers 95 development test set from 27.3% to 14.9%, for a 45%

relative reduction in error rate. Increasing the number of MLP weights by about 74%,

increasing the MLP input length from 9 to 13 frames, and training a new lexicon yielded

additional improvements in performance for the MSG recognizer.
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Chapter 6

Testing the Generality of the

Features

All of the development of the modulation-filtered spectrogram features was based

on experiments with the Numbers 93 and Numbers 95 tasks, with the exception of several

experiments on the Broadcast News corpus described in Section 6.2. Numbers is a small-

vocabulary corpus with a relatively small set of training and testing utterances, and nearly

all of the recognition tests were based on just two acoustic conditions: a clean test and a

moderately reverberant test (T60 = 0.5 s and a direct-to-reverberant energy ratio of 1 dB).

The small size of the Numbers lexicon and the restricted number of test conditions made

it feasible to perform the very large number of recognition experiments that guided the

development of the MSG features. There is a potential danger, however, that the MSG

features could be overly specialized for the Numbers task and the clean and reverberant

tests. To test the utility of MSG features for a broader array of tasks and acoustic conditions,

they were tested on a final set of Numbers 95 test utterances in many different acoustic

conditions, as well as on the large-vocabulary Broadcast News task.

6.1 Final Numbers 95 Tests

The Numbers 95 final test set is a collection of 1227 utterances that were set aside

and not used in any of the previously described experiments. To verify that the MSG

features are useful for acoustic conditions not represented in any of the recognition tests
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MSG PLP combo

6.1% 5.9% 4.7%

Table 6.1: Word error rates for MSG, PLP, and combined recognizers on the clean Numbers
95 final test set.

performed during the MSG development, recognition performance was measured for the

MSG, PLP, and combined recognizers from Section 5.13 on the final Numbers 95 test set

in a collection of different acoustic conditions: clean, reverberation, noise, spectral shaping,

and simultaneous noise and reverberation.

6.1.1 Tests Under Clean Conditions

The results of the clean tests are summarized in Table 6.1. The word error rates

of the MSG and PLP recognizers on the final test set are not significantly different from

one another, while the performance of the combined recognizer (which has exactly the same

number of MLP weights as either of the other two recognizers) is significantly better.

6.1.2 Tests Under Reverberant Conditions

The impulse response used to generate the moderately reverberant Numbers 95

development test set was one of a set of twelve impulse responses recorded in the varechoic

chamber at Bell Labs (as described in Section 4.3.1). For the final tests, each of the impulse

responses was used to generate twelve different reverberant versions of the Numbers 95 final

test set. The performance of the MSG, PLP, and combined recognizers on these different

reverberant tests is summarized in Table 6.2. The impulse responses are described in terms

of the recording conditions (percentage of open panels in the chamber and microphone

position) and also in terms of reverberation time and direct-to-reverberant energy ratio.

The MSG recognizer outperforms the PLP recognizer in all reverberant conditions by a

significant margin, while the combined recognizer outperforms the MSG recognizer in all

conditions (and by a significant margin in nine of the twelve tests). The fifth line of Table 6.2

(43% of panels open, microphone #1) gives results for the impulse response used to generate

the reverberant development test used in Chapter 5.
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direct-to-
Panels reverberant

Open (%) Mike # T60 (s) energy ratio (dB) MSG PLP combo

100 1 0.3 1 9.4% 12.0% 8.3%
2 0.3 1 8.5% 10.6% 7.3%
3 0.3 -1 10.2% 11.9% 8.9%
4 0.3 -1 9.2% 11.5% 8.6%

43 1 0.5 1 13.8% 22.2% 13.0%
2 0.5 -3 13.8% 20.3% 12.8%
3 0.5 -2 15.5% 20.2% 13.2%
4 0.5 -5 16.7% 22.7% 15.1%

0 1 0.9 -5 38.2% 55.3% 35.9%
2 0.9 -7 38.9% 53.3% 35.7%
3 0.9 -7 45.4% 58.3% 41.3%
4 0.9 -9 45.2% 57.3% 40.4%

Table 6.2: Word error rates for MSG, PLP, and combined recognizers on the reverberant
Numbers 95 final test sets. The boldface entry in the table indicates results with the
impulse response used to generate the reverberant test set that was used in the recognition
experiments described in Chapter 5. All other results in the table are for impulse responses
not previously tested.
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6.1.3 Tests Under Noisy Conditions

Noisy versions of the final test set were generated by adding three different noise

samples to the test utterances at SNRs of 30, 20, 10, and 0 dB, with the SNR being measured

on an utterance-by-utterance basis. The three different noises were:

Car noise recorded over a cellular telephone in a 1978 Volvo 244 running at 55 miles/hour

on a freeway with the windows closed [MH92, HM94],

Babble noise from the NOISEX CD-ROM [VS93], downsampled to 8 kHz, and

Channel noise from a high-frequency radio channel on the NOISEX CD-ROM, downsam-

pled to 8 kHz.

The normalized average power spectra for the three noises are shown in Figure 6.1. The

noises have somewhat different spectral shapes, with the car and babble noises having

lowpass shapes and the HF channel noise being relatively flat between 0.2 and 3 kHz. The

noises also have different temporal characteristics, as can be seen from the modulation

spectra for the three noises shown in Figure 6.2. The babble noise (not surprisingly) has a

temporal structure similar to that of speech, but with less temporal variation than speech

from a single speaker. In contrast, the car and HF channel noises are relatively stationary.

The results of the noisy recognition tests are summarized in Table 6.3. In all

but one condition the MSG recognizer outperforms the PLP recognizer, and in the one

condition where the PLP recognizer is better, the margin is not statistically significant.

In nine of the noise conditions the MSG recognizer is significantly more accurate than the

PLP recognizer. In all but one condition the combined recognizer is better than the MSG

recognizer, and in the one condition where the MSG recognizer is better the margin is not

statistically significant. In eight of the tests the combined recognizer is significantly more

accurate than the MSG recognizer.

Although the improvement of recognizer robustness to additive noise was not a

major goal in the development of the MSG features, they nonetheless proved to be somewhat

noise-robust. This is likely a consequence of the use of relatively general signal-processing

strategies in the MSG features that exploit the specific temporal properties of speech, and

thus render the MSG representation resistant to a range of more slowly-varying forms of

interference.
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Figure 6.1: Normalized average power spectra for the three noise sample used to create the
noisy Numbers 95 final test sets.
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Figure 6.2: Modulation spectra for the three noises used to create the noisy Numbers 95
final test sets.
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Noise SNR (dB) MSG PLP combo

Volvo 30 6.2% 6.7% 4.9%
20 7.2% 10.5% 7.0%
10 13.1% 24.6% 13.2%
0 42.5% 63.3% 39.6%

Babble 30 6.7% 6.2% 5.0%
20 7.8% 9.1% 6.4%
10 17.5% 21.7% 13.5%
0 57.4% 59.3% 46.2%

HF Channel 30 6.5% 7.1% 5.5%
20 8.4% 11.6% 7.7%
10 16.2% 26.0% 16.0%
0 48.1% 63.7% 42.2%

Table 6.3: Word error rates for MSG, PLP, and combined recognizers on the noisy Numbers
95 final test sets.

6.1.4 Tests with Spectral Shaping

Next, the performance of the recognizers was measured for data having unknown

spectral shaping (i.e., convolutional distortion with an impulse response whose energy falls

mostly or completely within the temporal window of the recognizer’s spectral analysis stage).

Robustness to spectral shaping is desirable in telephone applications. Versions of the Num-

bers 95 final test set with unknown spectral shaping were created by convolving the test

utterances with one of four different linear-phase FIR filters:

A differentiator that imposed a +6 dB/octave spectral tilt on the utterances.

An integrator that imposed a -6 dB/octave spectral tilt on the utterances. The integrator

had a flat frequency response for frequencies of 200 Hz and below.

A “Numbers 95 to Broadcast News” filter that was designed by computing the av-

erage power spectrum of the clean Numbers 95 training set and the average power

spectrum of a collection of telephone-bandwidth Broadcast News utterances. This

filter was designed to have a frequency response equal to the average Broadcast News

spectrum divided by the average Numbers 95 spectrum, using a least-squares design

procedure.
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Filter MSG PLP combo

differentiator 6.1% 6.5% 5.0%

integrator 6.1% 6.3% 4.9%

Num95 to BN 6.4% 7.0% 4.9%

random 7.5% 10.5% 6.5%

Table 6.4: Word error rates for MSG, PLP, and combined recognizers on the spectrally
shaped Numbers 95 final test sets.

A random filter that was designed using a least-squares procedure to match a set of 64

(frequency, gain) pairs where the frequency points were equally spaced over the 0–

4 kHz range and the gains were randomly selected from a uniform distribution over

the range -10 dB to +10 dB.

The frequency responses of the four filters are illustrated in Figure 6.3.

Recognition results for the MSG, PLP, and combined recognizers for the four

different spectral shaping conditions are given in Table 6.4. The MSG recognizer is more

accurate than the PLP recognizer in all conditions, but by a significant margin only in the

random filter case. The combined recognizer is significantly more accurate than the MSG

recognizer in all conditions.

6.1.5 Tests Under Noisy Reverberant Conditions

A final set of recognition tests measured the performance of the three recognizers

in the presence of simultaneous noise and reverberation. The NOISEX babble noise was

used in these tests. Only three of the reverberant conditions, namely the microphone #4

impulse responses, were used because the reverberant tests showed that the percentage of

open panels had the greatest effect on recognizer accuracy, while the effect of microphone

position was much smaller. The NOISEX babble noise already included reverberation, so

each noisy and reverberant test set was generated by convolving the test utterances with

the appropriate room impulse response and then adding the babble noise at an SNR of 30,

20, 10, or 0 dB. As in the noisy tests, the SNR was measured on an utterance-by-utterance

basis.

The results of these tests are summarized in Table 6.5. The MSG recognizer was
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Figure 6.3: Frequency responses for the four filters used to create the spectrally shaped
Numbers 95 final test sets.
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T60 (s) SNR (dB) MSG PLP combo

0.3 30 9.6% 12.7% 8.6%
20 12.0% 16.5% 10.3%
10 24.3% 31.0% 19.9%
0 69.4% 66.2% 56.0%

0.5 30 17.0% 23.7% 15.2%
20 19.5% 27.1% 16.4%
10 35.0% 39.8% 26.4%
0 79.0% 73.7% 63.4%

0.9 30 45.8% 56.9% 39.3%
20 47.5% 58.8% 41.7%
10 63.4% 67.4% 51.4%
0 95.9% 86.5% 81.5%

Table 6.5: Word error rates for MSG, PLP, and combined recognizers on the noisy and
reverberant Numbers 95 final test sets.

significantly more accurate than the PLP recognizer for all three reverberant conditions,

provided that the SNR was above 0 dB. The PLP recognizer was significantly better than the

MSG recognizer in all three 0 dB conditions, and the combined recognizer was significantly

better than either other recognizer in all tests.

6.1.6 Summary

The MSG features are robust to a broad set of acoustic conditions which were

not tested during their development, at least for the small-vocabulary Numbers 95 task.

The MSG recognizer outperformed the PLP recognizer in almost all tests, and in the tests

in which the PLP recognizer was better, the difference in performance between the PLP

and MSG recognizers was not statistically significant (except for the tests under noisy

reverberant conditions with 0 dB SNR). This general robustness is derived from the temporal

signal-processing strategies implemented in the MSG representation that exploit the specific

structure of the speech signal. These tests also convincingly illustrate the potential of

combining multiple representations in the recognition process. In nearly all of the conditions

examined, the combined recognizer, which has the same number of MLP weights as the PLP

or MSG recognizer, had the highest accuracy.
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6.2 Tests with Broadcast News

Broadcast News [Ste97] is a standard task for the evaluation of large-vocabulary

ASR systems. The speech material in the Broadcast News corpus is collected from radio

and television news programs broadcast in the United States. These programs include, for

example, NPR’s All Things Considered, the BBC’s The World Today, and ABC’s World

News Tonight. The corpus contains speech from a diverse set of individuals, including native

speakers of American and British English as well as many non-native speakers. The material

includes both scripted and conversational speaking styles. The acoustic environments rep-

resented in the corpus include high-quality studio recordings, telephone speech and speech

in the presence of background noise or music. All of the utterances were recorded at a

16 kHz sampling rate with 16-bit quantization. Recognizers for the Broadcast News task

typically have lexicons of 65,000 words.

For the 1998 Broadcast News evaluation, researchers from the Connectionist

Speech Recognition group at Cambridge University (UK), Sheffield University (UK), and

ICSI collaborated on a recognition system. This system, known as sprach (Speech Recog-

nition Algorithms for Connectionist Hybrids), was based on Cambridge University’s abbot

recognition system [CR98b], a hybrid ASR system that uses recurrent neural networks

(RNNs) as acoustic models. The RNNs used PLP features as their front-end speech repre-

sentation.

One of ICSI’s contributions to the sprach recognizer was an MLP acoustic model

whose acoustic likelihoods are combined with those from the RNNs. The MLP was trained

on Broadcast News utterances that had been downsampled to 8 kHz because it was expected

that this would improve the performance of the sprach recognizer on the telephone and

bandlimited utterances in Broadcast News. PLP features were considered as a possible

front-end representation for the MLP, as were three different versions of the MSG features.

12th-order PLP features, including the zero-order cepstral coefficient, were used. They were

computed from 32-ms frames with a 16-ms frame step (to match the frame and step size

used with the RNNs), and were normalized in an off-line procedure to have means of zero

and variances of one on an utterance-by-utterance basis.

Because the training of the Broadcast News recognizers required a considerable

amount of time, it was impractical to perform a large number of experiments to find the
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best MSG feature set (as had been done in Chapter 5). However, because the design of

the MSG features in Chapter 5 was based on a relatively small data set, it seemed prudent

to test a small number of different MSG representations on Broadcast News instead of

testing only the version that performed best on Numbers. Like the PLP features, the MSG

features were also calculated from 32-ms frames with a 16-ms frame step. The initial spectral

analysis was performed using a power-spectral filterbank containing fourteen overlapping,

triangular filters with bandwidths and spacings of 1 Bark, covering the 160–4000 Hz range.

The MSG features were normalized off-line on a per-utterance basis instead of using the

on-line normalization of means and variances developed for the Numbers 95 experiments.

The three MSG feature sets differed in the envelope filters and AGC time constants used

in their computation. Because the experiments in Chapter 5 and the experiments with

Broadcast News were performed concurrently, the MSG features tested on Broadcast News

represent “snapshots” from different points in the optimization of the MSG features. The

versions tested were the following:

• The MSG1 features were computed using IIR envelope filters with passbands of 0–

16 Hz and 2–16 Hz. The lowpass features were processed with two feedback AGC

units in series, with the first AGC having a time constant of 160 ms and the second

having a time constant of 320 ms. The bandpass features were also processed with two

feedback AGC units in series, with the first AGC having a time constant of 160 ms

and the second having a time constant of 640 ms. This was the best set of features

for Numbers as of the end of the experiments described in Section 5.2.

• The MSG2 features were computed using FIR envelope filters with passbands of 0–

6 Hz and 6–12 Hz. Both the lowpass and bandpass features were processed with two

feedback AGC units in series, with the first AGC having a time constant of 160 ms

and the second having a time constant of 320 ms. This set of features was the best

for Numbers as of the end of the experiments described in Section 5.6.

• The MSG3 features were identical to the MSG2 features, except that the MSG3

features were computed using FIR envelope filters with passbands of 0–8 Hz and 8–

16 Hz. This set of features was developed after experiments on Broadcast News with

the MSG2 features indicated that the envelope filters selected in Section 5.6 might be

too narrow.
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MLP Combined
Features Alone with RNNs

PLP 36.7% 31.1%

MSG1 39.4% 29.9%

MSG2 43.8% 31.9%

MSG3 41.0% 31.0%

Table 6.6: Word error rates for Broadcast News recognition using PLP features and three
different versions of the MSG features, either alone or in combination with a set of four
recurrent neural network acoustic models trained on PLP features. More recent experiments
[EM98] have shown that the difference in performance between the PLP and MSG1 features
on the MLP-only condition decreases as the number of MLP weights and amount of MLP
training data increase. Thus, for MLPs with 4000 hidden units trained on 74 hours of data
(vs. MLPs with 2000 hidden units trained on 37 hours for the experiments summarized
above) the word error rate obtained using PLP features was 33.7% and the word error rate
obtained using MSG1 features was 35.3%.

The filters for all three sets of the MSG features were versions of filters used in the Num-

bers 95 experiments, redesigned for a 62.5 Hz sampling rate.

The four different MLP acoustic models were trained on a phonetic labeling of

the Broadcast News data generated via forced alignment with the RNNs.1 No embedded

training of the MLPs was performed due to the limited time available for these experiments.

The PLP net had a 117-unit input layer (9 frames of input × 13 features per frame), a 2000-

unit hidden layer, and a 54-unit output layer. The MSG nets had 252-unit input layers (9

frames of input × 28 features per frame), 2000-unit hidden layers, and a 54-unit output

layers. The four MLPs were tested alone and in combination with acoustic likelihoods from

the RNNs. The results of these tests are summarized in Table 6.6.

In the experiments using only the MLP acoustic models, the PLP features yielded

the best performance by a significant margin, and the MSG2 features resulted in the worst

performance by a significant margin. Using MSG1 features gave better performance than

using MSG3 features, but not by a statistically significant margin. While these results

seem to indicate that the PLP features are better for the Broadcast News task than the

1All of the Broadcast News experiments reported in this thesis were performed by Dan Ellis and Adam
Janin. My contributions to the Broadcast News work were a feature-extraction program for generating MSG
features and a set of envelope filters designed to work at a sampling rate of 62.5 Hz. I am grateful to Dan
and Adam for doing all the hard work in these experiments!
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MSG features, it is important to note that the MLP training labels were produced by a

PLP-based acoustic model and no embedded training of the MLPs was performed (due to

the long training times required). Thus, this test is not an entirely fair one. In combina-

tion with the acoustic likelihoods from the RNNs, the MSG1 features resulted in the best

performance and the MSG2 features performed the most poorly. In combination with the

RNNs, the differences in performance between the MSG1, MSG3, and PLP features were

not statistically significant.

The MSG1 features were used in the sprach recognizer. The MSG1 features were

chosen instead of the PLP features on the basis of the results of the combined recognition

experiment. Although the performance obtained using the MSG1 features was not signifi-

cantly better than that obtained using PLP features (for the size of test set used in these

experiments), it was anticipated that using one of the MSG feature sets would give better

performance than the PLP features, in combination with the RNNs. Recall that combina-

tions of classifiers or recognizers work best when the models being combined have different

error patterns. One way to ensure that the errors are different is to give the models different

input representations. It was also expected that embedded training of the acoustic models,

which was used in the training of the final sprach system for the 1998 Broadcast News

evaluation, would improve the performance of the MSG-based acoustic model.

The MSG1 features were selected over the MSG2 and MSG3 features because they

gave better performance both alone and in combination with the RNNs. The relatively poor

performance of the MSG2 features in both conditions may indicate that the 12–16 Hz mod-

ulations, which are filtered out in the computation of the MSG2 features, carry important

information for recognition of the phonetically richer Broadcast News data (even if they do

not appear to be especially important for recognition of Numbers, as shown in Section 5.6).

In both sets of experiments the performance difference between the MSG1 and MSG3 fea-

tures was not statistically significant for the size of the test set used. The difference was

consistent across two experimental conditions, however, so the MSG1 features were chosen.

The use of only PLP-derived training labels may be a confounding factor in the comparison

of the MSG1 and MSG3 features because the MSG1 features, which are computed with

the broadest-bandwidth envelope filters, are the most likely MSG feature set to align well

with the PLP-derived labels. The question of which MSG feature set, MSG1 or MSG3,

is most useful for large-vocabulary ASR cannot be convincingly resolved without further
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Degraded
Overall Acoustics (F4) Telephone (F2)

1997 27.2% 37.3% 37.7%

1998 (A) 21.7% 15.5% 32.4%
(B) 20.0% 23.0% 28.4%

Table 6.7: Selected results from the 1997 and 1998 Broadcast News evaluations. The 1997
results [CR98a] are from the abbot system, while the 1998 results are from the sprach

system. Two data sets were used in the 1998 evaluation: one (set A) contained data from
1996 broadcasts, while the other (set B) contained data from 1998 broadcasts. Overall
performance is shown, as well as performance on two of the focus conditions–degraded
acoustics (F4) and telephone speech (F2).

experimentation.

Selected results from the abbot system for the 1997 Broadcast News evaluation

and the sprach system for the 1998 Broadcast News evaluation are summarized in Ta-

ble 6.7. Comparison of these results is complicated because there are many differences

between the two systems and because the evaluations were performed on different data

sets. Nevertheless, these results provide some indication that the inclusion of the MSG-

based acoustic model in the sprach system contributed to its superior performance. The

strongest evidence for this view is the improvement from 1997 to 1998 on the catch-all

degraded acoustics condition (F4), which comprise 28% of the data in both 1998 evaluation

sets. Average performance for the two 1998 sets on this focus condition was 48% better

than the 1997 system. One of the goals in the sprach collaboration was to improve the

system’s performance on the telephone condition (F2) by adding an acoustic model trained

on 8-kHz-sampled data. Indeed, an average improvement of 20% was obtained on the tele-

phone speech over the 1997 system; however, this yielded only a small improvement in

overall system performance because the telephone data comprised only 3.4% of the data in

1998 evaluation sets.

6.2.1 The Final Version of the MSG Features for Broadcast News

The MSG features used in the sprach recognizer (the MSG1 features) differ in

certain ways from the best MSG features for Numbers recognition (illustrated in Figure 5.12

and described in Section 5.12). The most important difference is in the envelope filtering,
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Figure 6.4: Signal processing for the best version of the modulation-filtered spectrogram
(MSG) features for Broadcast News recognition. The key difference between these features
and the best features for Numbers recognition is the design of the envelope filters. While
these features are computed with two envelope filters having passbands of 0–16 and 2–
16 Hz, the best features for Numbers recognition are computed with two envelope filters
having passbands of 0–8 and 8–16 Hz. It is likely that the AGC computation could be made
completely uniform by setting the time constant of the second AGC in the bandpass feature
processing to 320 ms with little, if any, effect on recognition accuracy.
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where much broader filters are used to compute the features for Broadcast News. The best

features for Broadcast News are computed via the following steps (illustrated in Figure 6.4):

1. The speech signal is segmented into 32-ms frames with a 16-ms frame step, each

frame is multiplied by a Hamming window, and the power spectrum for each frame is

computed. The greater frame length and step were chosen for compatibility with the

RNN acoustic models (which used 32-ms frames and a 16-ms frame step).

2. The power spectrum is accumulated into critical-band-like frequency channels via con-

volution with a bank of fourteen overlapping, triangular filters that have bandwidths

and spacings of 1.0 Bark and cover the 160–4000-Hz range. The critical-band-like

power spectrum is converted into an amplitude spectrum by taking the square root

of the filterbank output. In the computation of MSG features for Numbers, band-

widths and spacings of 0.95 Bark were used to generate an even number of frequency

bands (simplifying implementation of the spectral smoothing of the bandpass fea-

tures) that span a slightly smaller range of frequencies. Because the Numbers data

was collected over the telephone, it was expected that there would be little useful

information below ca. 300 Hz. In contrast, much of the Broadcast News data came

from studio recordings which were expected to contain useful information down to

somewhat lower frequencies.

3. The critical-band-like amplitude signals are filtered by two IIR filters in parallel: a

lowpass filter with a 0–16 Hz passband and and a bandpass filter with an 2–16 Hz

passband. This is the most important difference between the Numbers features and

the Broadcast News features. The broader filters were used for Broadcast News be-

cause they gave better recognition performance than the narrower filters used in the

final Numbers experiments. It is not clear if this discrepancy is due to the inherent

differences between the two recognition tasks, or if it is due to the broader filters’

producing features that are better aligned with the PLP-derived training labels used

in the Broadcast News experiments.

4. Both the lowpass and bandpass streams are processed through two feedback AGC

units (illustrated in Figure 5.5). In the lowpass stream the first AGC has a time

constant of 160 ms and the second has a time constant of 320 ms, while in the bandpass

stream the first AGC has a time constant of 160 ms and the second has a time constant
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of 640 ms. It is likely that the AGC processing of the bandpass features could be made

identical to the processing of the lowpass features, but this possibility was not explored

due to limitations of time.

No on-line normalization of the feature means and variances was performed for the Broad-

cast News features because the sprach recognition system included an off-line, per-

utterance normalization step.
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Chapter 7

Conclusions

This thesis began with the premise that the robustness of ASR systems to acoustic

interference in general, and room reverberation in particular, could be improved by includ-

ing signal-processing and information-processing strategies that are employed in human

auditory processing in an ASR system. The strategies examined included

• critical-band-like frequency resolution,

• the emphasis of slow changes in the spectral structure of the speech signal in the

representation,

• automatic gain control,

• the integration of phonetic information over syllabic durations, and

• the use of multiple signal representations in the recognition process.

A simple signal-processing system that included the first three of these ideas (the signal-

processing strategies) was developed and tuned to produce visual displays of the speech

signal in a spectrographic format that were stable in the presence of additive noise and

room reverberation. This representation, the modulation-filtered spectrogram (MSG), was

then optimized for use as an ASR front end.

The optimization was performed in a series of experiments in which different parts

of the signal processing were systematically varied, and the performance of ASR systems

using the different variant front ends was measured under clean and reverberant conditions.
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Changes to the signal processing that yielded performance improvements were retained

in later experiments. A relatively small recognition task, the recognition of continuous

numbers spoken over the telephone, was used to make it feasible to perform many recognition

experiments, the vast majority of which included the embedded training of the MLP acoustic

model.

This work concluded with two sets of recognition tests designed to determine

whether or not the MSG features are useful under a wide variety of acoustic conditions and

on large-vocabulary recognition tasks. The first tests measured the performance of three

different recognition systems on a collection of final test utterances from the Numbers corpus

under many different acoustic conditions: clean, additive noise, reverberation, spectral

shaping, as well as simultaneous noise and reverberation. The three test systems were a

system using only MSG features, a system using only PLP features, and a system using MSG

and PLP features in combination (with the combination performed by averaging acoustic

log likelihoods from separate MSG-based and PLP-based acoustic models on a frame-by-

frame basis). The three test systems had identical numbers of MLP weights, used the

same language model, and each had a lexicon optimized using the same embedded training

process. These final Numbers tests had two clear results. First, in comparison to the PLP

recognizer, the MSG recognizer was more robust in almost all of the acoustic conditions

examined. Second, the combined recognizer was more robust than the MSG recognizer in

almost all of the acoustic conditions tested.

The second set of tests compared the performance of the PLP features and three

different versions of the MSG features on the large-vocabulary Broadcast News corpus. The

features were tested alone and in combination with acoustic likelihoods from a recurrent

neural network acoustic model developed by the Connectionist Speech Recognition group

at Cambridge University (UK). In the tests in which the PLP or MSG features were used

on their own, the PLP-based recognizer outperformed the MSG recognizers by a significant

margin. It is not clear, however, if this difference in performance is due to differences be-

tween the two representations per se, or whether this result is attributable to mismatches

between the MSG features and the training labels (which were generated via forced align-

ment with a recognizer trained only on PLP features). On the combined tests, however, one

of the MSG features sets gave better performance than PLP, although not by a statistically

significant margin.
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In purely practical terms, this research can be considered successful because:

• Using the MSG features reduced the error rate on the moderately reverberant condi-

tion by as much as 30% (versus the baseline PLP system). Combining the MSG and

PLP features reduced the error rate on the moderately reverberant condition by as

much as 42%.

• The MSG recognizer and the combined PLP and MSG recognizer both performed

well under a wide variety of acoustic conditions, including conditions which were not

tested during the development of the MSG features.

• MSG features are useful not only for the restricted Numbers task on which they were

developed, but also for more general, large-vocabulary tasks such as Broadcast News

(if at least some of the difference between the performance with only PLP features

and only MSG features can be attributed to misalignment between the training labels

and MSG features). The MSG features, in combination with PLP features, appear

to be particularly useful for improving recognizer performance in degraded acoustic

conditions.

A number of broader lessons may be drawn from this work as well:

• Signal processing strategies that exploit the specific temporal properties

of speech are an effective means for improving ASR robustness. The enve-

lope filtering and AGC processing considered in this work are both examples of such

strategies. The early experiments, in which different steps in the MSG processing

were omitted, clearly demonstrated that envelope filtering is crucial for good recog-

nizer performance in reverberation. Later experiments with different envelope filters

showed that recognizer performance on both clean and reverberant tests was nearly

optimal when the filters passed only the 0–16 Hz modulation frequencies. Experiments

comparing off-line with on-line AGC processing showed that better performance could

be obtained with the on-line processing, which reduced the effects of both constant

and slowly varying gains, than with the off-line processing, which eliminated only

constant gain factors. These strategies proved effective not only under reverberant

conditions, but also under other conditions such as additive noise and unknown spec-

tral shaping. Moreover, they were useful not only for the small-vocabulary Numbers



CHAPTER 7. CONCLUSIONS 174

task, but also for improving the performance of a large-vocabulary recognizer under

degraded acoustic conditions.

• Additional experience with the application of temporal processing tech-

niques to ASR and better theoretical understanding of these techniques are

needed for temporal processing to become a standard approach to robust

ASR. The various experiments with different AGC designs most clearly demonstrate

this need. There is very little information available to guide the design of such AGCs.

Not enough is known about the effects of an auditory AGC on speech perception or

about the encoding of phonetic information in the speech signal to aid in the selection

of different AGC designs or in the setting of their parameters. Thus, the selection of

an AGC design and the setting of its parameters is currently done empirically. An

empirical search can require many time-consuming recognition experiments, and there

is no guarantee that a design which is useful for a given task will also be useful for

another.

The design of envelope filters for ASR front ends has a somewhat firmer foundation

because numerous perceptual studies and several ASR studies (including this one)

have shown the importance of modulations at frequencies below 16 Hz. It is not as

clear, however, whether or how the 0–16 Hz modulation frequency range should be

divided, or how very slow modulations should be treated. These issues must also, at

present, be decided empirically, and there is no guarantee that results from one task

will generalize to another.

The analyses of Nadeu and his colleagues [NJ94, NPLJ97] showing that highpass en-

velope filtering may be understood as an equalization of energy in the modulation fre-

quency domain and that lowpass envelope filtering suppresses modulation frequencies

that are not accurately characterized by front-end signal processing are a promising

step towards a better understanding of temporal processing.

• Including both modulation filtering (in the amplitude domain) and AGC

processing as separate steps in the front-end signal processing leads to

better recognition performance. The bandpass filtering of log power spectral

trajectories performed by log-RASTA-PLP is a form of AGC, so log-RASTA-PLP

compensates for unknown spectral shaping of the speech signal. J-RASTA-PLP jointly
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compensates for additive noise and spectral shaping by performing bandpass filtering

in a linear-logarithmic power spectral domain, with the value of the J parameter

controlling the tradeoff between compensation for additive noise and compensation

for spectral shaping. The MSG signal processing performs both modulation filtering

and AGC, but unlike J-RASTA-PLP processing, the modulation filtering and AGC are

separate steps. This separation permits the independent optimization of the filtering

and AGC steps, which leads to better recognition performance.

• Combining recognition systems is a powerful and general method for im-

proving ASR robustness. In the final Numbers 95 tests, the combined MSG and

PLP recognizer outperformed the recognizers using only a single representation in

nearly all conditions, and frequently by a statistically significant margin. In the Broad-

cast News tests, combination of the MSG and PLP representations also led to more

accurate recognition, especially under degraded acoustic conditions. These results

were obtained using only two signal representations and a simple combination tech-

nique: unweighted averaging of acoustic log likelihoods on a frame-by-frame basis. It

is likely that even better performance could be obtained using additional signal repre-

sentations and more sophisticated and adaptive combination methods. Recent studies

of human speech perception indicate that the accuracy of human speech recognition

may rely on the adaptive integration of information across different spectral regions

[AG98, GAS98].

As a practical technology, automatic speech recognition is still in its infancy. It

is currently useful for restricted tasks such as document dictation in quiet offices and lim-

ited interactions over telephone lines. Comparison with human capabilities suggest that

considerable progress on many fronts must still be made before the ideal of natural, un-

restricted verbal interaction with computers is reached. By showing how signal-processing

and information-processing strategies based on human auditory processing can be applied

to make automatic recognizers more robust to reverberation and other forms of acoustic

interference, this thesis brings this ideal slightly closer to reality.
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