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1 Introduction

As we strive to make spoken language systems increasingly natural, it becomes
clear that systems must recognize not only what words a person says, but also
how the words are spoken—i.e. the user’s emotion, as conveyed by speech
prosody. Yoshimura states it well when he says, “it is essential that machines
understand prosodic characteristics which imply a user’s various attitude, emo-
tion and intention beyond vocabulary [16].” Emotion recognition has direct
consequences for a wide variety of applications, from games and educational
software (e.g., to detect if users are enthusiastic or bored), to life-support sys-
tems (e.g., to detect panic), to commercial products (e.g., to detect if a user
is angry and should be transferred to a human operator). This project focuses
on the last type of application, specifically, on the detection of user frustration
with a telephone-based dialog system interface. Although the focus is on frus-
tration, note that the method used is general and could be extended to emotion
detection involving any type of emotion or domain.

1.1 Previous Work

There has been a considerable amount of previous work in the area of charac-
terizing and detecting emotion in speech [1, 2, 4, 6, 7, 9]. The current study
differs from previous work in a number of ways. First, much of the previous
work has studied elicited emotions. [4, 9] garnered data produced by a small
number of actors who are simply instructed to convey the emotion when read-
ing prepared sentences. Elicited data may be ideal for research in areas like
descriptive linguistics and speech synthesis, which aim to characterize canonical
emotions. For work in recognition of natural emotions across many different
speakers, however, it is crucial to use naturally-occurring data. Unfortunately,
naturally-occuring data can be difficult to gather in large quantities. Cowie [2]
acknowledges these issues, saying “Pure emotion is difficult to study because it
is relatively rare and short lived, and eliciting it presents ethical problems. That
makes it easy to slip into using simulations as a surrogate, and their ecological
validity is highly suspect. There are also warning signs that it may be difficult
to generalize findings from that approach. The reason may be that in emotion,
as elsewhere, using carefully selected evidence makes it possible to evade issues
that rapidly become important in anything but idealized cases. An aspect of
that problem is that categorical representations may apply well to archetypal
emotions, but much less so elsewhere.” This study utilizes a dataset containing
a large number of different speakers engaged in a task that itself gives rise to
emotion.

Second, previous work has often used methods that are not entirely auto-
matic, assuming correct word transcriptions and features that rely on hand-
marked data (such as corrected pitch tracks or specific measurement locations),
or relied on very simple prosodic features (e.g., excluding durations) that did
not require recognition output. This work is based on the output of a speech
recognizer (free recognition, with forced alignment for comparison), and uses



prosodic features that are computed entirely automatically.

Third, unlike studies that examine either emotion or articulation style, or
which confound the two, this work aims to determine the association between the
two, by including hand-marked articulation style characteristics in the feature
database. By including these characteristics (such as hyperarticulation, pausing,
or raised-voice) along with the prosodic features, it can be determined which, if
any, of the style characteristics are good predictors of emotion, and the relative
predictive strength of such features as compared to pure prosodic measurements.
That is, the methods for emotion detection are entirely automatic, but we can
ask whether there would be added value for emotion detection if automatic
detection of articulation style is possible.

A large amount of related work has also been done, however, in the area
of synthesizing emotion. [10] gives a brief overview of recent emotion synthesis
techniques. Two approaches are widely used: formant synthesis and concate-
native synthesis. Formant synthesis uses knowledge of acoustic correlates of
speech sounds to generate speech. The advantage of the formant synthesis tech-
nique is the flexibility of a large number of parameters that can be varied freely.
However, speech generated using this technique often sounds mechanical and
unnatural, having a “robot-like” quality.

In concatenative synthesis, pre-recorded speech units (e.g. diphones or tri-
phones) are selected and concatenated, then post-processed before output [8].
This method gives far less control over the output of the voice, thus making emo-
tional speech more difficult to generate. Nevertheless, concatenative synthesis
outputs sound more human-like and natural.

Both methods use prosodic variation to generate emotional speech, because
“global prosodic parameters are often treated as universal or near universal
cues for emotion” [10]. Pitch levels, ranges, and slopes, speaking rate and
energy, number and duration of pauses, voice quality, and articulation precision
are all considered and utilized in various studies on emotion synthesis. These
same prosodic features are researched in this study, as well as in other emotion
recognition studies [2, 4, 6, 7, 9].

While the features used are similar, the tasks of emotion synthesis and emo-
tion recognition are inherently different. Perhaps there is some overlap in syn-
thesis and recognition in using prosodic cues for certain emotions. For example,
anger can be produced or detected by increases in energy, pitch levels, and/or
pitch ranges. Still, one cannot simply generalize from synthesis to recognition,
mostly because synthesis systems (at least in initial stages of development) gen-
erate canonical or explicit emotions. In other words, having a perfectly accept-
able emotion synthesizer would still be unlikely to address the large variation
on emotional expression found in natural spoken language, which is a core issue
for the emotion recognition task.

1.2 Project Overview

This project investigates the use of prosody for the detection of frustration and
annoyance in natural human-computer dialog. In addition to prosodic features,



the contribution of language model information and articulation style are exam-
ined. The project uses a corpus of human-computer dialog developed under the
DARPA Communicator Project, labeled by humans for emotional content and
articulation style characteristics. Extracted features include duration, speak-
ing rate, pause, pitch, energy, and spectral tilt features. Features relied on the
outputs of a speech recognition system, and their effectiveness in the emotion
recognition task is compared to those from forced alignment based on reference
transcriptions. Experiments are conducted and evaluated using decision tree
classifiers.

1.3 Roadmap to Sections

The following report describes the details of this project. Section 2 discusses
the method used to set up the experiments of the project, whose results are in
Section 3.

Section 2 discusses where the speech data were obtained, how much of it there
was, and how it was processed before use. Additionally, the section describes
the labeling of the data, the creation of data sets, and the generation of features.

Section 3 reports the results of experiments and discusses in detail what can
be learned or concluded from those results. Section 4 revisits the goal of the
project and the differences from previous work in the field. It also summarizes
the results and highlights interesting findings. Finally, there is a brief discussion
on future directions and extensions, as well as the impact of this work for the
field.



2 Method

2.1 Speech Data and Processing

A large, multi-site research and evaluation corpus of human-computer dialog
developed under the DARPA Communicator project was chosen for use in this
project. The DARPA Communicator project objective is “to support rapid,
cost-effective development of multi-modal speech-enabled dialog system with
advanced conversational capabilities” [15]. Users called systems built by various
sites and made air travel arrangments over the telephone. Although users were
not “acting” out any instructed emotions, it is important to note that because
users were not making real travel plans, the frequency of frustration was lower
than it would have been in real life. For instance, a user is trying to go to Hawaii
is unlikely to agree to go to Detroit, yet users often accepted similar changes in
plans when the system failed in their original plans. (This observation was noted
by the human labelers, who were surprised at the “calmness” which which users
accepted system problems, and their willingness to put up with long error-
laden interactions.) Thus, these data are less than realistic in terms of the
distribution of emotional utterances, but it appears realistic in terms of quality
of the speech when emotional utterances did occur. Note that unlike studies
using acted emotions, in which emotions are frequent and often exaggerated,
this aspect of the data makes the detection task only more difficult than could
be expected for a database of real travel planning data.

The corpus data used in this project came from three sources: the University
of Colorado (CU) Communicator system, the Carnegie Mellon (CMU) Commu-
nicator system, and data from a larger number of sites collected during the June
2000 Communicator evaluation and distributed by NIST. Short calls (calls with
fewer than five user utterances) were omitted, because it is unlikely that in such
a short exchange the user exhibited emotional responses. The amount of data
used in this study and their collection periods are summarized in Table 1. All
data were collected over the telephone and sampled at 8 kHz.

Corpus data originating from the NIST collection went through two stages
of processing before being used. Much of these data contained long portions of
silence before and/or after the user utterance. These long portions of silence slow
down the labeling procedure considerably, since labelers have to wait through
them while listening to the utterances.

Therefore, a simple energy thresholding scheme was devised to remove initial
and final nonspeech regions, carefully chosen to ensure that no actual speech
was eliminated. Specifically, the standard deviations of the speech waveforms
were calculated every 5ms with 10ms windows, and an empirically determined
threshold was used to cut the beginning and end silences in each utterance.
Significant periods of beginning or ending silences occasionally remained, due
to a click or other noise that surpassed the energy threshold. These remaining
silences were found to be acceptable, as the effort required to cut them out
without risking removal of actual speech was too great to be worthwhile. This
processing reduced the total duration of the NIST data by about 33%.



Table 1: Communicator Data Statistics. Labeled Data account for all the data
that were assigned emotion classifications (as described in Section 2.2.1). Used
Data describe data used in experimentation (as mentioned in Section 2.4).

Labeled Data

Source | Dialogs | Utterances Total Time Words Time Period
CU 205 5619 6h31m26s 25324 11/29-6/01
CMU 240 8765 2h36mlls 12835 1/01-8/01
NIST 392 7515 5h28m2ls 20234 6/00
Total 837 21899 14h 35 m 58 s 58393
Used Data (Originally Agreed)
Words
Source | Dialogs | Utterances Total Time Transcript | Recognition
CU 157 4245 3h1mb58s 11623 11725
CMU 155 3320 1h29mb3s 8413 9620
NIST 379 5622 4h0ml4s 16092 16174
Total 691 13187 8h32mbs 36128 37519
Used Data (Consensus Version)
Words
Source | Dialogs | Utterances Total Time Transcript | Recognition
CU 157 4727 3h24ml2s 12929 13130
CMU 155 3417 1h33m35s 8673 9994
NIST 380 6827 4h52m42s 19176 19386
Total 692 14971 9h50m 29 s 40778 42510




After the silence removal stage, each call was volume equalized. Variations
from the different sources when they recorded the data resulted in differences
in call volumes. Since the original data’s volumes varied considerably, human
labelers had to adjust the volumes during playback to appropriate listening
levels. This readjustment not only slowed productivity, but it also created
a danger that the labelers could rate lower energy speech as less frustrated
even when the low energy is due to the channel. Volumes were equalized by
applying a gain factor to each call so that its standard devation approached an
arbitrarily prescribed level. For speech data, equalizing the standard deviation
approximately equalizes the average power, assuming the silence/speech ratios
are similar.

2.2 Emotion Labeling

Labelers used portions of data from all three sites (CU, CMU, NIST). These
three sites were chosen based on the amount of data available to minimize the
number of different data and annotation formats that had to be processed (each
source used its own conventions).

User utterances were labeled by five students (1 male, 4 female) from UC
Berkeley. Because it is undesirable for judgments to rely on linguistics training,
labelers came from different disciplines. The goal of the labeling was to come
up with a small set of classes for emotion, and an orthogonal set of labels for
marking of the articulation style. It was observed in this corpus that occu-
rances of speaker frustration were unrelated to those of hyperarticulation and
vice versa. Additionally, hyperarticulation appeared to be speaker specific. As
noted in the introduction, this separation of emotion and style is an important
aspect of this work, since it allows an assessment of the association between
these two logically independent factors. Labeling was done using a modified
version of the Rochester Dialog Annotation Tool (DAT) [3]; it displays full ut-
terance transcripts and the labeling choices, allows sound files to be played and
comments to be entered, and saves output to SGML.

2.2.1 Emotion Labels

Based on a number of preliminary studies examining labeling alternatives, the
labelers came up with the following scheme for annotation. Every utterance was
given one of seven possible emotion labels: NEUTRAL, ANNOYED, FRUS-
TRATED, TIRED, AMUSED, OTHER, or NOT-APPLICABLE (contained no
speech data from the user). NEUTRAL was used for utterances that displayed
no particular emotion. Recall that a neutral utterance (as well as any other emo-
tion) could be said in either a natural or a hyperarticulated (robotic or “Star
Trek”) style. ANNOYED was used for utterances displaying any level of percep-
tible agitation or impatience, relative to NEUTRAL. FRUSTRATED was used
for more extreme forms of annoyance or anger. While ANNOYED and FRUS-
TRATED could have been grouped together into one class (and indeed this is
the grouping used for many of the analyses to follow), at the labeling stage both



Table 2: Frequency of emotion labels. NOT-APPLICABLE cases are waveforms
with no user speech; these are excluded in the analyses. Note that low rate of
frustration overall is attributable to the fact that users were not making real
travel plans, as discussed in the text.

Emotion Class Instances | Percent
NEUTRAL 41545 | 83.84%
ANNOYED 37T 7.62%
FRUSTRATED 358 0.72%
TIRED 328 0.66%
AMUSED 326 0.66%
OTHER 115 0.23%
NOT-APPLICABLE 3104 6.26%
Total 49553 | 100.0%

classes were kept, thus enabling an investigation of detection of FRUSTRATION
only, albeit with significantly fewer datapoints (see Table 2). During labeling
it was found that some utterances displayed emotional characteristics that did
not fit into the “continuum of annoyance” (annoyed or extremely annoyed, i.e.
frustrated). These fell into two main classes, which were termed TIRED and
AMUSED. In TIRED utterances, the caller sounded apathetic or dejected due
to the system interaction, often sighing. This class understandably occurred
in extremely long calls, where the user tired of the system but was not angry
enough to hang up. AMUSED utterances were often accompanied by laugh-
ter, and occurred either when the system unexpectedly correctly recognized
the user’s input (i.e. the user already had low expectations), or when the sys-
tem incorrectly responded with a mistake that amused the user. A small set
of remaining utterances did not fall into any of the above emotion categories,
but were dissimilar to each other; these cases were simply marked as OTHER.
Finally, a non-negligible portion of the utterances in the corpus contained no
speech from the user, due to problems in the collection. These were labeled as
NOT-APPLICABLE and removed them from the analyses.!

A total of 49,553 emotion classifications were made on 21,899 utterances from
the NIST, CU, and CMU recordings, for an average of 2.26 labelers labeling each
utterance. The breakdown of class frequencies is shown in Table 2.

In addition to emotion, each utterance was also labeled for more information,
including three important types: articulation style, repeated requests or explicit
corrections, and data quality problems. Table 3 lists the additional annotation
options, while below the labels found to be important in this study are further
described. A full description of all the labels can be found in the Appendix,

1The NA waveforms were excluded from the speech recognition experiments, for consistency
with results using forced alignment recognition (see section 2.3.) While this is “cheating” since
such waveforms could lead to insertions, the problem of empty utterances is considered to be
one that should be addressed in system design.



Table 3: Additional Annotation Options

Dialog-Level
Non-Native Speaker | Global Comment | Accent Type

Utterance-Level

Repeat-Correction Data Problems Self-Talk
Hyperarticulation Spelling Out Comment
Pauses Between Words Final Pitch Rise
Pauses Between Syllables Raised Voice

Section 6.1.

2.2.2 Emotion Label Mapping

Since utterances were labeled by more than one labeler, it was necessary to
create a mapping to reduce the multiple labels per utterance into one label
used for experiments. This process involved two levels of mapping. The first
mapping used three simple rules for reduction. If there was a label that made up
the majority, the multiple labels were mapped to that label. If there was a tie
between two labels, e.g. 1 to 1 or 2 to 2, the labels were reduced to a 1 to 1 tie
and sent to the second level of mapping. The third rule was that ANNOYED and
FRUSTRATED were considered on a continuum of annoyance, so an utterance
with three labels of NEUTRAL, ANNOYED, and FRUSTRATED would map
to ANNOYED. All other combinations of labels were sent to the second level of
mapping.

In the second level, certain labels “dominated” other labels. For instance,
NOT-APPLICABLE labels dominated all other labels. Therefore, if an utter-
ance had a NOT-APPLICABLE label and a NEUTRAL label, the utterance
was mapped to NOT-APPLICABLE. The same is true for the pair of NOT-
APPLICABLE and any other label. The NONE label (which was the default
label, meaning the utterance was never given a label by the labeler) was domi-
nated by all other labels. As a result, when there was a NONE label and another
label for an utterance, the utterance was mapped to the other label. Table 4
shows the order of dominance for all the labels. ANNOYED, FRUSTRATED,
AMUSED, and TIRED had equal dominance.

Some utterances were marked with an “x” and ignored in the experiments.
This occurred when an utterance had a combination of ANNOYED, FRUS-
TRATED, AMUSED, and/or TIRED labels (with no majority), or when an
utterance only had NONE labels.

Using the “Originally Agreed” and “Consensus Version” data sets as de-
scribed in 2.4, the distribution of emotion labels after applying both mappings
are shown in Table 5.
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Table 4: Emotion Label Dominance Order

Most Dominant

Least Dominant

1.
2.
3.
4.
5.

NOT-APPLICABLE
OTHER
ANNOYED,FRUSTRATED,AMUSED, TIRED
NEUTRAL
NONE

Table 5: Emotion Class Frequency For Experimental Data Sets

“Originally Agreed”
Training Test Total
Emotion Class Freq. | Percent | Freq. | Percent | Freq. | Percent
NEUTRAL 9307 | 95.36% | 3308 | 96.53% | 12615 | 95.66%
ANNOYED 367 3.76% 94 2.74% 461 3.50%
FRUSTRATED 35 0.36% 7 0.20% 42 0.32%
TIRED 14 0.14% 2 0.06% 16 0.12%
AMUSED 37 0.38% 15 0.44% 52 0.39%
OTHER 0 0.00% 1 0.03% 1 0.01%
TOTAL 9760 | 100.0% | 3427 | 100.0% | 13187 | 100.0%
“Consensus Version”
Training Test Total
Emotion Class Freq. | Percent | Freq. | Percent | Freq. | Percent
NEUTRAL 0869 | 88.16% | 3442 | 91.15% | 13311 | 88.91%
ANNOYED 1060 9.47% 276 7.31% | 1336 8.92%
FRUSTRATED 125 1.12% 23 0.61% 148 0.99%
TIRED 78 0.70% 9 0.24% 87 0.58%
AMUSED 60 0.54% 24 0.64% 84 0.56%
OTHER 3 0.03% 2 0.05% 5 0.03%
TOTAL 11195 | 100.0% | 3776 | 100.0% | 14971 | 100.0%
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2.2.3 Articulation Style Labels

The same group of five labelers also developed a method for marking articula-
tion style. (While automatic detection of style is an interesting research area,
it is not tackled in this project.) After an initial attempt at a single style cate-
gory, it was obvious that “style” needed to be broken down into the component
attributes that labelers were listening for. They arrived at the following binary
categories, which unlike emotion labels are not mutually exclusive: hyperar-
ticulation (exaggerated pronunciation of specific phones or syllables), pausing
(between words or between syllables in a word), and “raised voice” (an increase
perceived loudness or level of vocal effort). These characteristics were annotated
at the same time as the emotions were labeled, but labelers were instructed to
consider the emotion and style labels as independent.

2.2.4 Repeat-Correction (“REPCO”) Labels

Since previous work has described the relationship between articulation style
and system errors [5], it was clear that system errors should be included in a
study of frustration. It was assumed that some dialog systems will have a good
idea of the location of such errors (and indeed there is work on the topic, as noted
in the just-cited reference). But since such information was not available in the
corpus used, the labelers also labeled these events. The focus was on errors that
resulted in a repeat and/or correction by the user. Based loosely on previous
work by Kirchhoff [5], utterances were labeled as either not a repeat/correction,
a “repeat-or-rephrase-only”, a “repeat-or-rephrase-with-explicit-correction”, or
an “explicit-correction-only”.

2.2.5 Data Quality Labels

For data quality, properties of the speaker (nonnative, speaker switches, system
developer), properties of the speech content (side-talk, joking), and aspects of
the recording (noise, system cut-offs) were marked. While joking and system
cut-offs were included in the analyses, the other cases were omitted from the
present study. In principle, it would be desireable to retain the nonnative speech,
which was not infrequent in the CU corpus. But because such speakers (1) were
difficult or impossible to judge hyperarticulation for; and (2) were much more
tolerant of system failures than native speakers (as judged by the nonnatives’
much longer calls and low level of frustration), the decision was made to omit
them for the sake of data homogeneity. A detailed description of data exclusions
is described later in Section 2.4.1.

2.2.6 Labeling Issues

It was found that labeling of emotion as well as articulation style is an inher-
ently difficult task. First, emotion is conveyed on a continuous scale, and for
purposes of this work there was a need to come up with discrete labels (alterna-
tive approaches such as additional classes or uncertainty labels, did not improve
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interlabeler agreement). Second, emotion characteristics vary enormously from
person to person, and from context to context. Thus, an issue that arose was
whether to label emotion relative to the speaker and previous context, or to
use an absolute labeling ignoring both of these factors. The former option was
chosen, since that is the most relevant option given the application in mind
(detect changes in the current user over the dialog). This also seemed to be
warranted because few dialogs began with a frustrated user. Finally, most of
the utterances were quite short, often just the word “Yes” or “No”, making
emotion and style difficult to judge.

2.2.7 Interlabeler Agreement

It is important to measure the reliability of the subjective judgements made by
the labelers. If emotion labels made are not reliable (e.g. a computer randomly
picks a label), then using the labels and corresponding data for training and
testing becomes meaningless. However, if multiple labelers seem to agree con-
sistently in the labels they choose, the confidence in the label increases and the
emotion labels seem more reliable. The amount of agreement needed to deem
labeled data reliable depends on the difficulty of the labeling task.

The Kappa statistic measures the level of agreement between an arbitrary
number of labelers. It considers the proportion of times labelers agree, but also
takes into account chance agreement. Essentially, Kappa is the ratio of the
proportion of times that the labelers agree (corrected for chance agreement) to
the maximum proportion of times that the labelers could agree (corrected for
chance agreement), according to the formula:

1- P(E)
where k=Kappa, P(A)=proportion of times that the labelers agree, and P(E)=
proportion of times that we would expect the labelers to agree by chance.

It is important to know whether the calculated Kappa is greater than that
expected by chance. One might expect that Kappa due to chance is 0. However,
chance agreement is not constant, so there exists an expected Kappa due to
chance. Thus, the significance statistic z is often used, which measures the
likelihood a calculated Kappa occurs by chance, where:

k=

e P @)
var (k)

For large N, the distribution of k is approximated by a Gaussian with zero
mean and a variance (the details of which will not be discussed in this report)
as described in [11]. See [11] for further reference on Kappa and significance.

Overall, Kappa is approximately 0.40 with a significance of 26.2 when con-
sidering all labeled data and all the emotion classes. When classes are grouped
into ANNOYANCE+FRUSTRATION vs. ELSE, Kappa rises to 0.44 with sig-
nificance 26.5. Kappa for FRUSTRATION vs. ELSE is 0.34 with significance
6.0.
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Table 6: Interlabeler Agreement on all labeled data. “A+F” refers to grouping
ANNOYED and FRUSTRATED together, whereas “F” refers to the FRUS-
TRATED utterances only.

A+F vs. ELSE | F vs. ELSE
Each human with other human, overall 74.0 70.0
Human with human “Consensus” (biased) 84.1 79.9

2.2.8 “Original” and “Consensus” Labels

In a first pass, labelers annotated individually after calibration. The Kappa
values above, along with a first-pass interlabeler agreement (even after grouping
ANNOYED and FRUSTRATED together) of 74%, were deemed too low for
the purposes of this project. However, it must be noted that it appears to
be due to the task rather than to the labelers, because agreement among the
various pairwise combinations of labelers did not significantly differ, and because
agreement did not improve with additional training. Therefore, a second pass of
labeling was conducted, which is referred to as “Consensus” labeling, where the
two most experienced labelers together relabeled any utterances that original
labelers had not agreed on. This was done in context; full calls were displayed
and affected utterance were marked. The affected utterances were a small subset
given the large number of original agreements on NEUTRAL labels. After
consensus labeling, interlabeler agreement jumped to 84%. Table 6 summarizes
the interlabeler agreement statisctics on all the labeled data.

It should also be noted that F vs. ELSE classification leads to a 4% re-
duction in interlabeler accuracy. This may be attributed to the rarity of the
FRUSTRATED label (0.72% of all labels), making it less likely that labelers
agree on a specific utterance.

2.3 Speech Recognition and Forced Alignment

Both the prosodic and language model features for the modeling used in this
project relied on alignment information from a speech recognizer. Rather than
use the recognition results from the various Communicator systems (which were
not always available), a simplified version of SRI’s Hub-5 system for conversa-
tional telephone speech [14] was run, using a class-based trigram language model
developed for SRI’s own Communicator system. This ensured that recognition
errors and the specifics of the recognition system (such as the choice of pronun-
ciations) affected data from all sites equally, and removed a potential variable
of recognition performance from each site. The word error rates obtained with
this system were 29.6% for CMU data, 27.8% for the CU data, and 24.9% for
the NIST data (measured on the subset of utterances used in the experiments).
To investigate the effects of recognition errors, features based on the reference
transcriptions of the users’ utterances were computed, via forced alignment to
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Table 7: Data Quality labels excluded from analysis

user is a child

testing the system

hardly any speech in call

side talk

unintelligible speech/mumbling

intelligible but muffled/distorted speech
utterance(s) out of order

more than one person talking to system during call
fake accents/mispronunciations/possible speech impediments
transcript is incorrect

noisy /background noise

the waveforms.

2.4 Data Sets
2.4.1 Data Excluded

The labeled data (see Table 1) for the experiments described in Section 3 was or-
ganized by eliminating cases deemed as having poor data quality. In Section 2.2,
the exclusion of nonnative utterances, speaker switches, system developer utter-
ances, utterances with side-talk, and noisy utterances was mentioned. Table 7
details all the excluded data.

2.4.2 “Originally Agreed” Data Set

Two versions of the remaining labeled data were used to run experiments. “Orig-
inally agreed” data included only utterances where the labelers agreed on the
emotion class in the first pass of labeling. The details are described in the mid-
dle portion of Table 1. Roughly 75% were used for training (9760 utterances);
the remaining 25% were used for testing (3427 utterances). No dialogs were
split between training and test sets.

2.4.3 “Consensus Version” Data Set

The “Consensus version” uses more data than the “Originally agreed” because it
includes the utterances that went through a second pass of labeling by consensus
labelers. The bottom portion of Table 1 describes the exact amount of data used
for this version. Similar to in the “Originally agreed” data set, the data were
split into training and test with a 3 to 1 ratio (11195 to 3776). The dialogs were
split in the same way in both data sets.
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2.5 Classifiers

Decision trees were used as classifiers, employing a brute-force iterative fea-
ture selection algorithm to find a minimal set of useful features and avoid the
problem of greedy search. Because of the large skew in class sizes, the data
were downsampled to equal class priors to allow the tree maximum sensitivity
to features. This approach, when used in multiple experiments (varying the
downsampling random seed each time), proved superior to not downsampling
and also to upsampling.

Because of the fairly limited size of the emotional-utterance corpus, results
were obtained as linear averages from 20 separate experiments per condition,
each with a different random downsampling of the training data. This is needed
due to the small data sizes for the emotion classes.

A detailed example of how 20 experiments were run and averaged to obtain
the results is shown in the Appendix, Section 6.4.

2.6 Features

Three types of features were investigated in this work:
1. Prosodic features.
2. Language model features.

3. Other features.

These are described below, and detailed in Appendix Section 6.2.

2.6.1 Prosodic Features

The following types of prosodic features were extracted: duration and speaking
rate features, pause features, pitch features, energy features, and spectral tilt
features. These feature types are similar to those that have been investigated
in previous work on emotion recognition. For example, [2] states that pitch, du-
ration, intensity, and spectral makeup are relevant. 7] considers pitch contours
and short-time average power envelopes. Speech power and pitch are examined
by [9], among other features. [4] measures smoothed pitch features, derivatives
of pitch, and rhythm features like speaking rate.

Duration Features Duration features included various statistics involving
the average vowel duration in the utterance and the maximum and average du-
rations of the normalized (for true or recognized phone identity) phones in the
utterance. These features should help detect emotion by exploiting a correla-
tion between a user’s frustration with the computer system and their response
by speaking slower so the “dumb” computer can understand. The maximum
duration statistic could find frustration in certain emphasized words of an ut-
terance, e.g. “No000000, I want to go to Newark.” The average statistics could
detect a general slowdown in the utterance. The normalizations are calculated
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through dividing the phone by the average duration for that phone throughout
the Communicator data.

Speaking Rate Features Speaking rate features consisted of a syllable rate
feature approximated by counting the number of vowels (for true or recognized
words) and dividing by the duration of the utterance. This is an approxima-
tion assuming that syllables on average contain one vowel. Like the duration
statistics, this feature hopes to capture the overall pace of an utterance, where
a slowdown may indicate an emotional response.

Pause Features Pause features included the utterance “speech percentage,”
the duration of the longest pause, and the number of long pauses inside an
utterance. Speech percentage was calculated by dividing the duration of all
the speech in an utterance by the duration of speech plus duration of interior
pauses. Long pauses were considered as pauses greater than 70ms in length.
Lengthier pauses between words could also indicate an emotional response.

Pitch Features Pitch features were based on post-processed FO output us-
ing a stylization and regularization algorithm based on an updated version of
software from work by Sénmez et al. [13, 12].

Specifically, initial FO data were gathered using the get_f0 utility from ESPS.
These raw F0 data contain irregularities of the pitch tracker such as offshoots or
pitch halving/doubling. Pitch halving/doubling is treated with a median filter
after applying a lognormal tied-mixture to fit the frame-level pitch values [13].
Then, a stylized contour is obtained by fitting a piecewise linear model to the
estimated pitch values over voiced regions. Refer to [13, 12] for more details.

Two versions of pitch features were used, one based on data from all utter-
ances in a call, and one using only the first five utterances. The latter, which
turned out to be nearly as good as the full-call version, allows for online emo-
tion detection (especially since users are rarely frustrated during the first five
utterances). Pitch features included raw and speaker-normalized minimum and
maximum utterance pitch, as well as the maximum pitch taken within the re-
gion of the longest normalized vowel, and slope information at various locations.
Higher pitch values could hint at an emotional response, just as in human to
human arguments voices tend to be raised. Larger variation in pitch, tracked
by higher pitch slopes, could also indicate emotion.

Energy Features FEnergy features recorded the average RMS energy during
voiced frames, as well as the maximum and average RMS energy during the
longest normalized vowel. Utterances of annoyance or frustration could possibly
be recognized from higher RMS energies, as people tend to raise the volume of
their voices when displaying these emotions.

Spectral Tilt Features Spectral tilt features attempted to find the spectral
weighting, or “tilt,” of speech. Spectral tilt features included the average of
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the first cepstral coefficient, the average slope of the linear fit to the magnitude
spectrum, and the average difference in the sum of log energies in low and high
frequency regions—all taken over the longest normalized vowel.

2.6.2 Language Model Features

A class-based trigram model was trained from the words in each of the classes
(using the same word classes as used in the recognizer), and computed log like-
lihoods according to the models for each of the test utterances. For convenience
and to best assess the joint contribution of language model and prosodic fea-
tures, the language model features were added to the prosodic decision trees.
Two types of language model features were investigated, the difference of log
likelihoods of the two classes, and the coarser feature of the sign of the likelihood
difference.

The difference of log likelihoods of the two classes was heavily used by the
decision trees, but led to poor results on the test data, clearly showing overfit-
ting. This feature was eliminated in favor of a more coarse feature, the sign of
the likelihood difference, which did not show overfitting problems.

2.6.3 Other Features

In addition, three other feature types were included: dialog position features,
a feature recording repeated attempts and explicit corrections, and articulation
style features.

Dialog Position Features Dialog position features were recorded in three
ways: number of system prompts, number of utterance responses, and number of
words before an utterance. These can be assumed to be automatically obtained
by a system. The feature recording the number of words was based on true
words, which is not automatic, but this feature was not used in the decision
trees. Thus, having a feature based on recognized words would likely have
similar results.

Repeat/Correction Feature The Repeat/Correction feature marked if the
utterance was a repeat or rephrasing of a previous utterance, or whether there
was an explicit correction of the system response to previous utterances. (Refer
to Section 2.2.4.) This is of course nontrivial to obtain, but the detection of
repeats and corrections is considered as a separate problem and one in which
many systems already have some ability to detect.

Articulation Style Features Articulation style features were based on labels
such as hyperarticulation, pausing between words or between syllables in a word,
and “raised voice.” These were described in Section 2.2.3.
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3 Results and Discussion

The results of this work are reported and discussed in five sections. The first
three involve emotion recognition performance by humans and by machine.
These results are based on forced alignments (from true words) for feature pro-
cessing. The next section looks at how performance is affected by features based
on true words as opposed to those calculated from recognition outputs. Lastly,
the details of feature usage are shown and the implications of the results are
discussed.

Table 8 summarizes the experimental results. The columns of the table dif-
ferentiate the type of emotion recognition task. The first column of results (in-
cluding accuracies and efficiencies) are from the ANNOYED+FRUSTRATED
versus ELSE task as described in Section 3.2, using features that relied on true
words (forced alignment information based on reference transcripts). The sec-
ond column records experimental results of the same task, but using features
that relied on ASR output information. The third and fourth columns similarly
report results, except they are from the FRUSTRATED versus ELSE task (de-
scribed in Section 3.3). Results are given in both accuracy (percentage of correct
decisions) and efficiency (reduction in class entropy provided by the model).

3.1 Prediction of Human Labels by Humans

The first two rows of Table 8 show interlabeler agreement for the versions of
data as described in Section 2.4. The accuracies reported are based on a random
selection of the pair of emotion labels per utterance, done in the following way.
For the first row of accuracies, if an utterance was labeled by more than two
labelers (a small minority of utterances), two emotion labels are randomly picked
for that utterance and used for the interlabeler agreement calculation. The
table reports the average of many instances of interlabeler agreement (enough
for the average accuracy to settle down) calculated in this way. Similarly, for
the “Consensus” human with human agreement, the consensus label was paired
with a random selection of the original emotion labels. This pair was used for
the interlabeler agreement calculation, and the results in the table reflect the
average of many instances of this calculation.

We notice that with consensus, agreement increases approximately 10% from
the baseline (83.9% from 72.6% for A+F vs. ELSE, 77.3% from 68.8% for F vs.
ELSE). Additionally, we see that agreement in the F vs. ELSE case is lower by
about 5% than in the A+F vs. ELSE case. This is consistent with the results
using all the labeled data discussed in Section 2.2. The difference between the
two results is that the ones reported in this section are based on the “Originally
Agreed” and “Consensus Version” data sets, whereas those in Table 6 are based
on all the labeled data.
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Table 8: Summary of experimental results. “A” = Annoyed; “F” = Frustrated;
“STYLE” = articulation style features; “REP” = repeat/correction features;
“LM” = language model features; “Consensus version” = emotion labels arrived
at after labelers resolved any disagreements; “Originally agreed” = subset of
utterances on which individual labelers had agreed on first labeling pass; “Acc”
= accuracy (linear average of 20 separate experiments); “Eff” = efficiency (linear
average of 20 experiments). Note: LM features were computed for the first task
only, although in principle could be computed for both. Accuracies reflect equal
class distributions in the test set through downsampling.

A+F vs. ELSE F vs. ELSE
True words | ASR words | True words | ASR words
Acc Eff | Acc Eff | Acc Eff | Acc Eff
Human with 72.6 68.8
other human, overall
Human with human 83.9 77.3
“Consensus” (biased)
Consensus version, 80.2 32.7 93.2 67.2
[All Features]
Originally agreed, 85.4 47.2 91.8 63.3
[All Features]
Consensus version, 75.2 21.2 | 75.1 219 | 86.4 46.5 | 87.0 49.5
[no STYLE] (baseline)
Originally agreed, 80.0 32.0 | 785 28.2 | 864 44.6 | 8.7 46.9
[no STYLE]
Consensus version, 71.1 14.6 | 70.7 14.8 | 84.2 39.7 | 86.7 47.9
[no STYLE, no REP]
Originally agreed, 771 230 | 745 186 | 804 31.8 | 83.6 39.6
[no STYLE, no REP]
Consensus version, 69.8 12.8 76.6 21.1
[REP only
Originally agreed, 74.7 185 85.4 14.3
[REP only|
Consensus version, 65.6 3.8
[LM only|
Originally agreed, 64.5 -0.9
[LM only|

3.2 Task 1: Prediction of Annoyance and Frustration ver-
sus Else by Machine

Experiments were run with two basic classification tasks. The first task in-
volved classifying ANNOYANCE+FRUSTRATION versus ELSE. The ELSE
class contained all remaining emotion types (NEUTRAL, plus the small amounts
of other emotions such as TIRED, AMUSED, and OTHER, to account for all
datapoints). Table 8 shows the results of this task under the “A+F vs. ELSE”
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column, using both true words and recognized words. The different rows in the
table show results for different experiment conditions, in which both the source
of the predicted emotion labels and the features available to the decision tree
were varied. In the “Consensus Version” experiments, the model predicted the
labels resulting from the consensus labeling pass; in the “Originally Agreed” ex-
periments, only the subset of utterances for which individual labelers had been
in agreement on the first pass of labeling were included.

Looking at the ANNOYANCE+FRUSTRATION vs. ELSE experiments, we
can draw several conclusions. First, we see that the baseline experiment (Con-
sensus version, no STYLE features) with an accuracy of 75.2% shows better
prediction of human consensus labels than individual human labelers do with
each other (72.6%).

When the dialog state (repeat/correction) feature is excluded, the results
are slightly worse (71.1% for tree versus 72.6% for human to human). Since the
repeat/correction feature is the only feature used here that is not automatically
obtained, this result shows that automatic emotion recognition for this task can
perform comparably with humans. Section 3.5 discusses the implications of this
further.

We also see that when considering only the utterances on which labelers
originally agreed, performance consistently improves by 5-6% (except for the
language model only experiment). This improvement is expected, since presum-
ably labelers agreed on cases that were more clear-cut prosodically. In other
words, these utterances showed emotions more explicitly.

The repeat/correction feature always increases performance, sometimes by
up to 4%. Again this is expected, since users are typically more frustrated after
system errors. Articulation style features increase performance relative to the
baseline prosodic tree by about 5% from baseline. Potential candidates for this
improvement include hyperarticulation, pauses, and raised-voice features.

When using the repeat/correction feature only while excluding all other fea-
tures, performance drops about 6% from the baseline. When only using the
language model features, accuracies drop by 15-20% from the baseline. Note the
negative efficiency reported in the last row of Table 7. Since results reported
are optimized for accuracy of the decision trees, small negative efficiencies are
possible.

Figure 1 shows the ROC curves for the five experiments on the AN-
NOYED+FRUSTRATED vs. ELSE task using different feature sets available
to the classifier. ROC curves plot the tradeoff between false alarms and false
rejections by plotting false alarm rate in the x-axis against the rate of correct
detection in the y-axis. A point on the ROC curve is found by setting a decision
threshold for the two-choice classification task and determining the amount of
false alarms and correct detections. The curve is then obtained by sweeping
across different thresholds.

An ideal ROC curve would hit the upper left corner of the graph, where there
is perfect detection with no false alarms. Therefore, the higher and farther to
the left a curve is, the better. Examining Figure 1, we see that the best curve
is obtained from the experiment where all features are available (the purple
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Figure 1: ROC curves of ANNOYED+FRUSTRATED vs. ELSE task using
different feature sets.
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line). In general, the curves show the trend seen in Table 8, where the order of
performance (from better to worse) is using all features, using all but articulation
style features, using all but articulation style and the repeat/correction features,
using just the repeat/correction feature, and finally, using just the language
model features.

3.3 Task 2: Prediction of Frustration versus Else by Ma-
chine

The second task involved classifying FRUSTRATION versus ELSE. As in the
experiment in Section 3.2, the ELSE class contained all the remaining emotion
types. The right-most columns of Table 8 show the results of this task.

The first task yielded significantly more data in the emotion class, since AN-
NOYED was much more frequent than FRUSTRATED, as can be inferred from
Table 2. This second task aimed to detect only extreme cases, which would be
predicted to be an easier task. However, this experiment involved very little
data, and thus only cautious conclusions can be drawn. One of these is that the
performance on this task is consistently and significantly better than on the AN-
NOYANCE+FRUSTRATION vs. ELSE classification (by an average of about
9%). This follows the prediction that extreme cases of FRUSTRATION are
easier to detect. Additionally, the relative increases or decreases in performance
based on feature sets used follow the general trend of the Task 1 experiments.
For example, the addition of articulation style features increases performance
by 5-7%, which is similar to the 5% mentioned for the first task. More specific
observations will be discussed when investigating feature usage in Section 3.5.

Figure 2 summarizes the experimental results. Looking closely, we can see
that relative performance is very consistent based on features available, regard-
less of task or data set. The only inconsistency is with the repeat/correction
feature for Task 2 on the “Originally Agreed” data set (the right-most hollow
triangle). Notice from Table 8, however, that the efficiency (14.3) is quite low.
This is likely due to the fact that the repeat/correction feature is a categorical
feature, which is not evenly distributed over the data (repeats and corrections
often occur back to back). This can lead to a mismatch of data in the test
and training sets when the sets are so small (minority class has 35 instances in
training, as seen in Table 5), which in turn leads the results that do not follow
trend. With the consensus version data (hollow circles), however, the efficiency
is higher and the accuracy follows trend because it has more data (125 instances
of the minority class in training set).

3.4 Effect of True Words versus Recognition Output

All the above experiments are based on forced alignments for feature processing.
In parallel experiments using automatic recognition outputs, accuracies were
only 0.1-2.6% worse in the ANNOYANCE+FRUSTRATION vs. ELSE task,
and slightly better in the FRUSTRATION vs. ELSE tasks, as shown in Table 8.
The ROC curves in Figure 3 also show the similarity in the parallel experiments.
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Figure 2: Comparison of annoyance and frustration detection with different
input features. Values plotted are accuracies of machine prediction of the noted
type of human label (either Consensus or Originally Agreed). Pro = prosody,
Sty = Style, Rep = repetition/correction feature, N = size of emotion class in
training set.
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Figure 3: ROC curves of ANNOYED+FRUSTRATED vs. ELSE task based on
forced alignments and ASR outputs for feature processing.

These results imply that for this (and possibly other) emotion recognition tasks
based on whole utterances, highly accurate word recognition is not necessarily a
requirement. This is also implied by the observation that the prosodic features
used were largely over whole utterances as opposed to over words. That is,
emotional expression can be seen as a longer term phenomena, which lessens
the need for correct word recognition. Overall, language model contributions
had little effect as well.

3.5 Feature Usage Analysis

Overall feature usage for baseline experiment of the ANNOYED + FRUS-
TRATED versus ELSE task consisted of five main types of features. Table 9
shows these five feature types and the specific feature usages of each. Feature
usage is reported as the percentage of decisions for which the feature type is
queried; thus features higher in the tree have higher usage than those lower in
the tree. The most-queried feature type, temporal features, represented roughly
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Table 9: Feature Usage of the baseline experiment for the ANNOYED + FRUS-
TRATED versus ELSE Task (i.e. Consensus Version, [no STYLE]). Descriptions
of features can be found in Appendix Section 6.2.

Duration, Speaking Rate
and Pause Features 28.18%
MAXPHDUR_N 15.61%
SYLRATE 6.26%
VOWELDUR_DNORM E 5 2.68%
SYLRATE DNORM_E_5 1.83%
SPCHPCT_DNORM_E 0.95%
SPCHPCT_DNORM_E_5 0.64%
PAUSE7_COUNT 0.16%
SPCHPCT 0.05%
Pitch Features 26.57%
MAXF0_IN.MAXV_N 7.36%
MAXFO0 7.04%
MINFOTIME 4.52%
MAXFOTIME 2.34%
MAXFORISE_ DNORM_E 1.75%
MINF0_BASELN 1.17%
LASTF0_-BASELN 0.76%
MAXF0_POS 0.64%
LASTSLOPE 0.42%
FIRSTF0_.BASELN 0.30%
RISERATIO_DNORM_E_5 0.22%
MAXF0_TOPLN 0.05%
Repeat/Correction Feature 26.30%
REPCO 26.30%
Energy Features 11.37%
RMS_DNORM_E 11.29%
AVGRMS_IN.MAXV_N_DNORM_E 0.08%
Dialog Position Features 7.59%
UTTPOS 4.65%
SYSPOS 2.94%
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28% of total usage. The features in this category were mainly normalized dura-
tion and speaking rate features, including features normalized by only the first
five utterances in the call. Longer durations and slower speaking rates were
associated with frustration. Pitch features represented about 27% of total us-
age, and included the maximum F0 in the longest vowel, the maximum overall
F0, the times that the maximum and minimum F0s occurred, the maximum
speaker-normalized F0 rise, and the distance of various F0 statistics from the
speaker baseline. All were associated with frustration when their values were
high. The repeat/correction feature represented roughly 26% of total usage
as well, with (as expected) more frustration after system errors. The speaker-
normalized RMS energy accounted for 11% of the usage, and the remaining 8%
of usage was from features tracking the number of dialog exchanges between the
user and system occurring before the utterance in question.

Looking closely at the feature usage of the features selected by the tree,
only the repeat/correction (REPCO) feature is not obtained automatically. As
mentioned earlier in 2.2, however, researchers like Kirchhoff [5] are working on
automatic detection of this type of feature. Therefore, the results obtained
could be approximated automatically to some degree as research continues in
this area.

Table 10 shows the feature usage of the baseline experiment for the FRUS-
TRATED versus ELSE task. When comparing the usages of this task with
the ANNOYED+FRUSTRATED versus ELSE task, a significant difference can
immediately be seen. There is a large increase the usage of pitch features when
classifying frustration. Accordingly, the other feature types decrease in usage,
yet remain significant. There are two possible reasons for this difference. First,
when users get frustrated, the pitch levels and/or contours of their voices change
significantly, to a much greater extent than when they are simply annoyed. As
a result, the decision tree can pick up on these pitch feature differences so the
usage of these features increases dramatically. Second, it is possible that frus-
trated users become so emotional they cease trying to speak slowly so the system
can understand. Instead, they resort to their natural expression of frustration,
which causes the temporal features of duration, speaking rate, and pause to
carry less information on the emotional state of the user. Consequently, the
decision tree shifts its usages to other feature types that are more useful for
the task. This reason alone cannot account for the differences in feature usage
between the two tasks, however, because while it addresses why pitch features
increase in usage and temporal features decrease, it does not address the fact
that the other feature types decrease in usage (they would increase if this was
the sole reason for changes in usage). Therefore, it is likely that a combination
of the two is at work to account for the differences in feature usage. Refer to
Appendix Section 6.3 for feature usage details for other experiments report in
Table 8.

The experiments also showed that among the articulation style features,
raised voice and hyperarticulation are helpful predictors for emotion. Pauses
between syllables and words were not useful. Though hyperarticulation is help-
ful in predicting frustration, it is not equivalent to frustration, or else it would
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Table 10: Feature Usage of the baseline experiment for the FRUSTRATED
versus ELSE Task (Consensus Version, [no STYLE]). Descriptions of features
can be found in Appendix Section 6.2.

Pitch Features 60.58%
MAXFO0 26.44%
MAXFO0_IN.MAXV_N 23.65%
LASTF0_BASELN 3.12%
MAXF0_TOPLN 2.43%
LASTSLOPE 1.91%
MINFOTIME 1.25%
MINF0_BASELN 0.74%
RISERATIO_DNORM_E_5 0.69%
LASTFO 0.20%
FIRSTF0_BASELN 0.15%

Duration, Speaking Rate
and Pause Features 16.39%
MAXPHDUR_N 14.03%
SPCHPCT 1.72%
PAUSE7_.COUNT 0.38%
SPCHPCT_DNORM_E 0.26%

Repeat/Correction Feature 11.63%
REPCO 11.63%

Energy Features 9.26%
MAXRMS_ IN.MAXV_N 8.69%
RMS_DNORM_E 0.57%

Dialog Position Features 2.15%
SYSPOS 2.15%
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be a much more useful predictor. This indicates that people can hyperarticulate
when calm and they can be frustrated and not hyperarticulate.
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4 Conclusions

This project investigated the feasibility of recognizing emotion using automatic
means, unlike previous work that often used methods that are not entirely auto-
matic. The outputs of a speech recognizer were used instead of hand-marked ref-
erence transcripts, as well as prosodic features that were automatically extracted
and normalized based on the recognizer alignments. The design included results
for both forced alignment and free recognition to enable comparison. In addi-
tion, different ways of annotating emotion (individual and consensus) were used,
and many additional annotations were included for analysis of the relationship
between prosodic and other features (as well as to make the data maximally
useful for other types of research). The project also uses naturally occuring
emotional data as opposed to the elicited or acted emotional data of previous
work. Taken from users making air travel arrangements over the telephone, the
data more closely resemble what would be found in real-life applications. This
project also determined to find the relationship between articulation style and
emotion, using data where the two were labeled independently.

From the experiments conducted, several important conclusions can be
drawn:

1. When classifying ANNOYED and FRUSTRATED versus ELSE (Task 1),
human prediction results in a 72.6% accuracy. Meanwhile, the baseline
experiment of machine prediction performs at 75.2% accuracy. The same
experiment, without the repeat/correction feature, performs at 71.1%.
These results show that machine prediction can in fact compete with hu-
man prediction, where the machine outperforms humans (75.2% to 72.6%)
with the repeat/correction feature, while an entirely automatic system
performs slightly worse (72.6% to 71.1%).

2. The FRUSTRATED versus ELSE task (Task 2) consistently gives bet-
ter results than Task 1 by an average of about 9%, giving evidence that
machines can better discern more extreme forms of emotion.

3. Experiments using recognized words as opposed to true words leads to
a 0.1-2.6% degradation in accuracies in the first task. With Task 2, ex-
periments using recognized words give slightly better accuracies. These
results imply that emotional expression can be seen as a longer term phe-
nomena (utterance-level as opposed to word-level), which lessens the need
for correct word recognition.

4. Feature usage analysis of the baseline experiment of Task 1 shows the
importance of duration, speaking rate, and pause features (28%), pitch
features (27%) and the repeat/correction feature (26%). In Task 2, pitch
features become much more important in classification, jumping to 60%
usage.

5. The experiments showed that raised voice and hyperarticulation are help-
ful predictors for emotion, while pauses between syllables and words were
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not useful. Hyperarticulation is not equivalent to frustration, however,
even though it helps predict frustration. Thus, people can hyperarticulate
when calm and not hyperarticulate when frustrated.

While this project explored many different areas of the emotion recognition
task, much more remains to be done. The Communicator corpus, although
worthwhile because of its naturally occuring emotional data, lacks the quantity
of emotional data for much experimental analysis. Finding or creating a corpus
with more emotional data is a key future development in this work. In addition,
a corpus with a greater amount of realistic frustration would be useful. The
users recorded in the Communicator corpus were not making real travel plans,
so they seemed to display more patience and willingness to cope with system
errors than users genuinely making travel plans on the system. Therefore, the
frequency of frustration was lower than would be expected.

The techniques used here can be generalized from frustration recognition
to any form of emotion recognition, so experiments involving other emotional
classes are another area for future research. Future research could explore multi-
class performance as well, since this research solely focused on two-class exper-
iments.

Another area of future work involves more research into prosodic features
for the task. This project simply touched the surface of many features. For
example, while spectral tilt was included in the experiments, the features were
very simple (average over longest normalized vowel). It was no surprise that
such simple features were not used by the decision trees in the experiments.
Many other features using the spectral tilt data, such as maxes, mins, ranges,
and slopes over different regions of the utterance (e.g. overall, vowel portions,
end) could prove useful if generated and used. Future research could include a
similar investigation into the other feature types as well.

This project used decision tree classifiers, while many other options are avail-
able. The use of trees was motivated by ease of analysis, as the project was in
the initial stages of finding useful features, which would be less apparent using
other methods of classification. However, one could research into those other
methods, such as neural nets or Gaussian mixtures.

In general, this project suggests that machines can perform emotion recogni-
tion on par with human ability, at least for the types of emotion explored here.
This observation opens the possibility for a wide variety of applications, from
educational software to games to customer support applications. Since perfect
word recognition does not seem essential to the emotion recognition task, appli-
cations where ASR is errorful, not available, or even unfeasible can still poten-
tially use emotion recognition. Furthermore, emotion recognition could possibly
even aid in speech recognition. For instance, having emotional information in an
utterance could prove useful in feature extraction, where a recognition system
is aware of pitch or duration shifts due to emotional state, thereby producing
“cleaner” features for classification.
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6 Appendix

6.1 Descriptions of Additional Annotations
6.1.1 Dialog-Level Annotations

Accent Type Type of accent (e.g. British, Chinese, New York) that the la-
beler noted.

Global Comment Comments that pertained to the entire call.

Non-Native Speaker Describes whether or not speaker was a native English
speaker.

6.1.2 TUtterance-Level Annotations

Comment Comments on the utterance that labelers felt were pertinent. Com-
plete comment list described in Table 11.

Data Problems Problems with the data, such as cut-off speech, long silences,
or background noise.

Final Pitch Rise Marks a noticeable rise in pitch at the end of the utterance.

Hyperarticulation Denotes whether the speaker “overenunciates” words or
parts of words in the utterance.

Pauses Between Words When the utterance had unnaturally long pauses
between words.

Pauses Between Syllables When the utterance had pauses between syllables
of a word.

Raised Voice Marked when the overall perceived loudness or level of vocal
effort of the utterance is noticeably raised.

Repeat-Correction Marked if the utterance was a repeat or rephrasing of
a previous utterance, or whether there was an explicit correction of the
system response to previous utterances.

Self-Talk The user is talking to him/herself or someone else. In general, this
is marked when the user is not addressing the system.

Spelling Out Utterance has words or numbers spelled out. (This is useful for
detecting corrections and repeated attempts.)

6.2 Description of Features

The following section describes features used in this project. Some features,
such as the Dialog ID or Utterance ID, are part of the original data. Others are
labeled by humans in our project (e.g. the emotion labels, hyperarticulation,
and repeat correction). The majority of features, however, are automatically
extracted for our project.
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Table 11: Comment List

user is a child

testing the system

hardly any speech in call

shaky voice

under the influence

upset

side talk

unintelligible speech/mumbling
intelligible but muffled/distorted speech
utterance(s) out of order

more than one person talking to system during call
fake accents/mispronunciations/possible speech impediments
happy

user comments on system

utterance is irrelevant/random

joking

transcript is incorrect

confused

raised voice

noisy /background noise

long silences

speech-cut-off

miscellaneous

laughing

sarcastic

satisfied

lengthened speech

polite

amused/surprised
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Table 12: Emotion Labels Key. The ’?’ is used to denote uncertainty, where
the labeler had a harder time deciding on the emotion for an utterance.

EMOTION Tag
neutral n
neutral? nq
annoyed a
annoyed? aq
amused/surprised | as

amused/surprised? | asq
angry/frustrated af
angry/frustrated? afq
disappointed/tired | dt
disappointed/tired? | dtq

other o)
other? oq
NA NA
NA? NAq
NONE NO
NONE? NOgq

6.2.1 Utterance Information Features

Dialog ID (DIALOGID) Unique identifier for the dialog. DIALOGID is
in the form of #H#H#H# _HH H#H #HHF H#H#H#H#HFHH#4H for NIST database
dialogs. For the CMU data, it is F#H#H#H#HHHFH#H#-F##+. For the
COLORADO data, it is sls-#H#H#HH#HHFHH-HF#H or sls-HHFHHFHHHFHH-
###b.

Emotion Labels with context (EMOTION_WC) String of emotion la-
b

bels, with labels separated by an ’’. The labels follow the mapping de-
scribed in Table 12.

Labelers (LABELER_WC) String of labelers, with names separated by an
’_’. The order of the labelers corresponds with the order of their labels in
EMOTION_WC.

Utterance ID (UTTID) Unique identifier for the utterance. UTTID is
in the form of #### ## ## H## #H#HF#### usr#f### for NIST
utterances. For the CMU data, it is HHHHHHHH-H#H#H#-H#H#H# or
HHHHHHFHH-HHH-F#H#H# _##4. For the COLORADO data, it is sls-
HHAAHHHH-FHA-F A OF SIS-FEFAH A HHHH- T D- T

Words of Utterance (WORDS) The words of the utterance based on the
reference files in the Communicator databases. Each word is separated by
an ’_. If the utterance contained no words, the field contains a single .
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6.2.2 Dialog Position Features

System Position (SYSPOS) Number of system prompts in the call before
the utterance. The first utterance in the call has a SYSPOS of 1, with the
SYSPOS incremented by one for each of the following utterances.

Utterance Position (UTTPOS) Like SYSPOS, except utterances of the call
with no words uttered (according to the reference files in the Communi-
cator database) do not increment UTTPOS.

Word Position (WORDPOS) The position of the first word in the utterance
with respect to the call (i.e. WORDPOS is the number of words uttered
before the current utterance plus one), according to the reference files in
the Communicator databases. Noises, laughs, coughs and the like are not
counted, but rejects (such as word fragments) are included.

6.2.3 Duration Features

Maximum Normalized Phone Duration (MAXPHDUR_N) The maxi-
mum phone duration in the utterance obtained in a similar fashion to the
average.

Average Normalized Phone Duration (PHDUR_N) Average phone du-
ration normalized (through division) with the average statistics for the
phones over the Communicator database.

Relative Longest Normalized Vowel Position (V_N_POS) Ignoring be-
ginning and end silence (according to the forced alignment), the relative
position of the onset of the longest normalized vowel in an utterance. For
example, if V_N_POS is 0.0, the longest normalized vowel begins at the
beginning of the utterance. If 0.5, it begins in the middle.

Average Vowel Duration (VOWELDUR) Using the phone level forced
alignments, the average duration of vowels (aa, ae, ah, ao, aw, ay, eh,
er, ey, ih, iy, ow, oy, puh, uh, uw, ax).

6.2.4 Speaking Rate Features

Syllable Rate (SYLRATE) Syllable rate is approximated by dividing the
number of vowels by the duration of the utterance (ignoring reject phones
because they are indistiguishable between consonants and vowels).

6.2.5 Pause Features

Longest Pause Duration (MAXPAUSE) Maximum length of pause in the
interior of an utterance.

Number of Long Pauses (PAUSE7_COUNT) Number of interior pauses
longer than 70ms.
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Speech Percentage (SPCHPCT) Percentage of an utterance that is speech.
Calculated by dividing the duration of all the speech by the duration of
speech plus duration of interior pauses.

6.2.6 Pitch Features

First Slope in LNV (1STSLP_IN_MAXV_N) The first FO slope in the
longest normalized vowel (LNV) region when excluding frames where the
probability of pitch is less than the probability of halving or doubling.

Second to Last Slope of Fitted FO (2nd2LASTSLOPE) The second to
last slope of the stylized FO (as described in 2.6.1) when excluding frames
where the probability of pitch is less than the probability of halving or
doubling.

First Fitted FO (FIRSTFO0) Excluding frames where the probability of pitch
is less than the probability of halving or doubling, the first (nonzero) F0
value.

Average Fitted FO (FITTEDFO0) The average fitted FO value over voiced
frames where the pitch probability is greater than the probability of halv-
ing or doubling. This is based on the stylization software used. (Refer
to 2.6.1 for details.)

Last Fitted FO (LASTFO0) Excluding frames where the probability of pitch
is less than the probability of halving or doubling, the last (nonzero) F0
value.

Last Slope of Fitted FO (LASTSLOPE) The last slope of the stylized F0O
when excluding frames where the probability of pitch is less than the
probability of halving or doubling.

Last Slope in LNV (LASTSLP_IN_MAXV _N) The last FO slope in the
longest normalized vowel (LNV) region when excluding frames where the
probability of pitch is less than the probability of halving or doubling.

Maximum Fitted FO (MAXFO0) Excluding frames where the probability of
pitch is less than the probability of halving or doubling, the maximum
fitted FO value.

Maximum Negative Slope of Fitted FO (MAXFOFALL) When exclud-
ing frames where the probability of pitch is less than the probability of
halving or doubling, the maximum negative slope of the stylized F0.

Maximum Slope of FO (MAXFORISE) Excluding frames where the prob-
ability of pitch is less than the probability of halving or doubling, the
maximum slope of the stylized FO0.

Time when Maximum F0 occurred (MAXFOTIME) Relative to the be-
ginning of the utterance, the time when the maximum fitted F0 occurred.

37



Maximum F0 during the LNV (MAXF0_IN_MAXYV _N) In the longest
normalized vowel (LNV) region, the maximum fitted FO when excluding
frames where the probability of pitch is less than the probability of halving
or doubling.

Relative Maximum FO0 Position (MAXF0_POS) Ignoring beginning and
end silence (according to the forced alignment), the relative position of
the maximum fitted FO in the utterance. For example, if MAXF0_POS is
0.0, the maximum fitted FO begins at the beginning of the utterance. If
0.5, it begins in the middle.

Minimum Fitted FO (MINFO0) Excluding frames where the probability of
pitch is less than the probability of halving or doubling, the minimum
(nonzero) fitted FO value.

Time when Minimum F0 occurred (MINFOTIME) Relative to the be-
ginning of the utterance, the time when the minimum fitted FO occurred.

Slope with Most Frames in LNV (MOSTSLP_IN_MAXV_N) The F0
slope having the most frames in the longest normalized vowel (LNV) re-
gion when excluding frames where the probability of pitch is less than the
probability of halving or doubling.

Percentage of Pitch Rise Frames (RISERATIO) The number of frames
where the pitch rises divded by the number of frames where the pitch rises
or falls, excluding frames where the probability of pitch is less than the
probability of halving or doubling.

6.2.7 Energy Features

Average RMS in the LNV (AVGRMS_IN_MAXV_N) When excluding
frames where the probability of pitch is less than the probability of halving
or doubling, the average RMS energy in the longest normalized vowel
(LNV) region.

Maximum RMS in the LNV (MAXRMS_IN_MAXYV _N) In the longest
normalized vowel (LNV) region, the maximum RMS energy when exclud-
ing frames where the probability of pitch is less than the probability of
halving or doubling.

Average RMS Energy (RMS) Average RMS energy over voiced frames
where the pitch probability is greater than the probabilty of halving or
doubling. This is based the stylization software used.

6.2.8 Spectral Tilt Features

First Cepstral Coefficient (VCEP1) The average of the first cepstral coef-
ficient over the longest normalized vowel.
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Slope of Linear Fit to Magnitude Spectrum (VLINTILT) The average
slope (times -1) of linear fit to the magnitude spectrum of each frame over
the longest normalized vowel.

Difference in Log Energies in Frequency Bands (VTILT) After taking
the magnitude spectrum for each vowel frame, the log energies are summed
in two regions, below 1000Hz and between 1000Hz and 4000Hz. The sum
from the upper frequencies is subtracted from the sum from the lower
frequencies. This difference is averaged over the longest normalized vowel.

6.3 Feature Usage Tables

Tables 13 through 18 are feature usage tables for experiments whose results
were reported in Table 8 in Section 3.

6.4 Example of Average of Twenty Experiments

Table 19 shows the twenty different experiments conducted for the baseline
experiment of the ANNOYED + FRUSTRATED vs. ELSE task. The results
in Table 8 reflect the linear average of these individual experiments, and the
feature usage statistics are reported in the left column of Table 15.
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Table 13: Feature Usage of “Consensus version, [All Features)”

A+4F vs. ELSE F vs. ELSE
Articulation Style 38.14% | Articulation Style 57.96%
RAIVO 26.47% RAIVO 52.59%
HYPER 11.20% HYPER 5.37%
PAWRD 0.47%
Duration, Speaking Rate
Repeat /Correction 18.75% and Pause 16.09%
REPCO 18.75% MAXPHDUR_N 15.73%
SYLRATE_DNORM_E_5 0.36%
Pitch 17.61%
MAXF0IN_.MAXV_N 7.53% | Pitch 14.30%
MAXFORISE_ DNORM_E 2.60% MAXFO0 6.40%
MAXFO0 1.92% MAXF(0IN_MAXV_N 2.93%
MINFOTIME 1.32% MAXF0_TOPLN 1.72%
MAXF0_POS 1.27% LASTF0_.BASELN 1.45%
MAXFOTIME 0.59% LASTSLOPE 1.00%
MINF0_BASELN 0.57% MINFOTIME 0.80%
LASTF0_BASELN 0.50%
1STSLP_IN_.MAXV_N 0.42% | Repeat/Correction 6.89%
LASTSLOPE 0.37% REPCO 6.89%
FIRSTF0_BASELN 0.33%
RISERATIO DNORM_E_ 5 0.20% | Dialog Position 2.75%
SYSPOS 2.07%
Duration, Speaking Rate UTTPOS 0.67%
and Pause 15.56%
MAXPHDURN 6.03% | Energy 2.02%
SYLRATE 3.68% MAXRMS IN_.MAXV_N 1.46%
VOWELDUR_DNORM E_ 5 3.59% AVGRMS_IN_MAXV_N
SPCHPCT_DNORM_E 1.21% DNORM_E 0.56%
PAUSE7_COUNT 0.49%
SYLRATE_DNORM_E_5 0.48%
SPCHPCT_DNORM_E_5 0.08%
Dialog Position 8.42%
UTTPOS 5.61%
SYSPOS 2.82%
Energy 1.51%
RMS DNORM_E 1.20%
MAXRMS_IN.MAXV_N 0.31%
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Table 14: Feature Usage of “Originally agreed, [All Features]”

A+F vs. ELSE F vs. ELSE
Articulation Style 37.64% | Articulation Style 83.33%
RAIVO 29.49% RAIVO 83.33%
HYPER 6.93%
PAWRD 1.22% | Pitch 14.68%
MAXFO0 7.19%
Pitch 22.04% MAXF0IN_MAXV_N 3.02%
MAXF(0IN_MAXV_ N 12.21% MAXF0_POS 1.67%
MINF0_BASELN 3.69% FIRSTF0_BASELN 1.31%
MAXFO0 2.67% PDIFF_MAXF0_BASELN 0.88%
MAXF(OTIME 0.91% MINF0 0.63%
MAXFORISE DNORM_E 0.78%
MAXF0_POS 0.56% | Energy 1.98%
RISERATIO DNORM_E_5 0.44% MAXRMS_IN_ MAXV_N 1.98%
LASTSLOPE 0.42%
MINFOTIME 0.33%
PLOGRATIO MAXF0_IN
_MAXV_N 0.03%
Repeat/Correction 14.88%
REPCO 14.88%
Language Model 9.75%
POST_AN_SIGN 5.76%
POST_AN_LOGRATIO 3.99%
Duration, Speaking Rate
and Pause 7.94%
MAXPHDUR_N 4.09%
VOWELDUR_DNORM_E_5 0.99%
SYLRATE 0.95%
SPCHPCT 0.83%
SYLRATE DNORM_E_5 0.80%
SPCHPCT_DNORM_E 0.28%
Dialog Position 4.64%
SYSPOS 2.41%
UTTPOS 2.24%
Energy 3.11%
RMS DNORM_E 2.13%
AVGRMS_IN_MAXV_N
_DNORM_E 0.72%
MAXRMS_IN_MAXV_N 0.27%
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Table 15: Feature Usage of “Consensus version, [no STYLE]”

A+F vs. ELSE

F vs. ELSE

Duration, Speaking Rate
and Pause
MAXPHDURN
SYLRATE
VOWELDUR_DNORM_E 5
SYLRATE DNORM_E_5
SPCHPCT_DNORM_E
SPCHPCT_DNORM_E_5
PAUSE7_COUNT
SPCHPCT

Pitch
MAXF0_IN_MAXV_N
MAXF0
MINFOTIME
MAXFOTIME
MAXFORISE_ DNORM_E
MINF0_BASELN
LASTF0_BASELN
MAXF0_POS
LASTSLOPE
FIRSTF0_BASELN
RISERATIO_DNORM_E_5
MAXF0_TOPLN

Repeat/Correction
REPCO

Energy
RMS DNORM_E
AVGRMS_IN_.MAXV_N
_DNORM_E

Dialog Position
UTTPOS
SYSPOS

28.18%
15.61%
6.26%
2.68%
1.83%
0.95%
0.64%
0.16%
0.05%

26.57%
7.36%
7.04%
4.52%
2.34%
1.75%
1.17%
0.76%
0.64%
0.42%
0.30%
0.22%
0.05%

26.30%
26.30%

11.37%
11.29%

0.08%
7.59%

4.65%
2.94%

Pitch
MAXFO0
MAXF0IN_MAXV_N
LASTF0_BASELN
MAXF0_TOPLN
LASTSLOPE
MINFOTIME
MINF0_BASELN
RISERATIO_DNORM_E_5
LASTFO
FIRSTF0_BASELN

Duration, Speaking Rate
and Pause
MAXPHDUR_N
SPCHPCT
PAUSE7_COUNT
SPCHPCT_DNORM_E

Repeat /Correction
REPCO

Energy
MAXRMS IN_-MAXV_N
RMS_DNORM_E

Dialog Position
SYSPOS

60.58%
26.44%
23.65%

3.12%
2.43%
1.91%
1.25%
0.74%
0.69%
0.20%
0.15%

16.39%
14.03%
1.72%
0.38%
0.26%

11.63%
11.63%

9.26%
8.69%
0.57%

2.15%
2.15%
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Table 16: Feature Usage of “Originally agreed, [no STYLE]”

A+4F vs. ELSE F vs. ELSE
Duration, Speaking Rate Pitch 72.41%
and Pause 28.22% MAXF0IN_MAXV N 31.20%
MAXPHDURN 19.83% MAXFO0 17.17%
SYLRATE 4.34% FIRSTF0_.BASELN 12.64%
SPCHPCT_DNORM_E 2.52% MINFO0TIME 5.59%
SYLRATE DNORM_E_5 0.65% MAXF(0_TOPLN 5.34%
SPCHPCT 0.44% MINFO0 0.46%
PAUSE7_COUNT 0.43%
Duration, Speaking Rate
Pitch 26.79% and Pause 20.41%
MAXF(0IN_MAXV_ N 13.54% MAXPHDUR_N 12.37%
MAXFOTIME 4.03% SPCHPCT 5.00%
MAXF0 1.81% PAUSE7_COUNT 3.04%
RISERATIO_DNORM_E_5 1.58%
MAXF0_POS 1.43% | Energy 4.20%
LASTF0_.BASELN 1.35% RMS DNORM_E 2.37%
MINFO0TIME 1.06% MAXRMS_ IN_MAXV_N 1.83%
MAXFORISE DNORM_E 0.85%
1STSLP_IN_MAXV N 0.52% | Repeat/Correction 2.00%
MAXF(0_TOPLN 0.41% REPCO 2.00%
FIRSTF0_BASELN 0.19%
MINF(0_BASELN 0.04% | Dialog Position 0.99%
SYSPOS 0.99%
Repeat /Correction 25.22%
REPCO 25.22%
Energy 13.72%
RMS DNORM_E 12.54%
MAXRMS IN_MAXV_N 0.79%
AVGRMS_IN_MAXV_N
_DNORM_E 0.40%
Dialog Position 4.10%
UTTPOS 2.56%
SYSPOS 1.54%
Language Model 1.95%
POST_AN_SIGN 1.95%
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Table 17: Feature Usage of “Consensus version, [no STYLE, no REP]”

A+4F vs. ELSE F vs. ELSE
Pitch 45.26% | Pitch 72.30%
MAXF0IN_.MAXV.N 16.88% MAXF0IN_MAXV_N 31.65%
MAXFO0 5.26% MAXFO0 23.20%
LASTF0_BASELN 3.94% LASTF0_BASELN 8.13%
MINFOTIME 3.94% RISERATIO_DNORM_E_5 3.24%
MINF0_BASELN 3.73% LASTSLOPE 1.37%
MAXF(ORISE DNORM_E 3.29% FIRSTF0_BASELN 1.12%
MAXF0_POS 2.47% MINF0_BASELN 0.95%
MAXFOTIME 1.99% MAXFOTIME 0.76%
LASTSLOPE 1.26% MINFOTIME 0.75%
RISERATIO DNORM_E 5 0.77% 1STSLP_IN.MAXV_N 0.41%
MAXF(0_TOPLN 0.64% MINFO0 0.35%
LASTFO0 0.34% PLOGRATIO_MAXFO0_IN
FIRSTF0_BASELN 0.31% MAXV_N 0.19%
PLOGRATIO_RISERATIO 0.20% LASTFO 0.19%
PDIFF_LASTF0_BASELN 0.14%
1STSLP_IN_.MAXV_N 0.11% | Duration, Speaking Rate
and Pause 23.85%
Duration, Speaking Rate MAXPHDUR_-N 17.80%
and Pause 27.49% SPCHPCT_DNORM_E 4.36%
MAXPHDURN 23.20% SPCHPCT 1.69%
SYLRATE 2.24%
SPCHPCT_DNORM_E 1.31% | Energy 2.12%
VOWELDUR_DNORM_E_5 0.53% MAXRMS_ IN_.MAXV_N 2.02%
SYLRATE DNORM_E_5 0.16% AVGRMS_IN.MAXV.N
PAUSE7_COUNT 0.05% _DNORM_E 0.1%
Dialog Position 10.75% | Dialog Position 1.01%
SYSPOS 6.12% SYSPOS 1.01%
UTTPOS 4.63%
Spectral Tilt 0.73%
Energy 9.81% VTILT DNORM_E 0.73%
RMS DNORM_E 9.22%
AVGRMS_IN.MAXV N
_DNORM_E 0.39%
MAXRMS IN_MAXV_N 0.20%
Language Model 6.69%
POST_AN_LOGRATIO 6.69%
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Table 18: Feature Usage of “Originally agreed, [no STYLE, no REP)”

A+4F vs. ELSE F vs. ELSE
Pitch 47.32% | Pitch 63.48%
MAXF0IN_MAXV_N 26.50% MAXF0_IN_MAXV_N 46.69%
MAXF0 5.48% MAXFO0 7.50%
MAXFOTIME 5.40% MAXF0_TOPLN 5.00%
MINF(0_BASELN 2.40% MAXF0_POS 1.89%
LASTF0_BASELN 2.18% LASTFO 1.64%
MAXFORISE_ DNORM_E 2.14% MINFOQ 0.76%
LASTSLOPE 1.63%
MINFOTIME 0.91% | Duration, Speaking Rate
MAXF0_POS 0.58% and Pause 28.12%
PDIFF_LASTF0_BASELN 0.11% MAXPHDUR_N 26.90%
SPCHPCT 0.71%
Duration, Speaking Rate SPCHPCT DNORM_E 0.51%
and Pause 33.97%
MAXPHDUR_N 28.38% | Energy 6.31%
SYLRATE 4.88% MAXRMS IN_MAXV_N 2.58%
SPCHPCT 0.46% AVGRMS_IN_.MAXV_N
SPCHPCT_DNORM_E 0.16% _DNORM_E 2.20%
SPCHPCT_DNORM_E_5 0.10% RMS_DNORM_E 1.53%
Dialog Position 10.45% | Dialog Position 2.08%
SYSPOS 6.55% SYSPOS 2.08%
UTTPOS 3.90%
Energy 6.98%
RMS_DNORM_E 5.16%
AVGRMS_IN_MAXV_N
DNORM_E 1.56%
MAXRMS_ IN.MAXV_N 0.26%
Language Model 1.28%
POST_AN_SIGN 1.28%

45




Table 19: Detailed Experimental Results of ANNOYED + FRUSTRATED vs.
ELSE, “Consensus version, [no STYLE]”

Expt. | Seed # | Accuracy | Efficiency | Best Tree

9952 77.93% 23.87% | 9952-453
94777 76.59% 23.07% | 94777-361
84954 75.75% 23.08% | 84954-212
80450 74.58% 21.83% | 80450-514
74685 75.25% 20.52% | 74685-374
70233 75.59% 23.58% | 70233-379
61078 76.09% 23.38% | 61078-260
59567 75.08% 21.76% | 59567-379

9 33978 68.56% 11.47% | 33978-284
10 33911 76.76% 24.33% | 33911-215
11 33508 75.42% 19.79% | 33508-216
12 29587 77.42% 24.78% | 29587-572
13 26587 75.59% 21.06% | 26587-395
14 260 74.75% 21.16% 260-282
15 20652 75.75% 22.81% | 20652-256
16 20374 76.09% 21.26% | 20374-350
17 17582 73.58% 17.21% | 17582-638
18 1700 77.42% 24.27% | 1700-220
19 1398 73.08% 18.20% | 1398-207
20 10389 73.08% 16.09% | 10389-222

CO IO UL W N

Average Accuracy 75.22%
Accuracy Std. Dev. 2.01

Average Efficiency 21.18%
Efficiency Std. Dev. 3.23
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