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ABSTRACT

Despite the common wisdom that lessons learned from
small experimental speech recognition tasks often do not
scale to larger tasks, many important algorithms used in
larger tasks were first developed with small systems applied
to small tasks. In this paper we report experiments with
the OGI Numbers task that led to the adoption of a num-
ber of engineering decisions for the design of an acoustic
front end. We then describe a three-stage process of scaling
to the larger conversational telephone speech (CTS) task.
Much of the front end design required no change at all for
the more difficult task, yielding significant improvements
over our baseline front end.

1. BACKGROUND

Small tasks (such as digit or number recognition) are com-
monly used in the development of novel algorithms. This is
true even when larger tasks are the ultimate goal, since the
larger tasks can require enormous computational resources
for training or recognition, severely limiting the range of
possible experiments that can be run. However, it is well
known that huge improvements can sometimes be shown
for small tasks that do not carry over to the larger tasks.
Sometimes this is simply due to the fact that larger, more
complex systems are generally used for the larger tasks, and
other mechanisms are already in place to remove many of
the grosser errors. Another complicating factor is that di-
agnostics can be more complete for small tasks, so that spe-
cific word or subword confusions can sometimes be focused
on and handled; this micro-analysis can seldom be so help-
ful for large tasks. Finally, when experiments are quick to
run, it is often tempting to conduct a large number of exper-
iments with almost random settings, taking the best values
as the “learned” parameters for an approach. Indeed this
makes sense for the setting of some parameters given a de-
velopment test set that has similar character to that of the
final evaluation. However, for an ultimate evaluation on a

completely different task, this may not be appropriate.
For all of these reasons, new techniques that have been

shown to work on a small task may or may not improve
performance for large-scale recognition. Nonetheless, it is
also true that most techniques that have become “classic”
methods for large-scale recognition were originally devel-
oped on much smaller tasks. Front end designs are the ob-
vious example (PLP [1] or Mel cepstral analyses, as well
as the various kinds of cepstral normalizations), but this has
been observed in other areas as well (for instance the ap-
plication of dynamic programming to speech recognition,
both in deterministic and stochastic forms). This then raises
the question: how can one determine whether a particular
course of investigation using small-task evaluations is likely
to bear fruit for a larger problem?

This paper reports on a set of experiments that may pro-
vide some insight on this question. Our goal was to improve
conversational telephone speech (CTS) recognition by mod-
ifying the acoustic front end. We found that approaches de-
veloped for the recognition of natural numbers scaled quite
well to two different levels of CTS complexity: recognition
of utterances primarily consisting of the 500 most frequent
words in Switchboard, and large vocabulary recognition of
Switchboard conversations. We will describe the methods
and results for these experiments, and will draw tentative
conclusions about the nature of scalability for speech recog-
nition methods.

2. AUGMENTING CONVENTIONAL FEATURES

For decades, the feature extraction component of speech
recognition engines has consisted of some form of local
spectral envelope estimation, typically with some simple
transformation; current typical front ends consist largely of
the Mel cepstrum or PLP computed from an analysis win-
dow of roughly 25 or 30 ms surrounding a central signal
point, stepped along every 10 ms. A number of alternatives
have been developed in recent years. One such approach,



tandem acoustic modelling [2, 3, 4] uses a multilayer per-
ceptron (MLP) to first discriminatively transform multiple
feature vectors (typically PLP from 9 frames) before using
them as observations for Gaussian mixtures hidden Markov
models (GMHMM). Thus, the neural network, which could
be called a “feature net”, incorporates around 100 ms of
speech. We refer to the resulting feature net features as
PLP/MLP features. Others have also tried incorporating
longer temporal information yielding significant improve-
ments in ASR performance (e.g., [5]).

The MLP is typically trained using phonetic targets.
This approach works very well in matched training and test
conditions, often achieving lower word error rates than sys-
tems without the discriminant nonlinear transformation pro-
vided by the MLP. However, in the case of mismatched
training and testing conditions, researchers working on the
Aurora task found it preferable to augment the original fea-
tures with the feature net outputs, essentially using the con-
catenation of the original features and the PLP/MLP fea-
tures as the front end for the GMHMM [6]. A similar ap-
proach was used in [7] where standard features were aug-
mented by a complimentary source of information (in this
case, estimates of formants from a mixture of Gaussians).

Another promising approach has been to combine the
PLP/MLP features with features derived from the outputs
of MLPs incorporating long-time log critical band energy
trajectories (500 ms - 1 s) [8, 9]. The set of these MLPs
forms the TRAPS system, named as such because the sys-
tem learns discriminative TempoRAl Patterns (TRAPS) in
speech. MLPs in the TRAPS system are also trained with
phonetic targets. These features are complementary to the
100 ms span of the feature net MLP, and we have observed
that systems using the combination of the two feature sets
perform better than systems using either feature type alone.

The approaches listed above were developed on small
tasks, i.e. connected digits, continuous numbers, and
TIMIT phone recognition, where the training and test set
was small in terms of vocabulary as well as data size. We
tested systems that incorporated the novel approaches listed
above in tasks of varying complexity. We used conven-
tional front end features (PLP in this case) augmented with
the combination of PLP/MLP features and TRAPS features.
We used three different temporal resolutions. The original
PLP features were derived from short term spectral analysis
(25 ms time slices every 10 ms), the PLP/MLP features used
9 frames of PLP features (100ms), and the TRAPS features
used 51 frames of log critical band energies (500ms).

In all of the experiments we performed, our baseline fea-
ture vector consisted of 12th order PLP coefficients plus en-
ergy computed over a 25 ms frame window every 10 ms. 1st
and 2nd order deltas were calculated and appended together
to yield a 39 dimensional baseline feature. We also used
mean and variance normalization per conversation side.
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Fig. 1. Augmenting PLP Front End Features

As contrast, we augment the baseline PLP features
with a combination of the two probability-based feature
streams: PLP/MLP features and TRAPS features. For the
first stream, we trained discriminative feature net MLPs us-
ing 9 consecutive frames of the baseline PLP features as
inputs and 47 phoneme targets generated from forced align-
ments using the SRI recognizer. For the second stream, the
first stage TRAPS MLPs took PCA transformed log critical
band energy trajectories formed by taking 51 consecutive
frames of log critical band energies every 10ms. These crit-
ical band MLPs were trained with the same phoneme targets
as in the feature net MLP. A merger MLP (trained with these
same phoneme targets) combined the critical band MLPs’
outputs and gave one estimate of phoneme posteriors every
10 ms.

Since both the output of the TRAPS classifier and the
feature net can be interpreted as posterior probabilities of
the 47 phonemes, we could combine them using frame-wise
posterior probability combination techniques [10, 11] (de-
scribed briefly below). After combination, we took the log
of the posterior vector to make it more Gaussian, and then
orthogonalized and reduced the dimensionality of the pos-
terior vector using PCA. The resulting variables were then
appended to the original PLP cepstra to form the extended
feature vector. Figure 1 summarizes this augmentation pro-
cess.

In what follows, we refer to these augmented fea-
tures as PLP+combomethod(Streams) features, wherecom-
bomethodcan be one of three frame-wise posterior com-
bination methods: the average of the posteriors combina-
tion (AVG); the average of log posteriors combination (AV-
GLog), and finally, the inverse entropy weighted combina-
tion (INVENT) [11]. Streamsrefers to the PLP/MLP fea-
ture stream and TRAPS feature stream. The first two com-
bination methods essentially assume that each MLP feature
stream is equally important, while the entropy-based com-
bination assumes that the MLP feature with lower entropy
is more important than an MLP feature with high entropy.



This is intuitively correct, since a low entropy posterior dis-
tribution (such as would occur with a high single peak) im-
plies strong confidence in class identity. Generally, the com-
bined posterior can be written as:

~P (qk jx) = !1 ~P1(qkjx1) + !2 ~P1(qkjx2) (1)

where ~P1(qkjx1) and ~P2(qkjx2) are the posteriors (or log
posterior in the log posterior average) of different MLPs for
the same frame. For the average combination,!1=!2=0.5.
For entropy-based posterior combination,! is the inverse
entropy computed over one frame for an MLP output and
normalized so that the sum of all weights is one. A threshold
of 1 is applied on frame entropy. If the entropy for a frame
from an MLP is greater than 1, it is set to a large value
(e.g., 10000) so that the weight for the stream is a very small
number.

The features described above served as the front end fea-
tures for our recognition experiments. We used a stripped
down version of SRI’s Hub-5 conversational speech tran-
scription system for our HMM backend. In particular, the
backend that we used was similar to the first pass of the sys-
tem described in [12], using a bigram language model and
within-word triphone acoustic models.

3. STAGE 1: NUMBERS TASK

As noted previously, all the basic techniques employed here
were originally developed using quite small tasks. In par-
ticular, prior to the experiments reported here, the MLP-
based feature transformations, the temporal features called
TRAPS, and the methods used to combine them were all
trained and tested on a number of smaller tasks including
the OGI Numbers task (the Numbers95 corpus). In these
earlier Numbers experiments, Numbers data was used for
both training and test, and so the scalability of the typically
impressive results was unknown.

On the other hand, simply taking the features and ap-
plying them to a large task risked failure without obvious
diagnostic potential. Consequently, we designed a three-
stage approach to the scaling process. Our initial step was
to train on a combination of CTS data and read speech, and
then test on OGI Numbers.

3.1. Numbers Task Description

The training set for this stage was an 18.7-hour subset of
the old “short” SRI Hub training set. 48% of the train-
ing data was male and 52% female. 4.4 hours of this
training set comes from English CallHome, 2.7 hours from
Hand Transcribed Switchboard, 2.0 hours from Switch-
board Credit Card Corpus, and 9.6 hours from Macrophone
(read speech).

We divided the entire OGI Numbers corpus into three
sets. One was used for system parameter tuning, one for
development testing, and another for final testing. We report
our results on the test set which contains 1.3 hours of speech
(2519 utterances and 9699 word tokens).

3.2. Results on Numbers Task

Using the training set defined above, we trained triphone
gender-independent HMMs using the SRI speech recog-
nition system. We also trained a gender-independent
PLP/MLP feature net as well as a gender-independent
TRAPS system. Although the recognition task was num-
bers, the HMMs were trained for broader coverage. Thus
we hoped that the conclusions reached with this training
data might generalize better to other tasks. The testing dic-
tionary contained thirty words for numbers and two words
for hesitation, and we used a simple bigram language model
trained on our Numbers tuning set.

For all of the experimental systems in this paper, trun-
cation of the PCA output (that is, eliminating some low-
variance components) was critical to performance. Keeping
the top 17 dimensions seemed to be the optimal length on
all of our tuning data. The truncated PCA output was then
appended with PLP features as the augmented feature. It
is likely that the small variance components may not have
been useful because PLP was already fairly good for pho-
netic classification (particularly for low-noise speech). In
contrast, when MLP-based features were used alone as the
front end feature, often no truncation was needed after PCA
to achieve the best performance.

Relative
System Numbers Test Reduction

Set WER WER

PLP Baseline 4.0% -
PLP+AVG(Streams) 3.3% 17.5%

PLP+AVGLog(Streams) 3.2% 20.0%
PLP+INVENT(Streams) 3.3% 17.5%

Table 1. Word error rate (WER) and relative reduc-
tion of WER on Numbers using different combination ap-
proaches.Streamsdenotes the PLP/MLP feature stream and
the TRAPS feature stream.

We incorporated PLP/MLP and TRAPS features by
frame-wise posterior combination. The combined fea-
tures were then reduced in dimension to 17 using
PCA and concatenated to the baseline PLP features to
create an augmented feature vector of dimension 56.
As noted previously, we used several frame-wise pos-
terior combination methods: the average of posteri-
ors PLP+AVG(Streams), the average of log posteriors



PLP+AVGLog(Streams), and the inverse entropy weighted
combination PLP+INVENT(Streams) (see Table 1). All
three performed roughly the same, achieving a 17-20% rel-
ative reduction in word error rate.

These experiments showed that the combination of the
three features can improve the recognition performance
over using any feature alone. On the other hand, all the
approaches to posterior combination were roughly equiva-
lent in this case. These preliminary conclusions would later
be tested on tasks of increasing complexity.

4. STAGE 2: THE 500 WORD CTS TASK

Our methods continued to work well on the small vocabu-
lary continuous numbers task even when we did not train
explicitly on continuous numbers. Before applying our ap-
proaches to the full vocabulary Switchboard task, we con-
sidered a second stage task, that of recognizing the 500 most
common words1 in Switchboard I. There were several ad-
vantages to using this intermediate task. First, since the
recognition vocabulary consisted of common words from
Switchboard, it was likely that error rate reduction would
apply to the larger task as well. Second, there were many
examples of these 500 words in the training data, so less
training data was required than would be needed for the full
task. This in turn sped training time accordingly. Lastly, de-
coding complexity in this task was smaller, which also sped
experimental turn-around time.

4.1. 500 Words Task Description

For training, we created a subset of the “short” training set
used at SRI for CTS system development, which we re-
ferred to as the Random Utterances of Short Hub or the
RUSH set. This RUSH set consisted of utterances from 217
female and 205 male speakers, which was the same num-
ber of speakers as the short CTS training set, but which
contained one third of the total number of utterances. The
female speech consisted of 0.92 hours from English Call-
Home, 10.63 hours from Switchboard I with transcrip-
tions from Mississippi State [13], and 0.69 hours from the
Switchboard Cellular Database. The male speech consisted
of 0.19 hours from English CallHome, 10.08 hours from
Switchboard I, 0.59 hours from Switchboard Cellular, and
0.06 hours from the Switchboard Credit Card Corpus.

The 500 word test set was a subset of the 2001 Hub-
5 evaluation data. Given the 500 most common words in
Switchboard I, we chose utterances2 from the 2001 evalua-
tion data in which 90% or more of the words in the utterance
were on the word list. In other words, we allowed at most

1This task was proposed by our colleague George Doddington.
2An utterance is defined to be a string of words separated by less than

0.3sec, and greater than 0.3 seconds of separation at the beginning and end.

10% of the words in an utterance to be out of vocabulary
(OOV) words. 49.6% of the utterances in the 2001 evalua-
tion data met this requirement, and the total OOV rate was
3.2%. We then partitioned this set into a tuning set (0.97
hours, 8242 total word tokens) and a test set (1.42 hours,
11845 total word tokens). We used the tuning set to tune
system parameters like word transition weight and language
model scaling, and we determined word error rates on the
test set. The language model used in both the 500 word task
as well as the full vocabulary task was the first-pass bigram
language model used by SRI for the large vocabulary eval-
uations in 2000.

4.2. Results on Top 500 Words Task

Using the baseline PLP features, we trained gender depen-
dent triphone HMMs on the 23 hour RUSH training set,
and then tested this system on the 500 word test set achiev-
ing a 43.8% word error rate (see Table 2 which shows the
word error rates of our various systems on the top 500 word
test set). As seen in the table, the word error rate was
reduced 10% relative by augmenting the baseline features
with the combined PLP/MLP and TRAPS features. In this
case, we trained gender dependent PLP/MLP feature nets
and TRAPS systems.

500 Word Relative
System Test Set Reduction

WER WER

PLP Baseline 43.8% -
PLP+AVG(Streams) 39.4% 10.0%

PLP+AVGLog(Streams) 39.5% 9.8%
PLP+INVENT(Streams) 39.2% 10.5%

Table 2. Word error rate (WER) and relative reduction of
WER on the top 500 word test set of systems trained on the
RUSH set using different combination approaches.Streams
denotes the PLP/MLP feature stream and the TRAPS fea-
ture stream.

All three combination methods performed roughly the
same. Even though the more complicated inverse entropy
combination technique performed only slightly better than
the simple average combination methods, both styles have
their appeal. The averaging methods are certainly simple,
and don’t rely on any estimation method. On the other hand,
the inverse entropy combination technique is potentially ro-
bust to poor classifier streams. We experienced this property
for one of our later (CTS) experiments. Due to a bug in our
procedures, we unintentionally combined a badly degraded
TRAPS stream with the other features using both meth-
ods. When probabilities were multiplied or added without
weights, the degraded stream hurt performance badly, as



one might expect. On the other hand, the inverse entropy-
weighting reduced the importance of the poor stream so
that the overall performance essentially matched what we
had for a feature that consisted of the baseline PLP features
concatenated with the PLP/MLP feature alone. Thus, the
entropy-based approach to combination appears to be more
robust to unexpectedly poor streams. We expect that this
property might be particularly useful for future efforts in
which we might combine a larger number of streams where
some streams may sometimes provide less useful informa-
tion.

5. STAGE 3: FULL CTS VOCABULARY

Having seen how our approaches scaled with increasing test
set complexity, we applied these approaches to the third and
last stage: full vocabulary CTS task.

5.1. Full CTS Task Description

We tried using our previously defined RUSH training set for
this task and found it inadequate for training given the in-
crease in vocabulary. In other words, error rates on Switch-
board test sets were unacceptably high for the RUSH train-
ing set. Instead, we used SRI’s entire “Short” CTS training
set from which RUSH was derived. This set contained a to-
tal of 68.95 hours of CTS. 2.75 hours of English CallHome,
31.30 hours from Mississippi State transcribed Switchboard
I, and 2.03 hours of Switchboard Cellular form the data
from female speakers. The male speaker data came from
0.56 hours of English CallHome, 30.28 hours from Switch-
board I, 1.83 hours from Switchboard Cellular, and 0.20
hours of Switchboard Credit Card Corpus. As in the 500
word task, we trained triphone gender dependent HMMs
as well as gender dependent PLP/MLP feature nets and
TRAPS systems.

For testing, we used the 2001 Hub-5 Switchboard eval-
uation set. This evaluation set contains a total of 6.33 hours
of speech, 62890 total word tokens. For tuning our system
parameters, we used a subset of the 2001 Hub-5 develop-
ment set.

5.2. Results on Full CTS Task

The baseline system achieved a 43.8% word error rate on
the Hub-5 evaluation 2001 set (see Table 3 which shows the
word error rates of our various systems on the 2001 Hub-5
evaluation set). The augmented features reduced the error
rate by about 7% relative. For this task, there was a small
penalty for the AVGLog combination method in comparison
to the other approaches.

More recently, we have incorporated the new features
(using the INVENT combination approach) to a better sys-
tem. The new system incorporated VTLN, phone loop adap-

Hub-5 Relative
System EVAL2001 Reduction

WER WER

PLP Baseline 43.8% -
PLP+AVG(Streams) 40.5% 7.5%

PLP+AVGLog(Streams) 41.0% 6.4%
PLP+INVENT(Streams) 40.6% 7.3%

Table 3. Word error rate (WER) and relative reduction of
WER on the 2001 Hub-5 evaluation set of systems trained
on SRI’s “Short” CTS training set using different combi-
nation approaches.Streamsdenotes the PLP/MLP feature
stream and the TRAPS feature stream.

tation, a better normalization, and a better language model.
In this case, for an improved baseline of 37.1%, we were
able to reduce the error to 33.9%, which is a 8.7% relative
reduction.

6. DISCUSSION AND CONCLUSIONS

The PLP/MLP and the TRAPS features, developed for a
very small task, were then applied to successively larger
problems. As we had hoped,

1. Word error rate was significantly reduced for the
larger tasks as well, and

2. The combination methods, which gave equivalent
performance for the smaller task, were also compa-
rable on the larger tasks.

Regarding the first point, an absolute error rate reduction
of over 3% on Switchboard is quite significant. However,
the typical relative reduction in error is somewhat smaller
for the larger tasks (ranging from 20% on the smallest task
to 7% on the largest one). Thus, error rate reduction may
scale, but the degree of improvement may not without fur-
ther work using the larger task. Nonetheless, even 7% rel-
ative improvement is often of interest for larger tasks like
CTS. For such tasks, sizeable improvements are typically
only obtained by a combination of many small innovations.

The second observation seems to be unequivocally con-
firmed in these three stages of experiments - we observed
no consistent (scalable) advantage to using any of the pos-
terior combination methods to generate probability-based
front end features. On the other hand, as noted earlier, the
inverse entropy method appears to be quite robust to catas-
trophic degradations of feature streams. Note that in this
experiment we were only combining two streams, both of
which were fairly effective for phonetic discrimination. If
we begin to use a significantly larger number of streams,
some streams will be more likely to be ineffective at least



some of the time, and a dynamic weighting method like
the inverse entropy approach may show a clearer advan-
tage. This view seems to be supported by earlier work at
IDIAP [11]

For optimal performance, the analysis should always be
adjusted (if possible) when scaling to a new task. For in-
stance, our experiments with Numbers suggested that di-
mensionality reduction via PCA was critical to combining
the new features with the baseline PLP, and the optimal
number of dimensions turned out to be 17. We would ex-
pect that this number would vary depending on many fac-
tors, such as the informative nature of the streams, the na-
ture of the models, and features of the recognition engine
such as the exponentiation of the Gaussian component like-
lihoods that is done in the SRI system; this latter feature
can be viewed as compensating for variations in the feature
dimension.

Our hypothesis was that improvements from the
PLP/MLP and TRAPS features that were used here would
scale from small to larger tasks, and this was largely sup-
ported by our experiments. On the other hand, it is clear
that further optimization of performance can be achieved by
work with the larger task. This is always true, but the abil-
ity to bring some of the performance improvements forward
following on work with smaller tasks is extremely important
for speeding the development of novel approaches. Our ex-
perience suggests that providing intermediate tasks as “step-
ping stones” can greatly aid the scaling of techniques from
small to large tasks.
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