

The Sequential GMM:
A Gaussian Mixture Model Based Speaker Verification

System that Captures Sequential Information

Stephen James Stafford

May 16, 2005

 2

Table of Contents:

1 Introduction... 4

1.1 Motivation... 4
1.2 Overview... 5

2 The GMM ... 5

3 System Overview.. 7

3.1 The Task.. 7

4 Developing the New Feature Set .. 8

4.1 Feature Extraction... 8
4.2 Automatic Speech Recognition (ASR) ... 9
4.3 Frame Sifting .. 10
4.4 Calculating Average State Lengths... 10
4.5 Frame Warping ... 11

4.5.1 Warping Method: Linear Interpolation... 12
4.5.2 Warping Method: Sinc Kernel .. 14
4.5.3 Warping Method: Average ... 17

4.6 Stacking the frames... 17

5 Model Training ... 18

5.1 Background Training .. 18
5.2 Target Model Adaptation.. 20

6 Scoring & Fusion .. 21

7 Experiments .. 21

7.1 Baseline System.. 21
7.2 Sequential GMM... 22
7.3 Combination with the State-of-the-Art GMM .. 26
7.4 Limiting the Length of the Phoneme States.. 27
7.5 Principal Component Analysis (PCA) .. 28
7.6 Adapting from a UBM.. 30
7.7 Comparison to other Sequential Systems ... 32

7.7.1 Comparison to a Non-Parametric System... 32
7.7.2 Comparison to a Hidden Markov Model (HMM) based System.............. 34

8 Discussion & Future Work ... 35

8.1 Phoneme Performance .. 35
8.2 ASR... 37
8.3 Grouping Phonemes.. 38
8.4 Alternative Approaches to the Average Phoneme-State Lengths..................... 38
8.5 Other Research Possibilities ... 38

9 Conclusion .. 40

 3

10 Acknowledgments... 42

11 Appendix A... 43

12 References... 48

 4

1 Introduction

This report presents a novel speaker verification system that generates a new feature set
that captures long duration speaker identifying characteristics while taking advantage of
the well-established and well-studied Gaussian Mixture Model system (GMM). Much of
the innovation in the system is contained in the intelligent exploitation of traditional
cepstral features such that temporal aspects of speech, which are otherwise disregarded in
traditional GMM frameworks, can be explicitly modeled. The system consists of a
collection of independent GMMs, one for each phoneme, built on these long duration
feature vectors. The outputs of these GMMs are then combined at the score level using a
neural network.

Despite using traditional tools with respect to the GMM and the front-end feature
extraction, combining this system with a run-of-the-mill GMM system dramatically
reduced both the equal error rate (EER) and the minimum value of the decision cost
function (DCF) on a standard speaker verification test set, in comparison to the GMM
system alone. This improvement indicates that the long duration features are capturing
speaker characterizing information that the regular GMM ignores. The min DCF fell by
nearly 65% and the EER fell by approximately 36%. Moreover, the new system’s
performance, when operating in isolation, approached that of the state-of-the-art GMM.

1.1 Motivation

Speaker recognition is a task that is familiar to everyone. When answering the telephone,
people often know immediately who is on the other end of the line. Unfortunately,
speaker recognition is not such a simple task for computers. Part of the problem is that it
is difficult for humans to determine what characteristics they use in identifying speakers.
Perhaps they recognize a phrase the person commonly uses or maybe just the way the
person laughs. Human based speaker recognition can be studied, and has been to some
extent [1]. However, perhaps humans are not the optimal system; perhaps machines can
do much better.

There are a number of distinguishing speech characteristics that can be utilized, such as
acoustic qualities, prosodic patterns, pronunciation preferences, and word usage, to name
a few. The sources of these different pieces of information depend on factors ranging
from the shape of the nasal passage to where the person was raised [2]. The aspiration
for speaker recognition systems is to use all of the above-mentioned sources of
information; simply stated, the goal is to capture every piece of information that reveals
the identity of the speaker. The difficulty, however, is in modeling these complex
speaker idiosyncrasies.

The current state-of-the-art system, the GMM, generates its speaker hypothesis based on
information derived from frames, which are obtained by dividing the speech sample into
approximately ten-millisecond segments. These frames are then used without ordering to
model a speaker’s voice. This so-called “bag of frames” technique generally works very
well. However, there is good reason to believe that by treating each frame independently,
and hence forfeiting sequential information, the GMM loses potentially speaker-
identifying characteristics of the speech. The system proposed in this paper, which is

 5

referred to as the Sequential GMM, harnesses the power and simplicity of the GMM
while capturing sequential information by using frames that represent entire phonemes.
A phoneme is typically between 50 and 300 milliseconds long; therefore, the new frames
will represent a time span of approximately an order of magnitude longer than traditional
frames. Part of the reason this long-term modeling is possible is due to increased
quantities of training data available through NIST’s Extended Data task [3]. As the
availability of training data grows, the feasibility of modeling higher-level and potentially
rarer temporal speaker idiosyncrasies grows.

1.2 Overview

The primary innovation presented in this paper is the method by which a new feature
vector is created and where each new frame represents the information from an entire
phoneme. This task is accomplished by stacking the frames that constitute a phoneme
and treating this sequence of frames as a single new feature vector. Thus there is one
new frame for each instance of a phoneme in the speech stream.

This approach introduces a few challenges. First, the system now requires a phoneme-
level transcription of the acoustic data. Second, because the GMM must model a
probability space of fixed dimension, each of the new feature vectors must be the same
dimension. This is a significant hurdle because rates of speech can be highly variable, so
different instances of the same phoneme will generally be of different duration. Since the
new frames are created by stacking the old frames, phonemes of different length will
create stacked frames of different dimension. As was mentioned, this system builds
phoneme-specific GMMs; therefore, it is necessary to warp each sequence of frames, for
a specific phoneme, to the same length. The process for warping will be explained in
Section 4.5. The final issue introduced by this system is training the GMMs. Under the
new system, there are fewer frames because there is only one feature vector per phoneme.
Additionally, there are more model parameters to train due to two reasons: the dimension
of the training vectors has grown, and a separate GMM is being trained for each
phoneme.

The nature of the speaker recognition task is briefly described below; for further
explanation see [4]. Below, the basic GMM system will be briefly described (Section 2),
the creation of the new feature set will be explained (Section 4), a number of experiments
will be investigated (Section 7), and possible future directions of the research will be
proposed (Section 8).

2 The GMM

Before the GMM system is discussed, it is important to understand the speaker
verification task. A single trial in the task consists of a test speech segment and a
putative target speaker. The test segment contains speech from only one speaker, and the
goal is to determine whether the test segment was created by the target speaker. Hence,
the task can be formulated as a hypothesis test, where the hypotheses are denoted by H0
and H1. H1 is the hypothesis that the test data was created by the target speaker, a

 6

“match,” and H0 is the hypothesis that the test data was not created by the target speaker,
but instead by an “impostor.”

The decision criterion is given in the usual form for a hypothesis test,

This equation is further modified using Bayes rule, resulting in

This formulation gives the provably optimal solution, assuming the probabilities are
accurately modeled; however, in speaker verification, it is assumed that priors are
unknown to the researcher and are therefore disregarded. Hence, the metric of interest is
measured in terms of a likelihood ratio:

If the likelihood ratio is above a threshold, γ, H1 is accepted, otherwise H0 is accepted.

The GMM system [5, 6] is an effort to model those probabilities. It is the de facto
standard for text-independent speaker verification, and it performs very well despite its
simplicity. The system attempts to probabilistically model the frames of speech using
Gaussian mixtures, where a frame of speech is a vector resulting from some sort of signal
processing on a slice of speech. Frames are typically computed over a 30ms window, at
10ms steps through the speech utterance.

The first step in constructing the system, assuming the frames have been created, is to
create a universal background model (UBM) [5]. The UBM uses a GMM to model the
frames of speech from a generic speaker and is, therefore, trained on frames from a large
held-out set of speakers. The UBM can be used to calculate the probability of a frame
being created by a generic, non-target speaker; thus it produces the denominator of the
likelihood ratio. The GMM’s parameters are trained using Expectation Maximization
(EM). The trainable parameters are the Gaussian means, covariance matrices, and
weights. The covariance matrices are assumed to be diagonal, to limit the number of
parameters.

The second step is to create speaker-specific models. A speaker-specific GMM is created
through MAP adaptation [7] of the means from the UBM. The adaptation is computed
using training data, which consists of frames from speech utterances from the target
speaker. The amount of training depends on the application. Naturally, there is a
separate adapted GMM for each speaker of interest. The speaker-specific GMM is used
to generate the numerator of the likelihood ratio.

(3)
)impostor|datatest (

)match|datatest (
P

P
γ

(2) P(test data | impostor) P(impostor). P(test data | match) P(match)

(1) P(match | test data) P(impostor | test data).

H1

H0

H1

H0

H1

H0

 7

The log likelihood ratio is calculated as

∑
i i

i

xP

xP

),impostor|(

)match|(
log (4)

where xi is a frame from the test data and the sum is over all of the frames. Factoring the
joint probability of the test frames, from equation (3), into probability functions on the
individual frames implicitly assumes that the frames are independent. This assumption is
necessary because the GMM system contains no models of correlation among frames.
With the UBM, the speaker-specific adapted model, and the frames from the test data, the
likelihood ratio can be computed. The final step is to determine a threshold so a decision
can be made.

3 System Overview

The Sequential GMM system can be broken into three stages, which will each be
explained in Sections 4, 5, and 6, respectively:

1) Creating the new feature vectors
2) Developing the background and target models
3) Scoring and fusion

3.1 The Task

This system was run on the Extended Data task of the 2001 NIST Speaker Recognition
Evaluation [3]. The data in the task are drawn from recorded telephone conversations of
the switchboard one corpus which contains 2400 two-sided telephone conversations from
around 540 speakers [8, 9], and the task is strictly defined as speaker verification, as
described in Section 2. The test data for one trial consists of a single “conversation-side”
of speech from a single speaker, and the training condition is one in which eight
conversation-sides are available from the target speaker. The eight conversation-side
condition is on the large side of the spectrum of training conditions, with many systems
using much less. The Sequential GMM is well suited for a setting with more training
data because it models larger, and therefore sparser, speech events. A conversation-side
is the speech from one of the two speakers in a five-minute conversation.

The task is divided into six “splits,” where each split consists of a disjoint set of speakers;
therefore, testing on one split can use other splits in a non-cheating way. Splits 1, 2, and
3 have 4797 trials and splits 4, 5, and 6 have 5008 trials. When testing on the first three
splits the last three splits were used to train the background models, and vice versa.

 8

4 Developing the New Feature Set

The heart of the sequential GMM is the creation of the new feature vectors, in which the
new features are assembled from the typical Mel-Frequency Cepstral Coefficients
(MFCC) features [10]. Since there are two feature sets, one built from the other,
particular care must be taken to note when the new feature vectors are being referenced.
The process of creating these new feature vectors can be broken down into these six
stages, which will each be examined in detail in the following subsections:

1) Feature extraction
2) Automatic Speech Recognition (ASR)
3) Frame sifting
4) Calculating average state lengths
5) Frame warping
6) Stacking the frames

4.1 Feature Extraction

This system uses the traditional MFCCs, C0 through C19 extracted using HTK [11]. The
cepstra are produced every 10 ms over 25ms of speech. See Figure 1. The speech is
preemphasised, with a preemphasis coefficient of 0.97, and a Hamming window is used
to window the speech. Cepstral mean subtraction (CMS) [12] is applied on a per
conversation-side basis, with the means estimated from the speech portion of the
segment.

Delta parameters were not used because of the large dimension of the stacked feature
vectors and because stacking neighboring frames should inherently encode this
information. The primary difficulty with large feature vectors arises in training the large
number of resulting GMM parameters. The new frames, resulting from multiple stacked
frames, are as large as 300 dimensions without deltas. Using deltas would increase this
number to 600. Training this increased number of parameters is limited by two factors:
training data, and computation time. Although the mushrooming computation time could
be dealt with, the amount of training data cannot. Data for training the background
models can be pulled from other data corpora; however, the amount of data available for
adapting target models is limited to eight conversations by the task.

 9

Figure 1: The speech waveform passes into the feature extractor, which does signal
processing and produces a frame with 20 elements every 10 ms.

4.2 Automatic Speech Recognition (ASR)

The waveforms are separately run through a traditional word-based speech recognizer
[13], courtesy of SRI [14]. Because the ASR system was trained using the same
switchboard one data it was run on, somewhat stripped-down models were used, in order
to make the ASR quality practical. As a by-product of the speech recognition, the system
also produces phoneme and phoneme-state time alignments. Each phoneme, as modeled
by a Hidden Markov Model (HMM), contains three states. The frame sequence created
in the feature extraction is now labeled at the phoneme-state level (see Figure 2). The
SRI phoneme set consists of the 47 phonemes listed in Figure 11. Some of the
nonstandard phonemes include:

fpv: filled pause vowel (as in the vowel in “uh” or “um”),
fpn: filled pause nasal (as in the “m” in “um”),
bgn: background noise,
pum2: similar to fpv (sound of words like “hm”),
mtn: mouth noise, and
lau: laughter.

Feature
Extractor

… …

 10

Figure 2: The sequence of frames has been tagged, with the center 10 frames belonging
to the phoneme /aa/; states 1, 2, and 3 have three, three, and four frames, respectively.

4.3 Frame Sifting

Once the frames have been labeled by means of ASR, the frame sequences associated
with the different phonemes are sifted apart. This can be pictured as 47 bins, one for
each phoneme, and in each bin is a set of frame sequences. Naturally, each of the frame
sequences in a bin would correspond to the phoneme for which the bin was labeled;
moreover, it is crucial that the ordering of the frames within these sequences remain
intact. After all, this system is attempting to model the time-evolution of phonemes.

Since different phonemes tend to be different lengths, it was decided not to try to warp all
the frame sequences to the same target length, but rather warp each instance of a
phoneme to the average length of that phoneme type. The decision to treat each of the
phonemes separately is not without negative consequences. As was mentioned earlier,
data sparsity is a serious issue with this system, and by treating each phoneme separately,
the training data is spread out across 47 different GMMs. Moreover, it is actually worse
than simply dividing the training data by the number of phonemes, because some
phonemes are very infrequent. For example, the phoneme /zh/ often does not even
appear in conversations in the switchboard one corpus.

4.4 Calculating Average State Lengths

Before the frame sequences can be warped, it is necessary to know to what length they
will be warped. That is, how many frames will be in the sequence of frames for a
phoneme, after warping? Choosing a rather long target length has the benefit of
preserving the information in the sequence of frames, whereas choosing a short target
length results in a smaller probability space. Each choice has its advantage. Reducing

… …

State
1

State
2

State
3

/aa/

 11

the dimension of the probability space decreases the number of trainable parameters. On
the other hand, condensing the frame sequences likely throws out some sequential
information. For this system, a happy medium was chosen.

The number of desired frames is determined by finding the average number of frames in
each phoneme-state over all instances of the phoneme-state in the data. That number is
then rounded to the nearest integer. For example, after rounding, the phoneme /aa/ is
found to have an average of three, five, and three frames, respectively, for its three states.
Therefore, after warping, each /aa/ frame sequence will be eleven frames. This method is
slightly objectionable because the target lengths are being determined from the same
speakers (and conversations) the system is being tested on. Nevertheless, this is a minor
infraction because these average lengths are reasonably stable across the corpus.

To summarize the preceding discussion: For each phoneme there is a set of frame
sequences that are each labeled with three phoneme-states. Moreover, the desired
number of frames for each phoneme-state is known. All that remains is to warp each of
the frame-sequences to the appropriate size and then stack the frames.

4.5 Frame Warping

The key step in the new feature creation is a time warping which is implemented in order
to make all frame sequences corresponding to the same phoneme have the same number
of frames. This time warping is computed component-wise for each cepstrum. Figure 3
shows a sequence of frames for the phoneme /aa/ being warped to the appropriate length.

Two different methods of interpolation were used: linear, and sinc kernel, also known as
the “sampling function,” convolution. A third method of warping simply collapsed each
state of a phoneme into a single frame. This method is referred to as the “average.” Each
of these methods are explained below.

 12

Figure 3: An instance of the phoneme /aa/ with three, three, and four frames,
respectively, is warped into a frame sequences with three, five, and three frames,
respectively.

4.5.1 Warping Method: Linear Interpolation

In this method, adjacent points are simply connected with a line, then sampled at evenly
distributed points, with the first and last values remaining unchanged. The figures below
are an example of the process for a single component in which a five-frame phoneme-
state is warped to a seven-frame sequence. In Figure 4, there are five values of the
cepstrum corresponding to a five-frame phoneme-state, and in Figure 5, these five points
are linearly interpolated. Finally, Figure 6 shows the resulting seven cepstra values. In
situations where a single frame must be warped into multiple frames, it is repeated.

/aa/
State

/aa/
State

/aa/
State

/aa/

/aa/
State

/aa/
State

/aa/
State

/aa/

 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

Frame Index

C
ep

st
ru

m
 V

al
ue

Figure 4: The value of a cepstrum over five frames.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

Frame Index

C
ep

st
ru

m
 V

al
ue

Figure 5: The five cepstra values from Figure 4 are linearly interpolated.

 14

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8

Frame Index

C
ep

st
ru

m
 V

al
ue

s

Figure 6: The linear interpolation of the five cepstra from Figure 5 is sampled at seven
equally spaced intervals.

4.5.2 Warping Method: Sinc Kernel

This method of warping is based on a digital-signal-processing perspective. The discrete
data points are treated as a sequence of appropriately weighted dirac deltas that are
convolved with a sinc kernel and then sampled in the same fashion as in the linear
interpolation case. The sinc kernel is defined as





 =

≡
otherwise.

)sin(
,0for 1

)sinc(
x

x
x

x
π

π

See Figures 7, 8, and 9 for an example of the sinc warping method.

Figure 10 shows the difference between the two warping methods. The linear
interpolation method is a weighted average of neighboring points. On the other hand,
since the sinc interpolating function consists of numerous low frequency sines, the
interpolation overshoots the original values. See Figure 10. From a heuristic standpoint,
it is not clear which method is more appropriate.

 15

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

Frame Index

C
ep

st
ru

m
 V

al
ue

s

Figure 7: The five cepstra from Figure 4 are superimposed with a sinc of appropriate
scale.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6

Frame Index

C
ep

st
ru

m
 V

al
ue

s

Figure 8: The five shifted and scaled sincs from Figure 7 are summed, to complete the
convolution.

 16

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

Frame Index

C
ep

st
ru

m
 V

al
ue

s

Figure 9: The sinc interpolation of the five cepstra from Figure 8 is sampled at seven
equally spaced intervals.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5 6 7 8 9

Frame Index

C
ep

st
ru

m
 V

al
ue

s

Sinc Warp
Linear Warp
Linear Interpolation
Sinc Interpolation

Figure 10: A comparison of the two warping methods.

 17

4.5.3 Warping Method: Average

This warping method collapses each phoneme-state frame sequence into a single frame.
This is done by component-wise averaging. This method is simple and results in
relatively small stacked frames. Figure 11 shows a sequences of frames for the phoneme
/aa/ being warped using this method.

Figure 11: A sequence of frames corresponding to a phoneme, with three states, is
transformed according to the average warping method.

4.6 Stacking the frames

The final step in the feature creation process is stacking the warped frame sequence into a
single new feature vector. Refer to Figure 12. Each phoneme token in the data results in
a single stacked feature vector.

 18

Figure 12: The warped frame sequences on the left are stacked and become the long
frames on the right.

5 Model Training

Once this new set of feature vectors has been created, a traditional GMM system is used
to train a background and adapt target models. A separate GMM is created for each
phoneme and hence there will be separate background models and adapted target models
for each phoneme.

5.1 Background Training

In the following experiments, testing on splits 1, 2, and 3 used splits 4, 5, and 6 for
background training and vice versa for testing on splits 4, 5, and 6. The Gaussians were
trained with diagonal covariance matrices, and the number of Gaussians in each
background model varied across experiments. This will be explored later in the report.
One of the major concerns with this system is whether the data would be sufficient to
train the background models.

Table 1 shows the dimension of the feature vectors for the various phonemes, the amount
of available training data for each phoneme, and a comparison to the amount of training

. . .
…

 19

data for a typical GMM. For a typical GMM UBM, 3 hours of training data is usually
sufficient, but commonly much more may be used. At 10ms per frame, this works out to
1,080,000 training points. The columns, “% Compared to a Typical GMM,” refer to the
percentage of the 1,080,000 points that is available to train the background model for a
particular phoneme in the Sequential GMM. The percentages vary, with many of them
being under 10%.

It is important to note confounding factors for this comparison. A typical UBM has
around 2000 Gaussians, while the Sequential GMM system typically used 128 or 256
Gaussians for each phoneme model. On the other hand, typical GMM systems use
feature vectors of dimension 40, while this system’s feature vectors are typically four or
five times this size. For diagonal covariance Gaussians, the number of training
parameters is proportional to the dimension of the feature space and the number of
Gaussians. Therefore, the GMM for a single phoneme in the Sequential GMM has about
half as many parameters as a typical GMM. Many of the GMMs in this system are using
significantly less training data than typical; however, after taking into account the number
of parameters to train, the situation is not quite as bad as the table implies.

Background: Splits 1, 2, 3 Background: Splits 4, 5, 6

Phoneme
Dimension
of Feature

Number
of
Stacked
Feature
Vectors

 % of
Total

%
Compared
to a
Typical
GMM

Number of
Stacked
Feature
Vectors

% of
Total

%
Compared
to a
Typical
GMM

aa 220 64,377 1.4% 6.0% 65,003 1.4% 6.0%
ae 260 149,295 3.1% 13.8% 146,301 3.1% 13.5%
ah 160 114,966 2.4% 10.6% 110,182 2.4% 10.2%
ao 240 55,557 1.2% 5.1% 55,502 1.2% 5.1%
aw 300 30,223 0.6% 2.8% 29,763 0.6% 2.8%
ax 80 483,115 10.2% 44.7% 474,827 10.1% 44.0%
ay 260 134,222 2.8% 12.4% 132,695 2.8% 12.3%
b 140 82,869 1.7% 7.7% 81,252 1.7% 7.5%
bgn 400 14,992 0.3% 1.4% 15,792 0.3% 1.5%
ch 240 17,470 0.4% 1.6% 17,750 0.4% 1.6%
d 120 159,847 3.4% 14.8% 156,301 3.3% 14.5%
dh 100 153,843 3.2% 14.2% 149,824 3.2% 13.9%
dx 120 51,453 1.1% 4.8% 51,090 1.1% 4.7%
eh 160 120,246 2.5% 11.1% 119,898 2.6% 11.1%
er 200 92,945 2.0% 8.6% 91,165 1.9% 8.4%
ey 240 73,710 1.6% 6.8% 73,604 1.6% 6.8%
f 200 63,411 1.3% 5.9% 62,814 1.3% 5.8%
fpn 340 13,551 0.3% 1.3% 10,792 0.2% 1.0%
fpv 560 37,334 0.8% 3.5% 33,361 0.7% 3.1%
g 160 51,192 1.1% 4.7% 51,055 1.1% 4.7%
hh 240 87,615 1.8% 8.1% 88,213 1.9% 8.2%
ih 160 150,649 3.2% 13.9% 145,652 3.1% 13.5%
iy 200 164,547 3.5% 15.2% 163,507 3.5% 15.1%
jh 180 25,171 0.5% 2.3% 24,233 0.5% 2.2%

 20

k 180 140,105 3.0% 13.0% 138,953 3.0% 12.9%
l 180 166,644 3.5% 15.4% 165,330 3.5% 15.3%
lau 400 68,078 1.4% 6.3% 67,239 1.4% 6.2%
m 140 121,127 2.6% 11.2% 120,409 2.6% 11.1%
mtn 400 33,211 0.7% 3.1% 31,567 0.7% 2.9%
n 140 318,296 6.7% 29.5% 314,812 6.7% 29.1%
ng 180 53,701 1.1% 5.0% 52,383 1.1% 4.9%
ow 280 99,080 2.1% 9.2% 98,122 2.1% 9.1%
oy 320 3,446 0.1% 0.3% 3,665 0.1% 0.3%
p 160 72,219 1.5% 6.7% 71,703 1.5% 6.6%
pum2 660 20,461 0.4% 1.9% 23,191 0.5% 2.1%
r 180 172,788 3.6% 16.0% 173,001 3.7% 16.0%
s 200 201,085 4.2% 18.6% 196,800 4.2% 18.2%
sh 240 22,927 0.5% 2.1% 23,295 0.5% 2.2%
t 120 326,383 6.9% 30.2% 319,022 6.8% 29.5%
th 160 37,769 0.8% 3.5% 36,325 0.8% 3.4%
uh 120 26,872 0.6% 2.5% 26,746 0.6% 2.5%
uw 180 78,978 1.7% 7.3% 79,127 1.7% 7.3%
v 120 74,914 1.6% 6.9% 73,235 1.6% 6.8%
w 200 117,304 2.5% 10.9% 114,903 2.5% 10.6%
y 180 88,142 1.9% 8.2% 88,246 1.9% 8.2%
z 180 109,893 2.3% 10.2% 108,625 2.3% 10.1%
zh 180 2,060 0.0% 0.2% 1,922 0.0% 0.2%

Total: 4,748,084 100.0% 4,679,197 100.0%

Table 1: A table representing the distribution of the data across the phonemes. For each
phoneme, the dimension of the stacked feature vector and the number of training
instances available for each background model are given. The “% total” column
represents the percentage of the new feature vectors that are in a specific phoneme class.
Finally, the “% Compared to a Typical GMM” column shows the percentage of frames
available to train the phoneme-specific model compared to the number of frames
typically used to train a traditional UBM, where a frame for the phoneme-specific
background model is a stacked feature vector.

5.2 Target Model Adaptation

Data sparsity is a more serious problem for the adaptation of the phoneme-specific
background models to the targets. The amount of data used in training the UBM is only
limited by the size of the available corpora. The amount of data available for adapting
the target models, however, is defined by the task and is constrained to eight
conversation-sides. Thus, when comparing the amount of training data available for this
system to that of a typical GMM, model adaptation is much more starved than the
background model. For example, at one frame per 10ms, there will be about 120,000 (8
[conversations] x 2.5 [minutes / conversation] x 6000 [frames / minute]) training points
available for typical model adaptation; whereas in the Sequential GMM system there are
approximately only 300 training points on average over a feature space four or five times
the dimension. The number of stacked feature vectors available in the training data was
calculated by taking into account that the average phoneme in this corpus is 90ms, and
there are 47 phonemes. Moreover, this assumes that the speakers use all phonemes

 21

equally, which we know is false from Table 1. Therefore, some models are being
adapted from even fewer data.

6 Scoring & Fusion

The final step is to compute the score as in equation (4) for each phoneme model, using
the new feature vectors, and then combine the scores resulting from each of the
phonemes. The combination was done with LNKnet [15]. LNKnet was used to train a
neural net with seven hidden nodes. The training is done in a round-robin process using
the first three splits of the task and the last three splits. When training the neural network
on splits one, two, and three the testing is done on splits four, five, and six, then vice
versa. Note that the neural network parameters are optimized using the same data used in
constructing the background models, which is not ideal.

7 Experiments

The experiments on the system include exploring the different frame-sequence warping
methods and the number of Gaussians components used in the GMMs, and combining the
system with the state-of-the-art GMM system, among others. Results presented were run
on the entire 2001 Extended Data task. The performance is measured in terms of the
EER and min DCF [3], and the Detection Error Tradeoff (DET) curve [16] is provided in
some key experiments. The EER is defined as the error rate where the probability of
false alarm is equal to the probability of missed detection. The min DCF is the minimum
value of the decision cost function, as defined by NIST:

,P P C P P CDCF IMPOSTORIMPOSTOR | ALARM FALSEALARM FALSEMATCHMATCH | MISSMISS ××+××=

where the costs are defined by CMISS = 10 and CFALSE ALARM = 1, and the probability of an
impostor is 0.99.

7.1 Baseline System

As a matter of comparison, a generic GMM without z-norm [6], t-norm [17], h-norm [6],
or feature mapping [18] is run on the task, since these features have not yet been
introduced into the Sequential GMM system. Its models consist of 2048 Gaussian
components, and its performance is shown in Table 2. As a matter of notation, this
system will be referred to as “GMM – 1.”

In addition, a state-of-the-art GMM system will be used in experiments to demonstrate
that the Sequential GMM can improve performance through combination. The state-of-
the-art GMM system, which will be referred to as “GMM – 2,” benefited from t-norm
followed by h-norm. The importance of these normalizations is underlined by a
comparison of Tables 2 and 3.

 22

GMM – 1

min DCF 0.0220
EER 4.88%

Table 2: Performance of the baseline GMM, without normalizations.

GMM – 2
min DCF 0.00509

EER 0.90%
Table 3: Performance of the state-of-the-art GMM.

7.2 Sequential GMM

The experiments detailed in this section test the performance of the Sequential GMM
system described above for the different frame-warping methods and various numbers of
Gaussian components.

Figure 13 compares the three different warping methods for the case where 128 Gaussian
components are used. The most interesting result is that all three warping methods score
so similarly, especially in the EER region. However, the linear interpolation-based
warping method prevails in the low false-alarm region. Finally, it is clear that the system
is vastly superior to the GMM system without any normalization. The metrics of interest
for this system are reported in Table 4. The poor performance in the high false-alarm
region is believed to be a result of LNKnet optimizing for DCF, and this phenomena is
discussed in Section 8.

The next experiment is similar to the one above, except 256 Gaussians components are
used. The DET curves are shown in Figure 14. Again, the different warping methods’
performances are comparable. However, the sinc interpolation-based warping faired
slightly better than the rest except in the high false-alarm region. In addition,
examination of Table 4 reveals that using 256 Gaussian components tends to be superior
to 128. The sinc interpolation-based warping with 256 Gaussian components resulted in
the best EER for the system: 1.14%. The DCF for the same configuration was .0057.
Both of these scores are close to the marks reached by the state-of-the-art GMM.

Figures 15 and 16 compare the DET curves for 128, 256, and 512 Gaussian components
for the average and sinc interpolation warping methods, respectively. For the average
warping method, which has smaller feature vectors, the system performs comparably for
each number of Gaussians; however, for the sinc interpolation warping method the best
performance is with 256 Gaussian components, particularly in the low false-alarm region.

 23

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

Different Warping Methods Compared - 128 Gaussians

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Average
Sinc
Linear
GMM - 1

Figure 13: DET curves for different warping methods, using 128 Gaussian components,
versus the baseline GMM.

 24

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

Different Warping Methods Compared - 256 Gaussians

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Average
Sinc
Linear
GMM - 1

Figure 14: DET curves for different warping methods, using 256 Gaussian components,
versus the baseline GMM.

 Sinc

Interpolation
Linear
Interpolation

Average

EER 1.34% 1.33% 1.28% 128 Gaussian
Components min DCF 0.00728 0.00644 0.00681

EER 1.14% 1.25% 1.33% 256 Gaussian
Components min DCF 0.00575 0.00605 0.00715

 GMM – 1 GMM – 2
EER 4.88% 0.90% 2048 Gaussian

Components min DCF 0.0220 0.00509

Table 4: System performance for various configurations.

 25

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Average Warping Method Compared for Different Numbers of Gaussians

512 Gaussians
256 Gaussians
128 Gaussians

Figure 15: DET curves for various numbers of Gaussian components for the average
warping method.

 26

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Sinc Warping Method Compared for Different Numbers of Gaussians

512 Gaussians
256 Gaussians
128 Gaussians

Figure 16: DET curves for various numbers of Gaussian components for the sinc
interpolation warping method.

7.3 Combination with the State-of-the-Art GMM

In this experiment, the systems from the previous section are combined with the state-of-
the-art GMM (GMM – 2). Combination is done at the score level using LNKnet. The
GMM – 2 scores are treated as an additional phoneme, i.e. the input layer of the neural
net now has 48 nodes instead of 47, one for each phoneme and one for GMM – 2.

The ability of a system to combine with the state-of-the-art system is crucial. For
example, systems based on idiolect [19] traditionally have rather poor performance in
isolation; however, they are very valuable in combination with the GMM. The objective
of the Sequential GMM system is not to outclass the state-of-the-art system, but rather to
capture speaker characterizing information that the regular GMM disregards, specifically
sequential information. That is exactly what occurred. As was stated in the introduction,
combing the two systems caused the EER to fall by 36% and the min DCF to fall by
65%, relative to the GMM alone.

Figure 17 and Table 5 show the results from combining the various warping methods,
using 256 Gaussian components, with GMM – 2. The DET curves show the significant
improvement over the state-of-the-art GMM, particularly in the important low false-
alarm region. In addition, it is clear that the average warping method system does not
combine quite as well as the others. Fortunately, this is what would have been expected;

 27

since the average method captures the least amount of sequential information because it
collapses many frames into one, it is the most similar to the regular GMM.

256 Gaussian
Components

Sinc
Interpolation +
GMM – 2

Linear
Interpolation +
GMM – 2

Average +
GMM – 2

GMM – 2

EER 0.57% 0.65% 0.79% 0.90%
min DCF 0.00180 0.00224 0.00289 0.00509
Table 5: System performance for various configurations.

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Different Warping Methods Combined with GMM - 2

Average + GMM - 2
Sinc + GMM - 2
Linear + GMM - 2
GMM - 2

Figure 17: DET curves for the Sequential GMM systems combined with the state-of-the-
art GMM system. The Sequential GMMs used 256 Gaussian components.

7.4 Limiting the Length of the Phoneme States

In this experiment, the method used to calculate state lengths, described in Section 4.4, is
slightly modified. The maximum length for a phoneme-state is capped at three, i.e. the
phoneme-state length is the minimum of three and the previously determined value. The
motivation behind the experiment is to see if limiting the size of the feature vectors will
improve system performance. The result, as seen in Table 6, is a slight degradation in
performance. This implies that using the longer phoneme-state lengths did not
particularly harm training the models, and that further compressing the frame sequences
tends to remove valuable speaker identifying characteristics.

 28

256 Gaussian
Components

Linear
Interpolation

Linear
Interpolation –
Capped
Phoneme States

EER 1.25% 1.38%
min DCF 0.00605 0.006730

Table 6: System performance with and without capped phoneme-state lengths.

7.5 Principal Component Analysis (PCA)

In order to alleviate potential data sparsity problems, PCA is used to reduce the
dimension of the feature space, using the linear interpolation feature set as a typical
system. The PCA is implemented on each phoneme individually, and the transformation
is trained on all instances of a phoneme type in the corpus. As with calculating the
phoneme-state average lengths, this transformation is technically cheating because the
system is supposed to compute speaker hypotheses on-line, without additional knowledge
of the other trials in the task. Although it is uncertain how this reflects itself in the
system performance, cheating in this way should undoubtedly only help performance;
thus this method gives us an upper bound on the potential of PCA. Table 7 shows how
much information, in terms of energy, is preserved by transforming the feature spaces to
retain only the 50 (or 100) largest eigendirections. On average across the phonemes, 88%
and 96% of the energy is preserved for compression to 50 and 100 features, respectively.
For the majority of the phonemes, the amount of retained energy is rather high,
considering the dramatic decrease in the feature space. The least compressible phoneme
is /ch/.

Unfortunately, PCA results in a degradation of performance. In Figure 18 the DET
curves for before and after PCA can be compared, for 256 Gaussian component models.
When using 128 Gaussian components, the PCA feature set’s performance is closer to the
baseline; however, it is still inferior. It is important to note that it is something of a
mystery what information is discarded in the transformation. It is certainly possible that
the few percent of information that has been abandoned has most of the discriminating
power. An alternative approach would be to use Linear Discriminant Analysis (LDA),
which explicitly preserves the directions with the most discriminating power.

PCA Compression

Phoneme

Dimension
of Feature

Vector
50 Largest

Eigenvalues
100 Largest
Eigenvalues

aa 220 90.7% 97.0%
ae 260 90.2% 96.3%
ah 160 92.1% 98.1%
ao 240 89.5% 96.3%
aw 300 89.0% 95.7%

 29

ax 80 96.4% 100.0%
ay 260 88.3% 95.6%
b 140 88.8% 97.9%
bgn 400 85.6% 92.6%
ch 240 76.7% 89.8%
d 120 91.5% 99.2%
dh 100 93.5% 100.0%
dx 120 94.7% 99.5%
eh 160 93.3% 98.5%
er 200 90.6% 97.1%
ey 240 89.4% 96.3%
f 200 80.6% 92.7%
fpn 340 85.0% 92.7%
fpv 560 84.3% 91.4%
g 160 86.8% 96.6%
hh 240 90.2% 96.1%
ih 160 92.6% 98.2%
iy 200 91.5% 97.4%
jh 180 83.1% 94.4%
k 180 83.1% 94.5%
l 180 90.8% 97.4%
lau 400 80.4% 90.1%
m 140 91.3% 98.5%
mtn 400 80.5% 89.4%
n 140 93.2% 98.8%
ng 180 91.8% 97.7%
ow 280 88.7% 95.5%
oy 320 85.3% 94.1%
p 160 82.4% 95.2%
pum2 660 83.5% 90.5%
r 180 92.2% 97.8%
s 200 81.8% 93.2%
sh 240 79.3% 90.9%
t 120 90.1% 99.1%
th 160 83.6% 95.6%
uh 120 93.7% 99.4%
uw 180 92.6% 97.9%
v 120 91.8% 99.3%
w 200 88.5% 96.3%
y 180 89.6% 96.9%
z 180 86.2% 95.6%
zh 180 86.4% 95.6%

Table 7: This table shows the amount of energy contained in the 50 and 100 largest
eigenvectors.

 30

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

PCA - 256 Gaussians

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

PCA - 50
PCA - 100
Linear Interpolation

Figure 18: DET curves displaying the result of PCA. The baseline uses linear
interpolation warping and 256 Gaussian components. The PCA is performed on the
same feature set.

7.6 Adapting from a UBM

Rather than directly building phoneme-specific background models, a UBM is created.
The UBM models all of the phonemes, and the phoneme-specific background models are
then adapted from the UBM. See Figure 19. From that point onward, the system is the
same as before. This staged approach was inspired by phoneme-model experiments of
[20]. The adaptation of the UBM to phoneme-specific background models uses the same
features that are used to create phoneme-specific background models directly in the
single-stage approach. In all cases, the adaptation was only done on the means of the
Gaussians.

The primary advantage of adapting the models in this method is that the initial UBM can
take advantage of all the available data. Thus, the phoneme-specific UBMs should be
able to capitalize on the fact they are adapting from a well-developed background model
and not from scratch. One limitation of this method is that it requires that the feature
vectors for all the phonemes be the same dimension. For this reason, the average
warping method was used in this experiment. This is unfortunate because the other
warping methods, which have larger dimension vectors, are more likely to benefit from
this technique.

 31

Figure 20 displays the DET curves comparing the two adaptation schemes and the
baseline GMM. Both the single-stage and the two-stage adaptation methods are on the
feature set created with the average warping style, and they both use 512 Gaussians
components. The single-stage adaptation significantly outperforms the two-stage
adaptation. However, the reason for this may be that the UBM should have been trained
with more Gaussian components.

Figure 19: Two different GMM adaptation approaches [20].

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

Different Adaptation Schemes

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Single-Stage
Two-Stage

Figure 20: DET curves for the different adaptation methods.

Two-Stage

All Phoneme
UBM

Phoneme–Specific
Background Model

Single-Stage

Phoneme–Specific
Background Model

Phoneme–Specific
Target Model

Phoneme–Specific
Target Model

 32

7.7 Comparison to other Sequential Systems

In this section, the Sequential GMM system is compared to two other systems, both of
which capture phoneme-length sequential information: one that is non-parametric, and
another that models the sequences with HMMs.

7.7.1 Comparison to a Non-Parametric System

The first system, referred to as the Sequential Non-Parametric (SNP) system, compares
phoneme-length frame sequences in the test and target data. As its name implies, the
comparison is done non-parametrically [21]. In the SNP system, each trial of a test
segment against a putative target model consists of scoring each frame sequence in the
test data, corresponding to a phoneme, versus every instance of that phoneme in the
training data. The frame sequences are scored by aligning the frames using a Dynamic
Time-Warping (DTW) algorithm and then taking a Euclidian distance between aligned
frames. This is a kth nearest neighbor technique where only the distance to the closest
training token is stored for each test token. The particular SNP system configuration
used in this combination is exactly as described in [21] for phoneme-unigrams. Note that
phoneme-unigrams are not the optimal token size for the SNP system: phoneme-trigrams
performed better. This offers hope that the performance for the Sequential GMM system
could be improved by switching to a longer token unit.

These systems make an interesting comparison because they are both based on the same
phoneme-level frame sequences. There are two major differences between the systems.
First, the SNP system uses no parametric models; and second, the frame sequences are
warped differently. In the SNP system each pair of frame sequences are optimally
warped for each other with DTW, whereas in the Sequential GMM system all the frame
sequences are warped at the beginning to a common length.

Figure 21 shows the DET curves and Table 8 displays the EERs and DCFs for the SNP
system, the Sequential GMM system, and a combination of the two using LNKnet. The
Sequential GMM system performs better than the SNP, but the interesting fact is that
combining the two systems results in very little improvement in system performance.
This indicates that the speaker discriminating power of the SNP system is largely
subsumed by the Sequential GMM system. Moreover, Figure 22 shows that the
Sequential GMM system combines better with the state-of-the-art GMM system.

 33

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

SNP Compared to Sequential GMM

Sequential GMM
SNP+Sequential GMM
SNP

Figure 21: DET curves for the SNP, the Sequential GMM system, and a combination of
the two. The Sequential GMM uses 256 Gaussian components and the sinc interpolation
warping method.

 Sequential

GMM
SNP Sequential

GMM +
GMM – 2

SNP +
GMM – 2

GMM – 2

EER 1.14% 1.85% 0.57% 0.68% 0.90%
min DCF 0.00575 0.00937 0.00180 0.00264 0.00509
Table 8: EERs and DCFs for various systems. The Sequential GMM uses 256 Gaussian
components and the sinc interpolation warping method.

 34

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

SNP & Sequential GMM Combined with the State-of-the-Art GMM

GMM - 2
SNP + GMM - 2
Sequential GMM + GMM - 2

Figure 22: DET curves for state-of-the-art GMM and its combination with the SNP
system and the Sequential GMM system. The Sequential GMM uses 256 Gaussian
components and the sinc interpolation warping method.

7.7.2 Comparison to a Hidden Markov Model (HMM) based System

The HMM system takes the phoneme frame sequences and models them with HMMs.
The phoneme-level HMM system is comparable to the system described in [22]. This
system produced speaker hypotheses using HMM models on a handful of specially
chosen words whereas the phoneme-level HMM system models phonemes. There are
HMM models for 43 phonemes; each model has three states and 128 Gaussians
components. This works out to 384 Gaussians per model, slightly more than, but
comparable to, the Sequential GMM system. Training consisted of Baum-Welch re-
estimation, and successive splitting of the Gaussians, starting from one Gaussian per
state.

The Sequential GMM system and the phoneme-level HMM systems are analogous, save
that different probabilistic models were used. The Sequential GMM system explicitly
models all of the (warped) frames in the phoneme, i.e. the complete trajectory of the
sequence of frames. The HMM model is “looser” and only models the frames in
reference to their being in one of the three ordered states; i.e. the frames are split into
three ordered groups. Modeling with HMMs has the advantage that it does not require
any frame warping.

 35

In terms of performance, the Sequential GMM has a vastly superior EER, while the
HMM system has a modestly better DCF. See Table 9. Note that the performance of the
system using the whole word models [22] is superior to that of the phoneme-level HMM
system.

 Sequential
GMM

HMM

EER 0.66% 1.16%
min DCF 0.00537 0.00460

Table 9: EERs and DCFs for the two systems. All scores are reported on a single split of
switchboard one, consisting of 1624 trials because the HMM system’s results are only
available for this split.

8 Discussion & Future Work

Since this system is still in a preliminary stage, there are still many avenues that could
potentially lead to performance improvements. Some of these ideas and other
observations are discussed below.

8.1 Phoneme Performance

Tables 11, 12, 13, and 14, presented in Appendix A, show the EERs and min DCFs for
each phoneme in most of the systems discussed above. One easily identifiable fact from
these tables is that each phoneme’s performance is relatively similar for each system.
One thing not so readily identifiable, but intuitive, is that the EER is strongly correlated
with how frequent the phoneme is. See Figure 23. In general, the more frequent a
phoneme, the lower the EER is. This graph helps motivate interest in reducing the
dimension of the models and moving to a larger corpus. Also, note that phonemes such
as /zh/ and /oy/ have such poor EERs because they don’t even appear in many test
utterances.

One other aspect investigated is using subsets of the phonemes [20, 23]. These
experiments illustrate that every phoneme is contributing to the score since removing any
one phoneme results in a degradation in performance. Moreover, contrary to the results
in [23], no performance gain is realized from using any subset of phonemes tried. Figure
24 shows the result for two different possible subsets: using the six best phonemes and
using the forty best phonemes. The “best phonemes” are measured in terms of EER in
isolation, according to Table 11. In both cases, the EER and min DCF of the systems
based on the subsets of phonemes scored worse than the system that used all of the
phonemes.

 36

1

10

100

1000 10000 100000 1000000

Training Points

E
E

R

Figure 23: A log-log plot of EER versus the average number of training vectors for the
phoneme-specific UBM. The EERs were taken from the sinc interpolation warping
method with 256 Gaussian components given in Table 11.

 37

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

Different Phoneme Sets

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

All Phonemes
6 Best Phonemes
40 Best Phonemes

Figure 24: DET curves for various sets of phonemes, using the sinc interpolation
warping method and 256 Gaussian components.

8.2 ASR

The ASR step in the system is suboptimal for a number of reasons. First, because
switchboard one is an older task, the ASR system used is several years old and therefore
not as good as current ASR systems. Moreover, due to differences in frame indexing
conventions between SRI, who provided the ASR output, and HTK, which was used to
do the feature extraction, there are likely slight frame alignment errors. Even small frame
alignment differences can be significant, since phoneme states can be as short as a single
frame. In newer systems, this issue was resolved by not chunking the feature files. If
these modifications were made it is reasonable to expect an improvement in performance.
For example, compare the improvement for a word-based HMM speaker recognition
system in Table 10.

In order to assess the effect of ASR errors on system performance, it would be valuable
to run the system using forced alignments based on truth transcripts. Although the word-
level transcriptions do exist for switchboard one, the author did not have access to a
phoneme state-level forced alignment based on these truth transcriptions. Nevertheless,
the ASR based system provides the most important result because it represents the score
that the fully-automatic speaker-recognition system produces. It is important that the
system be automatic from beginning to end, and unfortunately truth transcription is a
labor-intensive task.

 38

Word-Based HMM System Performance

 Before Improvements After Improvements
EER 2.0% 1.7%
DCF .012 .0092

Table 10: This table shows the change in system performance for the system in [22] that
results from using newer ASR recognition and not segmenting the feature files.

8.3 Grouping Phonemes

It would be an interesting experiment to attempt to warp all the phonemes to the same
length without simply reducing all of the phoneme-states to a single frame, as presented
in section 7.6. Another method to fight data sparsity is to group phonemes together,
based on acoustic similarity. Thus the training data would not be divided into as many
“bins.” The trade-off is between the amount of training data and the tightness of the
probability models. That is, the more phonemes that are grouped together, the larger the
acoustic space they will cover and hence the more spread out the GMMs will be. For
example, the phonemes /ah/ and /aa/ may be close enough that it would be better to group
them together for training the GMMs.

8.4 Alternative Approaches to the Average Phoneme-State Lengths

Section 4.4 includes a discussion of the trade-offs between different phoneme-state
lengths. Alternative approaches may result in superior performance. It is possible to
choose the target phoneme-state length based on how rich the acoustic information within
the phoneme-state is. For instance, some of the factors of interest may be the time-
evolution of the formants or whether the sound is voiced or unvoiced. Alternatively, one
could just choose the longest instance of a phoneme-state as the desired length. As was
discussed before, this method prevents discarding any temporal information.

8.5 Other Research Possibilities

Since the system is still in an early stage of development, there are many respects in
which it could be improved. Some of these are listed below.

• Tweak the interpolation method. There are a number of methods to interpolate
points, ranging from splines to different kernels. It is possible that some other,
yet uninvestigated, method could be superior.

• Apply LDA to the feature vectors. The feature vectors are large and have been
shown by way of PCA to be highly reducible. Perhaps LDA can better reduce the
dimension while retaining the speaker discriminating information.

• Optimize the score combination for the phonemes. LNKnet has numerous
parameters, including the type of neural network, the topology of the neural
network, and the optimization parameters for training the neural network.
Numerous times LNKnet has resulted in patently non-optimal combinations;
therefore, it is reasonable to suspect that the combinations for this system are also

 39

suboptimal. See Figure 25 for an example of how changing the neural network
configuration affects performance.

• Adapt the system for use in an SVM. This research avenue is more speculative
than the others; however, by creating vectors in a method similar to [24], but
based on the stacked feature vectors in this system, an SVM can be explored.

• Change the basic unit from phonemes to tri-phonemes, words, etc. Recall that
using longer tokens improved performance in the SNP and HMM systems [21,
22]. One major issue is that by increasing the basic unit size, data sparisty
becomes an even larger issue.

• Use open loop phone decoding for the ASR. The main interest in the system is
parsing the frames into acoustically similar chunks. The phoneme sequence as
dictated by the lexicon is of little interest.

• Replace GMMs with other probabilistic models, such as Conditional Random
Fields (CRF).

• Investigate the front-end. Perhaps there is an alternative signal processing method
that is better suited for this system.

• Add normalization. Z-norm, t-norm, h-norm, or feature mapping could easily be
applied to this system, and they have the potential for large performance gains.

• Move to a larger and more challenging corpus, such as switchboard two. A larger
corpus would supply ample data for training background models and applying the
various normalizations mentioned above.

 40

 0.1 0.2 0.5 1 2 5 10 20 40

 0.1

 0.2

 0.5

 1

 2

 5

 10

 20

 40

False Alarm probability (in %)

M
is

s
pr

ob
ab

ili
ty

 (
in

 %
)

Different LNKnet Parameters

7 Hidden Nodes
No Hidden Nodes

Figure 25: DET curves for the system, with sinc interpolation warping and 256
Gaussians components, using different LNKnet options. One configuration had a hidden
layer with seven hidden nodes, and the other configuration had no hidden layers.

9 Conclusion

Since speaker recognition is as of yet an unsolved problem, it is still an open question as
to what form the optimal solution will take. However, the optimal systems should use all
possible sources of speaker identifying information—something the GMM system does
not do. This does not mean the GMM system should be scrapped; it is good at collecting
considerable speaker relevant information. The goal should be to build systems that
capture the other sources of information, such as prosodic patterns, pronunciation
preferences, word usage, grammar, and other speaker idiosyncrasies.

The Sequential GMM is one such system because it is a powerful addition to the
traditional GMM system. Despite the undeveloped state of the system, it is amazingly
able to cut the min DCF of the traditional GMM by over 50%. The min DCF is the
principal metric by which speaker verification systems are measured by NIST and an
important operating point for security applications. A primary advantage of this system
is that it is composed of off-the-shelf parts: ASR, cepstral-based signal processing, and
GMMs. This makes the system simple to implement, especially considering how
commonplace GMM systems have become. Moreover, system performance should

 41

improve as ASR does. Finally, since this system is an adaptation of well-known
technology, the GMM, much of the research on GMMs can be applied to this system, e.g.
feature mapping. By bringing to bear some of these technologies, it is reasonable to
expect even further improvements.

 42

10 Acknowledgments

It was once astutely observed that blame needn’t sum to 100%; likewise, neither does
credit. This report would not exist if it were not for the help of many individuals. There
are a number of people, particularly my colleagues at the International Computer Science
Institute (ICSI), responsible for the work presented. This project, although the
culmination of four months of research, builds upon knowledge gained during the past
year at ICSI.

Much of my thanks go to the members of the speaker verification group. Everything I
learned about speaker verification I learned from them (that is meant to be
complimentary). First, I would like to thank Barbara Peskin. Always knowledgeable—
not only was she willing to hire me, she helped guide my research. Moreover, she edited
this paper (multiple times). Also, thank you to my advisor, Professor Nelson Morgan.
He helped edit this paper as well. I would also like to thank: Dan Gillick & Barry Chen,
who showed me the ropes when I was first getting started; Kofi Boakye, who extracted
the features used for the system; Andy Hatch, who showed me the LNKnet combination
software and lent me his thesis for 5 months (I’ll give it back someday); and Nikki
Mirghafori, who helped too much to be mentioned in list form. Nikki offered guidance in
my research and in turn I bugged Nikki with all sorts of questions. She was always quick
to help, even when she was busy. I also must thank George Doddington, who helped
guide our entire group. He is extremely bright, and the advice he gave was invariably
good. Thanks to SRI for the ASR and to Andreas Stolcke for getting it to me. Finally, I
could never have done this project without the support of Sachin Kajarekar. He is chiefly
responsible for the GMM code. I appreciate the time he spent adapting his GMM code
for this new application. He is also responsible for the so-called “state-of-the-art” GMM
scores used as a matter of comparison in the report.

I would also like to thank all of those other miscellaneous people that helped make me
the person I am—you know, my family and friends. I sincerely thank my parents for
everything. Mom and Dad, I only made it this far because of your patience. Your
support has kept me on the path. Theresa, your presence made me feel like I belonged at
the University of Maryland. (By the way, I am happy I helped). Finally, thanks to Joe:
without the trichotomy this acknowledgment might not have existed.

No acknowledgments section is complete without thanking the sponsor. NSF, thank you
for grant IIS-0329258.

 43

11 Appendix A

EERs (%)
Warping
Method

Sinc
Interpolation

Sinc
Interpolation

Linear
Interpolation

Linear
Interpolation Average Average

Number of
Gaussians 256 128 256 128 256 128

aa 8.87 8.49 8.90 8.39 8.06 7.60
ae 3.77 4.23 3.80 4.10 3.72 4.18
ah 6.27 6.49 6.40 6.78 6.43 6.51
ao 8.44 9.09 10.26 9.20 8.71 8.25
aw 12.94 11.94 13.03 11.86 11.23 10.69
ax 4.31 4.48 4.23 4.56 4.18 4.45
ay 4.61 6.27 4.29 4.37 4.31 4.23
b 9.44 8.44 9.72 8.52 8.52 7.73
bgn 58.89 56.23 58.72 57.42 51.13 11.53
ch 19.92 18.37 20.08 18.67 18.45 16.72
d 5.94 5.67 5.86 5.32 5.67 5.62
dh 5.81 5.07 5.94 5.51 5.78 5.37
dx 14.60 13.24 14.60 13.24 13.95 12.56
eh 6.62 6.68 7.03 6.78 6.54 6.68
er 8.98 8.41 8.79 8.36 7.90 5.97
ey 7.33 7.54 7.38 6.97 6.54 6.89
f 12.48 11.99 13.60 12.16 11.53 10.23
fpn 28.36 26.73 28.66 26.92 25.97 24.29
fpv 9.34 8.49 9.47 8.66 9.06 8.36
g 12.92 11.51 13.35 11.72 11.91 10.53
hh 6.54 6.35 6.95 6.21 6.08 5.13
ih 6.35 6.65 6.19 6.27 6.16 6.38
iy 5.64 9.34 5.94 6.13 5.97 5.92
jh 18.15 16.12 18.43 16.55 16.01 14.84
k 6.49 6.11 6.43 6.30 6.35 6.16
l 6.24 6.38 6.40 6.38 6.05 6.16
lau 19.38 5.64 19.62 18.37 18.07 16.99
m 6.59 5.32 5.37 5.45 10.53 5.13
mtn 20.73 19.97 20.95 19.57 17.83 17.10
n 3.28 3.66 3.23 3.66 3.42 3.53
ng 8.06 7.44 8.14 7.68 7.03 6.59
ow 6.68 6.59 6.70 6.40 6.13 6.05
oy 68.25 65.48 68.74 65.70 55.50 52.08
p 12.16 10.28 10.83 10.23 10.31 9.58
pum2 19.51 17.77 19.35 17.86 17.31 15.66
r 6.16 6.27 6.16 6.02 6.13 6.11
s 4.99 68.25 5.07 4.86 4.75 4.97
sh 16.42 12.16 16.53 15.71 14.36 13.46
t 4.59 4.59 4.45 4.72 4.15 4.37
th 6.84 16.26 18.15 16.09 15.6 13.79
uh 21.30 19.65 21.3 19.65 20.46 19.24

 44

uw 8.41 7.79 8.25 7.73 7.60 7.25
v 11.23 10.61 11.34 10.53 10.69 9.61
w 7.25 6.84 7.38 7.22 7.08 6.59
y 6.54 6.68 6.38 6.27 5.97 5.73
z 7.03 6.62 7.38 6.49 6.62 6.49
zh 77.67 78.94 77.96 78.53 73.76 72.37

Table 11: EERs for each phoneme for various systems.

EERs

Warping
Method

Linear
Interpolation:
PCA – 50
Components

Linear
Interpolation:
PCA – 100
Components

Linear
Interpolation:
PCA – 50
Components

Linear
Interpolation:
PCA – 100
Components

Linear
Interpolation:
Phoneme-
States
Capped at 3

Number of
Gaussians 256 256 256 256 256

aa 8.82 8.09 11.10 9.63 9.01
ae 3.31 3.53 3.31 3.69 3.88
ah 6.27 6.38 7.84 7.52 6.40
ao 9.93 9.01 12.29 11.70 9.61
aw 11.8 10.72 14.19 12.97 13.00
ax 4.53 4.83 14.19 12.97 4.23
ay 4.26 4.34 4.37 4.53 4.42
b 9.12 8.79 11.78 10.61 9.72
bgn 42.93 40.65 11.78 10.61 55.14
ch 19.57 17.26 21.47 19.27 20.19
d 5.94 5.43 8.01 7.52 5.89
dh 5.75 5.78 6.95 7.00 5.94
dx 14.01 13.54 21.63 20.68 18.40
eh 6.38 6.35 8.39 7.90 7.03
er 8.63 7.84 10.75 9.69 8.93
ey 7.06 7.06 8.25 8.11 7.27
f 11.53 10.64 15.47 13.62 12.97
fpn 24.78 23.31 27.95 25.78 27.14
fpv 8.93 8.47 9.53 9.06 9.34
g 12.81 11.51 15.41 13.27 13.35
hh 6.49 5.70 9.61 9.31 6.81
ih 6.08 6.30 7.41 7.16 6.19
iy 5.81 5.97 6.46 6.35 6.08
jh 16.85 15.39 19.67 18.26 18.43
k 6.43 6.40 7.08 6.87 6.43
l 6.30 6.27 7.71 7.35 6.38
lau 42.66 42.33 20.95 19.84 19.84
m 5.64 5.48 6.32 6.13 5.37
mtn 19.54 17.99 24.04 21.22 20.57
n 3.20 3.34 3.88 3.74 3.23
ng 8.06 7.41 10.96 9.91 8.14
ow 5.75 5.70 7.52 6.46 6.68
oy 40.90 40.57 46.12 43.04 64.29

 45

p 11.07 9.88 12.48 11.86 10.83
pum2 17.88 16.58 20.00 18.48 18.43
r 5.67 6.24 6.81 6.62 6.16
s 4.99 4.78 5.67 5.56 4.72
sh 15.90 14.55 19.35 16.66 15.98
t 4.83 4.86 6.02 5.81 4.45
th 16.20 14.74 20.38 18.05 18.13
Uh 21.98 19.78 25.73 24.40 21.30
Uw 8.36 7.54 10.15 9.93 8.25
V 11.78 10.45 15.39 13.27 11.37
W 7.63 7.33 8.96 8.66 7.30
Y 6.68 6.32 8.68 7.73 6.38
Z 6.92 6.46 8.85 7.95 7.38
Zh 54.55 49.61 59.21 50.66 78.40

Table 12: EERs for each phoneme for various systems.

DCFs
Warping
Method

Sinc
Interpolation

Sinc
Interpolation

Linear
Interpolation

Linear
Interpolation Average Average

Number of
Gaussians 256 128 256 128 256 128

aa 0.0429 0.0435 0.0423 0.0434 0.040 0.0420
ae 0.0220 0.0225 0.0221 0.0228 0.0206 0.0225
ah 0.0339 0.0347 0.0325 0.0342 0.0328 0.0322
ao 0.0399 0.0437 0.0443 0.0446 0.0425 0.0419
aw 0.0534 0.0491 0.0566 0.0540 0.0508 0.0474
ax 0.0222 0.0228 0.0226 0.0231 0.0220 0.0224
ay 0.0242 0.0339 0.0252 0.0259 0.0259 0.0248
b 0.0460 0.0399 0.0432 0.0421 0.0426 0.0399
bgn 0.0976 0.0968 0.0975 0.0974 0.0945 0.0529
ch 0.0748 0.0689 0.0722 0.0689 0.0731 0.0679
d 0.0298 0.0301 0.0295 0.0286 0.0303 0.0290
dh 0.0279 0.0284 0.0275 0.0283 0.0302 0.0294
dx 0.0654 0.0613 0.0654 0.0613 0.0624 0.0589
eh 0.0371 0.0357 0.0337 0.0364 0.0327 0.0344
er 0.0413 0.0417 0.0416 0.0421 0.0427 0.0299
ey 0.0349 0.0352 0.0355 0.0356 0.0313 0.0337
f 0.0549 0.0515 0.0569 0.0546 0.0529 0.0492
fpn 0.0700 0.0675 0.0710 0.0696 0.0690 0.0672
fpv 0.0385 0.0361 0.0377 0.0365 0.0362 0.0377
g 0.0559 0.0544 0.0583 0.0546 0.0540 0.0488
hh 0.0311 0.0299 0.0307 0.0271 0.0288 0.0274
ih 0.0332 0.0337 0.0339 0.0348 0.0308 0.0325
iy 0.0285 0.0385 0.0303 0.0315 0.0299 0.0305
jh 0.0688 0.0673 0.0711 0.0672 0.0670 0.0593
k 0.0305 0.0306 0.0340 0.0328 0.0331 0.0299
l 0.0310 0.0309 0.0309 0.0317 0.0289 0.0308

 46

lau 0.0668 0.0285 0.0704 0.0665 0.0654 0.0660
m 0.0330 0.0285 0.0286 0.0294 0.0488 0.0265
mtn 0.0645 0.0649 0.0638 0.0654 0.0598 0.0595
n 0.0176 0.0191 0.0183 0.0188 0.0185 0.0199
ng 0.0385 0.0342 0.0377 0.0355 0.0373 0.0344
ow 0.0337 0.0330 0.0326 0.0327 0.0318 0.0310
oy 0.0970 0.0970 0.0960 0.0957 0.0969 0.0956
p 0.0506 0.0486 0.0495 0.0471 0.0485 0.0446
pum2 0.0565 0.0538 0.0559 0.0534 0.0546 0.0531
r 0.0324 0.0322 0.0315 0.0336 0.0323 0.0335
s 0.0225 0.0970 0.0249 0.0239 0.0235 0.0243
sh 0.0608 0.0506 0.0571 0.0584 0.0588 0.0546
t 0.0225 0.0228 0.0229 0.0231 0.0222 0.0215
th 0.0384 0.0686 0.0705 0.0664 0.0630 0.0621
uh 0.0783 0.0834 0.0834 0.0783 0.0822 0.0779
uw 0.0404 0.0412 0.0424 0.0413 0.0402 0.0394
v 0.0541 0.0512 0.0526 0.0518 0.0509 0.0510
w 0.0395 0.0384 0.0367 0.0385 0.0375 0.0367
y 0.0316 0.0318 0.0324 0.0301 0.0301 0.0328
z 0.0340 0.0333 0.0336 0.0326 0.0347 0.0331
zh 0.0986 0.0986 0.0987 0.0984 0.0988 0.0980

Table 13: DCFs for each phoneme for various systems.

DCFs

Warping
Method

Linear
Interpolation:
PCA – 50
Components

Linear
Interpolation:
PCA – 100
Components

Linear
Interpolation:
PCA – 50
Components

Linear
Interpolation:
PCA – 100
Components

Linear
Interpolation:
Phoneme-
States
Capped at 3

Number of
Gaussians 256 256 256 256 256

aa 0.0411 0.0411 0.0528 0.0452 0.0432
ae 0.0174 0.0188 0.0198 0.0216 0.0226
ah 0.0325 0.0334 0.0409 0.0373 0.0325
ao 0.0456 0.0428 0.0535 0.0515 0.0455
aw 0.0523 0.0495 0.0595 0.0586 0.0573
ax 0.0222 0.0247 0.0595 0.0586 0.0225
ay 0.0229 0.0233 0.0237 0.0230 0.0239
b 0.0458 0.0456 0.0550 0.0519 0.0432
bgn 0.1001 0.1000 0.1150 0.1019 0.0976
ch 0.0766 0.0723 0.0821 0.0769 0.0730
d 0.0314 0.0298 0.0409 0.0375 0.0295
dh 0.0307 0.0295 0.0364 0.0364 0.0275
dx 0.0617 0.0627 0.0887 0.0854 0.0713
eh 0.0346 0.0357 0.0403 0.0408 0.0337
er 0.0401 0.0407 0.0497 0.0474 0.0420
ey 0.0338 0.0336 0.0382 0.0364 0.0342
f 0.0561 0.0540 0.0678 0.0615 0.0573

 47

fpn 0.0721 0.0685 0.0802 0.0757 0.0702
fpv 0.0371 0.0363 0.0393 0.0351 0.0390
g 0.0596 0.0556 0.0649 0.0600 0.0583
hh 0.0301 0.0285 0.0428 0.0427 0.0295
ih 0.0314 0.0323 0.0363 0.0358 0.0339
iy 0.0292 0.0307 0.0339 0.0332 0.0308
jh 0.0709 0.0685 0.0809 0.0748 0.0711
k 0.0339 0.0326 0.0364 0.0336 0.0340
l 0.0308 0.0337 0.0384 0.0385 0.0309
lau 0.0759 0.0749 0.0771 0.0764 0.0679
m 0.0294 0.0305 0.0338 0.0330 0.0286
mtn 0.0679 0.0663 0.0812 0.0760 0.0688
n 0.0187 0.0175 0.0211 0.0221 0.0183
ng 0.0390 0.0356 0.0492 0.0444 0.0377
ow 0.0313 0.0302 0.0350 0.0325 0.0333
oy 0.0988 0.0991 0.1003 0.0998 0.0971
p 0.0511 0.0492 0.0570 0.0538 0.0495
pum2 0.0569 0.0558 0.0614 0.0605 0.0580
r 0.0285 0.0307 0.0349 0.0345 0.0315
s 0.0274 0.0285 0.0331 0.0323 0.0232
sh 0.0654 0.0615 0.0763 0.0709 0.0593
t 0.0268 0.0263 0.0311 0.0315 0.0229
th 0.0661 0.0638 0.0769 0.0731 0.0705
uh 0.0822 0.0783 0.0905 0.0869 0.0833
uw 0.0437 0.0399 0.0497 0.0490 0.0424
v 0.0533 0.0495 0.0695 0.0638 0.0526
w 0.0400 0.0386 0.0442 0.0464 0.0376
y 0.0324 0.0305 0.0406 0.0383 0.0324
z 0.0355 0.0341 0.0436 0.0413 0.0336
zh 0.0999 0.1001 0.1001 0.1001 0.0987

Table 14: DCFs for each phoneme for various systems.

 48

12 References

[1] A. Schmidt-Nielsen and T. H. Crystal. “Speaker Verification by Human

Listeners: Experiments Comparing Human and Machine Performance Using the
NIST 1998 Speaker Evaluation Data.” Digital Signal Processing 10, 249-266,
2000.

[2] D. A. Reynolds, et al. “The SuperSID Project: Exploiting High-Level

information for High-Accuracy Speaker Recognition.” Proc ICASSP ‘03, Vol. 4,
pp. 784-787, 2003.

[3] NIST 2001 Speaker Recognition website:

http://www.nist.gov/speech/tests/spk/2001/index.htm.

[4] Joseph Campbell Jr. “Speaker Recognition: A Tutorial.” IEEE, Vol. 85, No. 9,

September 1997.

[5] D. A. Reynolds. “Speaker Identification and Verification using Gaussian Mixture
 Speaker Models.” Speech Communication, Vol. 17, pp 91-108, August 1995.

[6] D. A. Reynolds, T. F. Quatieri, and R. B. Dunn. “Speaker verification using

adapted Gaussian mixture models.” Digital Signal Processing, 10(1-3), pp.19-41,
2000.

[7] J. L. Gauvain and C. H. Lee. “Maximum a posteriori estimation for multivariate

Gaussian mixture observations of Markov chains.” IEEE Trans. Speech Audio
Proc. 2 , 291–298, 1994.

[8] The Linguistic Data Consortium website for SWITCHBOARD-1 Release 2:

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC97S62.

[9] J. Godfrey, et al. “SWITCHBOARD: Telephone Speech Corpus for Research

and Development.” Proc ICASSP ‘92, San Francisco, March 1992.

[10] S. Furui. “Cepstral Analysis Technique for Automatic Speaker Verification.”

IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-29, pp. 254–272,
1981.

[11] Hidden Markov Model Toolkit (HTK) website: http://htk.eng.cam.ac.uk/.

[12] B. S. Atal. “Effectiveness of linear prediction characteristics of the speech wave

for automatic speaker identification and verification.” J. Acoust. Soc. Am. 55 (6),
1304-1312, 1974.

[13] Ben Gold and Nelson Morgan. Speech and Audio Signal Processing: Processing

and Perception of Speech and Music. New York: John Wiley & Sons, 2000.

 49

[14] A. Stolcke, H. Bratt, J. Butzberger, H. Franco, V. R. Rao Gadde, M. Plauche, C.
Richey, E. Shriberg, K. Sonmez, F. Weng, and J. Zheng. “The SRI March 2000
Hub-5 Conversational Speech Transcription System.” Proc NIST Speech
Transcription Workshop, College Park, MD, 2000. Website:
http://www.nist.gov/speech/publications/tw00/html/cts80/cts80.htm

[15] LNKnet software is available from MIT Lincoln Laboratory. Website:

http://www.ll.mit.edu/IST/lnknet/index.html.

[16] A. Martin, G. Doddington, T. Kamm, M. Ordowski, and M. Przybocki. “The

DET Curve in Assessment of Detection Task Performance.” Proc Eurospeech
‘97, Vol. 4, pp. 1895-1898, 1997.

[17] R. Auckenthaler, M. Carey, and H. Llyod-Thomas. “Score Normalization for

Text-Independent Speaker Verification Systems.” Digital Signal Processing, Vol.
10, pp. 42-54, January 2000.

[18] D. A. Reynolds. “Channel robust speaker verification via feature mapping.” Proc

ICASSP ’03, pp. II53–II56, 2003.

[19] G. Doddington. “Speaker Recognition based on Idiolectal Difference between

Speakers.” Proc Eurospeech ’01, Vol. 4, pp. 2521-2524, 2001.

[20] E. Hansen, R. Slyh, and T. Anderson. “Speaker Recognition using Phoneme-

Specific GMMs.” Proc Odyssey ’04, Toledo, Spain, June 2004.

[21] D. Gillick, S. Stafford, and B. Peskin. “Speaker Detection Without Models.”

Proc ICASSP ‘05, Philadelphia, March 2005.

[22] K. Boakye and B. Peskin. “Text-Constrained Speaker Recognition on a Text-

Independent Task.” Proc Odyssey ’04, Toledo, Spain, June 2004.

[23] R. Auckenthaler, E. Parris, and M. Carey. “Improving A GMM Speaker

Verification System by Phonetic Weighting.” Proc ICASSP ‘99, Phoenix, March
1999.

[24] V. Wan and W. M. Campbell. “Support Vector Machines for Speaker

Verification and Identification.” IEEE International Workshop on Neural
Networks for Signal Processing, Sydney, Australia, December 2000.

