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1 Introduction 
 
This report presents a novel speaker verification system that generates a new feature set 
that captures long duration speaker identifying characteristics while taking advantage of 
the well-established and well-studied Gaussian Mixture Model system (GMM).  Much of 
the innovation in the system is contained in the intelligent exploitation of traditional 
cepstral features such that temporal aspects of speech, which are otherwise disregarded in 
traditional GMM frameworks, can be explicitly modeled.  The system consists of a 
collection of independent GMMs, one for each phoneme, built on these long duration 
feature vectors.  The outputs of these GMMs are then combined at the score level using a 
neural network.   
 
Despite using traditional tools with respect to the GMM and the front-end feature 
extraction, combining this system with a run-of-the-mill GMM system dramatically 
reduced both the equal error rate (EER) and the minimum value of the decision cost 
function (DCF) on a standard speaker verification test set, in comparison to the GMM 
system alone.  This improvement indicates that the long duration features are capturing 
speaker characterizing information that the regular GMM ignores.  The min DCF fell by 
nearly 65% and the EER fell by approximately 36%.  Moreover, the new system’s 
performance, when operating in isolation, approached that of the state-of-the-art GMM. 
 
1.1 Motivation 
 
Speaker recognition is a task that is familiar to everyone.  When answering the telephone, 
people often know immediately who is on the other end of the line.  Unfortunately, 
speaker recognition is not such a simple task for computers.  Part of the problem is that it 
is difficult for humans to determine what characteristics they use in identifying speakers.  
Perhaps they recognize a phrase the person commonly uses or maybe just the way the 
person laughs.  Human based speaker recognition can be studied, and has been to some 
extent [1].  However, perhaps humans are not the optimal system; perhaps machines can 
do much better.  
 
There are a number of distinguishing speech characteristics that can be utilized, such as 
acoustic qualities, prosodic patterns, pronunciation preferences, and word usage, to name 
a few.  The sources of these different pieces of information depend on factors ranging 
from the shape of the nasal passage to where the person was raised [2].  The aspiration 
for speaker recognition systems is to use all of the above-mentioned sources of 
information; simply stated, the goal is to capture every piece of information that reveals 
the identity of the speaker.  The difficulty, however, is in modeling these complex 
speaker idiosyncrasies. 
 
The current state-of-the-art system, the GMM, generates its speaker hypothesis based on 
information derived from frames, which are obtained by dividing the speech sample into 
approximately ten-millisecond segments.  These frames are then used without ordering to 
model a speaker’s voice.  This so-called “bag of frames” technique generally works very 
well.  However, there is good reason to believe that by treating each frame independently, 
and hence forfeiting sequential information, the GMM loses potentially speaker-
identifying characteristics of the speech.  The system proposed in this paper, which is 
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referred to as the Sequential GMM, harnesses the power and simplicity of the GMM 
while capturing sequential information by using frames that represent entire phonemes.  
A phoneme is typically between 50 and 300 milliseconds long; therefore, the new frames 
will represent a time span of approximately an order of magnitude longer than traditional 
frames.  Part of the reason this long-term modeling is possible is due to increased 
quantities of training data available through NIST’s Extended Data task [3].  As the 
availability of training data grows, the feasibility of modeling higher-level and potentially 
rarer temporal speaker idiosyncrasies grows. 
 
1.2 Overview 
 
The primary innovation presented in this paper is the method by which a new feature 
vector is created and where each new frame represents the information from an entire 
phoneme.  This task is accomplished by stacking the frames that constitute a phoneme 
and treating this sequence of frames as a single new feature vector.  Thus there is one 
new frame for each instance of a phoneme in the speech stream. 
 
This approach introduces a few challenges.  First, the system now requires a phoneme-
level transcription of the acoustic data.  Second, because the GMM must model a 
probability space of fixed dimension, each of the new feature vectors must be the same 
dimension.  This is a significant hurdle because rates of speech can be highly variable, so 
different instances of the same phoneme will generally be of different duration.  Since the 
new frames are created by stacking the old frames, phonemes of different length will 
create stacked frames of different dimension.  As was mentioned, this system builds 
phoneme-specific GMMs; therefore, it is necessary to warp each sequence of frames, for 
a specific phoneme, to the same length.  The process for warping will be explained in 
Section 4.5.  The final issue introduced by this system is training the GMMs.  Under the 
new system, there are fewer frames because there is only one feature vector per phoneme.  
Additionally, there are more model parameters to train due to two reasons: the dimension 
of the training vectors has grown, and a separate GMM is being trained for each 
phoneme.  
 
The nature of the speaker recognition task is briefly described below; for further 
explanation see [4].  Below, the basic GMM system will be briefly described (Section 2), 
the creation of the new feature set will be explained (Section 4), a number of experiments 
will be investigated (Section 7), and possible future directions of the research will be 
proposed (Section 8). 
 
 

2  The GMM 
 
Before the GMM system is discussed, it is important to understand the speaker 
verification task.  A single trial in the task consists of a test speech segment and a 
putative target speaker.  The test segment contains speech from only one speaker, and the 
goal is to determine whether the test segment was created by the target speaker.  Hence, 
the task can be formulated as a hypothesis test, where the hypotheses are denoted by H0 
and H1.  H1 is the hypothesis that the test data was created by the target speaker, a 
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“match,” and H0 is the hypothesis that the test data was not created by the target speaker, 
but instead by an “impostor.”   
 
The decision criterion is given in the usual form for a hypothesis test, 

This equation is further modified using Bayes rule, resulting in  

This formulation gives the provably optimal solution, assuming the probabilities are 
accurately modeled; however, in speaker verification, it is assumed that priors are 
unknown to the researcher and are therefore disregarded.  Hence, the metric of interest is 
measured in terms of a likelihood ratio:    

If the likelihood ratio is above a threshold, γ, H1 is accepted, otherwise H0 is accepted. 
 
The GMM system [5, 6] is an effort to model those probabilities.  It is the de facto 
standard for text-independent speaker verification, and it performs very well despite its 
simplicity.  The system attempts to probabilistically model the frames of speech using 
Gaussian mixtures, where a frame of speech is a vector resulting from some sort of signal 
processing on a slice of speech.  Frames are typically computed over a 30ms window, at 
10ms steps through the speech utterance. 
 
The first step in constructing the system, assuming the frames have been created, is to 
create a universal background model (UBM) [5].  The UBM uses a GMM to model the 
frames of speech from a generic speaker and is, therefore, trained on frames from a large 
held-out set of speakers.  The UBM can be used to calculate the probability of a frame 
being created by a generic, non-target speaker; thus it produces the denominator of the 
likelihood ratio.  The GMM’s parameters are trained using Expectation Maximization 
(EM).  The trainable parameters are the Gaussian means, covariance matrices, and 
weights.  The covariance matrices are assumed to be diagonal, to limit the number of 
parameters. 
 
The second step is to create speaker-specific models.  A speaker-specific GMM is created 
through MAP adaptation [7] of the means from the UBM.  The adaptation is computed 
using training data, which consists of frames from speech utterances from the target 
speaker.  The amount of training depends on the application.  Naturally, there is a 
separate adapted GMM for each speaker of interest.  The speaker-specific GMM is used 
to generate the numerator of the likelihood ratio. 

(3) 
)impostor|datatest (

)match|datatest (
P

P
γ 

(2) P(test data | impostor) P(impostor). P(test data | match) P(match) 

(1) P(match | test data) P(impostor | test data). 

H1 

H0 

H1 

H0 

H1 

H0 
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The log likelihood ratio is calculated as 

∑
i i

i

xP

xP

),impostor|(

)match|(
log                                                 (4) 

where xi is a frame from the test data and the sum is over all of the frames.  Factoring the 
joint probability of the test frames, from equation (3), into probability functions on the 
individual frames implicitly assumes that the frames are independent.  This assumption is 
necessary because the GMM system contains no models of correlation among frames.  
With the UBM, the speaker-specific adapted model, and the frames from the test data, the 
likelihood ratio can be computed.  The final step is to determine a threshold so a decision 
can be made. 
 

 
3 System Overview 
 
The Sequential GMM system can be broken into three stages, which will each be 
explained in Sections 4, 5, and 6, respectively: 
 
1) Creating the new feature vectors 
2) Developing the background and target models 
3) Scoring and fusion 
 
3.1 The Task 
 
This system was run on the Extended Data task of the 2001 NIST Speaker Recognition 
Evaluation [3].  The data in the task are drawn from recorded telephone conversations of 
the switchboard one corpus which contains 2400 two-sided telephone conversations from 
around 540 speakers [8, 9], and the task is strictly defined as speaker verification, as 
described in Section 2.  The test data for one trial consists of a single “conversation-side” 
of speech from a single speaker, and the training condition is one in which eight 
conversation-sides are available from the target speaker.  The eight conversation-side 
condition is on the large side of the spectrum of training conditions, with many systems 
using much less.  The Sequential GMM is well suited for a setting with more training 
data because it models larger, and therefore sparser, speech events.  A conversation-side 
is the speech from one of the two speakers in a five-minute conversation. 
 
The task is divided into six “splits,” where each split consists of a disjoint set of speakers; 
therefore, testing on one split can use other splits in a non-cheating way.  Splits 1, 2, and 
3 have 4797 trials and splits 4, 5, and 6 have 5008 trials.  When testing on the first three 
splits the last three splits were used to train the background models, and vice versa. 
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4 Developing the New Feature Set 
 
The heart of the sequential GMM is the creation of the new feature vectors, in which the 
new features are assembled from the typical Mel-Frequency Cepstral Coefficients 
(MFCC) features [10].  Since there are two feature sets, one built from the other, 
particular care must be taken to note when the new feature vectors are being referenced.  
The process of creating these new feature vectors can be broken down into these six 
stages, which will each be examined in detail in the following subsections: 
 
1) Feature extraction 
2) Automatic Speech Recognition (ASR) 
3) Frame sifting 
4) Calculating average state lengths 
5) Frame warping 
6) Stacking the frames 
 
4.1  Feature Extraction 
 
This system uses the traditional MFCCs, C0 through C19 extracted using HTK [11].  The 
cepstra are produced every 10 ms over 25ms of speech.  See Figure 1.  The speech is 
preemphasised, with a preemphasis coefficient of 0.97, and a Hamming window is used 
to window the speech.  Cepstral mean subtraction (CMS) [12] is applied on a per 
conversation-side basis, with the means estimated from the speech portion of the 
segment.   
 
Delta parameters were not used because of the large dimension of the stacked feature 
vectors and because stacking neighboring frames should inherently encode this 
information.  The primary difficulty with large feature vectors arises in training the large 
number of resulting GMM parameters.  The new frames, resulting from multiple stacked 
frames, are as large as 300 dimensions without deltas.  Using deltas would increase this 
number to 600.  Training this increased number of parameters is limited by two factors: 
training data, and computation time.  Although the mushrooming computation time could 
be dealt with, the amount of training data cannot.  Data for training the background 
models can be pulled from other data corpora; however, the amount of data available for 
adapting target models is limited to eight conversations by the task. 
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Figure 1: The speech waveform passes into the feature extractor, which does signal 
processing and produces a frame with 20 elements every 10 ms. 
 
4.2 Automatic Speech Recognition (ASR) 
 
The waveforms are separately run through a traditional word-based speech recognizer 
[13], courtesy of SRI [14].  Because the ASR system was trained using the same 
switchboard one data it was run on, somewhat stripped-down models were used, in order 
to make the ASR quality practical.  As a by-product of the speech recognition, the system 
also produces phoneme and phoneme-state time alignments.  Each phoneme, as modeled 
by a Hidden Markov Model (HMM), contains three states.  The frame sequence created 
in the feature extraction is now labeled at the phoneme-state level (see Figure 2).  The 
SRI phoneme set consists of the 47 phonemes listed in Figure 11.  Some of the 
nonstandard phonemes include:  
 

fpv: filled pause vowel (as in the vowel in “uh” or “um”), 
fpn: filled pause nasal (as in the “m” in “um”), 
bgn: background noise, 
pum2: similar to fpv (sound of words like “hm”), 
mtn: mouth noise, and 
lau: laughter. 
 
 

Feature 
Extractor 

… … 
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Figure 2: The sequence of frames has been tagged, with the center 10 frames belonging 
to the phoneme /aa/; states 1, 2, and 3 have three, three, and four frames, respectively. 
 
4.3  Frame Sifting 
 
Once the frames have been labeled by means of ASR, the frame sequences associated 
with the different phonemes are sifted apart.  This can be pictured as 47 bins, one for 
each phoneme, and in each bin is a set of frame sequences.  Naturally, each of the frame 
sequences in a bin would correspond to the phoneme for which the bin was labeled; 
moreover, it is crucial that the ordering of the frames within these sequences remain 
intact.  After all, this system is attempting to model the time-evolution of phonemes.   
 
Since different phonemes tend to be different lengths, it was decided not to try to warp all 
the frame sequences to the same target length, but rather warp each instance of a 
phoneme to the average length of that phoneme type.  The decision to treat each of the 
phonemes separately is not without negative consequences.  As was mentioned earlier, 
data sparsity is a serious issue with this system, and by treating each phoneme separately, 
the training data is spread out across 47 different GMMs.  Moreover, it is actually worse 
than simply dividing the training data by the number of phonemes, because some 
phonemes are very infrequent.  For example, the phoneme /zh/ often does not even 
appear in conversations in the switchboard one corpus. 
 
4.4  Calculating Average State Lengths 
 
Before the frame sequences can be warped, it is necessary to know to what length they 
will be warped.  That is, how many frames will be in the sequence of frames for a 
phoneme, after warping?  Choosing a rather long target length has the benefit of 
preserving the information in the sequence of frames, whereas choosing a short target 
length results in a smaller probability space.  Each choice has its advantage.  Reducing 

… … 

State
1 

State 
2 

State 
3 

/aa/ 
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the dimension of the probability space decreases the number of trainable parameters.  On 
the other hand, condensing the frame sequences likely throws out some sequential 
information.  For this system, a happy medium was chosen. 
 
The number of desired frames is determined by finding the average number of frames in 
each phoneme-state over all instances of the phoneme-state in the data.  That number is 
then rounded to the nearest integer.  For example, after rounding, the phoneme /aa/ is 
found to have an average of three, five, and three frames, respectively, for its three states.  
Therefore, after warping, each /aa/ frame sequence will be eleven frames.  This method is 
slightly objectionable because the target lengths are being determined from the same 
speakers (and conversations) the system is being tested on.  Nevertheless, this is a minor 
infraction because these average lengths are reasonably stable across the corpus. 
 
To summarize the preceding discussion: For each phoneme there is a set of frame 
sequences that are each labeled with three phoneme-states.  Moreover, the desired 
number of frames for each phoneme-state is known.  All that remains is to warp each of 
the frame-sequences to the appropriate size and then stack the frames.  
 
4.5  Frame Warping 
 
The key step in the new feature creation is a time warping which is implemented in order 
to make all frame sequences corresponding to the same phoneme have the same number 
of frames.  This time warping is computed component-wise for each cepstrum.  Figure 3 
shows a sequence of frames for the phoneme /aa/ being warped to the appropriate length. 
 
Two different methods of interpolation were used: linear, and sinc kernel, also known as 
the “sampling function,” convolution.  A third method of warping simply collapsed each 
state of a phoneme into a single frame.  This method is referred to as the “average.”  Each 
of these methods are explained below. 
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Figure 3:  An instance of the phoneme /aa/ with three, three, and four frames, 
respectively, is warped into a frame sequences with three, five, and three frames, 
respectively. 
 
4.5.1  Warping Method: Linear Interpolation 
 
In this method, adjacent points are simply connected with a line, then sampled at evenly 
distributed points, with the first and last values remaining unchanged.  The figures below 
are an example of the process for a single component in which a five-frame phoneme-
state is warped to a seven-frame sequence.  In Figure 4, there are five values of the 
cepstrum corresponding to a five-frame phoneme-state, and in Figure 5, these five points 
are linearly interpolated.  Finally, Figure 6 shows the resulting seven cepstra values.  In 
situations where a single frame must be warped into multiple frames, it is repeated. 
 

/aa/ 
State 

/aa/ 
State 

/aa/ 
State 

/aa/ 

/aa/ 
State 

/aa/ 
State 

/aa/ 
State 

/aa/ 
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Figure 4: The value of a cepstrum over five frames. 
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Figure 5: The five cepstra values from Figure 4 are linearly interpolated. 
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Figure 6: The linear interpolation of the five cepstra from Figure 5 is sampled at seven 
equally spaced intervals. 
 
4.5.2  Warping Method: Sinc Kernel 
 
This method of warping is based on a digital-signal-processing perspective.  The discrete 
data points are treated as a sequence of appropriately weighted dirac deltas that are 
convolved with a sinc kernel and then sampled in the same fashion as in the linear 
interpolation case.  The sinc kernel is defined as 

                                            




 =

≡
otherwise.    

)sin(
,0for             1

)sinc(
x

x
x

x
π

π  

See Figures 7, 8, and 9 for an example of the sinc warping method. 
 
Figure 10 shows the difference between the two warping methods.  The linear 
interpolation method is a weighted average of neighboring points.  On the other hand, 
since the sinc interpolating function consists of numerous low frequency sines, the 
interpolation overshoots the original values.  See Figure 10.  From a heuristic standpoint, 
it is not clear which method is more appropriate. 
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Figure 7: The five cepstra from Figure 4 are superimposed with a sinc of appropriate 
scale. 
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Figure 8:  The five shifted and scaled sincs from Figure 7 are summed, to complete the 
convolution. 
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Figure 9: The sinc interpolation of the five cepstra from Figure 8 is sampled at seven 
equally spaced intervals. 
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Figure 10: A comparison of the two warping methods. 
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4.5.3  Warping Method: Average 
 
This warping method collapses each phoneme-state frame sequence into a single frame.  
This is done by component-wise averaging.  This method is simple and results in 
relatively small stacked frames.  Figure 11 shows a sequences of frames for the phoneme 
/aa/ being warped using this method. 
 

Figure 11: A sequence of frames corresponding to a phoneme, with three states, is 
transformed according to the average warping method. 
 
4.6  Stacking the frames 
 
The final step in the feature creation process is stacking the warped frame sequence into a 
single new feature vector.  Refer to Figure 12.  Each phoneme token in the data results in 
a single stacked feature vector. 
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Figure 12:  The warped frame sequences on the left are stacked and become the long 
frames on the right. 
 
 
5 Model Training 
 
Once this new set of feature vectors has been created, a traditional GMM system is used 
to train a background and adapt target models.  A separate GMM is created for each 
phoneme and hence there will be separate background models and adapted target models 
for each phoneme.   
 
5.1  Background Training 
 
In the following experiments, testing on splits 1, 2, and 3 used splits 4, 5, and 6 for 
background training and vice versa for testing on splits 4, 5, and 6.  The Gaussians were 
trained with diagonal covariance matrices, and the number of Gaussians in each 
background model varied across experiments.  This will be explored later in the report.  
One of the major concerns with this system is whether the data would be sufficient to 
train the background models.   
 
Table 1 shows the dimension of the feature vectors for the various phonemes, the amount 
of available training data for each phoneme, and a comparison to the amount of training 

. . . 
… 
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data for a typical GMM.  For a typical GMM UBM, 3 hours of training data is usually 
sufficient, but commonly much more may be used.  At 10ms per frame, this works out to 
1,080,000 training points.  The columns, “% Compared to a Typical GMM,” refer to the 
percentage of the 1,080,000 points that is available to train the background model for a 
particular phoneme in the Sequential GMM.  The percentages vary, with many of them 
being under 10%. 
 
It is important to note confounding factors for this comparison.  A typical UBM has 
around 2000 Gaussians, while the Sequential GMM system typically used 128 or 256 
Gaussians for each phoneme model.  On the other hand, typical GMM systems use 
feature vectors of dimension 40, while this system’s feature vectors are typically four or 
five times this size.  For diagonal covariance Gaussians, the number of training 
parameters is proportional to the dimension of the feature space and the number of 
Gaussians.  Therefore, the GMM for a single phoneme in the Sequential GMM has about 
half as many parameters as a typical GMM.  Many of the GMMs in this system are using 
significantly less training data than typical; however, after taking into account the number 
of parameters to train, the situation is not quite as bad as the table implies. 
 
 

Background: Splits 1, 2, 3 Background: Splits 4, 5, 6 

Phoneme 
Dimension 
of Feature 

Number 
of 
Stacked 
Feature 
Vectors 

 % of 
Total  

% 
Compared 
to a 
Typical 
GMM 

Number of 
Stacked 
Feature 
Vectors 

% of 
Total 

% 
Compared 
to a 
Typical 
GMM 

aa 220 64,377 1.4% 6.0% 65,003 1.4% 6.0% 
ae 260 149,295 3.1% 13.8% 146,301 3.1% 13.5% 
ah 160 114,966 2.4% 10.6% 110,182 2.4% 10.2% 
ao 240 55,557 1.2% 5.1% 55,502 1.2% 5.1% 
aw 300 30,223 0.6% 2.8% 29,763 0.6% 2.8% 
ax 80 483,115 10.2% 44.7% 474,827 10.1% 44.0% 
ay 260 134,222 2.8% 12.4% 132,695 2.8% 12.3% 
b 140 82,869 1.7% 7.7% 81,252 1.7% 7.5% 
bgn 400 14,992 0.3% 1.4% 15,792 0.3% 1.5% 
ch 240 17,470 0.4% 1.6% 17,750 0.4% 1.6% 
d 120 159,847 3.4% 14.8% 156,301 3.3% 14.5% 
dh 100 153,843 3.2% 14.2% 149,824 3.2% 13.9% 
dx 120 51,453 1.1% 4.8% 51,090 1.1% 4.7% 
eh 160 120,246 2.5% 11.1% 119,898 2.6% 11.1% 
er 200 92,945 2.0% 8.6% 91,165 1.9% 8.4% 
ey 240 73,710 1.6% 6.8% 73,604 1.6% 6.8% 
f 200 63,411 1.3% 5.9% 62,814 1.3% 5.8% 
fpn 340 13,551 0.3% 1.3% 10,792 0.2% 1.0% 
fpv 560 37,334 0.8% 3.5% 33,361 0.7% 3.1% 
g 160 51,192 1.1% 4.7% 51,055 1.1% 4.7% 
hh 240 87,615 1.8% 8.1% 88,213 1.9% 8.2% 
ih 160 150,649 3.2% 13.9% 145,652 3.1% 13.5% 
iy 200 164,547 3.5% 15.2% 163,507 3.5% 15.1% 
jh 180 25,171 0.5% 2.3% 24,233 0.5% 2.2% 
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k 180 140,105 3.0% 13.0% 138,953 3.0% 12.9% 
l 180 166,644 3.5% 15.4% 165,330 3.5% 15.3% 
lau 400 68,078 1.4% 6.3% 67,239 1.4% 6.2% 
m 140 121,127 2.6% 11.2% 120,409 2.6% 11.1% 
mtn 400 33,211 0.7% 3.1% 31,567 0.7% 2.9% 
n 140 318,296 6.7% 29.5% 314,812 6.7% 29.1% 
ng 180 53,701 1.1% 5.0% 52,383 1.1% 4.9% 
ow 280 99,080 2.1% 9.2% 98,122 2.1% 9.1% 
oy 320 3,446 0.1% 0.3% 3,665 0.1% 0.3% 
p 160 72,219 1.5% 6.7% 71,703 1.5% 6.6% 
pum2 660 20,461 0.4% 1.9% 23,191 0.5% 2.1% 
r 180 172,788 3.6% 16.0% 173,001 3.7% 16.0% 
s 200 201,085 4.2% 18.6% 196,800 4.2% 18.2% 
sh 240 22,927 0.5% 2.1% 23,295 0.5% 2.2% 
t 120 326,383 6.9% 30.2% 319,022 6.8% 29.5% 
th 160 37,769 0.8% 3.5% 36,325 0.8% 3.4% 
uh 120 26,872 0.6% 2.5% 26,746 0.6% 2.5% 
uw 180 78,978 1.7% 7.3% 79,127 1.7% 7.3% 
v 120 74,914 1.6% 6.9% 73,235 1.6% 6.8% 
w 200 117,304 2.5% 10.9% 114,903 2.5% 10.6% 
y 180 88,142 1.9% 8.2% 88,246 1.9% 8.2% 
z 180 109,893 2.3% 10.2% 108,625 2.3% 10.1% 
zh 180 2,060 0.0% 0.2% 1,922 0.0% 0.2% 

Total:  4,748,084 100.0%  4,679,197 100.0%  

Table 1: A table representing the distribution of the data across the phonemes.  For each 
phoneme, the dimension of the stacked feature vector and the number of training 
instances available for each background model are given.  The “% total” column 
represents the percentage of the new feature vectors that are in a specific phoneme class.  
Finally, the “% Compared to a Typical GMM” column shows the percentage of frames 
available to train the phoneme-specific model compared to the number of frames 
typically used to train a traditional UBM, where a frame for the phoneme-specific 
background model is a stacked feature vector. 
 
5.2  Target Model Adaptation 
 
Data sparsity is a more serious problem for the adaptation of the phoneme-specific 
background models to the targets.  The amount of data used in training the UBM is only 
limited by the size of the available corpora.  The amount of data available for adapting 
the target models, however, is defined by the task and is constrained to eight 
conversation-sides.  Thus, when comparing the amount of training data available for this 
system to that of a typical GMM, model adaptation is much more starved than the 
background model.  For example, at one frame per 10ms, there will be about 120,000 (8 
[conversations] x 2.5 [minutes / conversation] x 6000 [frames / minute]) training points 
available for typical model adaptation; whereas in the Sequential GMM system there are 
approximately only 300 training points on average over a feature space four or five times 
the dimension.  The number of stacked feature vectors available in the training data was 
calculated by taking into account that the average phoneme in this corpus is 90ms, and 
there are 47 phonemes.  Moreover, this assumes that the speakers use all phonemes 
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equally, which we know is false from Table 1.  Therefore, some models are being 
adapted from even fewer data. 
 
 

6 Scoring & Fusion 
 
The final step is to compute the score as in equation (4) for each phoneme model, using 
the new feature vectors, and then combine the scores resulting from each of the 
phonemes.  The combination was done with LNKnet [15].  LNKnet was used to train a 
neural net with seven hidden nodes.  The training is done in a round-robin process using 
the first three splits of the task and the last three splits.  When training the neural network 
on splits one, two, and three the testing is done on splits four, five, and six, then vice 
versa.  Note that the neural network parameters are optimized using the same data used in 
constructing the background models, which is not ideal. 
 
 

7 Experiments 
 
The experiments on the system include exploring the different frame-sequence warping 
methods and the number of Gaussians components used in the GMMs, and combining the 
system with the state-of-the-art GMM system, among others.  Results presented were run 
on the entire 2001 Extended Data task.  The performance is measured in terms of the 
EER and min DCF [3], and the Detection Error Tradeoff (DET) curve [16] is provided in 
some key experiments.  The EER is defined as the error rate where the probability of 
false alarm is equal to the probability of missed detection.  The min DCF is the minimum 
value of the decision cost function, as defined by NIST: 

,P  P  C P  P CDCF IMPOSTORIMPOSTOR | ALARM  FALSEALARM  FALSEMATCHMATCH | MISSMISS ××+××=  

where the costs are defined by CMISS = 10 and CFALSE ALARM = 1, and the probability of an 
impostor is 0.99.  
 
7.1 Baseline System 
 
As a matter of comparison, a generic GMM without z-norm [6], t-norm [17], h-norm [6], 
or feature mapping [18] is run on the task, since these features have not yet been 
introduced into the Sequential GMM system.  Its models consist of 2048 Gaussian 
components, and its performance is shown in Table 2.  As a matter of notation, this 
system will be referred to as “GMM – 1.”  
 
In addition, a state-of-the-art GMM system will be used in experiments to demonstrate 
that the Sequential GMM can improve performance through combination.  The state-of-
the-art GMM system, which will be referred to as “GMM – 2,” benefited from t-norm 
followed by h-norm.  The importance of these normalizations is underlined by a 
comparison of Tables 2 and 3. 
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GMM – 1 

min DCF 0.0220 
EER 4.88% 

Table 2: Performance of the baseline GMM, without normalizations. 
 
 

GMM – 2 
min DCF 0.00509 

EER 0.90% 
Table 3: Performance of the state-of-the-art GMM. 
 
7.2 Sequential GMM 
 
The experiments detailed in this section test the performance of the Sequential GMM 
system described above for the different frame-warping methods and various numbers of 
Gaussian components. 
 
Figure 13 compares the three different warping methods for the case where 128 Gaussian 
components are used.  The most interesting result is that all three warping methods score 
so similarly, especially in the EER region.  However, the linear interpolation-based 
warping method prevails in the low false-alarm region.  Finally, it is clear that the system 
is vastly superior to the GMM system without any normalization.  The metrics of interest 
for this system are reported in Table 4.  The poor performance in the high false-alarm 
region is believed to be a result of LNKnet optimizing for DCF, and this phenomena is 
discussed in Section 8. 
 
The next experiment is similar to the one above, except 256 Gaussians components are 
used.  The DET curves are shown in Figure 14.  Again, the different warping methods’ 
performances are comparable.  However, the sinc interpolation-based warping faired 
slightly better than the rest except in the high false-alarm region.  In addition, 
examination of Table 4 reveals that using 256 Gaussian components tends to be superior 
to 128.  The sinc interpolation-based warping with 256 Gaussian components resulted in 
the best EER for the system: 1.14%.  The DCF for the same configuration was .0057.  
Both of these scores are close to the marks reached by the state-of-the-art GMM.   
 
Figures 15 and 16 compare the DET curves for 128, 256, and 512 Gaussian components 
for the average and sinc interpolation warping methods, respectively.  For the average 
warping method, which has smaller feature vectors, the system performs comparably for 
each number of Gaussians; however, for the sinc interpolation warping method the best 
performance is with 256 Gaussian components, particularly in the low false-alarm region.   
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Figure 13: DET curves for different warping methods, using 128 Gaussian components, 
versus the baseline GMM. 
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Figure 14: DET curves for different warping methods, using 256 Gaussian components, 
versus the baseline GMM. 
 
 
  Sinc 

Interpolation 
Linear 
Interpolation 

Average 

EER 1.34% 1.33% 1.28% 128 Gaussian 
Components min DCF 0.00728 0.00644 0.00681 

EER 1.14% 1.25% 1.33% 256 Gaussian 
Components min DCF 0.00575 0.00605 0.00715 

  GMM – 1 GMM – 2 
EER 4.88% 0.90% 2048 Gaussian 

Components min DCF 0.0220 0.00509 

 

Table 4: System performance for various configurations. 
 



 25 

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Average Warping Method Compared for Different Numbers of Gaussians

512 Gaussians
256 Gaussians
128 Gaussians

 
Figure 15: DET curves for various numbers of Gaussian components for the average 
warping method. 
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Figure 16: DET curves for various numbers of Gaussian components for the sinc 
interpolation warping method. 
 
7.3 Combination with the State-of-the-Art GMM 
 
In this experiment, the systems from the previous section are combined with the state-of-
the-art GMM (GMM – 2).  Combination is done at the score level using LNKnet.  The 
GMM – 2 scores are treated as an additional phoneme, i.e. the input layer of the neural 
net now has 48 nodes instead of 47, one for each phoneme and one for GMM – 2.   
 
The ability of a system to combine with the state-of-the-art system is crucial.  For 
example, systems based on idiolect [19] traditionally have rather poor performance in 
isolation; however, they are very valuable in combination with the GMM.  The objective 
of the Sequential GMM system is not to outclass the state-of-the-art system, but rather to 
capture speaker characterizing information that the regular GMM disregards, specifically 
sequential information.  That is exactly what occurred.  As was stated in the introduction, 
combing the two systems caused the EER to fall by 36% and the min DCF to fall by 
65%, relative to the GMM alone.   
 
Figure 17 and Table 5 show the results from combining the various warping methods, 
using 256 Gaussian components, with GMM – 2.  The DET curves show the significant 
improvement over the state-of-the-art GMM, particularly in the important low false-
alarm region.  In addition, it is clear that the average warping method system does not 
combine quite as well as the others.  Fortunately, this is what would have been expected; 
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since the average method captures the least amount of sequential information because it 
collapses many frames into one, it is the most similar to the regular GMM. 
 
 
256 Gaussian 
Components 

Sinc 
Interpolation + 
GMM – 2 

Linear 
Interpolation + 
GMM – 2 

Average + 
GMM – 2 

GMM – 2 
 

EER 0.57%  0.65% 0.79% 0.90% 
min DCF 0.00180 0.00224 0.00289 0.00509 
Table 5: System performance for various configurations. 
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Figure 17: DET curves for the Sequential GMM systems combined with the state-of-the-
art GMM system.  The Sequential GMMs used 256 Gaussian components. 
 
7.4 Limiting the Length of the Phoneme States 
 
In this experiment, the method used to calculate state lengths, described in Section 4.4, is 
slightly modified.  The maximum length for a phoneme-state is capped at three, i.e. the 
phoneme-state length is the minimum of three and the previously determined value.  The 
motivation behind the experiment is to see if limiting the size of the feature vectors will 
improve system performance.  The result, as seen in Table 6, is a slight degradation in 
performance.  This implies that using the longer phoneme-state lengths did not 
particularly harm training the models, and that further compressing the frame sequences 
tends to remove valuable speaker identifying characteristics. 
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256 Gaussian 
Components 

Linear 
Interpolation 

Linear 
Interpolation – 
Capped 
Phoneme States 

EER  1.25% 1.38% 
min DCF 0.00605 0.006730 

Table 6: System performance with and without capped phoneme-state lengths. 
 
7.5 Principal Component Analysis (PCA) 
 
In order to alleviate potential data sparsity problems, PCA is used to reduce the 
dimension of the feature space, using the linear interpolation feature set as a typical 
system.  The PCA is implemented on each phoneme individually, and the transformation 
is trained on all instances of a phoneme type in the corpus.  As with calculating the 
phoneme-state average lengths, this transformation is technically cheating because the 
system is supposed to compute speaker hypotheses on-line, without additional knowledge 
of the other trials in the task.  Although it is uncertain how this reflects itself in the 
system performance, cheating in this way should undoubtedly only help performance; 
thus this method gives us an upper bound on the potential of PCA.  Table 7 shows how 
much information, in terms of energy, is preserved by transforming the feature spaces to 
retain only the 50 (or 100) largest eigendirections.  On average across the phonemes, 88% 
and 96% of the energy is preserved for compression to 50 and 100 features, respectively.  
For the majority of the phonemes, the amount of retained energy is rather high, 
considering the dramatic decrease in the feature space.  The least compressible phoneme 
is /ch/. 
 
Unfortunately, PCA results in a degradation of performance.  In Figure 18 the DET 
curves for before and after PCA can be compared, for 256 Gaussian component models.  
When using 128 Gaussian components, the PCA feature set’s performance is closer to the 
baseline; however, it is still inferior.  It is important to note that it is something of a 
mystery what information is discarded in the transformation.  It is certainly possible that 
the few percent of information that has been abandoned has most of the discriminating 
power.  An alternative approach would be to use Linear Discriminant Analysis (LDA), 
which explicitly preserves the directions with the most discriminating power. 
 
 

PCA Compression 

Phoneme 

Dimension 
of Feature 

Vector 
50 Largest 

Eigenvalues 
100 Largest 
Eigenvalues 

aa 220 90.7% 97.0% 
ae 260 90.2% 96.3% 
ah 160 92.1% 98.1% 
ao 240 89.5% 96.3% 
aw 300 89.0% 95.7% 
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ax 80 96.4% 100.0% 
ay 260 88.3% 95.6% 
b 140 88.8% 97.9% 
bgn 400 85.6% 92.6% 
ch 240 76.7% 89.8% 
d 120 91.5% 99.2% 
dh 100 93.5% 100.0% 
dx 120 94.7% 99.5% 
eh 160 93.3% 98.5% 
er 200 90.6% 97.1% 
ey 240 89.4% 96.3% 
f 200 80.6% 92.7% 
fpn 340 85.0% 92.7% 
fpv 560 84.3% 91.4% 
g 160 86.8% 96.6% 
hh 240 90.2% 96.1% 
ih 160 92.6% 98.2% 
iy 200 91.5% 97.4% 
jh 180 83.1% 94.4% 
k 180 83.1% 94.5% 
l 180 90.8% 97.4% 
lau 400 80.4% 90.1% 
m 140 91.3% 98.5% 
mtn 400 80.5% 89.4% 
n 140 93.2% 98.8% 
ng 180 91.8% 97.7% 
ow 280 88.7% 95.5% 
oy 320 85.3% 94.1% 
p 160 82.4% 95.2% 
pum2 660 83.5% 90.5% 
r 180 92.2% 97.8% 
s 200 81.8% 93.2% 
sh 240 79.3% 90.9% 
t 120 90.1% 99.1% 
th 160 83.6% 95.6% 
uh 120 93.7% 99.4% 
uw 180 92.6% 97.9% 
v 120 91.8% 99.3% 
w 200 88.5% 96.3% 
y 180 89.6% 96.9% 
z 180 86.2% 95.6% 
zh 180 86.4% 95.6% 

Table 7: This table shows the amount of energy contained in the 50 and 100 largest 
eigenvectors. 
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Figure 18: DET curves displaying the result of PCA.  The baseline uses linear 
interpolation warping and 256 Gaussian components.  The PCA is performed on the 
same feature set. 
 
7.6 Adapting from a UBM 
 
Rather than directly building phoneme-specific background models, a UBM is created.  
The UBM models all of the phonemes, and the phoneme-specific background models are 
then adapted from the UBM.  See Figure 19.  From that point onward, the system is the 
same as before.  This staged approach was inspired by phoneme-model experiments of 
[20].  The adaptation of the UBM to phoneme-specific background models uses the same 
features that are used to create phoneme-specific background models directly in the 
single-stage approach.  In all cases, the adaptation was only done on the means of the 
Gaussians. 
 
The primary advantage of adapting the models in this method is that the initial UBM can 
take advantage of all the available data.  Thus, the phoneme-specific UBMs should be 
able to capitalize on the fact they are adapting from a well-developed background model 
and not from scratch.  One limitation of this method is that it requires that the feature 
vectors for all the phonemes be the same dimension.  For this reason, the average 
warping method was used in this experiment.  This is unfortunate because the other 
warping methods, which have larger dimension vectors, are more likely to benefit from 
this technique. 
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Figure 20 displays the DET curves comparing the two adaptation schemes and the 
baseline GMM.  Both the single-stage and the two-stage adaptation methods are on the 
feature set created with the average warping style, and they both use 512 Gaussians 
components.  The single-stage adaptation significantly outperforms the two-stage 
adaptation.  However, the reason for this may be that the UBM should have been trained 
with more Gaussian components. 
 

Figure 19: Two different GMM adaptation approaches [20]. 
 
 

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

Different Adaptation Schemes

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (
in

 %
)

Single-Stage
Two-Stage

 
Figure 20: DET curves for the different adaptation methods. 
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7.7 Comparison to other Sequential Systems 
 
In this section, the Sequential GMM system is compared to two other systems, both of 
which capture phoneme-length sequential information: one that is non-parametric, and 
another that models the sequences with HMMs.   
 
7.7.1 Comparison to a Non-Parametric System 
 
The first system, referred to as the Sequential Non-Parametric (SNP) system, compares 
phoneme-length frame sequences in the test and target data.  As its name implies, the 
comparison is done non-parametrically [21].  In the SNP system, each trial of a test 
segment against a putative target model consists of scoring each frame sequence in the 
test data, corresponding to a phoneme, versus every instance of that phoneme in the 
training data.  The frame sequences are scored by aligning the frames using a Dynamic 
Time-Warping (DTW) algorithm and then taking a Euclidian distance between aligned 
frames.  This is a kth nearest neighbor technique where only the distance to the closest 
training token is stored for each test token.  The particular SNP system configuration 
used in this combination is exactly as described in [21] for phoneme-unigrams.  Note that 
phoneme-unigrams are not the optimal token size for the SNP system: phoneme-trigrams 
performed better.  This offers hope that the performance for the Sequential GMM system 
could be improved by switching to a longer token unit. 
 
These systems make an interesting comparison because they are both based on the same 
phoneme-level frame sequences.  There are two major differences between the systems.  
First, the SNP system uses no parametric models; and second, the frame sequences are 
warped differently.  In the SNP system each pair of frame sequences are optimally 
warped for each other with DTW, whereas in the Sequential GMM system all the frame 
sequences are warped at the beginning to a common length.   
 
Figure 21 shows the DET curves and Table 8 displays the EERs and DCFs for the SNP 
system, the Sequential GMM system, and a combination of the two using LNKnet.  The 
Sequential GMM system performs better than the SNP, but the interesting fact is that 
combining the two systems results in very little improvement in system performance.  
This indicates that the speaker discriminating power of the SNP system is largely 
subsumed by the Sequential GMM system.  Moreover, Figure 22 shows that the 
Sequential GMM system combines better with the state-of-the-art GMM system. 
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Figure 21: DET curves for the SNP, the Sequential GMM system, and a combination of 
the two.  The Sequential GMM uses 256 Gaussian components and the sinc interpolation 
warping method. 
 
 
 Sequential 

GMM 
SNP Sequential 

GMM + 
GMM – 2 

SNP +  
GMM – 2 

GMM – 2 
 

EER 1.14% 1.85% 0.57% 0.68% 0.90% 
min DCF 0.00575 0.00937 0.00180 0.00264 0.00509 
Table 8: EERs and DCFs for various systems.  The Sequential GMM uses 256 Gaussian 
components and the sinc interpolation warping method. 
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Figure 22: DET curves for state-of-the-art GMM and its combination with the SNP 
system and the Sequential GMM system.  The Sequential GMM uses 256 Gaussian 
components and the sinc interpolation warping method. 
 
7.7.2 Comparison to a Hidden Markov Model (HMM) based System 
 
The HMM system takes the phoneme frame sequences and models them with HMMs.  
The phoneme-level HMM system is comparable to the system described in [22].  This 
system produced speaker hypotheses using HMM models on a handful of specially 
chosen words whereas the phoneme-level HMM system models phonemes.  There are 
HMM models for 43 phonemes; each model has three states and 128 Gaussians 
components.  This works out to 384 Gaussians per model, slightly more than, but 
comparable to, the Sequential GMM system.  Training consisted of Baum-Welch re-
estimation, and successive splitting of the Gaussians, starting from one Gaussian per 
state. 
 
The Sequential GMM system and the phoneme-level HMM systems are analogous, save 
that different probabilistic models were used.  The Sequential GMM system explicitly 
models all of the (warped) frames in the phoneme, i.e. the complete trajectory of the 
sequence of frames.  The HMM model is “looser” and only models the frames in 
reference to their being in one of the three ordered states; i.e. the frames are split into 
three ordered groups.  Modeling with HMMs has the advantage that it does not require 
any frame warping.   
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In terms of performance, the Sequential GMM has a vastly superior EER, while the 
HMM system has a modestly better DCF.  See Table 9.  Note that the performance of the 
system using the whole word models [22] is superior to that of the phoneme-level HMM 
system. 
 
 

 Sequential 
GMM 

HMM 

EER 0.66% 1.16% 
min DCF 0.00537 0.00460 

Table 9: EERs and DCFs for the two systems.  All scores are reported on a single split of 
switchboard one, consisting of 1624 trials because the HMM system’s results are only 
available for this split. 
 
 

8 Discussion & Future Work 
 
Since this system is still in a preliminary stage, there are still many avenues that could 
potentially lead to performance improvements.  Some of these ideas and other 
observations are discussed below. 
 
8.1 Phoneme Performance 
 
Tables 11, 12, 13, and 14, presented in Appendix A, show the EERs and min DCFs for 
each phoneme in most of the systems discussed above.  One easily identifiable fact from 
these tables is that each phoneme’s performance is relatively similar for each system.  
One thing not so readily identifiable, but intuitive, is that the EER is strongly correlated 
with how frequent the phoneme is.  See Figure 23.  In general, the more frequent a 
phoneme, the lower the EER is.  This graph helps motivate interest in reducing the 
dimension of the models and moving to a larger corpus.  Also, note that phonemes such 
as /zh/ and /oy/ have such poor EERs because they don’t even appear in many test 
utterances. 
 
One other aspect investigated is using subsets of the phonemes [20, 23].  These 
experiments illustrate that every phoneme is contributing to the score since removing any 
one phoneme results in a degradation in performance.  Moreover, contrary to the results 
in [23], no performance gain is realized from using any subset of phonemes tried.  Figure 
24 shows the result for two different possible subsets: using the six best phonemes and 
using the forty best phonemes.  The “best phonemes” are measured in terms of EER in 
isolation, according to Table 11.  In both cases, the EER and min DCF of the systems 
based on the subsets of phonemes scored worse than the system that used all of the 
phonemes. 
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Figure 23: A log-log plot of EER versus the average number of training vectors for the 
phoneme-specific UBM.  The EERs were taken from the sinc interpolation warping 
method with 256 Gaussian components given in Table 11. 
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Figure 24: DET curves for various sets of phonemes, using the sinc interpolation 
warping method and 256 Gaussian components. 
 
8.2 ASR 
 
The ASR step in the system is suboptimal for a number of reasons.  First, because 
switchboard one is an older task, the ASR system used is several years old and therefore 
not as good as current ASR systems.  Moreover, due to differences in frame indexing 
conventions between SRI, who provided the ASR output, and HTK, which was used to 
do the feature extraction, there are likely slight frame alignment errors.  Even small frame 
alignment differences can be significant, since phoneme states can be as short as a single 
frame.  In newer systems, this issue was resolved by not chunking the feature files.  If 
these modifications were made it is reasonable to expect an improvement in performance.  
For example, compare the improvement for a word-based HMM speaker recognition 
system in Table 10. 
 
In order to assess the effect of ASR errors on system performance, it would be valuable 
to run the system using forced alignments based on truth transcripts.  Although the word-
level transcriptions do exist for switchboard one, the author did not have access to a 
phoneme state-level forced alignment based on these truth transcriptions.  Nevertheless, 
the ASR based system provides the most important result because it represents the score 
that the fully-automatic speaker-recognition system produces.  It is important that the 
system be automatic from beginning to end, and unfortunately truth transcription is a 
labor-intensive task. 
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Word-Based HMM System Performance 

 Before Improvements After Improvements 
EER 2.0% 1.7% 
DCF .012 .0092 

Table 10: This table shows the change in system performance for the system in [22] that 
results from using newer ASR recognition and not segmenting the feature files. 
 
8.3  Grouping Phonemes 
 
It would be an interesting experiment to attempt to warp all the phonemes to the same 
length without simply reducing all of the phoneme-states to a single frame, as presented 
in section 7.6.  Another method to fight data sparsity is to group phonemes together, 
based on acoustic similarity.  Thus the training data would not be divided into as many 
“bins.”  The trade-off is between the amount of training data and the tightness of the 
probability models.  That is, the more phonemes that are grouped together, the larger the 
acoustic space they will cover and hence the more spread out the GMMs will be.  For 
example, the phonemes /ah/ and /aa/ may be close enough that it would be better to group 
them together for training the GMMs.   
 
8.4  Alternative Approaches to the Average Phoneme-State Lengths 
 
Section 4.4 includes a discussion of the trade-offs between different phoneme-state 
lengths.  Alternative approaches may result in superior performance.  It is possible to 
choose the target phoneme-state length based on how rich the acoustic information within 
the phoneme-state is.  For instance, some of the factors of interest may be the time-
evolution of the formants or whether the sound is voiced or unvoiced.  Alternatively, one 
could just choose the longest instance of a phoneme-state as the desired length.  As was 
discussed before, this method prevents discarding any temporal information. 
 
8.5 Other Research Possibilities 
 
Since the system is still in an early stage of development, there are many respects in 
which it could be improved.  Some of these are listed below. 
 

• Tweak the interpolation method.  There are a number of methods to interpolate 
points, ranging from splines to different kernels.  It is possible that some other, 
yet uninvestigated, method could be superior. 

• Apply LDA to the feature vectors.  The feature vectors are large and have been 
shown by way of PCA to be highly reducible.  Perhaps LDA can better reduce the 
dimension while retaining the speaker discriminating information. 

• Optimize the score combination for the phonemes.  LNKnet has numerous 
parameters, including the type of neural network, the topology of the neural 
network, and the optimization parameters for training the neural network.  
Numerous times LNKnet has resulted in patently non-optimal combinations; 
therefore, it is reasonable to suspect that the combinations for this system are also 
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suboptimal.  See Figure 25 for an example of how changing the neural network 
configuration affects performance. 

• Adapt the system for use in an SVM.  This research avenue is more speculative 
than the others; however, by creating vectors in a method similar to [24], but 
based on the stacked feature vectors in this system, an SVM can be explored. 

• Change the basic unit from phonemes to tri-phonemes, words, etc.  Recall that 
using longer tokens improved performance in the SNP and HMM systems [21, 
22].  One major issue is that by increasing the basic unit size, data sparisty 
becomes an even larger issue. 

• Use open loop phone decoding for the ASR.  The main interest in the system is 
parsing the frames into acoustically similar chunks.  The phoneme sequence as 
dictated by the lexicon is of little interest. 

• Replace GMMs with other probabilistic models, such as Conditional Random 
Fields (CRF). 

• Investigate the front-end.  Perhaps there is an alternative signal processing method 
that is better suited for this system. 

• Add normalization.  Z-norm, t-norm, h-norm, or feature mapping could easily be 
applied to this system, and they have the potential for large performance gains. 

• Move to a larger and more challenging corpus, such as switchboard two.  A larger 
corpus would supply ample data for training background models and applying the 
various normalizations mentioned above. 
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Figure 25: DET curves for the system, with sinc interpolation warping and 256 
Gaussians components, using different LNKnet options.  One configuration had a hidden 
layer with seven hidden nodes, and the other configuration had no hidden layers. 
 
 

9 Conclusion 
 
Since speaker recognition is as of yet an unsolved problem, it is still an open question as 
to what form the optimal solution will take.  However, the optimal systems should use all 
possible sources of speaker identifying information—something the GMM system does 
not do.  This does not mean the GMM system should be scrapped; it is good at collecting 
considerable speaker relevant information.  The goal should be to build systems that 
capture the other sources of information, such as prosodic patterns, pronunciation 
preferences, word usage, grammar, and other speaker idiosyncrasies. 
 
The Sequential GMM is one such system because it is a powerful addition to the 
traditional GMM system.  Despite the undeveloped state of the system, it is amazingly 
able to cut the min DCF of the traditional GMM by over 50%.  The min DCF is the 
principal metric by which speaker verification systems are measured by NIST and an 
important operating point for security applications.  A primary advantage of this system 
is that it is composed of off-the-shelf parts: ASR, cepstral-based signal processing, and 
GMMs.  This makes the system simple to implement, especially considering how 
commonplace GMM systems have become.  Moreover, system performance should 
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improve as ASR does.  Finally, since this system is an adaptation of well-known 
technology, the GMM, much of the research on GMMs can be applied to this system, e.g. 
feature mapping.  By bringing to bear some of these technologies, it is reasonable to 
expect even further improvements. 
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11 Appendix A 
 
EERs (%) 
Warping 
Method 

Sinc 
Interpolation 

Sinc 
Interpolation 

Linear 
Interpolation 

Linear 
Interpolation Average  Average  

Number of 
Gaussians 256 128 256 128 256 128 

aa 8.87 8.49 8.90 8.39 8.06 7.60 
ae 3.77 4.23 3.80 4.10 3.72 4.18 
ah 6.27 6.49 6.40 6.78 6.43 6.51 
ao 8.44 9.09 10.26 9.20 8.71 8.25 
aw 12.94 11.94 13.03 11.86 11.23 10.69 
ax 4.31 4.48 4.23 4.56 4.18 4.45 
ay 4.61 6.27 4.29 4.37 4.31 4.23 
b 9.44 8.44 9.72 8.52 8.52 7.73 
bgn 58.89 56.23 58.72 57.42 51.13 11.53 
ch 19.92 18.37 20.08 18.67 18.45 16.72 
d 5.94 5.67 5.86 5.32 5.67 5.62 
dh 5.81 5.07 5.94 5.51 5.78 5.37 
dx 14.60 13.24 14.60 13.24 13.95 12.56 
eh 6.62 6.68 7.03 6.78 6.54 6.68 
er 8.98 8.41 8.79 8.36 7.90 5.97 
ey 7.33 7.54 7.38 6.97 6.54 6.89 
f 12.48 11.99 13.60 12.16 11.53 10.23 
fpn 28.36 26.73 28.66 26.92 25.97 24.29 
fpv 9.34 8.49 9.47 8.66 9.06 8.36 
g 12.92 11.51 13.35 11.72 11.91 10.53 
hh 6.54 6.35 6.95 6.21 6.08 5.13 
ih 6.35 6.65 6.19 6.27 6.16 6.38 
iy 5.64 9.34 5.94 6.13 5.97 5.92 
jh 18.15 16.12 18.43 16.55 16.01 14.84 
k 6.49 6.11 6.43 6.30 6.35 6.16 
l 6.24 6.38 6.40 6.38 6.05 6.16 
lau 19.38 5.64 19.62 18.37 18.07 16.99 
m 6.59 5.32 5.37 5.45 10.53 5.13 
mtn 20.73 19.97 20.95 19.57 17.83 17.10 
n 3.28 3.66 3.23 3.66 3.42 3.53 
ng 8.06 7.44 8.14 7.68 7.03 6.59 
ow 6.68 6.59 6.70 6.40 6.13 6.05 
oy 68.25 65.48 68.74 65.70 55.50 52.08 
p 12.16 10.28 10.83 10.23 10.31 9.58 
pum2 19.51 17.77 19.35 17.86 17.31 15.66 
r 6.16 6.27 6.16 6.02 6.13 6.11 
s 4.99 68.25 5.07 4.86 4.75 4.97 
sh 16.42 12.16 16.53 15.71 14.36 13.46 
t 4.59 4.59 4.45 4.72 4.15 4.37 
th 6.84 16.26 18.15 16.09 15.6 13.79 
uh 21.30 19.65 21.3 19.65 20.46 19.24 
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uw 8.41 7.79 8.25 7.73 7.60 7.25 
v 11.23 10.61 11.34 10.53 10.69 9.61 
w 7.25 6.84 7.38 7.22 7.08 6.59 
y 6.54 6.68 6.38 6.27 5.97 5.73 
z 7.03 6.62 7.38 6.49 6.62 6.49 
zh 77.67 78.94 77.96 78.53 73.76 72.37 

Table 11:  EERs for each phoneme for various systems. 
 
 
EERs 

Warping 
Method 

Linear 
Interpolation: 
PCA – 50 
Components 

Linear 
Interpolation: 
PCA – 100 
Components 

Linear 
Interpolation: 
PCA – 50 
Components 

Linear 
Interpolation: 
PCA – 100 
Components 

Linear 
Interpolation: 
Phoneme-
States 
Capped at 3 

Number of 
Gaussians 256 256 256 256 256 

aa 8.82 8.09 11.10 9.63 9.01 
ae 3.31 3.53 3.31 3.69 3.88 
ah 6.27 6.38 7.84 7.52 6.40 
ao 9.93 9.01 12.29 11.70 9.61 
aw 11.8 10.72 14.19 12.97 13.00 
ax 4.53 4.83 14.19 12.97 4.23 
ay 4.26 4.34 4.37 4.53 4.42 
b 9.12 8.79 11.78 10.61 9.72 
bgn 42.93 40.65 11.78 10.61 55.14 
ch 19.57 17.26 21.47 19.27 20.19 
d 5.94 5.43 8.01 7.52 5.89 
dh 5.75 5.78 6.95 7.00 5.94 
dx 14.01 13.54 21.63 20.68 18.40 
eh 6.38 6.35 8.39 7.90 7.03 
er 8.63 7.84 10.75 9.69 8.93 
ey 7.06 7.06 8.25 8.11 7.27 
f 11.53 10.64 15.47 13.62 12.97 
fpn 24.78 23.31 27.95 25.78 27.14 
fpv 8.93 8.47 9.53 9.06 9.34 
g 12.81 11.51 15.41 13.27 13.35 
hh 6.49 5.70 9.61 9.31 6.81 
ih 6.08 6.30 7.41 7.16 6.19 
iy 5.81 5.97 6.46 6.35 6.08 
jh 16.85 15.39 19.67 18.26 18.43 
k 6.43 6.40 7.08 6.87 6.43 
l 6.30 6.27 7.71 7.35 6.38 
lau 42.66 42.33 20.95 19.84 19.84 
m 5.64 5.48 6.32 6.13 5.37 
mtn 19.54 17.99 24.04 21.22 20.57 
n 3.20 3.34 3.88 3.74 3.23 
ng 8.06 7.41 10.96 9.91 8.14 
ow 5.75 5.70 7.52 6.46 6.68 
oy 40.90 40.57 46.12 43.04 64.29 



 45 

p 11.07 9.88 12.48 11.86 10.83 
pum2 17.88 16.58 20.00 18.48 18.43 
r 5.67 6.24 6.81 6.62 6.16 
s 4.99 4.78 5.67 5.56 4.72 
sh 15.90 14.55 19.35 16.66 15.98 
t 4.83 4.86 6.02 5.81 4.45 
th 16.20 14.74 20.38 18.05 18.13 
Uh 21.98 19.78 25.73 24.40 21.30 
Uw 8.36 7.54 10.15 9.93 8.25 
V 11.78 10.45 15.39 13.27 11.37 
W 7.63 7.33 8.96 8.66 7.30 
Y 6.68 6.32 8.68 7.73 6.38 
Z 6.92 6.46 8.85 7.95 7.38 
Zh 54.55 49.61 59.21 50.66 78.40 

Table 12:  EERs for each phoneme for various systems. 
 
 
DCFs 
Warping 
Method 

Sinc 
Interpolation 

Sinc 
Interpolation 

Linear 
Interpolation 

Linear 
Interpolation Average  Average  

Number of 
Gaussians 256 128 256 128 256 128 

aa 0.0429 0.0435 0.0423 0.0434 0.040 0.0420 
ae 0.0220 0.0225 0.0221 0.0228 0.0206 0.0225 
ah 0.0339 0.0347 0.0325 0.0342 0.0328 0.0322 
ao 0.0399 0.0437 0.0443 0.0446 0.0425 0.0419 
aw 0.0534 0.0491 0.0566 0.0540 0.0508 0.0474 
ax 0.0222 0.0228 0.0226 0.0231 0.0220 0.0224 
ay 0.0242 0.0339 0.0252 0.0259 0.0259 0.0248 
b 0.0460 0.0399 0.0432 0.0421 0.0426 0.0399 
bgn 0.0976 0.0968 0.0975 0.0974 0.0945 0.0529 
ch 0.0748 0.0689 0.0722 0.0689 0.0731 0.0679 
d 0.0298 0.0301 0.0295 0.0286 0.0303 0.0290 
dh 0.0279 0.0284 0.0275 0.0283 0.0302 0.0294 
dx 0.0654 0.0613 0.0654 0.0613 0.0624 0.0589 
eh 0.0371 0.0357 0.0337 0.0364 0.0327 0.0344 
er 0.0413 0.0417 0.0416 0.0421 0.0427 0.0299 
ey 0.0349 0.0352 0.0355 0.0356 0.0313 0.0337 
f 0.0549 0.0515 0.0569 0.0546 0.0529 0.0492 
fpn 0.0700 0.0675 0.0710 0.0696 0.0690 0.0672 
fpv 0.0385 0.0361 0.0377 0.0365 0.0362 0.0377 
g 0.0559 0.0544 0.0583 0.0546 0.0540 0.0488 
hh 0.0311 0.0299 0.0307 0.0271 0.0288 0.0274 
ih 0.0332 0.0337 0.0339 0.0348 0.0308 0.0325 
iy 0.0285 0.0385 0.0303 0.0315 0.0299 0.0305 
jh 0.0688 0.0673 0.0711 0.0672 0.0670 0.0593 
k 0.0305 0.0306 0.0340 0.0328 0.0331 0.0299 
l 0.0310 0.0309 0.0309 0.0317 0.0289 0.0308 
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lau 0.0668 0.0285 0.0704 0.0665 0.0654 0.0660 
m 0.0330 0.0285 0.0286 0.0294 0.0488 0.0265 
mtn 0.0645 0.0649 0.0638 0.0654 0.0598 0.0595 
n 0.0176 0.0191 0.0183 0.0188 0.0185 0.0199 
ng 0.0385 0.0342 0.0377 0.0355 0.0373 0.0344 
ow 0.0337 0.0330 0.0326 0.0327 0.0318 0.0310 
oy 0.0970 0.0970 0.0960 0.0957 0.0969 0.0956 
p 0.0506 0.0486 0.0495 0.0471 0.0485 0.0446 
pum2 0.0565 0.0538 0.0559 0.0534 0.0546 0.0531 
r 0.0324 0.0322 0.0315 0.0336 0.0323 0.0335 
s 0.0225 0.0970 0.0249 0.0239 0.0235 0.0243 
sh 0.0608 0.0506 0.0571 0.0584 0.0588 0.0546 
t 0.0225 0.0228 0.0229 0.0231 0.0222 0.0215 
th 0.0384 0.0686 0.0705 0.0664 0.0630 0.0621 
uh 0.0783 0.0834 0.0834 0.0783 0.0822 0.0779 
uw 0.0404 0.0412 0.0424 0.0413 0.0402 0.0394 
v 0.0541 0.0512 0.0526 0.0518 0.0509 0.0510 
w 0.0395 0.0384 0.0367 0.0385 0.0375 0.0367 
y 0.0316 0.0318 0.0324 0.0301 0.0301 0.0328 
z 0.0340 0.0333 0.0336 0.0326 0.0347 0.0331 
zh 0.0986 0.0986 0.0987 0.0984 0.0988 0.0980 

Table 13:  DCFs for each phoneme for various systems. 
 
 
DCFs 

Warping 
Method 

Linear 
Interpolation: 
PCA – 50 
Components 

Linear 
Interpolation: 
PCA – 100 
Components 

Linear 
Interpolation: 
PCA – 50 
Components 

Linear 
Interpolation: 
PCA – 100 
Components 

Linear 
Interpolation: 
Phoneme-
States 
Capped at 3 

Number of 
Gaussians 256 256 256 256 256 

aa 0.0411 0.0411 0.0528 0.0452 0.0432 
ae 0.0174 0.0188 0.0198 0.0216 0.0226 
ah 0.0325 0.0334 0.0409 0.0373 0.0325 
ao 0.0456 0.0428 0.0535 0.0515 0.0455 
aw 0.0523 0.0495 0.0595 0.0586 0.0573 
ax 0.0222 0.0247 0.0595 0.0586 0.0225 
ay 0.0229 0.0233 0.0237 0.0230 0.0239 
b 0.0458 0.0456 0.0550 0.0519 0.0432 
bgn 0.1001 0.1000 0.1150 0.1019 0.0976 
ch 0.0766 0.0723 0.0821 0.0769 0.0730 
d 0.0314 0.0298 0.0409 0.0375 0.0295 
dh 0.0307 0.0295 0.0364 0.0364 0.0275 
dx 0.0617 0.0627 0.0887 0.0854 0.0713 
eh 0.0346 0.0357 0.0403 0.0408 0.0337 
er 0.0401 0.0407 0.0497 0.0474 0.0420 
ey 0.0338 0.0336 0.0382 0.0364 0.0342 
f 0.0561 0.0540 0.0678 0.0615 0.0573 
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fpn 0.0721 0.0685 0.0802 0.0757 0.0702 
fpv 0.0371 0.0363 0.0393 0.0351 0.0390 
g 0.0596 0.0556 0.0649 0.0600 0.0583 
hh 0.0301 0.0285 0.0428 0.0427 0.0295 
ih 0.0314 0.0323 0.0363 0.0358 0.0339 
iy 0.0292 0.0307 0.0339 0.0332 0.0308 
jh 0.0709 0.0685 0.0809 0.0748 0.0711 
k 0.0339 0.0326 0.0364 0.0336 0.0340 
l 0.0308 0.0337 0.0384 0.0385 0.0309 
lau 0.0759 0.0749 0.0771 0.0764 0.0679 
m 0.0294 0.0305 0.0338 0.0330 0.0286 
mtn 0.0679 0.0663 0.0812 0.0760 0.0688 
n 0.0187 0.0175 0.0211 0.0221 0.0183 
ng 0.0390 0.0356 0.0492 0.0444 0.0377 
ow 0.0313 0.0302 0.0350 0.0325 0.0333 
oy 0.0988 0.0991 0.1003 0.0998 0.0971 
p 0.0511 0.0492 0.0570 0.0538 0.0495 
pum2 0.0569 0.0558 0.0614 0.0605 0.0580 
r 0.0285 0.0307 0.0349 0.0345 0.0315 
s 0.0274 0.0285 0.0331 0.0323 0.0232 
sh 0.0654 0.0615 0.0763 0.0709 0.0593 
t 0.0268 0.0263 0.0311 0.0315 0.0229 
th 0.0661 0.0638 0.0769 0.0731 0.0705 
uh 0.0822 0.0783 0.0905 0.0869 0.0833 
uw 0.0437 0.0399 0.0497 0.0490 0.0424 
v 0.0533 0.0495 0.0695 0.0638 0.0526 
w 0.0400 0.0386 0.0442 0.0464 0.0376 
y 0.0324 0.0305 0.0406 0.0383 0.0324 
z 0.0355 0.0341 0.0436 0.0413 0.0336 
zh 0.0999 0.1001 0.1001 0.1001 0.0987 

Table 14:  DCFs for each phoneme for various systems. 
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