The Sequential GMM:
A Gaussian Mixture Model Based Speaker Verification
System that Captures Sequential Information

Stephen James Stafford

May 16, 2005



Table of Contents:

R 1 1 o o 18 o 1o ) 1SRRI 4
1.1 YT 11 VZ= 14 [ PRSP 4
1.2 OVEBIVIBW ...ttt ettt a s s e e e e e e e e e e e e eeeeesanennaeeessnntnnnnns 5

2 TRE GIMM et e e e e e e e e e e e e e e e n e 5

3 SYSIEM OVEIVIEW ... .o e e e e e e e ettt a s e e e e e e e e aaanaaaaaaaaeeeeens 7
Bl TRE TASK ettt ——————————— 7

4 Developing the New Feature Set ..........iiccceeeeieriiiiiiie e 8
4.1 Feature EXIraCtioN .......ccoui e s 8
4.2  Automatic Speech Recognition (ASR) ......coeemeeeiiiiiiiiiiiiiiiieeeeeeeee e 9
4.3 Frame SIftiNg ......coooiiiiiiieeee et s e e e e e e e e e e e e e e e e e e eeee e eenneeraaanaaa 10
4.4 Calculating Average State Lengths. ... 10
4.5 Frame WarPing .....ccooooiiiiiiiiieeei et s e s e e e e e e e e e e e e e e eeesesesrnnnnnssnnnnes 11

45.1 Warping Method: Linear Interpolation .. .....ccoooveieeeeeeeeiiiiiieeiiiiiiinn, 12

4.5.2 Warping Method: Sinc Kernel...........ooeeeeiiiie e 14

45.3 Warping Method: AVEIrage .........cooeeeeeeeeee e 71
4.6 Stacking the frames..........oooiiiiiiimme e 17

SN Y/ o T = I I =1 Vo PSPPSR 18
5.1 Background Training ........cceeuuvuuuemmmmmmmmaear e s 18
5.2  Target Model Adaptation............oooiiemmmmmiiiiiiiiiieeeeeee e 20

6 SCOMNQG & FUSION ...ttt ettt e e e e e e e e e e e eeeeeeeeeeeeeeeennnes 21

A = {0 1= 41T £ USRS 21
7.1 BaSeliNg SYSIEM ....uuiiiiiiiiiiiiii e 21
7.2  Sequential GIMM.........ooooiiiiiiiiieiiemmmmmm e et e e e e e e e e e e e e e e e ereeeeaees 22
7.3 Combination with the State-of-the-Art GMM .........cccoooiiiiiiiiiiiiieiiis 26
7.4  Limiting the Length of the Phoneme States.............covviiiiiiiiiiiies 27
7.5 Principal Component AnalysiS (PCA) ......uuiiiiiiieiie e 28
7.6 Adapting from @ UBM ........coooiiiiiie s 30
7.7  Comparison to other Sequential SYStEMS oeeevvvviiiiiiieee e, 32

7.7.1 Comparison to a Non-Parametric System..............ciiiiiiiieiieeeeeeen, 32
7.7.2 Comparison to a Hidden Markov Model (HMM) éasSystem.............. 34

8  DiscusSION & FULUIE WOTIK ........cooiiiiiiii ettt e e e e e e e e e eeeeeeees 35
8.1 Phoneme Performance .........coooo oo ee e 35
8.2 ASR . ———— e e e aa e e s 37
8.3 Grouping PRONEMES ..o 38
8.4  Alternative Approaches to the Average Phon&tage Lengths..................... 38
8.5  Other Research POSSIDIlItIES ...........ueeeeeeeiiiiiiiiiiiiiiiiiceeeee e 38

O CONCIUSION ittt ettt ettt e e e e e e e e e e e e e e s e s e nnnnne e e e e e e e e e eeeeeas 40



10

11

12

ACKNOWIEAGMENTS. ... e e e e e e e

Appendix A

References



1 I ntroduction

This report presents a novel speaker verificatymtesn that generates a new feature set
that captures long duration speaker identifyingabiristics while taking advantage of
the well-established and well-studied Gaussian ie&Model system (GMM). Much of
the innovation in the system is contained in thelligent exploitation of traditional
cepstral features such that temporal aspects ethp&hich are otherwise disregarded in
traditional GMM frameworks, can be explicitly moddl The system consists of a
collection of independent GMMs, one for each phoagpuilt on these long duration
feature vectors. The outputs of these GMMs are toenbined at the score level using a
neural network.

Despite using traditional tools with respect to @M and the front-end feature
extraction, combining this system with a run-of-thél GMM system dramatically
reduced both the equal error rate (EER) and théxmim value of the decision cost
function (DCF) on a standard speaker verificatest set, in comparison to the GMM
system alone. This improvement indicates thatdhg duration features are capturing
speaker characterizing information that the reg@GlsiV ignores. The min DCF fell by
nearly 65% and the EER fell by approximately 36%Moreover, the new system'’s
performance, when operating in isolation, approdcdhat of the state-of-the-art GMM.

1.1 Motivation

Speaker recognition is a task that is familiarwergone. When answering the telephone,
people often know immediately who is on the othed ef the line. Unfortunately,
speaker recognition is not such a simple taskdanputers. Part of the problem is that it
is difficult for humans to determine what charaistiezs they use in identifying speakers.
Perhaps they recognize a phrase the person commsedyor maybe just the way the
person laughs. Human based speaker recognitiohecatudied, and has been to some
extent [1]. However, perhaps humans are not thienapsystem; perhaps machines can
do much better.

There are a number of distinguishing speech cheniatits that can be utilized, such as
acoustic qualities, prosodic patterns, pronunaigpiceferences, and word usage, to name
a few. The sources of these different piecesfofimation depend on factors ranging
from the shape of the nasal passage to where therpwas raised [2]. The aspiration

for speaker recognition systems is to use all efabove-mentioned sources of
information; simply stated, the goal is to captevery piece of information that reveals
the identity of the speaker. The difficulty, howeeyis in modeling these complex
speaker idiosyncrasies.

The current state-of-the-art system, the GMM, gatesrits speaker hypothesis based on
information derived from frames, which are obtaitgdlividing the speech sample into
approximately ten-millisecond segments. These dsaare then used without ordering to
model a speaker’s voice. This so-called “bag amies” technique generally works very
well. However, there is good reason to believe biyareating each frame independently,
and hence forfeiting sequential information, the K@lbses potentially speaker-
identifying characteristics of the speech. Theaeysproposed in this paper, which is



referred to as th8equential GMMharnesses the power and simplicity of the GMM
while capturing sequential information by usingfiess that represent entire phonemes.
A phoneme is typically between 50 and 300 millisetlong; therefore, the new frames
will represent a time span of approximately an oafanagnitude longer than traditional
frames. Part of the reason this long-term modemgpssible is due to increased
guantities of training data available through NISEXtended Data task [3]. As the
availability of training data grows, the feasilyildf modeling higher-level and potentially
rarer temporal speaker idiosyncrasies grows.

1.2 Oveview

The primary innovation presented in this papehérhethod by which a new feature
vector is created and where each new frame repgse@ninformation from an entire
phoneme. This task is accomplished by stackingrémes that constitute a phoneme
and treating this sequence of frames as a singldesture vector. Thus there is one
new frame for each instance of a phoneme in thecépstream.

This approach introduces a few challenges. Rhistsystem now requires a phoneme-
level transcription of the acoustic data. Sected¢ause the GMM must model a
probability space of fixed dimension, each of teerieature vectors must be the same
dimension. This is a significant hurdle becausesraf speech can be highly variable, so
different instances of the same phoneme will gdlyeloe of different duration. Since the
new frames are created by stacking the old fraptesmemes of different length will
create stacked frames of different dimension. As mentioned, this system builds
phoneme-specific GMMs; therefore, it is necessanydrp each sequence of frames, for
a specific phoneme, to the same length. The psdoesvarping will be explained in
Section 4.5. The final issue introduced by thistem is training the GMMs. Under the
new system, there are fewer frames because therdyi®ne feature vector per phoneme.
Additionally, there are more model parametersamtdue to two reasons: the dimension
of the training vectors has grown, and a separ8®&@ being trained for each
phoneme.

The nature of the speaker recognition task is lgragscribed below; for further
explanation see [4]. Below, the basic GMM systeithbve briefly described (Section 2),
the creation of the new feature set will be exm@diSection 4), a number of experiments
will be investigated (Section 7), and possible fetdirections of the research will be
proposed (Section 8).

2 TheGMM

Before the GMM system is discussed, it is importaninderstand the speaker
verification task. A single trial in the task casts of a test speech segment and a
putative target speaker. The test segment condpgimsch from only one speaker, and the
goal is to determine whether the test segment vwesdex by the target speaker. Hence,
the task can be formulated as a hypothesis testrenthe hypotheses are denoted by H
and H. H; is the hypothesis that the test data was creatdldebtarget speaker, a



“match,” and H is the hypothesis that the test data was noteuldat the target speaker,
but instead by an “impostor.”

The decision criterion is given in the usual foion & hypothesis test,
Hi

P(match | test data) 2 P(impostor | test data). (1)
Ho

This equation is further modified using Bayes ruésulting in
Hi

P(test data | match) P(match) 2 P(test data | impostor) P(impostor). (2)

Ho
This formulation gives the provably optimal solutj@assuming the probabilities are
accurately modeled; however, in speaker verificatibis assumed that priors are
unknown to the researcher and are therefore digteda Hence, the metric of interest is
measured in terms of a likelihood ratio:

Hi

P(testdata| match) >

P(testdatalimpostoi <

Ho

If the likelihood ratio is above a threshojd H; is accepted, otherwisglit accepted.

3)

The GMM system [5, 6] is an effort to model thoselyabilities. It is the de facto
standard for text-independent speaker verificatmal it performs very well despite its
simplicity. The system attempts to probabilisticahodel the frames of speech using
Gaussian mixtures, where a frame of speech istavezsulting from some sort of signal
processing on a slice of speech. Frames are tiypamanputed over a 30ms window, at
10ms steps through the speech utterance.

The first step in constructing the system, assurttiegrames have been created, is to
create a universal background model (UBM) [5]. T®M uses a GMM to model the
frames of speech from a generic speaker and ieftre, trained on frames from a large
held-out set of speakers. The UBM can be usedltulate the probability of a frame
being created by a generic, non-target speakes;itimoduces the denominator of the
likelihood ratio. The GMM’s parameters are trainesihg Expectation Maximization
(EM). The trainable parameters are the Gaussiamg)e&ovariance matrices, and
weights. The covariance matrices are assumed diealgenal, to limit the number of
parameters.

The second step is to create speaker-specific modespeaker-specific GMM is created
through MAP adaptation [7] of the means from theMUBThe adaptation is computed
using training data, which consists of frames figprech utterances from the target
speaker. The amount of training depends on thicagipn. Naturally, there is a
separate adapted GMM for each speaker of intefidst. speaker-specific GMM is used
to generate the numerator of the likelihood ratio.



The log likelihood ratio is calculated as
P(x | mat
z lo (XI | a Ch (4)
—  P(x [imposto,

wherex; is a frame from the test data and the sum is aNef the frames. Factoring the
joint probability of the test frames, from equati@), into probability functions on the
individual frames implicitly assumes that the franaee independent. This assumption is
necessary because the GMM system contains no moldedsrelation among frames.
With the UBM, the speaker-specific adapted moddad, the frames from the test data, the

likelihood ratio can be computed. The final stepoi determine a threshold so a decision
can be made.

3  System Overview

The Sequential GMM system can be broken into tetages, which will each be
explained in Sections 4, 5, and 6, respectively:

1) Creating the new feature vectors
2) Developing the background and target models
3) Scoring and fusion

3.1 TheTask

This system was run on the Extended Data taskeo2@®1 NIST Speaker Recognition
Evaluation [3]. The data in the task are drawmfrecorded telephone conversations of
the switchboard one corpus which contains 24004ided telephone conversations from
around 540 speakers [8, 9], and the task is strilefined as speaker verification, as
described in Section 2. The test data for onédaasists of a single “conversation-side”
of speech from a single speaker, and the trainomglition is one in which eight
conversation-sides are available from the targealspr. The eight conversation-side
condition is on the large side of the spectrunrahing conditions, with many systems
using much less. The Sequential GMM is well sufteda setting with more training
data because it models larger, and therefore gpapech events. A conversation-side
is the speech from one of the two speakers inearfiinute conversation.

The task is divided into six “splits,” where eagdtitsconsists of a disjoint set of speakers;
therefore, testing on one split can use othersspli non-cheating way. Splits 1, 2, and
3 have 4797 trials and splits 4, 5, and 6 have 30G88. When testing on the first three
splits the last three splits were used to trainbhekground models, and vice versa.



4  Developing the New Feature Set

The heart of the sequential GMM is the creatiothefnew feature vectors, in which the
new features are assembled from the typical Metjreacy Cepstral Coefficients
(MFCC) features [10]. Since there are two feat@ts, one built from the other,
particular care must be taken to note when thefeatre vectors are being referenced.
The process of creating these new feature vectorde broken down into these six
stages, which will each be examined in detail eftillowing subsections:

1) Feature extraction

2) Automatic Speech Recognition (ASR)
3) Frame sifting

4) Calculating average state lengths

5) Frame warping

6) Stacking the frames

41 Feature Extraction

This system uses the traditional MFCCs, CO throDg# extracted using HTK [11]. The
cepstra are produced every 10 ms over 25ms of Bpe&ee Figure 1. The speech is
preemphasised, with a preemphasis coefficient®f,&and a Hamming window is used
to window the speech. Cepstral mean subtractiosiSYJ12] is applied on a per
conversation-side basis, with the means estimated the speech portion of the
segment.

Delta parameters were not used because of thedargmsion of the stacked feature
vectors and because stacking neighboring framaddaimherently encode this
information. The primary difficulty with large faae vectors arises in training the large
number of resulting GMM parameters. The new framesulting from multiple stacked
frames, are as large as 300 dimensions withowglelt)sing deltas would increase this
number to 600. Training this increased numberandmeters is limited by two factors:
training data, and computation time. Althoughtmgshrooming computation time could
be dealt with, the amount of training data canraata for training the background
models can be pulled from other data corpora; hewalie amount of data available for
adapting target models is limited to eight conveosa by the task.



Feature
Extractor

Figure 1: The speech waveform passes into thereatxtractor, which does signal
processing and produces a frame with 20 elemem@y e\ ms.

4.2 Automatic Speech Recognition (ASR)

The waveforms are separately run through a traditizvord-based speech recognizer
[13], courtesy of SRI [14]. Because the ASR systeas trained using the same
switchboard one data it was run on, somewhat sdggown models were used, in order
to make the ASR quality practical. As a by-produaicthe speech recognition, the system
also produces phoneme and phoneme-state time aigamEach phoneme, as modeled
by a Hidden Markov Model (HMM), contains three stat The frame sequence created
in the feature extraction is now labeled at thenamoe-state level (see Figure 2). The
SRI phoneme set consists of the 47 phonemes listéidure 11. Some of the
nonstandard phonemes include:

fpv: filled pause vowel (as in the vowel in “uh” arm”),
fpn: filled pause nasal (as in the “m” in “um”),

bgn: background noise,

pum2: similar to fpv (sound of words like “hm?”),

mtn: mouth noise, and

lau: laughter.



[aa/

Figure 2: The sequence of frames has been tagg#diive center 10 frames belonging
to the phoneme /aa/; states 1, 2, and 3 have tlineeg, and four frames, respectively.

4.3 Frame Sifting

Once the frames have been labeled by means of h&Rrame sequences associated
with the different phonemes are sifted apart. This be pictured as 47 bins, one for
each phoneme, and in each bin is a set of frameesegs. Naturally, each of the frame
sequences in a bin would correspond to the phorienvehich the bin was labeled;
moreover, it is crucial that the ordering of thanfies within these sequences remain
intact. After all, this system is attempting todhebthe time-evolution of phonemes.

Since different phonemes tend to be different lesagt was decided not to try to warp all
the frame sequences to the same target lengthathar warp each instance of a
phoneme to the average length of that phoneme type.decision to treat each of the
phonemes separately is not without negative coresers. As was mentioned earlier,
data sparsity is a serious issue with this syséamd,by treating each phoneme separately,
the training data is spread out across 47 diffe@viMs. Moreover, it is actually worse
than simply dividing the training data by the numbephonemes, because some
phonemes are very infrequent. For example, thagrne /zh/ often does not even
appear in conversations in the switchboard oneusorp

4.4  Calculating Average State Lengths

Before the frame sequences can be warped, it sssary to know to what length they
will be warped. That is, how many frames will bethe sequence of frames for a
phoneme, after warping? Choosing a rather lorgetdength has the benefit of
preserving the information in the sequence of franadereas choosing a short target
length results in a smaller probability space. leatwice has its advantage. Reducing

10



the dimension of the probability space decreasestimber of trainable parameters. On
the other hand, condensing the frame sequencdsg fikews out some sequential
information. For this system, a happy medium wassen.

The number of desired frames is determined by figdihe average number of frames in
each phoneme-state over all instances of the phexs¢éate in the data. That number is
then rounded to the nearest integer. For examfiler, rounding, the phoneme /aa/ is
found to have an average of three, five, and tfreames, respectively, for its three states.
Therefore, after warping, each /aa/ frame sequetitbe eleven frames. This method is
slightly objectionable because the target lengtbaing determined from the same
speakers (and conversations) the system is bestgdten. Nevertheless, this is a minor
infraction because these average lengths are r&alyastable across the corpus.

To summarize the preceding discussion: For eachgrhe there is a set of frame
sequences that are each labeled with three phosttes. Moreover, the desired
number of frames for each phoneme-state is knoWhthat remains is to warp each of
the frame-sequences to the appropriate size andsthek the frames.

45 FrameWarping

The key step in the new feature creation is a tiagping which is implemented in order
to make all frame sequences corresponding to tine gaoneme have the same number
of frames. This time warping is computed compo+veise for each cepstrum. Figure 3
shows a sequence of frames for the phoneme /aaj beirped to the appropriate length.

Two different methods of interpolation were useédedr, and sinc kernel, also known as
the “sampling function,” convolution. A third metth of warping simply collapsed each
state of a phoneme into a single frame. This ntethoeferred to as the “average.” Each
of these methods are explained below.

11
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Figure 3: An instance of the phoneme /aa/ witkeéhithree, and four frames,

respectively, is warped into a frame sequences thitte, five, and three frames,

respectively.

45.1 Warping Method: Linear Interpolation

In this method, adjacent points are simply conreeatgh a line, then sampled at evenly
distributed points, with the first and last valuesaining unchanged. The figures below

are an example of the process for a single componeavhich a five-frame phoneme-

state is warped to a seven-frame sequence.

Ime~guhere are five values of the

cepstrum corresponding to a five-frame phonemeséaid in Figure 5, these five points

are linearly interpolated. Finally, Figure 6 shawws resulting seven cepstra values.
situations where a single frame must be warpedmitiiple frames, it is repeated.

In

12
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Figure 6: The linear interpolation of the five céasfrom Figure 5 is sampled at seven
equally spaced intervals.

452 Warping Method: Sinc Kernel

This method of warping is based on a digital-siggralcessing perspective. The discrete
data points are treated as a sequence of appedpnatighted dirac deltas that are
convolved with a sinc kernel and then sampled enslame fashion as in the linear
interpolation case. The sinc kernel is defined as
1 for x =0,
sinc(x) =< sin(7x)
TX
See Figures 7, 8, and 9 for an example of thewsarping method.

otherwise.

Figure 10 shows the difference between the two iwgrmethods. The linear
interpolation method is a weighted average of ngagimg points. On the other hand,
since the sinc interpolating function consists winerous low frequency sines, the
interpolation overshoots the original values. Biggire 10. From a heuristic standpoint,
it is not clear which method is more appropriate.

14



1.4

1.2

0.8 A

0.6

0.4 -

Cepstrum Values

0.2

-0.2 4

-0.4

Frame Index

Figure 7: The five cepstra from Figure 4 are supgyosed with a sinc of appropriate
scale.

14

[N
[l N

[\

Cepstrum Values
o o o
N ()} (o]
—
C//
\
4

f

Frame Index

Figure 8: The five shifted and scaled sincs fraguFe 7 are summed, to complete the
convolution.

15



1.4

1.2

o
0

[\

Cepstrum Values
o
(e}

0.4 -

0.2 A

1 2 3 4

5 6 7

Frame Index

Figure 9: The sinc interpolation of the five cepstirom Figure 8 is sampled at seven
equally spaced intervals.

14

12

A Sinc Warp
& Linear Warp
= = Linear Interpolation
Sinc Interpolation

o
o

Cepstrum Values
©
(o))

o
~

0.2

1 2 3 4 5
Frame Index

Figure 10: A comparison of the two warping methods.

16



R
]

Lttt

OODIOONNNN

R KRR R R RN ]

)
s

BT T ]
o
SR
i i R )

A A A
B R R
ittt ey

R KRR R R RN ]
e
fransnsannnaiannsa]

OODDNIINNNN

NN

OV

relatively small stacked frames. Figure 11 shows@uences of frames for the phoneme

This warping method collapses each phoneme-siteefisequence into a single frame.
/aal being warped using this method.

This is done by component-wise averaging. Thishoetis simple and results in

453 Warping Method: Average

17

The final step in the feature creation processaisking the warped frame sequence into a
single new feature vector. Refer to Figure 12cHgahoneme token in the data results in

Figure 11: A sequence of frames corresponding ph@eme, with three states, is
a single stacked feature vector.

transformed according to the average warping method

4.6 Stackingtheframes
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Figure 12: The warped frame sequences on thatefstacked and become the long
frames on the right.

5 Model Training

Once this new set of feature vectors has beenedeattraditional GMM system is used
to train a background and adapt target modelseparate GMM is created for each
phoneme and hence there will be separate backgmodéls and adapted target models
for each phoneme.

5.1 Background Training

In the following experiments, testing on split21and 3 used splits 4, 5, and 6 for
background training and vice versa for testing @itss4, 5, and 6. The Gaussians were
trained with diagonal covariance matrices, andhln@ber of Gaussians in each
background model varied across experiments. Thidbgexplored later in the report.
One of the major concerns with this system is wérethe data would be sufficient to
train the background models.

Table 1 shows the dimension of the feature vedtwrthe various phonemes, the amount
of available training data for each phoneme, andmaparison to the amount of training

18



data for a typical GMM. For a typical GMM UBM, durs of training data is usually
sufficient, but commonly much more may be used.1@mns per frame, this works out to
1,080,000 training points. The columns, “% Comgdarea Typical GMM,” refer to the
percentage of the 1,080,000 points that is avalabtrain the background model for a
particular phoneme in the Sequential GMM. The eetages vary, with many of them
being under 10%.

It is important to note confounding factors forstebmparison. A typical UBM has
around 2000 Gaussians, while the Sequential GMNesysypically used 128 or 256
Gaussians for each phoneme model. On the othel; hgncal GMM systems use

feature vectors of dimension 40, while this sysgefaature vectors are typically four or
five times this size. For diagonal covariance Gauss, the number of training
parameters is proportional to the dimension offtfa¢ure space and the number of
Gaussians. Therefore, the GMM for a single phonientiee Sequential GMM has about
half as many parameters as a typical GMM. ManghefGMMs in this system are using
significantly less training data than typical; hawg after taking into account the number
of parameters to train, the situation is not qagéad as the table implies.

Background: Splits 1, 2, 3 Background: Splits 4, 5, 6

Number % %

of Compared | Number of Compared

) ] Stacked toa Stacked toa
Dimension | Feature % of | Typical Feature % of Typical

Phoneme | of Feature | vectors | Total GMM Vectors Total GMM
aa 220 64,377 1.4% 6.0% 65,003 1.4% 6.0%
ae 260 149,295 3.1% 13.8% 146,301 3.1% 13.5%
ah 160 114,966 2.4% 10.6% 110,182 2.4% 10.2%
ao 240 55,557 1.2% 5.1% 55,502 1.2% 5.1%
aw 300 30,223 0.6% 2.8% 29,763 0.6% 2.8%
ax 80 483,115 10.2% 44.7% 474,827 10.1% 44.0%
ay 260 134,222 2.8% 12.4% 132,695 2.8% 12.3%
b 140 82,869 1.7% 7.7% 81,252 1.7% 7.5%
bgn 400 14,992 0.3% 1.4% 15,792 0.3% 1.5%
ch 240 17,470 0.4% 1.6% 17,750 0.4% 1.6%
d 120 159,847 3.4% 14.8% 156,301 3.3% 14.5%
dh 100 153,843 3.2% 14.2% 149,824 3.2% 13.9%
dx 120 51,453 1.1% 4.8% 51,090 1.1% 4.7%
eh 160 120,246 2.5% 11.1% 119,898 2.6% 11.1%
er 200 92,945 2.0% 8.6% 91,165 1.9% 8.4%
ey 240 73,710 1.6% 6.8% 73,604 1.6% 6.8%
f 200 63,411 1.3% 5.9% 62,814 1.3% 5.8%
fpn 340 13,551 0.3% 1.3% 10,792 0.2% 1.0%
fpv 560 37,334 0.8% 3.5% 33,361 0.7% 3.1%
g 160 51,192 1.1% 4.7% 51,055 1.1% 4.7%
hh 240 87,615 1.8% 8.1% 88,213 1.9% 8.2%
ih 160 150,649 3.2% 13.9% 145,652 3.1% 13.5%
iy 200 164,547 3.5% 15.2% 163,507 3.5% 15.1%
jh 180 25,171 0.5% 2.3% 24,233 0.5% 2.2%
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k 180 140,105 3.0% 13.0% 138,953 3.0% 12.9%
I 180 166,644 3.5% 15.4% 165,330 3.5% 15.3%
lau 400 68,078 1.4% 6.3% 67,239 1.4% 6.2%
m 140 121,127 2.6% 11.2% 120,409 2.6% 11.1%
mtn 400 33,211 0.7% 3.1% 31,567 0.7% 2.9%
n 140 318,296 6.7% 29.5% 314,812 6.7% 29.1%
ng 180 53,701 1.1% 5.0% 52,383 1.1% 4.9%
ow 280 99,080 2.1% 9.2% 98,122 2.1% 9.1%
oy 320 3,446 0.1% 0.3% 3,665 0.1% 0.3%
p 160 72,219 1.5% 6.7% 71,703 1.5% 6.6%
pum2 660 20,461 0.4% 1.9% 23,191 0.5% 2.1%
r 180 172,788 3.6% 16.0% 173,001 3.7% 16.0%
S 200 201,085 4.2% 18.6% 196,800 4.2% 18.2%
sh 240 22,927 0.5% 2.1% 23,295 0.5% 2.2%
t 120 326,383 6.9% 30.2% 319,022 6.8% 29.5%
th 160 37,769 0.8% 3.5% 36,325 0.8% 3.4%
uh 120 26,872 0.6% 2.5% 26,746 0.6% 2.5%
uw 180 78,978 1.7% 7.3% 79,127 1.7% 7.3%
v 120 74,914 1.6% 6.9% 73,235 1.6% 6.8%
w 200 117,304 2.5% 10.9% 114,903 2.5% 10.6%
y 180 88,142 1.9% 8.2% 88,246 1.9% 8.2%
z 180 109,893 2.3% 10.2% 108,625 2.3% 10.1%
zh 180 2,060 0.0% 0.2% 1,922 0.0% 0.2%
Total: 4,748,084 100.0% 4,679,197 100.0%

Table 1: A table representing the distribution lod data across the phonemes. For each
phoneme, the dimension of the stacked featurenactbthe number of training
instances available for each background model @averg The “% total” column
represents the percentage of the new feature \&ttiat are in a specific phoneme class.
Finally, the “% Compared to a Typical GMM” columihews the percentage of frames
available to train the phoneme-specific model coragdo the number of frames

typically used to train a traditional UBM, whereffame for the phoneme-specific
background model is a stacked feature vector.

52 Target Model Adaptation

Data sparsity is a more serious problem for th@&d@n of the phoneme-specific
background models to the targets. The amounttaf uksed in training the UBM is only
limited by the size of the available corpora. HBneount of data available for adapting
the target models, however, is defined by the #mkis constrained to eight
conversation-sides. Thus, when comparing the atafunaining data available for this
system to that of a typical GMM, model adaptat®miuch more starved than the
background model. For example, at one frame perslthere will be about 120,000 (8
[conversations] x 2.5 [minutes / conversation] ¥@(@frames / minute]) training points
available for typical model adaptation; whereathim Sequential GMM system there are
approximately only 300 training points on averagera feature space four or five times
the dimension. The number of stacked feature veeteailable in the training data was
calculated by taking into account that the avegggmeme in this corpus is 90ms, and
there are 47 phonemes. Moreover, this assumeththapeakers use all phonemes
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equally, which we know is false from Table 1. Téfere, some models are being
adapted from even fewer data.

6  Scoring & Fusion

The final step is to compute the score as in eqngd) for each phoneme model, using
the new feature vectors, and then combine the seereilting from each of the
phonemes. The combination was done with LNKne}L [13NKnet was used to train a
neural net with seven hidden nodes. The trairsrdpne in a round-robin process using
the first three splits of the task and the last¢hsplits. When training the neural network
on splits one, two, and three the testing is danspiits four, five, and six, then vice
versa. Note that the neural network parametersgirmized using the same data used in
constructing the background models, which is neaid

7  Experiments

The experiments on the system include exploringltfierent frame-sequence warping
methods and the number of Gaussians componentsrudeelGMMs, and combining the
system with the state-of-the-art GMM system, amoiingrs. Results presented were run
on the entire 2001 Extended Data task. The pedoomis measured in terms of the
EER and min DCF [3], and the Detection Error TrdtlOET) curve [16] is provided in
some key experiments. The EER is defined as tioe exte where the probability of

false alarm is equal to the probability of missetedtion. The min DCF is the minimum
value of the decision cost function, as defined\b$T:

DCF = CMISS X PMISS|MATCH X PMATCH + c:FALSE ALARM x PFALSE ALARM |IMPOSTOR X PIMPOSTOR’

where the costs are defined byi§s= 10 and €a se aLarv = 1, and the probability of an
impostor is 0.99.

7.1 Basdine System

As a matter of comparison, a generic GMM withoutcem [6], t-norm [17], h-norm [6],
or feature mapping [18] is run on the task, simesé features have not yet been
introduced into the Sequential GMM system. Its gisdonsist of 2048 Gaussian
components, and its performance is shown in Tabl&2a matter of notation, this
system will be referred to as “GMM — 1.”

In addition, a state-of-the-art GMM system will iged in experiments to demonstrate
that the Sequential GMM can improve performanceufh combination. The state-of-
the-art GMM system, which will be referred to aavi@ — 2,” benefited from t-norm
followed by h-norm. The importance of these noinadions is underlined by a
comparison of Tables 2 and 3.
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GMM -1

min DCF 0.0220
EER 4.88%

Table 2: Performance of the baseline GMM, withautnmalizations.

GMM — 2
min DCF 0.00509
EER 0.90%

Table 3: Performance of the state-of-the-art GMM.

7.2  Sequential GMM

The experiments detailed in this section test #réopmance of the Sequential GMM
system described above for the different frame-wmgrmethods and various numbers of
Gaussian components.

Figure 13 compares the three different warping oedHor the case where 128 Gaussian
components are used. The most interesting restiiat all three warping methods score
so similarly, especially in the EER region. Howe\he linear interpolation-based
warping method prevails in the low false-alarm oegi Finally, it is clear that the system
is vastly superior to the GMM system without anymalization. The metrics of interest
for this system are reported in Table 4. The gmwformance in the high false-alarm
region is believed to be a result of LNKnet optimgfor DCF, and this phenomena is
discussed in Section 8.

The next experiment is similar to the one aboveegpk256 Gaussians components are
used. The DET curves are shown in Figure 14. Wghe different warping methods’
performances are comparable. However, the siecgatation-based warping faired
slightly better than the rest except in the higedaalarm region. In addition,
examination of Table 4 reveals that using 256 Gaosomponents tends to be superior
to 128. The sinc interpolation-based warping 2% Gaussian components resulted in
the best EER for the system: 1.14%. The DCF fersime configuration was .0057.
Both of these scores are close to the marks redmhdte state-of-the-art GMM.

Figures 15 and 16 compare the DET curves for 128, @hd 512 Gaussian components
for the average and sinc interpolation warping roésh respectively. For the average
warping method, which has smaller feature vectbis system performs comparably for
each number of Gaussians; however, for the siecpntation warping method the best
performance is with 256 Gaussian components, péatiy in the low false-alarm region.
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Different Warping Methods Compared - 128 Gaussians
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Figure 13: DET curves for different warping methpdsing 128 Gaussian components,

versus the baseline GMM.
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Different Warping Methods Compared - 256 Gaussians
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Figure 14: DET curves for different warping methpdsing 256 Gaussian components,
versus the baseline GMM.

Sinc Linear Average
Interpolation | Interpolation
128 Gaussian| EER 1.34% 1.33% 1.28%
Components | min DCF 0.00728 0.00644 0.00681
256 Gaussian| EER 1.14% 1.25% 1.33%
Components | min DCF 0.00575 0.00605 0.00715
GMM -1 GMM -2
2048 Gaussian EER 4.88% 0.90%
Components | min DCF 0.0220 0.00509

Table 4: System performance for various configorai
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Average Warping Method Compared for Different Numbers of Gaussians
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Figure 15: DET curves for various numbers of Gaaissiomponents for the average

warping method.
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Sinc Warping Method Compared for Different Numbers of Gaussians
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Figure 16: DET curves for various numbers of Gaaissiomponents for the sinc
interpolation warping method.

7.3 Combination with the State-of-the-Art GMM

In this experiment, the systems from the previagisn are combined with the state-of-
the-art GMM (GMM - 2). Combination is done at Swore level using LNKnet. The
GMM — 2 scores are treated as an additional phoneeé¢he input layer of the neural
net now has 48 nodes instead of 47, one for eashgvhe and one for GMM — 2.

The ability of a system to combine with the stafi¢he-art system is crucial. For
example, systems based on idiolect [19] traditilgrizdve rather poor performance in
isolation; however, they are very valuable in camalion with the GMM. The objective
of the Sequential GMM system is not to outclassstiage-of-the-art system, but rather to
capture speaker characterizing information thatré¢igellar GMM disregards, specifically
sequential information. That is exactly what ocedr As was stated in the introduction,
combing the two systems caused the EER to falld@® and the min DCF to fall by

65%, relative to the GMM alone.

Figure 17 and Table 5 show the results from comiitine various warping methods,
using 256 Gaussian components, with GMM — 2. TE& Durves show the significant
improvement over the state-of-the-art GMM, partelyl in the important low false-
alarm region. In addition, it is clear that thesge warping method system does not
combine quite as well as the others. Fortunatbkiy,is what would have been expected,;
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since the average method captures the least ambseatuential information because it
collapses many frames into one, it is the mostlambo the regular GMM.

256 Gaussian | Sinc Linear Average + GMM -2
Components | Interpolation + | Interpolation + | GMM — 2

GMM — 2 GMM — 2
EER 0.57% 0.65% 0.79% 0.90%
min DCF 0.00180 0.00224 0.00289 0.00509

Table 5: System performance for various configorai

Different Warping Methods Combined with GMM - 2

40 ri | —— Average + GMM -2 [
] s Sinc + GMM - 2
---- Linear + GMM - 2
7777777777 = GMM -2 L

20 [----

Miss probability (in %)

False Alarm probability (in %)

Figure 17: DET curves for the Sequential GMM systeombined with the state-of-the-
art GMM system. The Sequential GMMs used 256 Gaussmponents.

7.4 Limiting the Length of the Phoneme States

In this experiment, the method used to calculatedéengths, described in Section 4.4, is
slightly modified. The maximum length for a phoreestate is capped at three, i.e. the
phoneme-state length is the minimum of three aagtkviously determined value. The
motivation behind the experiment is to see if lingtthe size of the feature vectors will
improve system performance. The result, as se&abie 6, is a slight degradation in
performance. This implies that using the longesr@me-state lengths did not
particularly harm training the models, and thattar compressing the frame sequences
tends to remove valuable speaker identifying chiarstics.
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256 Gaussian | Linear Linear
Components | Interpolation Interpolation —

Capped
Phoneme Statep
EER 1.25% 1.38%
min DCF 0.00605 0.006730

Table 6: System performance with and without capgfezheme-state lengths.
7.5 Principal Component Analysis (PCA)

In order to alleviate potential data sparsity peots, PCA is used to reduce the
dimension of the feature space, using the lindarpolation feature set as a typical
system. The PCA is implemented on each phoneniduo@lly, and the transformation
is trained on all instances of a phoneme typeenctirpus. As with calculating the
phoneme-state average lengths, this transformatitacthnically cheating because the
system is supposed to compute speaker hypothedasepwithout additional knowledge
of the other trials in the task. Although it iscentain how this reflects itself in the
system performance, cheating in this way shoulcduhtedly only help performance;
thus this method gives us an upper bound on thenpat of PCA. Table 7 shows how
much information, in terms of energy, is presergdransforming the feature spaces to
retain only the 50 (or 100) largest eigendirectio@ average across the phonemes, 88%
and 96% of the energy is preserved for compredsi®® and 100 features, respectively.
For the majority of the phonemes, the amount @ainedd energy is rather high,
considering the dramatic decrease in the featlaeespThe least compressible phoneme
is /ch/.

Unfortunately, PCA results in a degradation of perfance. In Figure 18 the DET
curves for before and after PCA can be compared56 Gaussian component models.
When using 128 Gaussian components, the PCA fes#tiseperformance is closer to the
baseline; however, it is still inferior. It is imgant to note that it is something of a
mystery what information is discarded in the transfation. It is certainly possible that
the few percent of information that has been abaeddas most of the discriminating
power. An alternative approach would be to useairDiscriminant Analysis (LDA),
which explicitly preserves the directions with thest discriminating power.

PCA Compression

Dimension

of Feature 50 Largest 100 Largest
Phoneme Vector Eigenvalues Eigenvalues
aa 220 90.7% 97.0%
ae 260 90.2% 96.3%
ah 160 92.1% 98.1%
ao 240 89.5% 96.3%
aw 300 89.0% 95.7%
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Table 7: This table shows the amount of energyatoed in the 50 and 100 largest

eigenvectors.

ax
ay

bgn
ch

dh
dx
eh
er

ey

fpn
fpv

hh
ih
)%
jh

lau
m
mtn
n
ng
ow
oy
p
pum?2
r
S
sh
t
th
uh
uw
\Y;
w
y
z
zh

80
260
140
400
240
120
100
120
160
200
240
200
340
560
160
240
160
200
180
180
180
400
140
400
140
180
280
320
160
660
180
200
240
120
160
120
180
120
200
180
180
180

96.4%
88.3%
88.8%
85.6%
76.7%
91.5%
93.5%
94.7%
93.3%
90.6%
89.4%
80.6%
85.0%
84.3%
86.8%
90.2%
92.6%
91.5%
83.1%
83.1%
90.8%
80.4%
91.3%
80.5%
93.2%
91.8%
88.7%
85.3%
82.4%
83.5%
92.2%
81.8%
79.3%
90.1%
83.6%
93.7%
92.6%
91.8%
88.5%
89.6%
86.2%
86.4%

100.0%
95.6%
97.9%
92.6%
89.8%
99.2%

100.0%
99.5%
98.5%
97.1%
96.3%
92.7%
92.7%
91.4%
96.6%
96.1%
98.2%
97.4%
94.4%
94.5%
97.4%
90.1%
98.5%
89.4%
98.8%
97.7%
95.5%
94.1%
95.2%
90.5%
97.8%
93.2%
90.9%
99.1%
95.6%
99.4%
97.9%
99.3%
96.3%
96.9%
95.6%
95.6%
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PCA - 256 Gaussians
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Figure 18: DET curves displaying the result of PCPhe baseline uses linear
interpolation warping and 256 Gaussian componeritise PCA is performed on the
same feature set.

7.6 Adapting from a UBM

Rather than directly building phoneme-specific lgaokind models, a UBM is created.
The UBM models all of the phonemes, and the phorgmeeific background models are
then adapted from the UBM. See Figure 19. Fraahplint onward, the system is the
same as before. This staged approach was indpirpdoneme-model experiments of
[20]. The adaptation of the UBM to phoneme-spedifaickground models uses the same
features that are used to create phoneme-speaitkgbound models directly in the
single-stage approach. In all cases, the adaptets only done on the means of the
Gaussians.

The primary advantage of adapting the models mriethod is that the initial UBM can
take advantage of all the available data. Thuesptioneme-specific UBMs should be
able to capitalize on the fact they are adaptioghfa well-developed background model
and not from scratch. One limitation of this meth®that it requires that the feature
vectors for all the phonemes be the same dimengtonthis reason, the average
warping method was used in this experiment. Thisifortunate because the other
warping methods, which have larger dimension vactare more likely to benefit from
this technique.
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Figure 20 displays the DET curves comparing theddaptation schemes and the
baseline GMM. Both the single-stage and the tvagesiadaptation methods are on the
feature set created with the average warping stylé they both use 512 Gaussians
components. The single-stage adaptation significaatperforms the two-stage
adaptation. However, the reason for this may hettie UBM should have been trained
with more Gaussian components.

Two-Stagt
All Phoneme Phonem-Specific | | Phonem-Specific
UBM ”| Background Model | ™ Target Model
Single-Stagt
Phonem-Specific | Phonem-Specific
Background Model | ™ Target Model

Figure 19: Two different GMM adaptation approacih2g].

Different Adaptation Schemes

40 |-

******** —— Single-Stage |-
---- Two-Stage

Miss probability (in %)

False Alarm probability (in %)
Figure 20: DET curves for the different adaptatimethods.

31



7.7 Comparison to other Sequential Systems

In this section, the Sequential GMM system is cora@&o two other systems, both of
which capture phoneme-length sequential informator that is non-parametric, and
another that models the sequences with HMMs.

7.7.1 Comparison to a Non-Parametric System

The first system, referred to as the Sequential-Rarametric (SNP) system, compares
phoneme-length frame sequences in the test anet @atp. As its name implies, the
comparison is done non-parametrically [21]. In 8NP system, each trial of a test
segment against a putative target model consisgsafng each frame sequence in the
test data, corresponding to a phoneme, versus ex&@ance of that phoneme in the
training data. The frame sequences are scoretignyray the frames using a Dynamic
Time-Warping (DTW) algorithm and then taking a Edieln distance between aligned
frames. This is a'knearest neighbor technique where only the distemtee closest
training token is stored for each test token. paeicular SNP system configuration
used in this combination is exactly as describd@1j for phoneme-unigrams. Note that
phoneme-unigrams are not the optimal token siz&h®ISNP system: phoneme-trigrams
performed better. This offers hope that the pertorce for the Sequential GMM system
could be improved by switching to a longer tokert.un

These systems make an interesting comparison ketaes are both based on the same
phoneme-level frame sequences. There are two midjerences between the systems.
First, the SNP system uses no parametric modedssecond, the frame sequences are
warped differently. In the SNP system each pafrarhe sequences are optimally
warped for each other with DTW, whereas in the 8atjal GMM system all the frame
sequences are warped at the beginning to a comengthl

Figure 21 shows the DET curves and Table 8 display£ERs and DCFs for the SNP
system, the Sequential GMM system, and a combimatiohe two using LNKnet. The
Sequential GMM system performs better than the SNPthe interesting fact is that
combining the two systems results in very littlgohovement in system performance.
This indicates that the speaker discriminating posieéhe SNP system is largely
subsumed by the Sequential GMM system. Moreovguré 22 shows that the
Sequential GMM system combines better with theestdthe-art GMM system.
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Figure 21: DET curves for the SNP, the SequentdMssystem, and a combination of
the two. The Sequential GMM uses 256 Gaussian @oemps and the sinc interpolation
warping method.

Sequential | SNP Sequential | SNP + GMM -2
GMM GMM + GMM -2
GMM -2
EER 1.14% 1.85% 0.57% 0.68% 0.90%
min DCF 0.00575 0.00937 0.00180 0.00264 0.00509

Table 8: EERs and DCFs for various systems. The&gial GMM uses 256 Gaussian

components and the sinc interpolation warping metho
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SNP & Sequential GMM Combined with the State-of-the-Art GMM
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Figure 22: DET curves for state-of-the-art GMM atglcombination with the SNP
system and the Sequential GMM system. The SegjuMM uses 256 Gaussian
components and the sinc interpolation warping metho

7.7.2 ComparisontoaHidden Markov Model (HMM) based System

The HMM system takes the phoneme frame sequencesadels them with HMMs.
The phoneme-level HMM system is comparable to yiséesn described in [22]. This
system produced speaker hypotheses using HMM modedshandful of specially
chosen words whereas the phoneme-level HMM systedels phonemes. There are
HMM models for 43 phonemes; each model has thegesand 128 Gaussians
components. This works out to 384 Gaussians peemslightly more than, but
comparable to, the Sequential GMM system. Traigimgsisted of Baum-Welch re-
estimation, and successive splitting of the Gaussistarting from one Gaussian per
state.

The Sequential GMM system and the phoneme-level Hdfdems are analogous, save
that different probabilistic models were used. Beguential GMM system explicitly
models all of the (warped) frames in the phonemeetle complete trajectory of the
sequence of frames. The HMM model is “looser” anty models the frames in
reference to their being in one of the three omistates; i.e. the frames are split into
three ordered groups. Modeling with HMMs has thieamtage that it does not require
any frame warping.
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In terms of performance, the Sequential GMM haasdly superior EER, while the

HMM system has a modestly better DCF. See TablR@&e that the performance of the
system using the whole word models [22] is supgddhat of the phoneme-level HMM
system.

Sequential | HMM
GMM
EER 0.66% 1.16%
min DCF 0.00537 0.00460

Table 9: EERs and DCFs for the two systems. Allescare reported on a single split of
switchboard one, consisting of 1624 trials becah®eHMM system’s results are only
available for this split.

8 Discussion & FutureWork

Since this system is still in a preliminary stathere are still many avenues that could
potentially lead to performance improvements. Sofrtbese ideas and other
observations are discussed below.

8.1 Phoneme Performance

Tables 11, 12, 13, and 14, presented in Appendshay the EERs and min DCFs for
each phoneme in most of the systems discussed .aliwe easily identifiable fact from
these tables is that each phoneme’s performanetais/ely similar for each system.
One thing not so readily identifiable, but intudjvs that the EER is strongly correlated
with how frequent the phoneme is. See Figurel@3jeneral, the more frequent a
phoneme, the lower the EER is. This graph helpsvate interest in reducing the
dimension of the models and moving to a larger esrpAlso, note that phonemes such
as /zh/ and /oy/ have such poor EERs because tréyalen appear in many test
utterances.

One other aspect investigated is using subsetsegftionemes [20, 23]. These
experiments illustrate that every phoneme is cbatimg to the score since removing any
one phoneme results in a degradation in performaNt®@eover, contrary to the results
in [23], no performance gain is realized from usamy subset of phonemes tried. Figure
24 shows the result for two different possible sifisusing the six best phonemes and
using the forty best phonemes. The “best phonemesineasured in terms of EER in
isolation, according to Table 11. In both cases,EER and min DCF of the systems
based on the subsets of phonemes scored worsththaystem that used all of the
phonemes.
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Figure 23: A log-log plot of EER versus the averagenber of training vectors for the
phoneme-specific UBM. The EERs were taken fromitieeinterpolation warping
method with 256 Gaussian components given in Tehle
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Figure 24: DET curves for various sets of phoneresg the sinc interpolation
warping method and 256 Gaussian components.

82 ASR

The ASR step in the system is suboptimal for a remolb reasons. First, because
switchboard one is an older task, the ASR systesd issseveral years old and therefore
not as good as current ASR systems. Moreoverialdéferences in frame indexing
conventions between SRI, who provided the ASR dugnd HTK, which was used to

do the feature extraction, there are likely sligame alignment errors. Even small frame
alignment differences can be significant, sinceng@moe states can be as short as a single
frame. In newer systems, this issue was resolyetbbchunking the feature files. If
these modifications were made it is reasonablepe& an improvement in performance.
For example, compare the improvement for a worctth&#MM speaker recognition
system in Table 10.

In order to assess the effect of ASR errors oregygterformance, it would be valuable
to run the system using forced alignments basedubim transcripts. Although the word-
level transcriptions do exist for switchboard otte, author did not have access to a
phoneme state-level forced alignment based on tingtketranscriptions. Nevertheless,
the ASR based system provides the most importaottreecause it represents the score
that the fully-automatic speaker-recognition sysggoduces. It is important that the
system be automatic from beginning to end, andrtunfately truth transcription is a
labor-intensive task.
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Word-Based HMM System Performance

Before Improvements After Improvements
EER 2.0% 1.7%
DCF .012 .0092

Table 10: This table shows the change in systefioqmeance for the system in [22] that
results from using newer ASR recognition and ngtremnting the feature files.

8.3 Grouping Phonemes

It would be an interesting experiment to attempiéwp all the phonemes to the same
length without simply reducing all of the phonentatss to a single frame, as presented
in section 7.6. Another method to fight data spars to group phonemes together,
based on acoustic similarity. Thus the trainintad@ould not be divided into as many
“bins.” The trade-off is between the amount oirtiag data and the tightness of the
probability models. That is, the more phonemesdhagrouped together, the larger the
acoustic space they will cover and hence the nnesasl out the GMMs will be. For
example, the phonemes /ah/ and /aa/ may be clasgkerhat it would be better to group
them together for training the GMMs.

8.4 Alternative Approachesto the Average Phoneme-State L engths

Section 4.4 includes a discussion of the trade{wétsveen different phoneme-state
lengths. Alternative approaches may result in sapeerformance. It is possible to
choose the target phoneme-state length based omittothe acoustic information within
the phoneme-state is. For instance, some of tertaof interest may be the time-
evolution of the formants or whether the soundoi€@d or unvoiced. Alternatively, one
could just choose the longest instance of a phorstate as the desired length. As was
discussed before, this method prevents discardigdeanporal information.

8.5 Other Research Possihilities

Since the system is still in an early stage of tgueaent, there are many respects in
which it could be improved. Some of these aredidielow.

» Tweak the interpolation method. There are a nuroberethods to interpolate
points, ranging from splines to different kernelisis possible that some other,
yet uninvestigated, method could be superior.

* Apply LDA to the feature vectors. The feature westare large and have been
shown by way of PCA to be highly reducible. PeshBPA can better reduce the
dimension while retaining the speaker discrimingiimformation.

* Optimize the score combination for the phonemdsKiet has numerous
parameters, including the type of neural netwdrg,tbpology of the neural
network, and the optimization parameters for tragrthe neural network.
Numerous times LNKnet has resulted in patently aptimal combinations;
therefore, it is reasonable to suspect that thebamations for this system are also
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suboptimal. See Figure 25 for an example of hoanging the neural network
configuration affects performance.

Adapt the system for use in an SVM. This reseak@mnue is more speculative
than the others; however, by creating vectorsnmetghod similar to [24], but
based on the stacked feature vectors in this syster8VM can be explored.
Change the basic unit from phonemes to tri-phonemess, etc. Recall that
using longer tokens improved performance in the 8N6PHMM systems [21,
22]. One major issue is that by increasing théchasit size, data sparisty
becomes an even larger issue.

Use open loop phone decoding for the ASR. The nméémest in the system is
parsing the frames into acoustically similar chunkbe phoneme sequence as
dictated by the lexicon is of little interest.

Replace GMMs with other probabilistic models, sashConditional Random
Fields (CRF).

Investigate the front-end. Perhaps there is amradtive signal processing method
that is better suited for this system.

Add normalization. Z-norm, t-norm, h-norm, or f@at mapping could easily be
applied to this system, and they have the potefutidarge performance gains.
Move to a larger and more challenging corpus, siscbwitchboard two. A larger
corpus would supply ample data for training backgbmodels and applying the
various normalizations mentioned above.
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Different LNKnet Parameters

Miss probability (in %)

False Alarm probability (in %)

Figure 25: DET curves for the system, with sinelipblation warping and 256
Gaussians components, using different LNKnet optiddne configuration had a hidden
layer with seven hidden nodes, and the other cordigon had no hidden layers.

9 Conclusion

Since speaker recognition is as of yet an unsagtweldlem, it is still an open question as
to what form the optimal solution will take. Howezythe optimal systems should use all
possible sources of speaker identifying informati@omething the GMM system does
not do. This does not mean the GMM system shoelgidoapped; it is good at collecting
considerable speaker relevant information. Thé gjoauld be to build systems that
capture the other sources of information, suchrasqgalic patterns, pronunciation
preferences, word usage, grammar, and other spebdgyncrasies.

The Sequential GMM is one such system becauseaip@wverful addition to the
traditional GMM system. Despite the undevelopeadesof the system, it is amazingly
able to cut the min DCF of the traditional GMM byeo 50%. The min DCF is the
principal metric by which speaker verification ®ysis are measured by NIST and an
important operating point for security applications primary advantage of this system
is that it is composed of off-the-shelf parts: ASBpstral-based signal processing, and
GMMs. This makes the system simple to implemesyeeially considering how
commonplace GMM systems have become. Moreovetersygerformance should
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improve as ASR does. Finally, since this systeanisdaptation of well-known
technology, the GMM, much of the research on GMIslis lbe applied to this system, e.g.
feature mapping. By bringing to bear some of thesbnologies, it is reasonable to

expect even further improvements.
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11  Appendix A

EERs (%)

Warping Sinc Sinc Linear Linear

Method Interpolation Interpolation | Interpolation | Interpolation Average Average
Number of

Gaussians 256 128 256 128 256 128
aa 8.87 8.49 8.90 8.39 8.06 7.60
ae 3.77 4.23 3.80 4.10 3.72 4.18
ah 6.27 6.49 6.40 6.78 6.43 6.51
ao 8.44 9.09 10.26 9.20 8.71 8.25
aw 12.94 11.94 13.03 11.86 11.23 10.69
ax 431 4.48 4.23 4.56 4.18 4.45
ay 461 6.27 4.29 4.37 431 4.23
b 9.44 8.44 9.72 8.52 8.52 7.73
bgn 58.89 56.23 58.72 57.42 51.13 11.53
ch 19.92 18.37 20.08 18.67 18.45 16.72
d 5.94 5.67 5.86 5.32 5.67 5.62
dh 5.81 5.07 5.94 5.51 5.78 5.37
dx 14.60 13.24 14.60 13.24 13.95 12.56
eh 6.62 6.68 7.03 6.78 6.54 6.68
er 8.98 8.41 8.79 8.36 7.90 5.97
ey 7.33 7.54 7.38 6.97 6.54 6.89
f 12.48 11.99 13.60 12.16 11.53 10.23
fpn 28.36 26.73 28.66 26.92 25.97 24.29
fpv 9.34 8.49 9.47 8.66 9.06 8.36
g 12.92 11.51 13.35 11.72 11.91 10.53
hh 6.54 6.35 6.95 6.21 6.08 5.13
ih 6.35 6.65 6.19 6.27 6.16 6.38
iy 5.64 9.34 5.94 6.13 5.97 5.92
jh 18.15 16.12 18.43 16.55 16.01 14.84
k 6.49 6.11 6.43 6.30 6.35 6.16
I 6.24 6.38 6.40 6.38 6.05 6.16
lau 19.38 5.64 19.62 18.37 18.07 16.99
m 6.59 5.32 5.37 5.45 10.53 5.13
mtn 20.73 19.97 20.95 19.57 17.83 17.10
n 3.28 3.66 3.23 3.66 3.42 3.53
ng 8.06 7.44 8.14 7.68 7.03 6.59
ow 6.68 6.59 6.70 6.40 6.13 6.05
oy 68.25 65.48 68.74 65.70 55.50 52.08
p 12.16 10.28 10.83 10.23 10.31 9.58
pum2 19.51 17.77 19.35 17.86 17.31 15.66
r 6.16 6.27 6.16 6.02 6.13 6.11
S 4.99 68.25 5.07 4.86 4.75 4.97
sh 16.42 12.16 16.53 15.71 14.36 13.46
t 4.59 4.59 4.45 4,72 4.15 4.37
th 6.84 16.26 18.15 16.09 15.6 13.79
uh 21.30 19.65 21.3 19.65 20.46 19.24
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uw 8.41 7.79 8.25 7.73 7.60 7.25
% 11.23 10.61 11.34 10.53 10.69 9.61
w 7.25 6.84 7.38 7.22 7.08 6.59
y 6.54 6.68 6.38 6.27 5.97 5.73
z 7.03 6.62 7.38 6.49 6.62 6.49
zh 77.67 78.94 77.96 78.53 73.76 72.37
Table 11: EERs for each phoneme for various system

EERs

Linear
Linear Linear Linear Linear Interpolation:
Interpolation: | Interpolation: | Interpolation: | Interpolation: | Phoneme-

Warping PCA -50 PCA -100 PCA -50 PCA - 100 States

Method Components | Components | Components | Components | Capped at 3

Number of

Gaussians 256 256 256 256 256

aa 8.82 8.09 11.10 9.63 9.01

ae 3.31 3.53 3.31 3.69 3.88

ah 6.27 6.38 7.84 7.52 6.40

ao 9.93 9.01 12.29 11.70 9.61

aw 11.8 10.72 14.19 12.97 13.00

ax 4.53 4.83 14.19 12.97 4.23

ay 4.26 4.34 4.37 4.53 4.42

b 9.12 8.79 11.78 10.61 9.72

bgn 42.93 40.65 11.78 10.61 55.14

ch 19.57 17.26 21.47 19.27 20.19

d 5.94 5.43 8.01 7.52 5.89

dh 5.75 5.78 6.95 7.00 5.94

dx 14.01 13.54 21.63 20.68 18.40

eh 6.38 6.35 8.39 7.90 7.03

er 8.63 7.84 10.75 9.69 8.93

ey 7.06 7.06 8.25 8.11 7.27

f 11.53 10.64 15.47 13.62 12.97

fpn 24.78 23.31 27.95 25.78 27.14

fpv 8.93 8.47 9.53 9.06 9.34

g 12.81 11.51 15.41 13.27 13.35

hh 6.49 5.70 9.61 9.31 6.81

ih 6.08 6.30 7.41 7.16 6.19

iy 5.81 5.97 6.46 6.35 6.08

jh 16.85 15.39 19.67 18.26 18.43

k 6.43 6.40 7.08 6.87 6.43

I 6.30 6.27 7.71 7.35 6.38

lau 42.66 42.33 20.95 19.84 19.84

m 5.64 5.48 6.32 6.13 5.37

mtn 19.54 17.99 24.04 21.22 20.57

n 3.20 3.34 3.88 3.74 3.23

ng 8.06 7.41 10.96 9.91 8.14

ow 5.75 5.70 7.52 6.46 6.68

oy 40.90 40.57 46.12 43.04 64.29
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p 11.07 9.88 12.48 11.86 10.83
pum2 17.88 16.58 20.00 18.48 18.43
r 5.67 6.24 6.81 6.62 6.16
S 4.99 4.78 5.67 5.56 472
sh 15.90 14.55 19.35 16.66 15.98
t 4.83 4.86 6.02 5.81 4.45
th 16.20 14.74 20.38 18.05 18.13
Uh 21.98 19.78 25.73 24.40 21.30
Uw 8.36 7.54 10.15 9.93 8.25
V 11.78 10.45 15.39 13.27 11.37
w 7.63 7.33 8.96 8.66 7.30
Y 6.68 6.32 8.68 7.73 6.38

6.92 6.46 8.85 7.95 7.38
Zh 54.55 49.61 59.21 50.66 78.40

Table 12: EERs for each phoneme for various system

DCFs
Warping Sinc Sinc Linear Linear
Method Interpolation Interpolation | Interpolation | Interpolation | Average Average
Number of
Gaussians 256 128 256 128 256 128
aa 0.0429 0.0435 0.0423 0.0434 0.040 0.0420
ae 0.0220 0.0225 0.0221 0.0228 0.0206 0.0225
ah 0.0339 0.0347 0.0325 0.0342 0.0328 0.0322
ao 0.0399 0.0437 0.0443 0.0446 0.0425 0.0419
aw 0.0534 0.0491 0.0566 0.0540 0.0508 0.0474
ax 0.0222 0.0228 0.0226 0.0231 0.0220 0.0224
ay 0.0242 0.0339 0.0252 0.0259 0.0259 0.0248
b 0.0460 0.0399 0.0432 0.0421 0.0426 0.0399
bgn 0.0976 0.0968 0.0975 0.0974 0.0945 0.0529
ch 0.0748 0.0689 0.0722 0.0689 0.0731 0.0679
d 0.0298 0.0301 0.0295 0.0286 0.0303 0.0290
dh 0.0279 0.0284 0.0275 0.0283 0.0302 0.0294
dx 0.0654 0.0613 0.0654 0.0613 0.0624 0.0589
eh 0.0371 0.0357 0.0337 0.0364 0.0327 0.0344
er 0.0413 0.0417 0.0416 0.0421 0.0427 0.0299
ey 0.0349 0.0352 0.0355 0.0356 0.0313 0.0337
f 0.0549 0.0515 0.0569 0.0546 0.0529 0.0492
fpn 0.0700 0.0675 0.0710 0.0696 0.0690 0.0672
fpv 0.0385 0.0361 0.0377 0.0365 0.0362 0.0377
g 0.0559 0.0544 0.0583 0.0546 0.0540 0.0488
hh 0.0311 0.0299 0.0307 0.0271 0.0288 0.0274
ih 0.0332 0.0337 0.0339 0.0348 0.0308 0.0325
iy 0.0285 0.0385 0.0303 0.0315 0.0299 0.0305
jh 0.0688 0.0673 0.0711 0.0672 0.0670 0.0593
k 0.0305 0.0306 0.0340 0.0328 0.0331 0.0299
I 0.0310 0.0309 0.0309 0.0317 0.0289 0.0308
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lau 0.0668 0.0285 0.0704 0.0665 0.0654 0.0660
m 0.0330 0.0285 0.0286 0.0294 0.0488 0.0265
mtn 0.0645 0.0649 0.0638 0.0654 0.0598 0.0595
n 0.0176 0.0191 0.0183 0.0188 0.0185 0.0199
ng 0.0385 0.0342 0.0377 0.0355 0.0373 0.0344
ow 0.0337 0.0330 0.0326 0.0327 0.0318 0.0310
oy 0.0970 0.0970 0.0960 0.0957 0.0969 0.0956
p 0.0506 0.0486 0.0495 0.0471 0.0485 0.0446
pum2 0.0565 0.0538 0.0559 0.0534 0.0546 0.0531
r 0.0324 0.0322 0.0315 0.0336 0.0323 0.0335
S 0.0225 0.0970 0.0249 0.0239 0.0235 0.0243
sh 0.0608 0.0506 0.0571 0.0584 0.0588 0.0546
t 0.0225 0.0228 0.0229 0.0231 0.0222 0.0215
th 0.0384 0.0686 0.0705 0.0664 0.0630 0.0621
uh 0.0783 0.0834 0.0834 0.0783 0.0822 0.0779
uw 0.0404 0.0412 0.0424 0.0413 0.0402 0.0394
v 0.0541 0.0512 0.0526 0.0518 0.0509 0.0510
w 0.0395 0.0384 0.0367 0.0385 0.0375 0.0367
y 0.0316 0.0318 0.0324 0.0301 0.0301 0.0328
z 0.0340 0.0333 0.0336 0.0326 0.0347 0.0331
zh 0.0986 0.0986 0.0987 0.0984 0.0988 0.0980
Table 13: DCFs for each phoneme for various system
DCFs
Linear

Linear Linear Linear Linear Interpolation:

Interpolation: | Interpolation: | Interpolation: | Interpolation: | Phoneme-
Warping PCA -50 PCA -100 PCA -50 PCA - 100 States
Method Components | Components | Components | Components | Capped at 3
Number of
Gaussians 256 256 256 256 256
aa 0.0411 0.0411 0.0528 0.0452 0.0432
ae 0.0174 0.0188 0.0198 0.0216 0.0226
ah 0.0325 0.0334 0.0409 0.0373 0.0325
ao 0.0456 0.0428 0.0535 0.0515 0.0455
aw 0.0523 0.0495 0.0595 0.0586 0.0573
ax 0.0222 0.0247 0.0595 0.0586 0.0225
ay 0.0229 0.0233 0.0237 0.0230 0.0239
b 0.0458 0.0456 0.0550 0.0519 0.0432
bgn 0.1001 0.1000 0.1150 0.1019 0.0976
ch 0.0766 0.0723 0.0821 0.0769 0.0730
d 0.0314 0.0298 0.0409 0.0375 0.0295
dh 0.0307 0.0295 0.0364 0.0364 0.0275
dx 0.0617 0.0627 0.0887 0.0854 0.0713
eh 0.0346 0.0357 0.0403 0.0408 0.0337
er 0.0401 0.0407 0.0497 0.0474 0.0420
ey 0.0338 0.0336 0.0382 0.0364 0.0342
f 0.0561 0.0540 0.0678 0.0615 0.0573
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fpn
fpv

ih
iy
jh

lau
m
mtn
n
ng
ow
oy
p
pum2
r
S
sh
t
th
uh
uw
v
w
y
4
zh

0.0721
0.0371
0.0596
0.0301
0.0314
0.0292
0.0709
0.0339
0.0308
0.0759
0.0294
0.0679
0.0187
0.0390
0.0313
0.0988
0.0511
0.0569
0.0285
0.0274
0.0654
0.0268
0.0661
0.0822
0.0437
0.0533
0.0400
0.0324
0.0355
0.0999

0.0685
0.0363
0.0556
0.0285
0.0323
0.0307
0.0685
0.0326
0.0337
0.0749
0.0305
0.0663
0.0175
0.0356
0.0302
0.0991
0.0492
0.0558
0.0307
0.0285
0.0615
0.0263
0.0638
0.0783
0.0399
0.0495
0.0386
0.0305
0.0341
0.1001

0.0802
0.0393
0.0649
0.0428
0.0363
0.0339
0.0809
0.0364
0.0384
0.0771
0.0338
0.0812
0.0211
0.0492
0.0350
0.1003
0.0570
0.0614
0.0349
0.0331
0.0763
0.0311
0.0769
0.0905
0.0497
0.0695
0.0442
0.0406
0.0436
0.1001

0.0757
0.0351
0.0600
0.0427
0.0358
0.0332
0.0748
0.0336
0.0385
0.0764
0.0330
0.0760
0.0221
0.0444
0.0325
0.0998
0.0538
0.0605
0.0345
0.0323
0.0709
0.0315
0.0731
0.0869
0.0490
0.0638
0.0464
0.0383
0.0413
0.1001

0.0702
0.0390
0.0583
0.0295
0.0339
0.0308
0.0711
0.0340
0.0309
0.0679
0.0286
0.0688
0.0183
0.0377
0.0333
0.0971
0.0495
0.0580
0.0315
0.0232
0.0593
0.0229
0.0705
0.0833
0.0424
0.0526
0.0376
0.0324
0.0336
0.0987

Table 14: DCFs for each phoneme for various system
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